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Abstract. Physical machines in modern datacenters are routinely up-
graded due to their maintenance requirements, which involves migrating
all the virtual machines they currently host to alternative physical ma-
chines. For this kind of datacenter upgrades, it is critical to minimize
the time it takes to upgrade all the physical machines in the datacenter,
so as to reduce disruptions to cloud services. To minimize the upgrade
time, it is essential to carefully schedule the migration of virtual ma-
chines on each physical machine during its upgrade, without violating
any constraints imposed by virtual machines that are currently running.
Rather than resorting to heuristic algorithms, we propose a new sched-
uler, Raven, that uses an experience-driven approach with deep reinforce-
ment learning to schedule the virtual machine migration process. With
our design of the state space, action space and reward function, Raven
trains a fully-connected neural network using the cross-entropy method
to approximate the policy of choosing a destination physical machine for
each migrating virtual machine. We compare Raven with state-of-the-art
heuristic algorithms in the literature, and our results show that Raven
effectively leads to shorter time to complete the datacenter upgrade pro-
cess.

1 Introduction

In modern datacenters, it is routine for physical machines to be upgraded to
newer versions of operating systems or firmware versions from time to time, as
part of their maintenance process. However, production datacenters are used for
hosting virtual machines, and these virtual machines will have to be migrated to
alternative physical machines during the upgrade process. The migration process
takes time, which involves transferring the images of virtual machines between
physical machines across the datacenter network.

To incur the least amount of disruption to cloud services provided by a pro-
duction datacenter, it is commonly accepted that we need to complete the up-
grade process as quickly as possible. Assuming that the time of upgrading a
physical machine is dominated by the time it takes to migrate the images of all
the virtual machines on this physical machine, the problem of minimizing the



upgrade time of all physical machines in a datacenter is equivalent to minimiz-
ing the total migration time, which is the time it takes to finish all the virtual
machine migrations during the datacenter upgrade.

In order to reduce the total migration time, we will need to carefully plan the
schedule of migrating virtual machines. To be more specific, we should carefully
select the best possible destination physical machine for each virtual machine to
be migrated. However, as it is more realistic to assume that the topology of the
datacenter network and the network capacity on each link are unknown to such
a scheduler, computing the optimal migration schedule that minimizes the total
migration time becomes more challenging.

With the objective of minimizing the migration time, a significant amount
of work on scheduling the migration of virtual machines has been proposed.
However, to the best of our knowledge, none of them considered the specific
problem of migrating virtual machines during datacenter upgrades. It is common
that existing work only migrated a small number of virtual machines to reduce
the energy consumption of physical machines [1], or to balance the utilization of
resources across physical machines [2]. Further, most of the proposed schedulers
are based on heuristic algorithms and a set of strong assumptions that may not
be realized in practice.

Without such detailed knowledge of the datacenter network, we wish to ex-
plore the possibilities of making scheduling decisions based on deep reinforcement
learning [3], which trains a deep neural network agent to learn the policy of mak-
ing better decisions from its experience, as it interacts with an unknown envi-
ronment. Though it has been shown that deep reinforcement learning is effective
in playing games [4], whether it is suitable for scheduling resource, especially in
the context of scheduling migration of virtual machines, is not generally known.

In this paper, we propose Raven, a new scheduler for scheduling the migra-
tion process of virtual machines in the specific context of datacenter upgrades.
In contrast to existing work in the literature, we assume that the topology and
link capacities in the datacenter network are not known a priori to the sched-
uler, which is more widely applicable to realistic scenarios involving production
datacenters. By considering the datacenter network as an unknown environment
that needs to be explored, we seek to leverage reinforcement learning to train an
agent to choose an optimal scheduling action, i.e., the best destination physical
machine for each virtual machine, with the objective of achieving the shortest
possible total migration time for the datacenter upgrade. By tailoring the state
space, action space and reward function for our scheduling problem, Raven uses
the off-the-shelf cross-entropy method to train a fully-connected neural network
to approximate the policy of choosing a destination physical machine for each
virtual machine before its migration, aiming at minimizing the total migration
time.

Highlights of our original contributions in this paper are as follows. First,
we consider the real-world problem of migrating virtual machines for upgrading
physical machines in a datacenter, which is rarely studied in the existing work.
Second, we design the state space, action space, and reward function for our



deep reinforcement learning agent to schedule the migration process of virtual
machines with the objective of minimizing the total migration time. Finally, we
propose and implement our new scheduler, Raven, and conduct a collection of
simulations to show Raven’s effectiveness of outperforming the existing heuristic
methods with respect to minimizing the total migration time it takes to com-
plete the datacenter upgrade, without any a priori knowledge of the datacenter
network.

2 Problem Formulation and Motivation

To start with, we consider two different resources, CPU and memory and we
assume the knowledge of both the number of CPUs and the size of the main
memory in each of the virtual machines (VMs) and physical machines (PMs). In
addition, we also assume that the current mapping between the VMs and PMs
is known as well, in that for each PM, we know the indexes of the VMs that are
currently hosted there. It is commonly accepted that the number of CPUs and
the size of main memory of VMs on a PM can be accommodated by the total
number of physical CPUs and the total size of physical memory on its hosting
PM.

We use the following example to illustrate the upgrade process of the phys-
ical machines, and to explain why the problem of scheduling VM migrations to
minimize the total migration time may be non-trivial.

Assume there are three PMs in total, each hosting one of the three VMs.
The sizes of these PMs and VMs, with respect to the number of CPUs and the
amount of memory, are shown in Fig. 1. We will upgrade these PMs one by
one. To show the total migration times of different schedules, we assume the
simplest possible datacenter network topology, where all of these three PMs are
connected to the same core switch, and the network capacity between the core
switch to each PM is 1 GB/s.

In the first schedule, as shown in Fig. 1, we first upgrade PM #0 and migrate
VM #0 to PM #2, and then upgrade PM #1 by migrating VM #1 to PM #0.
Finally, we upgrade PM #2 with migrating VM #0 and VM # 2 to PM #0.
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Fig. 1: Scheduling VM migration: a schedule that takes 10 seconds of total mi-
gration time.



From the perspective of VMs, the migration process of each VM is:

♦ VM #0: PM #0 → PM #2 → PM #0;
♦ VM #1: PM #1 → PM #0;
♦ VM #2: PM #2 → PM #0.

To calculate the total migration time, we start from the VM on the PM that
is upgraded first. In this schedule, we start from the migration of VM #0 from
PM #0 to PM #2. As PM #0 is being upgraded now, here we cannot migrate
VM #1 and VM #2 whose destination PM is PM #0. Since only VM #0 is
being migrated, it can occupy all the network capacity through the link during
its migration. Because the image size of VM #0 is 1GB, this migration takes
1GB/(1GB/s) = 1s.

Then we come to VM #1 as PM #1 is upgraded next. Now the rest of
migration processes whose migration times have not been calculated are:

♦ VM #0: PM #2 → PM #0;
♦ VM #1: PM #1 → PM #0;
♦ VM #2: PM #2 → PM #0.

Actually, all these three migration processes can be processed at the same
time, because 1) for these three migration processes, no source PM is the same
as any destination PMs and no destination PM is the same as any source PMs
and 2) PM #0 has enough residual CPUs and memory to host these three VMs
at the same time. Therefore, we can treat these three migration processes as
a migration batch. The migration time of a migration batch is determined by
the longest migration process in this batch. Since these three VMs share the
link between the core switch and PM #0, each of them will get 1

3GB/s. The
migration time of VM #0 is 1GB/( 13GB/s) = 3s. The migration time of VM
#1 is 3GB/( 13GB/s) = 9s, which is the same as the migration time of VM #2.
Thus, the migration time of this migration batch is 9s. So the total migration
time is 1s + 9s = 10s.

In contrast, a better schedule in terms of reducing the total migration time
is shown in Fig. 2. We first upgrade PM #0 and migrate VM #0 to PM #1,
and then upgrade PM #2 by migrating VM #2 to PM #0. Finally, we upgrade
PM #1 and migrate VM #0 to PM #2 and VM #1 to VM #0.

From the perspective of VMs, the migration process of each VM is:

♦ VM #0: PM #0 → PM #1 → PM #2;
♦ VM #1: PM #1 → PM #0.
♦ VM #2: PM #2 → PM #0.

We start from VM #0 which is initially on the first migrated PM, PM #0.
Since the destination PM of VM #1 is PM #0, which is the source PM of VM
#0, the migration of VM #1 can not be in the current migration batch. For the
same reason, the migration of VM #2 can not be in this batch either. Therefore,
the migration time of this migration batch which only contains the migration of
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Fig. 2: Scheduling VM migration: a schedule that takes 8 seconds of total migra-
tion time.

VM #0 from PM #0 to PM #1 is 1GB/(1GB/s) = 1s. Then we come to VM
#2 because it is on PM #2 which is upgraded next. In this migration batch,
we can also have the migration of VM #1 from PM #1 to PM #0. These two
VMs share the link between the core switch to PM #0 with each of them having
1
2GB/s. The migration time of this batch is 3GB/( 12GB/s) = 6s. At last, we
compute the migration time of VM #0 from PM #1 to PM #2, which is 1s.
Therefore, the total migration time of this schedule is 1s + 6s + 1s = 8s.

As we can observe from our example, even though we schedule the migration
of VMs one by one, the actual migration order cannot be determined until we
have the schedule of all VM migrations that will take place during the datacenter
upgrade. This implies that we will only be able to compute the total migration
time when the datacenter upgrade is completed. To make the scheduling prob-
lem even more difficult to solve, it is much more practical to assume that the
topology and network capacities of the datacenter network is not known a priori,
which makes it even more challenging to estimate the total migration time when
scheduling the migration of VMs one by one. Therefore, we propose to leverage
deep reinforcement learning to schedule the destination PM for each migrating
VM, with the objective of minimizing the total migration time. The hope is that
the agent of deep reinforcement learning can learn to make better decisions by
iteratively interacting with an unknown environment over time.

3 Preliminaries

Before we advance to our proposed work in the Raven scheduler, we first in-
troduce some preliminaries on deep reinforcement learning, which applies deep
neural networks as function approximators of reinforcement learning.

Under the standard reinforcement learning setting, an agent learns by inter-
acting with the environment E over a number of discrete time steps in an episodic
fashion [5]. At each time step t, the agent observes the state st of the environment
and takes an action at from a set of possible actions A according to its policy
π : π(a|s) → [0, 1], which is a probability distribution over actions. π(a|s) is the
probability that action a is taken in state s. Following the taken action at, the
state of the environment transits to state st+1 and the agent receives a reward rt.



The process continues until the agent reaches a terminal state then a new episode
begins. The states, actions, and rewards that the agent experienced during one
episode form a trajectory x = (s1, a1, r1, s2, a2, r2, · · · , sT , aT , rT ), where T is
the last time step in the episode. Cumulative reward R(x) =

!
t∈[T ] rt measures

how good the trajectory is by summing up the rewards received at each time
step during this episode.

As the agent’s behavior is defined by a policy π(at = a|st = s), which maps
state s to a probability distribution over all actions a ∈ A, how to store the
state-action pairs is an important problem of reinforcement learning. Since the
number of state-action pairs of complex decision making problems would be
too large to store in tabular form, it is common to use function approximators,
such as deep neural networks [4] [6] [7]. One significant advantage of deep neural
networks is that they do not need handcrafted features. A function approximator
has a manageable number of adjustable policy parameters θ. To show that the
policy corresponds to parameters θ, we represent it as π(a|s; θ). For the problem
of mapping a migrating VM to a destination PM, an optimal policy π(a|s; θ∗)
with parameters θ∗ is the mapping strategy we want to obtain.

To obtain the parameters θ∗ of an optimal policy, we could use a basic but ef-
ficient method, cross-entropy[8], whose objective is to maximize the reward R(x)
received by a trajectory x from an arbitrary set of trajectories X . Denote x∗ as
the corresponding trajectory at which the cumulative reward is maximal, and let
ξ∗ be the maximum cumulative reward, we thus have R(x∗) = maxx∈X R(x) =
ξ∗.

Assume x has the probability density f(x;u) with parameters u on X , and
the estimation of the probability that the cumulative reward of a trajectory is
greater than a fixed level ξ is l = P(R(x) ≥ ξ) = E[1{R(x)≥ξ}], where 1{R(x)≥ξ}
is the indicator function, that is, 1{R(x)≥ξ} = 1 if R(x) ≥ ξ, and 0 otherwise. If ξ
happens to be set closely to the unknown ξ∗, R(x) ≥ ξ will be a rare event, which
requires a large number of samples to estimate the expectation of its probability
accurately. A better way to perform the sampling is to use importance sampling.
Let f(x; v) be another probability density with parameters v such that for all
x, f(x; v) = 0 implies that 1{R(x)≥ξ}f(x;u) = 0. Using the probability density
f(x; v), we can represent l as

l =

"
1{R(x)≥ξ}

f(x;u)

f(x; v)
f(x; v)dx = Ex∼f(x;v)

#
1{R(x)≥ξ}

f(x;u)

f(x; v)

$
. (1)

The optimal importance sampling probability for a fixed level ξ is given by

f(x; v∗) ∝ |1{R(x)≥ξ} |f(x;u), (2)

which is generally difficult to obtain. Thus the idea of the cross-entropy method is
to choose the importance sampling probability density f(x; v) in a specified class
of densities such that the distance between the optimal importance sampling
density f(x; v∗) and f(x; v) is minimal. The distance D(f1, f2) between two
probability densities f1 and f2 could be measured by the Kullback-Leibler (KL)



divergence which is defined as follows:

D(f1, f2) = Ex∼f1(x)

#
log

f1(x)

f2(x)

$

= Ex∼f1(x)

%
log f1(x)

&
− Ex∼f1(x)

%
log f2(x)

&
,

(3)

where the first term Ex∼f1(x)

%
log f1(x)

&
is called entropy, which does not reflect

the distance between f1(x) and f2(x) and could be omitted during the min-
imization, while the second term −Ex∼f1(x)

%
log f2(x)

&
is called cross-entropy,

which is a common optimization objective in deep learning. It turns out that the
optimal parameters v∗ is the solution to the maximization problem

max
v

"
1{R(x)≥ξ}f(x;u) log f(x; v)dx, (4)

which can be estimated via sampling by solving a stochastic counterpart program
with respect to parameters v:

v̂ = argmax
v

1

N

'

n∈[N ]

1{R(xn)≥ξ}
f(xn;u)

f(xn;w)
log f(xn; v), (5)

where x1, · · · , xN are random samples from f(x;w) for any reference parameter
w.

At the beginning of the deep neural network training, the parameters u = v̂0
are initialized randomly. By sampling with the current importance sampling
distribution in each iteration k, we create a sequence of levels ξ̂1, ξ̂2, · · · which
converges to the optimal performance ξ∗, and the corresponding sequence of
parameter vectors v̂0, v̂1, · · · which converges to the optimal parameter vector.
Note that ξ̂k is typically chosen as the (1 − ρ)-quantile of performances of the
sampled trajectories, which means that we will leave the top ρ of episodes sorted
by cumulative reward. Sampling from an importance sampling distribution that
is close to the theoretically optimal importance sampling density will produce
optimal or near-optimal trajectories x∗. Typically, a smoothed updating rule
with a smoothing parameter α is used, in which the parameter vector ṽk within
the importance sampling density f(x; v) after k-th iteration is ṽk = αv̂k + (1−
α)ṽk−1.

The probability of a trajectory x ∈ X is determined by the transition dynam-
ics p(st+1|st, at) of the environment and the policy π(at|st; θ). As the transition
dynamics is determined by the environment and cannot be changed, the pa-
rameters θ in policy π(at|st; θ) are to be updated to improve the importance
sampling density f(x; v) of a trajectory x with R(x) of high value. Therefore,
the parameter estimator at iteration k could be represented as

θ̂k = argmax
θk

'

n∈[N ]

1{R(xn)≥ξk}

( '

at,st∈xn

π(at|st; θk)
)
, (6)

where x1, · · · , xN are sampled from policy π(a|s; θ̃k−1), and θ̃k = αθ̂k + (1 −
α)θ̃k−1. The equation (6) could be interpreted as maximizing the likelihood of
actions in trajectories with high cumulative rewards.



4 Design

This section presents the design of Raven. It begins with illustrating an overview
of the architecture of Raven. We then formulate the problem of VM migration
scheduling for reinforcement learning, and show our design of the state space,
the action space, and the reward function.

4.1 Architecture

Fig. 3 shows the architecture of Raven. The upgrade process starts from choosing
a PM among PMs that have not been upgraded to upgrade. Then we have a
queue of VMs that are on the chosen PM to be migrated. At each time step,
one of the VMs in this queue is migrated. The key idea of Raven is to use a
deep reinforcement learning agent to perform scheduling decision of choosing
a destination PM for the migrating VM. The core component of the agent is
the policy π(a|s; θ), providing the probability distribution over all actions given
a state s. The parameters θ in π(a|s; θ) are learned from experiences collected
when the agent interacts with the environment E.

An episode here is to finish the upgrade process of all physical machines in
the datacenter. At time step t in an episode, the agent senses the state st of the
environment, recognizes which VM is being migrated right now, and takes an
action at, which is to choose a destination PM for this migrating VM based on
its current policy. Then the environment will return a reward rt which indicates
whether the action at is good or not to the agent and transit to st+1.

We play a number of episodes with our environment. Due to the randomness
of the way that the agent selects actions to take, some episodes will be better, i.e.,
have higher cumulative rewards, than others. The key idea of the cross-entropy
method is to throw away bad episodes and train the policy parameters θ based
on good episodes. Therefore, the agent will calculate the cumulative reward of
every episode and decide a reward boundary, and train based on episodes whose
cumulative reward is higher than the reward boundary by using each state as
the input and the issued action as the desired output.

4.2 Deep Reinforcement Learning Formulation

The design of the state space, action space and reward function is one of the most
critical steps when applying deep reinforcement learning to a practical problem.
To train an effective policy within a short period of time, the deep reinforcement
learning agent should be carefully designed such that it will be able to master
the key components of the problem without useless or redundant information.

State Space. To describe the environment correctly and concisely for the
agent, the state should include the knowledge of the upgrade status, the total
number and usage of all resources of each PM and information of the migrating
VM. So we have the following design of the state.

At time step t, we denote the detailed information of PM #j, j = 0, 1, . . . , J−
1, as stj = {sstatustj , stotal−cpu

tj , stotal−mem
tj , sused−cpu

tj , sused−mem
tj }, where J is the
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Fig. 3: The architecture of Raven.

total number of PMs in this datacenter and sstatustj is the upgrade status of PM
#j. There are three possible upgrade statuses: not yet, upgrading and upgraded.
stotal−cpu
tj and stotal−mem

tj represent the total number of CPUs and the total size

of main memory of PM #j, respectively. sused−cpu
tj and sused−mem

tj denote the
number of used CPUs and the size of used memory of PM #j, respectively. We
represent the state of the environment at time step t as

st = {st0, st1, . . . , st(J−1), v
cpu
t , vmem

t , vpm−id
t }, (7)

where vcput , vmem
t and vpm−id

t denote the number of CPUs, the size of memory
of and the source PM index of the migrating VM, respectively.

Action Space. Since the agent is trained to choose a destination PM for
each migrating VM, the action at should be set as the index of the destination
PM.

Even though it is intuitive to set the action space as A = {0, 1, . . . , J−1}, this
setting has two major problems that 1) the destination PM may not have enough
residual resources for the migrating VM and 2) the destination PM may be the
source PM of the migrating VM. To avoid these two problems, we dynamically
change the action space for each migrating VM, instead of keeping the action
space unchanged as traditional reinforcement learning methods.

When the migrating VM is decided at time step t, the subset of PMs that
are not the source PM of the migrating VM and have enough number of residual
CPUs and enough size of residual memory can be determined. We denote the
set of indexes of PMs in this subset as Aeligible

t . The action space at this time

step will be Aeligible
t .

State Transition. Assume at time step t, the migrating VM on PM #m
takes vcput number of CPUs and vmem

t size of memory, and the agent takes action



at = n, then we have the state of PM #m at time step t+ 1 as

s(t+1)m = {upgraded, stotal−cpu
tm , stotal−mem

tm , sused−cpu
tm − vcput , sused−mem

tm − vmem
t },

(8)
and the state of PM #n at time step t+ 1 as

s(t+1)n = {sstatustn , stotal−cpu
tn , stotal−mem

tn , sused−cpu
tn +vcput , sused−mem

tn +vmem
t }. (9)

Thus the state of the environment at time step t+ 1 will be

st+1 = {st0, . . . , s(t+1)m, . . . , s(t+1)n, . . . , st(J−1), v
cpu
t+1, v

mem
t+1 , vpm−id

t+1 }, (10)

where vcput+1, v
mem
t+1 and vpm−id

t+1 are the number of CPUs, size of memory and
source PM index of the migrating VM at time step t+ 1.

Reward. The objective of the agent is to find out a scheduling decision to
minimize the total migration time for each migrating VM. Since for our schedul-
ing problem, we cannot know the total migration time until the schedule of all
VM migrations is known. To be more specific, we can only know the total mi-
gration time after the episode is finished. This is because although we make the
scheduling decision for VMs one by one, the VM migrations in the datacenter
network are conducted in a different order which is not determined until we
finish scheduling all the migrations, as we have discussed in Section 2.

Therefore, we design the reward rt after taking action at at state st as rt = 0
when t = 1, 2, . . . , T − 1, where T is the number of time steps to complete this
episode. At time step T , as the schedule of all VM migrations is determined, the
total migration time can be computed. We set rT as the negative number of the
total migration time. So the cumulative reward of an episode will be the negative
number of the total migration time of this episode. Therefore, by maximizing
the cumulative reward received by the agent, we can actually minimize the total
migration time.

5 Performance Evaluation

We conduct simulations of Raven to show its effectiveness in scheduling the
migration process of virtual machines during the datacenter upgrade in terms of
shortening the total migration time.

5.1 Simulation Settings

We evaluate the performance of Raven under various datacenter settings, where
the network topology, the total number of physical machines and the total num-
ber virtual machines are different. Also, we randomly generate the mapping be-
tween the virtual machines and physical machines before the datacenter upgrade
to make the environment more uncertain.

Since to the best of our knowledge, there is no existing work that studies
the same scheduling problem of virtual machine migration for the datacenter



upgrade as we do, we can only compare our method with existing scheduling
methods of virtual machine migration designed for other migration reasons.

Here we compare Raven with the state-of-the-art virtual machine migration
scheduler, Min-DIFF [2], which uses a heuristic based method to balance the
usage of different kinds of resources on each physical machine. We also come up
with a simple heuristic method to minimize the total migration time.

5.2 Simulation Results

Convergence behaviour. The convergence behaviour of a reinforcement learn-
ing agent is a useful indicator to show that if the agent successfully learns the
policy or not. A preferable convergence behaviour is that the cumulative re-
wards can gradually increase through the training iterations and converge to a
high value.

We plot the figures of number of training iterations and cumulative rewards
in different datacenters with 3, 5, 10 physical machines as Fig. 4, Fig. 5 and Fig.
6, respectively. The network topology here is that all PMs are connected to the
same core switch.

As shown in these figures, Raven is able to learn the policy of scheduling
the virtual machine migration in datacenter with various number of physical
machines and virtual machines. As the number of total physical machines and
virtual machines increases, the agent normally needs more iterations to converge,
which is reasonable since the environment becomes more complex for the agent
to learn.

However, in Fig. 4, we find that it takes fewer iterations to converge for a dat-
acenter with 12 virtual machines than for a datacenter with 6 virtual machines
or 9 virtual machines. This is due to the randomness of the initial mapping be-
tween physical machines and virtual machines before the upgrade process. We
can see that some initial mappings are easier to learn for the deep reinforcement
learning agent that the others.

The same situation happens when there are 10 physical machine in Fig. 5.
It takes longer to converge for a datacenter with 30 virtual machines than for
a datacenter with 40 virtual machines. Also, it seems difficult to converge when
there are 30 virtual machines. But we find that the agent can still generate
schedules with shorter total migration time than the methods we compare with
before it converges, which will be presented next.

Total migration time. Even though we demonstrate that Raven is able
to learn the scheduling policy of virtual machine migration, we still need to
evaluate if this scheduling policy can generate the schedule that reduces the total
migration time. Since we set the cumulative reward as the negative number of
the total migration time, the negative number of the cumulative reward is the
total migration time of the schedule generated by Raven.

We compute the total migration times of using Min-DIFF and the heuristic
method for comparison. Different network topologies are also applied. Besides the
two-layer network topology where all the physical machines are connected to the
same core switch, we also have the three-layer network topology where physical



(a) 6 virtual machines. (b) 9 virtual machines. (c) 12 virtual machines.

Fig. 4: The learning curve of Raven in datacenter with 3 physical machines.

(a) 10 virtual machines. (b) 15 virtual machines. (c) 20 virtual machines.

Fig. 5: The learning curve of Raven in datacenter with 5 physical machines.

(a) 20 virtual machines. (b) 30 virtual machines. (c) 40 virtual machines.

Fig. 6: The learning curve of Raven in datacenter with 10 physical machines.



machines are connected to different aggregation switches and all aggregation
switches are connected to the same core switch. If the number of aggregation
switches is 0, it means that the network topology is two-layer.

As we have discussed that the initial mapping between virtual machines and
physical machines before the datacenter upgrade will affect the result, we conduct
the simulation of each datacenter setting for 10 times and show the average total
migration time in Table 1.

Table 1: Average total migration time within different datacenter.

Datacenter Setting Average Total Migration Time

Number of
PMs

Number of
VMs

Number of
Aggregation
Switches

Min-DIFF Heuristic Raven

3 6 0 13.00 12.95 12.20
3 6 2 32.05 32.05 31.35
3 9 0 18.60 18.45 17.54
3 9 2 51.50 51.55 47.10
3 12 0 28.35 28.85 27.65
3 12 2 73.00 73.25 70.95
3 12 3 85.55 85.00 81.35

5 10 0 18.35 17.55 16.25
5 10 2 48.35 52.35 46.25
5 15 0 32.30 32.15 31.80
5 15 2 59.80 60.85 59.05
5 15 3 61.80 64.60 52.75
5 20 0 39.85 38.05 36.75
5 20 2 98.65 104.60 92.50
5 20 3 116.45 115.35 100.05
5 20 4 133.75 130.65 119.60

10 20 0 39.00 39.50 38.20
10 30 0 59.85 58.35 53.25
10 40 0 76.60 75.25 72.80

20 100 0 195.00 205.00 175.50

50 100 0 198.60 198.50 216.25
50 150 0 298.50 296.50 377.25

100 200 0 416.85 430.30 403.50
100 300 0 598.75 598.75 796.75

From Table 1, we can see that Raven is able to achieve shorter migration time
than the other two schedulers. As the network topology becomes more complex
and the number of physical machines and virtual machines increases below a
certain number, i.e., 50 physical machines, the superiority of Raven in terms



of shortening the total migration time becomes more obvious. This indicates
that it may be difficult for heuristic methods to handle the scheduling of virtual
machine migration with minimal total migration time when the datacenter has
large number of physical machines and virtual machines under complex network
topology, while Raven can gradually learn to come up with schedules of shorter
total migration time.

The results of 10 physical machines are the total migration times generated at
the 1000th training iteration. Those results indicate that even when it may take
a large number of iterations for Raven to converge its cumulative reward, i.e.,
when there are 30 virtual machines, the schedule that Raven generates before
the convergence can still outperform the other two methods.

However, when the number of physical machines becomes 50, we find that it is
difficult for Raven to learn a schedule that has shorter total migration time than
the other two methods. The cumulative rewards can gradually increase through
training iterations, but it is hard to converge to a high value. One possible reason
could be that so far we have only used fully-connected neural networks as policy
approximators. It might be easier for the agent to converge when more complex
and powerful deep neural networks are used. It should be noted that under the
datacenter setting of 100 physical machines and 200 virtual machines, Raven
outperforms again, which again shows the effect of the randomness of the initial
mapping between physical machines and virtual machines to the result.

6 Related Work

Within a datacenter, it is common to process virtual machine migration due to
various reasons, such as for the maintenance of the hosting physical machines
or for the load balancing among physical machines in the datacenter. To ensure
high quality of service of the datacenter, how to efficiently schedule the virtual
machine migration to achieve different objectives has been extensively studied.

In order to reduce the amount of data transferred over the network during
the virtual machine migration, Sapuntzakis et al. [9] designed a capsule-based
system architecture, Collective.

To reduce the number of migration, Maurya et al. [1] proposed a minimum
migration time policy which is capable of reducing the number of migration
and the energy consumption of virtual machine migration proceeded to opti-
mize resource usage and lower energy consumptions of physical machines in the
datacenter.

Virtual machine migration is also studied in the field of over-committed cloud
datacenter [2] [10] [11]. Within this kind of datacenter, the service provider allo-
cates more resources to virtual machines than it actually has to reduce resource
wastage, as study indicated that virtual machines tend to utilize fewer resources
than reserved capacities. Therefore, it is necessary to migrate virtual machines
when the hosting physical machines reach it is capacity limitation. Ji et al. [2]
proposed a virtual machine migration algorithm which can balance the usage of



different resources on activated physical machines and also minimize the number
of activated physical machines in an over-committed cloud.

7 Conclusion

In this paper, we study a scheduling problem of virtual machine migration during
the datacenter upgrade without a priori knowledge of the topology and network
capacity of the datacenter network. We find that for this specific scheduling
problem which is rarely studied before, it is difficult for previous schedulers of
virtual machine migration using heuristics to reach the optimal total migration
time.

Inspired by the success of applying deep reinforcement learning in recent
years, we develop a new scheduler, Raven, which uses an experience-driven ap-
proach with deep reinforcement learning to decide the destination physical ma-
chine for each migrating virtual machine with the objective of minimizing the
total migration time to complete the datacenter upgrade. With our careful de-
sign of the state space, the action space and the reward function, Raven learns to
generate schedules with the shortest possible total migration time by interacting
with the unknown environment.

Our extensive simulation results show that Raven is able to outperform exist-
ing heuristic scheduling methods under different datacenter settings with various
number of physical machines and virtual machines and different network topol-
ogy. However, as the number of physical machines and virtual machines becomes
large, it is difficult for Raven to converge and outperform other methods. We
discuss the possible reasons behind it and will improve it in our future work.
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