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Abstract—Asynchronous federated learning (FL) has been
proposed to decrease the training time in conventional FL
where the communication paradigm is synchronous. Instead of
aggregating after receiving updates from all the selected clients,
an asynchronous FL server conducts aggregation without waiting
for slow clients. Though superior to synchronous FL, the perfor-
mance of existing works in asynchronous FL — measured by the
wall-clock time of global training — leaves much to be desired,
as the staleness of client updates may degrade the performance
substantially. In this paper, we propose BLADE, a new staleness-
aware framework that seeks to push the performance envelope of
asynchronous FL by designing new mechanisms in all important
design aspects of FL training, including client selection, adaptive
pruning, quantization, and update aggregation. BLADE selects
clients based on their staleness and the quality of their previous
updates. Before reporting to the server, every client prunes
its update with a pruning amount related to its staleness and
quantizes the pruned update. When aggregating updates, BLADE
tunes the aggregation weight of each update according to its
staleness and divergence from the previous global model. In an
extensive array of performance evaluations with six benchmark
datasets, BLADE consistently showed its substantial performance
superiority over its state-of-the-art competitors. It decreased the
wall-clock training time by up to 64.6%.

I. INTRODUCTION

Federated learning (FL) [1], [2] has emerged as a popular
distributed machine learning paradigm for a large number
of clients to collaboratively train a high-performance model
without revealing their private data. In each communication
round, a shared global model is trained collaboratively by a
set of selected clients using their local data. After receiving
updates from all the selected clients, the server aggregates
these updates to generate an improved global model. As data
privacy has become a major concern, FL has received an
extensive amount of research attention in the recent literature.

Similar to conventional distributed machine learning, FL
aims to minimize the elapsed wall-clock time for the global
model to converge to a target accuracy, which is the most im-
portant performance metric in FL. Unfortunately, it is common
that computing capabilities vary widely among clients. For the
same amount of computation, training times of different clients
may follow a heavy-tailed distribution. Therefore, some clients
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need much more time to complete local training than others.
These slow clients — known as stragglers [3] in conventional
distributed machine learning — lead to an excessively long
wall-clock time to finish a training session, since the server
needs to wait for their updates.

To alleviate the performance degradation due to stragglers,
it has been addressed that the FL server can proceed asyn-
chronously without waiting for all the selected clients [4]–
[8]. In asynchronous FL, the server aggregates after receiving
updates from only a subset of the selected clients and starts
a new round. It has been shown that asynchronous FL can
far outperform synchronous FL when the clients are heteroge-
neous, which is the norm in reality. In fact, the performance
advantages of asynchronous FL are so convincing that, even
with only a mild degree of client heterogeneity, asynchronous
FL should be used as the default FL mechanism [9].

Despite the performance benefits of asynchronous FL, ex-
isting works have not pushed its performance to the limits.
There are three common directions to improve FL perfor-
mance regarding the elapsed wall-clock time to complete a
training session. First, as the data distribution across clients
is non-i.i.d. (not independent and identically distributed) [10],
[11], a client selection mechanism can be designed to select
clients with a higher potential [12]. Second, as the sizes of
modern models are excessively large, applying two common
techniques model pruning [13], [14] and quantization [15]
strategically to remove unnecessary parameters in updates
can reduce the communication overhead without decreasing
the global model accuracy. Finally, as the global model is
produced by weighted averaging with updates, designing an
update aggregation mechanism to assign a proper aggregation
weight to each client’s update can improve the validation
accuracy of the converged global model [16], [17].

We argue that, however, directly applying existing mech-
anisms designed for synchronous FL may not be effective
in asynchronous FL, and may prevent the global model
from converging to the highest possible validation accuracy
in the shortest amount of time. This is attributed to a key
difference between synchronous and asynchronous FL: the
training performance may be degraded due to client staleness.
In asynchronous FL, the global model that a slow client used
for local training may be stale as compared to the latest global
model, since the server may have already advanced for quite
a number of additional rounds by aggregating updates from



faster clients. Intuitively, an update from a client that is less
stale should be of higher quality. Thus, it should be pruned
with a smaller ratio and have a higher aggregation weight, and
the client should have a higher probability of being selected
in future rounds. As existing mechanisms in synchronous FL
did not consider such staleness, it is challenging for them to
perform well under asynchronous mode.

In this paper, we focus on pushing the performance envelope
of asynchronous FL by minimizing the elapsed wall-clock
training time used to reach a target accuracy. By designing and
consolidating new client selection, pruning, quantization, and
update aggregation mechanisms that are specifically custom-
tailored for asynchronous FL, we propose BLADE, a staleness-
aware asynchronous FL framework with a provable conver-
gence guarantee. BLADE selects clients according to their
selection scores, which are calculated based on their staleness
and the quality of their latest reported updates. Pruning and
quantization are leveraged to compress client updates with
minimal amount of reduction or even an increase in global
model accuracy. During update aggregation, the server assigns
aggregation weights to client updates based on their staleness
and degrees of divergence from the global model.

Highlights of our original contributions in this paper are
three-fold. First, with BLADE, we seek to push the per-
formance envelope of asynchronous FL by proposing new
client selection, pruning, quantization, and update aggregation
mechanisms that offer a theoretical convergence guarantee.
Second, our mechanisms in BLADE are staleness-aware, in
that updates with higher degrees of staleness are pruned more
aggressively and have smaller aggregation weights. Also, these
clients are less likely to be selected in future rounds. Finally,
we have implemented BLADE in our open-source real-world
FL research framework, which has been designed from scratch
for reproducible and scalable FL research experiments. With
an extensive array of experiments over a variety of datasets and
models in both image classification and language modeling
tasks, BLADE shows its capability to outperform its state-of-
the-art competitors in the literature by a considerable margin,
reducing the wall-clock training time by up to 64.6%.

II. BLADE: OVERVIEW, MOTIVATION, AND DESIGN

To minimize the wall-clock training time in asynchronous
FL, we propose a new staleness-aware framework, BLADE, to
enhance every important design aspect of the training process.
Fig. 1 shows the overview of BLADE. Its client selector,
compressor, and update aggregator are all designed based on
client staleness, whose definition is as follows.

Definition 1 (Client staleness). In communication round t,
client staleness stn is the number of rounds that have elapsed
since the last time client n received the global model from the
server. If client n received the global model wτn and uses it
to conduct local training, the client staleness stn := t− τn.

A substitute for client staleness. However, the client stale-
ness may not be readily available when needed. For example,
a client cannot know its staleness when pruning its update.
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Fig. 1: BLADE: a design overview.

Thus, a substitute is required. Intuitively, if a client requires a
longer local training time, its update will be staler because the
server should finish more aggregations during its local training.
Hence, a client’s local training time can be a substitute. The
server in BLADE records γi, the average training time of i
reported clients. After receiving the (i + 1)-th update from
client n, the server updates γi+1 as γi+1 = γi×i+ln/|Dn|

i+1 ,
where ln is the local training time of client n, |Dn| is the
number of its data samples, and γ0 = 0. As local dataset sizes
usually vary among clients in FL, a client with a larger local
dataset should need a longer local training time than one with
the same computing capability but a smaller local dataset. For
fairness, we use ln/|Dn| instead of ln to update γ.

The workflow. In the first communication round, the server
randomly selects C clients from N clients. After receiving K
(K < C) updates and aggregating them, the server updates
the average training time γ, and its client selector selects K
new clients. The server then sends the newly aggregated global
model and the latest γ to the selected clients.

In communication round t, the selected client n conducts
local training to compute its update ∆t

n with local stochastic
gradient descent (SGD) on its local dataset Dn and the current
global model wt. It then reduces the size of ∆t

n based on
its staleness and received γ with a compressor, and sends its
compressed update and ln/|Dn| to the server. After the server
receives K updates, the update aggregator generates a new
global model. The next communication round then starts.

In the remainder of this section, we will show several
motivational experiments and introduce our design of the client
selector, compressor, and update aggregator in detail.

Experimental settings. We conducted our experiments on
NVIDIA A100 GPUs with 40 GB of CUDA memory. Motiva-
tional experiments trained LeNet-5 models with the Federated
Extended MNIST (FEMNIST) dataset, which provides 3597
local datasets with a highly skewed non-i.i.d. distribution. For
local training, we set the batch size to 32, epoch number to 5,
learning rate to 0.01, and momentum to 0.9. The baseline was
FedBuff [8], the leading asynchronous FL mechanism where
the server aggregates every K updates. K was set to 50.

A. Client Selector

We introduce a client selector for the server to select clients
that are more likely to generate high-quality updates in a short
amount of time. The client selector records a selection score
for every client. Clients with higher selection scores have



higher probabilities of being selected. All scores are initialized
as K, the number of updates required for aggregation. Denote
the set of clients whose updates are aggregated in commu-
nication round t as At. After the t-th aggregation, the client
selector updates the selection score of client n, ∀n ∈ At as:

Scoretn =
|Dt|
|Dn|

Θ(∆t
n,w

t+1 −wt) + 1

2︸ ︷︷ ︸
Update quality

× sigmoid

(
γtK
ln
|Dn|

)α
︸ ︷︷ ︸

Local training time

,

(1)
where |Dt| =

∑
n∈At |Dn|. Θ is cosine similarity.

The first component of Eq. (1) represents the update quality.
Ideally, client update ∆t

n should have the same angle as
wt+1 − wt. Therefore, we use the cosine similarity Θ to
quantify the quality of ∆t

n, so that a client with a smaller angle
would have a higher selection score. The second component
assigns higher selection scores to clients with shorter local
training times by using a monotonically increasing function,
sigmoid. The hyperparameter α controls how much the local
training time should contribute to the selection score.

In the next communication round t + 1, client n will be
selected with the probability of ψt+1

n =
Scoretn∑

i∈St+1 Scoreti
, where

St+1 are the set of clients who are available to participate in
this round, i.e., they are not currently training. For any client
i ∈ St+1 and i /∈ At, Scoreti = Scoret−1i .

To empirically validate our design of the client selector, we
replaced the random client selector on FedBuff [8] with it, and
evaluated its performance with different values of α. We also
added Oort [12], a state-of-the-art client selection mechanism
designed for synchronous FL, to FedBuff for comparison.
Fig. 2a shows that with Oort, FedBuff performed better than
without it, indicating that a carefully designed client selection
mechanism is better than random selection. However, our new
client selector works even better with whichever value of α.

Oort compares ln with Γ, a predefined desired training time,
and decreases their probabilities of being selected by the same
amount for any client n with ln > Γ. However, it is not
reasonable to penalize all slow clients by the same amount
as their local training times and staleness may vary greatly.
Furthermore, it is nontrivial to choose a proper value of Γ. In
contrast, our client selector uses the average training time γ
to estimate the staleness of updates and penalize slow clients.

The varying performance from different values of α also
shows the importance of considering staleness in asynchronous
FL. Among the four different values, the worst performance
occurred when α = 0, which turns the second component in
Eq. (1) to 0.5 for all clients regardless of their staleness.

B. Compressor: Pruning

Pruning [18] can significantly reduce the size of a neural
network model by reducing its number of parameters with a
negligible reduction in validation accuracy. In FL, pruning can
reduce the sizes of updates and thus shorten the transmission
time, which takes up a major portion of the training time.

The core of a pruning mechanism is its policy to determine
the least important parameters that can be removed with
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(a) Benefit of our client selector.
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(b) Benefit of pruning mechanism.
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(c) Benefit of update aggregator.
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Fig. 2: Designing BLADE: motivational examples.

minimal impact on accuracy. One common policy is based
on magnitude, such as its L1-norm, since parameters of lower
magnitudes usually have less significant effects on the output,
and hence are less likely to affect the model performance.

BLADE uses L1-norm pruning with an adaptive pruning
amount. Client n zeros out ρn of its update parameters with
the smallest L1-norm. We set the pruning amount ρn as:

ρn = 1− sigmoid

(
γ
ln
|Dn|

)
. (2)

As client staleness stn is unknown at this point, we use ln/|Dn|
as an alternative to tune ρn. The design rule of Eq. (2) is to
assign higher ρn to client n with a longer local training time.

In addition to our client selector, we add our pruning
mechanism to FedBuff and compare it with FedBuff + Oort +
FedSCR. Designed for synchronous FL, FedSCR [14] prunes
each update’s entire filters and channels if their summed
parameter values are below a particular threshold. We have
implemented Zstandard [19], a fast real-time compression
algorithm, to compress data before transmitting it over the
network, so that zeros in pruned updates will take up no space.
Fig. 2b indicates the advantages of using pruning in addition
to client selection and considering staleness for pruning.

C. Update Aggregator

In communication round t, the server generates an improved
global model after receiving K updates:

wt+1 = wt +
∑
n∈At

ptn∆t
n. (3)

Conventionally, ptn = |Dn|/
∑
n∈At |Dn| [1]. To improve

performance, updates with higher quality and lower staleness
should have larger aggregation weights. Thus, our update
aggregator assigns the aggregation weight ptn to client n as:

ptn =
|Dn|
|Dt|

Θ(∆t
n,w

t −wt−1) + 1

2︸ ︷︷ ︸
Estimation of update quality

×
(
1− stn

stmax + 1
)β︸ ︷︷ ︸

Staleness

, (4)



where stmax is the highest staleness of updates to be aggre-
gated. After normalizing ptn, ∀n ∈ At, such that their sum be-
comes 1, the update aggregator aggregates a new global model
with Eq. (3). The hyperparameter in Eq. (4) β controls how
significantly staleness should affect the aggregation weights.

We further add our update aggregator to FedBuff with our
client selector and pruning mechanism. As α = 2 led to the
best performance in the former two examples, we set α = 2
and evaluated it with different values of β. Fig. 2c shows the
advantage of our update aggregator. It converged to higher
accuracy and further reduced the wall-clock training time.

D. An Additional Compressor: Quantization

The three aforementioned components constitute BLADE’s
foundation. In addition, we find that quantizing the global
model and client updates from the commonly used format of
32-bit floating-point to 16-bit floating-point can reduce wall-
clock training time without sacrificing global model accuracy.

Fig. 2d demonstrates the advantage of using quantization
in asynchronous FL. It largely reduced the wall-clock time
for both FedBuff and BLADE. Thus, we propose to employ
quantization as an additional compressor of BLADE.

III. BLADE: CONVERGENCE ANALYSIS

This section presents BLADE’s convergence guarantee based
on the following assumptions that are commonly used in
analyzing FL mechanisms [8], [10], [20], [21].

1) Lipschitz gradient. For all clients n ∈ [N ], their gradi-
ents are L-smooth: ‖∇Fn(w) − ∇Fn(w′)‖ ≤ L‖w −
w′‖2, where ∇Fn(w) denotes the stochastic gradient of
model w with respect to the loss on data of client n.

2) Unbiased local gradient. Eζn [gn(w; ζn)] = ∇Fn(w),
where gn(w; ζn) denotes the stochastic gradient on
client n with randomness ζn.

3) Bounded local and global variance. Eζn|n
[
‖gn(w; ζn)−

∇Fn(w)‖2
]
≤ σ2

l , ∀n ∈ [N ], and 1
N

∑N
n=1 ‖∇Fn(w)−

∇f(w)‖2 ≤ σ2
g , ∀n ∈ [N ], where f(w) :=∑N

n=1 pnFn(w) denotes the global learning objective.
4) Uniformly bounded local gradient. ‖∇Fn(w)‖2 ≤ G,
∀n ∈ [N ].

Theorem 1 (Convergence rate). The global model trained by
BLADE has the following convergence rate:

1

T

T−1∑
t=0

‖∇f(wt)‖2 ≤
2
(
f(w0)− f(w∗)

)
ηKET

+ ησ2
lNL

+ 6L2η2(KB + 1)(σ2
l + σ2

g +G2).

(5)

Proof. Due to L-smoothness and Eq. (3),

f(wt+1) ≤ f(wt) +
∑
n∈At

ptn〈∇f(wt),∆t
n〉︸ ︷︷ ︸

T1

+
L

2
‖
∑
n∈At

ptn∆t
n‖2.︸ ︷︷ ︸

T2

(6)

Note that ∆t
n is the update received by the server, which was

pruned by client n. Denote the original update as ∆̄t
n and since

∆̄t
n = −η

∑E
e=1 gn(w

τt
n
n,e) due to SGD, we have ∆t

n = ∆̄t
n �

M t
n = (−η

∑E
e=1 gn(w

τt
n
n,e))�M t

n, where M t
n ∈ {0, 1}|w| is

the pruning mask, η is the local learning rate, and E is the
local epoch number. As M t

n turns some parameters in ∆̄t
n to 0,

‖∆t
n‖ ≤ ‖∆̄t

n‖. The local update ∆̄t
n has the staleness of stn.

Hence, it was trained based on global model wτt
n , τ tn := t−stn.

We first derive the upper bound of T1. Using conditional
expectation E[·] := EHEn∼[N ]Egn|n,H[·], where EH is the
expectation over the history of communication rounds,

E[T1]
(A.)

≤ −ηK
N

EH
[ N∑
n=1

ptn

E∑
e=1

〈
∇f(wt),∇Fn(w

τt
n
n,e)
〉]

(B.)
= −ηKE

2N
‖∇f(wt)‖2

+
ηK

2N

E∑
e=1

(
− EH

[∥∥∥ N∑
n=1

ptn∇Fn(w
τt
n
n,e)
∥∥∥2]

+ EH
[ ∥∥∥∇f(wt)−

N∑
n=1

ptn∇Fn(w
τt
n
n,e)
∥∥∥2︸ ︷︷ ︸

T3

])

(C.)

≤ 3L2η3EK

N
(KB + 1)(σ2

l + σ2
g +G2)

− ηKE

2N
‖∇f(wt)‖2−ηK

2N

E∑
e=1

EH
[∥∥∥ N∑

n=1

ptn∇Fn(w
τt
n
n,e)
∥∥∥2]︸ ︷︷ ︸

T4

,

(7)

where (A.) follows the unbiasedness of gn and (B.) is because
〈a, b〉 = 1

2 (‖a‖2 + ‖b‖2 − ‖a − b‖2). Due to ∇f(wt) =∑N
n=1 p

t
n∇Fn(wt) in FL, T3 ≤ N

∑N
n=1(ptn)2‖∇Fn(wt) −

∇Fn(w
τt
n
n,e)‖2. (C.) is due to E[T3] ≤ 6L2η2E(KB+1)(σ2

l +
σ2
g +G2), which is based on the analysis of FedBuff [8].
Now we move to derive the upper bound of E[T2]:

E[T2]
(A.)

≤ LK

2
E
[ ∑
n∈At

‖ptn∆t
n‖2
]
≤ LK

2
E
[ ∑
n∈At

‖ptn∆̄t
n‖2
]

(B.)
=

LKη2

2
E
[ ∑
n∈At

(ptn)2
E∑
e=1

‖gn(w
τt
n
n,e)−∇Fn(w

τt
n
n,e)‖2

]

+
LKη2

2
E
[ ∑
n∈At

E∑
e=1

‖ptn∇Fn(w
τt
n
n,e)‖2

]

≤ LKEη2σ2
l

2
+
LK2η2

2N

E∑
e=1

N∑
n=1

EH
[
‖∇Fn(w

τt
n
n,e)‖2

]
︸ ︷︷ ︸

T5

,

(8)

where (A.) is due to ‖
∑K
k=1 ak‖2 ≤ K

∑K
k=1 ‖ak‖2, and

(B.) holds because local gradient gn is unbiased.
Combining Eq. (6), Eq. (7) and Eq. (8) results in

E
[
f(wt+1)

]
≤ E

[
f(wt)

]
− ηKE

2N ‖∇f(wt)‖2 +
LKEη2σ2

l

2 +



3L2η3EK
N (KB + 1)(σ2

l + σ2
g + G2) + T4 + T5. Summing up

this inequality from t = 0 to T − 1 with η ≤ 1
KL to ensure

that T4 + T5 ≤ 0 yields Eq. (5).

IV. BLADE: IMPLEMENTATION AND EVALUATION

A. Implementation and Preparation

We have implemented BLADE in PLATO (https://github.
com/TL-System/plato), a new open-source FL research frame-
work developed from scratch. Designed for scalable, repro-
ducible, and extensible FL research, PLATO can fairly and
accurately compare different FL mechanisms in the same real-
world or emulated environment.

Improving scalability. To scale up the number of clients
with limited CPU and GPU (CUDA) memory, our imple-
mentation runs a client’s training loop in its own process, so
that memory is guaranteed to be released after the process
completes. The number of launched processes depends only
on resource availability and PLATO can automatically use all
the available GPUs. With a sufficient amount of time, PLATO
is scalable to an unlimited number of clients.

Improving reproducibility. For fair comparisons across
different FL mechanisms, it is critically important to improve
the reproducibility by seeding, saving, and restoring random
number generators, which are used for sampling participating
clients and local datasets. PLATO can not only specify random
seeds, but also eliminate effects of third-party frameworks with
random.getstate() and random.setstate().

Datasets and models. PLATO provides ready access to a
wide variety of existing models beyond image classification.
For instance, it supports HuggingFace Transformers, which
provides thousands of pretrained models to perform tasks
on different modalities such as text, vision, and audio. With
such ready availability of datasets and models in PLATO,
we evaluated BLADE with six FL training tasks. Five are
image classification tasks, including the LeNet-5 model with
the MNIST, EMNIST, and FEMNIST datasets, the ResNet-18
model with the CIFAR-10 dataset, and the VGG-16 model with
the CINIC-10 dataset. We also conducted a more complex
language modeling task to train a distilled variant of the
GPT-2 model with the Tiny-Shakespeare dataset. Table I lists
important parameters used across tasks, and the parameters of
local training are the same as motivational experiments in II.

TABLE I: Six training tasks we tested: parameter settings.

Parameter MNIST
EMNIST

FEMNIST
CIFAR-10
CINIC-10

Tiny-
Shakespeare

Total clients 1000 3597 1000 200
C 100 100 30 20
K 50 50 20 10

BLADE was compared with FedBuff and FedBuff + Oort
+ FedSCR in image classification tasks. Since FedSCR was
designed solely for image classification models, we compared
BLADE with FedBuff and FedBuff + Oort for the language
modeling task. FedAvg is added as a synchronous FL baseline.

Hyperparameter sweep. We performed a hyperparameter
sweep for α in Eq. (1) and β in Eq. (4). Fig. 3 illustrates a

comparison of several representative pairs of α and β in two
tasks as examples. Given their clear performance advantages
over other pairs, α = 2 and β = 4 were set as the default.
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Fig. 3: Evaluating different pairs of hyperparameters α and β.

B. Performance Evaluation

Evaluating BLADE without quantization. We first eval-
uated BLADE with its three basic components. Fig. 4 shows
the results of the EMNIST and Tiny-Shakespeare datasets as
examples. The label FedBuff + represents FedBuff + Oort +
FedSCR in the image classification tasks, and FedBuff + Oort
for the task with the Tiny-Shakespeare dataset.
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Fig. 4: Performance comparison: BLADE vs. its competitors.

Overall, BLADE clearly outperformed all its competitors
across all six tasks. It consistently converged to the highest
validation accuracy, or the lowest perplexity. As BLADE used
its client selector to replace conventional random selection, it
is not surprising that its accuracy was higher than FedBuff.
Moreover, with adaptive pruning, BLADE incurred a shorter
transmission time for each communication round, which am-
plified its advantage. However, coupled with client selection
from Oort and pruning from FedSCR, FedBuff performed
only slightly better or even worse than vanilla FedBuff when
training with the EMNIST dataset, which substantiates our
design philosophy that client staleness should be considered.

Evaluating BLADE with quantization. Fig. 4 illustrates the
sample results of applying quantization to BLADE. Numerical
results of elapsed wall-clock training times to reach a target
accuracy (or perplexity) are listed in Table II. The numbers in
brackets are the percentages of reduced training time compared
with FedBuff + Oort (+ FedSCR). With quantization, BLADE
reduced even more training time.

Which component contributes the most in BLADE? In
our experiments, BLADE showed its superiority in all six tasks.
Since it has three basic components and one optional compo-
nent (quantization), we are intrigued by the question: which
component contributes the most to its superior performance?

https://github.com/TL-System/plato
https://github.com/TL-System/plato


TABLE II: Elapsed wall-clock training time to reach a target accuracy or target perplexity.

Settings Wall-clock training time (minutes)

Dataset Model Target accuracy or
target perplexity FedAvg FedBuff FedBuff +

Oort (+ FedSCR) BLADE
BLADE w/

quantization

MNIST LeNet-5 94% 36.50 9.44 6.88 5.11 (25.73%) 2.71 (60.61%)
EMNIST LeNet-5 75% 106.60 26.75 21.67 12.99 (40.06%) 9.58 (55.79%)
FEMNIST LeNet-5 60% 235.93 45.16 38.95 27.29 (29.94%) 16.63 (57.30%)
CIFAR-10 ResNet-18 80% 412.63 87.07 55.92 49.12 (12.16%) 34.66 (38.02%)
CINIC-10 VGG-16 55% 352.16 98.23 65.53 33.92 (48.24%) 23.17 (64.64%)

Tiny-Shakespeare DistilGPT2 35 844.42 235.7 126.49 107.27 (15.19%) 73.08 (42.22%)

0 300 600 900 1200 1500 1800 2100 2400 2700
Elapsed wall-clock time (seconds)

20

40

60

Gl
ob

al
 m

od
el

 a
cc

ur
ac

y 
(%

) FedBuff
FedBuff +

w/ Client Selector (CS)
w/ CS and Pruning
Blade
Blade w/ Quantizaion

Fig. 5: Effects of different components in BLADE.

To answer this question, we used FEMNIST as an example
and plotted Fig. 5. The client selector itself improved the
performance by a substantial margin over FedBuff, and beat
FedBuff + Oort + FedSCR. However, pruning only provided a
minor overall improvement. The update aggregator (the purple
line with star markers) significantly improved performance and
converged to higher accuracy. Yet, quantization contributed the
most. To reach 60% accuracy, quantizing 32-bit floating point
numbers to 16-bit ones reduced training time by 29.4%.

V. CONCLUDING REMARKS

To minimize the wall-clock training time of asynchronous
FL, we propose a staleness-aware framework, BLADE, which
consolidates new client selection, adaptive pruning, quanti-
zation, and update aggregation mechanisms to improve the
performance of every important aspect of a training process
as much as possible. In BLADE, the server selects clients based
on their latest updates’ quality and staleness. After finishing
local training, a selected client prunes and quantizes its update
based on its estimated staleness. When the server aggregates
updates by weighted averaging, the aggregation weight of each
update is determined by its estimated quality and staleness.
With a scalable implementation and reproducible experiments,
we have demonstrated convincing evidence that BLADE con-
sistently outperformed its state-of-the-art alternatives with
respect to the wall-clock training time used for converging
to a target accuracy over a variety of tasks.
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