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ABSTRACT

Different from its commonly studied scenario to centrally
store clients’ data in institutions, which implicitly neglects
clients’ data privacy, we study cross-silo federated learning
in a preferable setting to keep private data on clients, and
train the global model with a three-layer structure, where the
institutions aggregate model updates from their clients for
several rounds before sending their aggregated updates to the
central server. In this context, we mathematically prove that
the number of clients’ local training epochs affects the global
model performance and thus propose a new approach, Tempo,
to adaptively tune the epoch number of each client through
training. The results of our evaluation conducted under real
network environments show that Tempo can not only improve
training performance in terms of global model accuracy and
communication efficiency, but also the elapsed training time.

Index Terms— Federated learning, cross-silo federated
learning, edge computing, non-IID data

1. INTRODUCTION

As a particular branch of federated learning (FL), cross-silo
FL [1] has been proposed for the scenario where different in-
stitutions (e.g., financial or medical organizations [2–5]) or
geo-distributed datacenters jointly train a global model with
their siloed data. FL is used in this context since such insti-
tutional data should not be shared directly due to confidential
or legal constraints.

In previous work, cross-silo FL is commonly described as
a two-layer structure with one central server and several in-
stitutions. It implicitly assumes that each institution centrally
stores raw data from a massive number of clients within the
institution itself. Each client, likely an edge device, generates
large volumes of data. During one training iteration, every
institution computes an update of the current global model
maintained by the central server, and only communicates this
update with the central server.

Within the two-layer structure mentioned above, the data
privacy of each institution can be well-preserved. However,
in financial and medical industries where sensitive user data
needs to be kept private, it is not desirable to store clients’
raw data centrally within the same institution from a security
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Fig. 1: A three-layer structure of cross-silo FL.

point of view. In addition, from a performance point of view,
sending raw data from a client to its institution may take a
longer time than sending model updates. This motivates a
three-layer structure, where traditional FL is used both within
the institution and across institution silos.

Therefore, we study such a new and more realistic context
of cross-silo FL, with a three-layer structure shown in Fig. 1.
Clients on the bottom layer conduct local training and send
their model updates to their institutions. Institutions on the
middle layer aggregate updates from their clients and transfer
their aggregated updates to the central server on the top layer.
The central server then aggregates updates from institutions
to construct an improved global model.

Naturally, cross-silo FL with three layers inherits and
magnifies all the inherent challenges in FL: limited and un-
stable network connections, a massive number of clients,
and non-IID (not independent and identically distributed)
distributions of clients’ local datasets [6]. While the first
two problems would result in substantial communication
overhead and training time, the last one affects the global
model performance, as it has been proved that non-IID data
could significantly reduce the accuracy and slow down the
convergence of the global model [7, 8].

Although these challenges in FL have been widely stud-
ied [9–12], most existing work only considered cross-device
FL that involves a central server and numerous mobile de-
vices as clients [8, 13, 14]. Some discussed cross-silo FL,
but with institutions centrally storing clients’ data [15, 16].
Since three-layer cross-silo FL has a more complex model
training scheme, improving training performance under this
rarely studied structure would be more challenging.



In this paper, we seek to improve the training performance
of cross-silo FL with three layers. Highlights of our origi-
nal contributions are as follows. Firstly, to the best of our
knowledge, we are the first to study the problem of improving
training performance in cross-silo FL with three layers. Sec-
ondly, our mathematical analysis indicates that epoch num-
bers of clients’ local training largely affect the global model
performance and thus propose Tempo, a new framework to
adaptively tune clients’ epoch numbers based on the differ-
ences between their institutions’ aggregated models and the
current global model. Finally, we evaluate Tempo under real
network environments. The results show that Tempo can in-
crease the global model accuracy while reducing the number
of required training iterations and the elapsed training time.

2. CROSS-SILO FEDERATED LEARNING WITH
THREE LAYERS

2.1. System Model

To formulate the model of three-layer cross-silo FL, we sup-
pose that there are N clients and M institutions in total. Each
client n, n ∈ [N ] = {1, 2, . . . , N}, has a local dataset Dn,
which is a set of training samples {x, y} following the dis-
tribution pn. If this client n belongs to the institution m,
m ∈ [M ], then n ∈ C(m). We define the union of the local
datasets of clients of institution m as D(m) = ∪n∈C(m)Dn,
and the union of all local datasets as D = ∪Mm=1D(m).

Here we consider a classification problem of S classes.
The problem is defined over a compact space X and a la-
bel space Y = [S]. Any data point {x, y} of a client’s local
dataset distributes over X ×Y . Typically, x ∈ Rd and y ∈ R.

Same as the conventional two-layer FL, the goal of the
three-layer FL is to find global model weights w(c) ∈ Rd
that can characterize the output y with a function fs(x,w(c))
from the input x, with fs being the probability for class s. The
training process of the global model is to minimize the global
loss F (w(c)) based on local datasets. We define F (w(c)) as
the widely used cross-entropy loss, which is

F (w(c)) =

S∑
s=1

p(y = s)Ex|y=s
[

log fs(x,w
(c))
]
. (1)

If the central server centrally stores all clients’ data, w(c)

can be generated by utilizing centralized stochastic gradient
descent (SGD). With η as the learning rate, in its t-th iteration,
the centralized SGD updates the w(c)(t) as

w(c)(t) = w(c)(t− 1)− η∇w(c)F (w(c)(t− 1))

= w(c)(t− 1)− η
S∑
s=1

p(y = s)·

∇w(c)Ex|y=s
[

log fs(x,w
(c)(t− 1))

]
,

(2)

where p is the data distribution of D.

However, in FL, only clients have access to their local data
and can conduct local SGD to iteratively optimize their local
models as eq. (2). To compute the global model weights w(c)

in the three-layer cross-silo FL, we modify the widely used
FedAvg algorithm [17] originally proposed for two-layer FL.

Suppose that each client conducts local SGD with a local
epoch number of τc, a minibatch size of B, and a learning
rate of η. That is, a client sends its updated weights to its
institution after every τc local training epochs. In the t-th
global training iteration, each institution sends its aggregated
weights to the central server after τi aggregations. In the ti-th
round of local aggregation at institutionm, its client n updates
its local model wn at its tc-th local training epoch as:

wn(t, ti, tc) = wn(t, ti, tc − 1)− η
S∑
s=1

pn(y = s)·

∇wnEx|y=s
[

log fs(x,wn(t, ti, tc − 1))
]
,

(3)

where tc ∈ [τc] and ti ∈ [τi].
After the τc-th local training epoch of client n, it sends

wn(t, ti, τc) to its institutionm. Institutionm then updates its
aggregated model w(m)(t, ti, τc) by aggregating the updated
weights from all of its clients:

w(m)(t, ti, τc) =
∑

n∈C(m)

|Dn|
|D(m)|

wn(t, ti, τc). (4)

Before finishing its τi-th round of local aggregation, insti-
tutionm sets its aggregated model at the beginning of its ti-th
round as w(m)(t, ti − 1, τc) and sends it to all of its clients.
That is, ∀ti ∈ [τi] and ∀n ∈ C(m),

wn(t, ti, 0) = w(m)(t, ti, 0) = w(m)(t, ti − 1, τc). (5)

After τi rounds of local aggregation, institution m sends
its aggregated model w(m)(t, τi, τc) to the central server.
Then, the central server updates the global model w(c)(t, τi, τc)
by aggregating those aggregated models of all the institutions:

w(c)(t, τi, τc) =

M∑
m=1

|D(m)|
|D|

w(m)(t, τi, τc). (6)

If this new global model w(c)(t, τi, τc) satisfies a pre-
defined condition such as convergence, the training is com-
pleted; otherwise the (t + 1)-th iteration of global training
begins with the central server sending its current model to all
the institutions. That is, ∀m ∈ [M ], we have

w(m)(t+ 1, 1, 0) = w(c)(t, τi, τc). (7)

2.2. Mathematical Analysis on Trained Global Model

The ideal case for FL is that the trained global model
w(c)(T, τi, τc) computed by eq. (6) is the same as the model



w(c)(t) in eq. (2), with t = Tτiτc. Here we use w∗(t)
to replace w(c)(t) in eq. (2) for clarification and define
w∗(T, τi, τc) = w∗(Tτiτc) for consistency. Hence, the train-
ing performance of FL can be quantified by the weight differ-
ence between w(c)(T, τi, τc) and w∗(T, τi, τc), which we de-
note as ∆w(c)(T, τi, τc) = ||w(c)(T, τi, τc)−w∗(T, τi, τc)||.

With the assumption that ∇wEx|y=s[log fs(x,w)] is
λx|y=s-Lipschitz for each class s ∈ [S], we extend the analy-
sis of two-layer FL in [7] and derive the following inequality
to bound ∆w(c)(T, τi, τc) in three-layer cross-silo FL:

∆w(c)(T, τi, τc)

1
≤

M∑
m=1

|D(m)|
|D|

∑
n∈C(m)

|Dn|
|D(m)|

(
aτcn ∆w(m)(T, τi − 1, τc)

+ η

S∑
s=1

||pn(y = s)− p(y = s)||

τc−1∑
j=0

ajngmax(w∗(T, τi, τc − 1− j))
)

2
≤

M∑
m=1

|D(m)|
|D|

∑
n∈C(m)

|Dn|
|D(m)|

(
aτcτin ∆w(c)(T − 1, τi, τc)

+ η

S∑
s=1

||pn(y = s)− p(y = s)||
τi−1∑
k=0

τc−1∑
j=0

aj+kτcn

gmax(w∗(T, τi − k, τc − 1− j))
)
,

(8)

where ∆w(m)(t, ti, τc) = ||w(m)(t, ti, τc) − w∗(t, ti, τc)||,
an = 1 + η

∑S
s=1 pn(y = s)λx|y=s, and gmax(w) =

maxSs=1 ||∇wEx|y=s log fs(x,w)||.
From the second inequality in (8), it should be noted

that the weight difference after t iterations of global train-
ing comes from two parts. One is the weight difference
after (T − 1) iterations, i.e., ∆w(c)(T − 1, τi, τc), which
is amplified by aτcτin , exponential with τc. The other is
the probability distance between the data distribution of
client n and the distribution of the whole population D,
i.e.,

∑S
s=1 ||pn(y = s) − p(y = s)||, which is amplified by

aj+kτcn also related to τc.
Moreover, through global training iterations, the effect of

τc would accumulate on ∆w(c)(T, τi, τc). If we could cali-
brate the weight difference in each iteration by adjusting τc
of each client, it is promising to improve the training perfor-
mance. Based on this key idea, we propose Tempo.

3. TEMPO: DESIGN AND WORKFLOW

3.1. Design

To minimize ∆w(c)(T, τi, τc), the second term in the second
inequality of (8) implies an intuitive solution: tuning τc of

client n according to
∑S
s=1 ||pn(y = s) − p(y = s)||. How-

ever, since we do not centrally store clients’ data, distribution
of the whole population p is unknown. Also, due to privacy
concern, pn, the data distribution of client n should not be
revealed.

Therefore, we find another direction based on the first in-
equality in (8). It shows that if we focus on local aggregations
at an institution, then after (τi − 1) rounds of local aggrega-
tion, ∆w(m)(T, τi − 1, τc), the weight difference between an
institution’s aggregated model and the optimal global model
could affect the bound of ∆w(c)(T, τi, τc) and it is amplified
by aτcn , which is exponential with τc.

Hence, we propose Tempo, whose main idea is to let the
central server tune τ (m)

c (t + 1), the local epoch number of
clients of institution m in the (t + 1)-th global training itera-
tion based on ω(m)(t) = ||w(m)(t, τi, τc) − w(c)(t, τi, τc)||.
The larger ω(m)(t) is, the smaller τ (m)

c (t) should be. As we
only use w(m) and w(c) that are already accessible to the cen-
tral server, no extra information would be leaked.

Based on our empirical study, setting τ (m)
c (t + 1) as the

following could lead to high training performance:

τ (m)
c (t+ 1) =

⌈
c/2

min
i∈[M ]

lnω(i)(t)− max
j∈[M ]

lnω(j)(t)
·

(
3 lnω(m)(t) + min

i∈[M ]
lnω(i)(t)− 4 max

j∈[M ]
lnω(j)(t)

)⌉
,

(9)

where c is the epoch number of all clients in the first global
training iteration.

3.2. Workflow

In Tempo, all institutions follow the same workflow in parallel
during every training iteration of the global model. In the t-th
global training iteration, the central server, institutions, and
clients conduct the following steps.

Step 1: The central server sends weights of the cur-
rent global model w(c)(t, 1, 0) with τ (m)

c (t) to institution m,
∀m ∈ [M ], and the institution m uses this model as its initial
aggregated model w(m)(t, 1, 0). For the first global training
iteration, τ (m)

c (1) = c, ∀m ∈ [M ].
Step 2: At the beginning of its first aggregation, insti-

tution m sends model w(m)(t, 1, 0) and local epoch number
τ
(m)
c (t) to its client n, ∀n ∈ C(m). For a later ti-th round of

aggregation, institution m only sends w(m)(t, ti, 0).
Step 3: Client n, ∀n ∈ C(m), conducts local SGD for

τ
(m)
c (t) epochs to compute wn(t, ti, τ

(m)
c (t)), which is then

sent to institution m. Step 2 and 3 are repeated until institu-
tion m finishes τi rounds of local aggregation.

Step 4: Institution m uploads its aggregated model
weights w(m)(t, τi, τ

(m)
c (t)) to the central server. The central

server generates an improved global model w(c)(t, τi, τc) by
aggregating aggregated models from all the institutions.



Step 5: The central server computes {τ (i)c (t+ 1)}Mi=1 ac-
cording to (9). Repeat Step 1 to 5 until the global model con-
verges or reaches a target accuracy or target iteration number.

4. EVALUATION

Experiments of existing work, by and large, deployed the
central server, institutions, and clients on the same machine,
where computation would be the bottleneck of FL training.
However, in the real world, the bottleneck should be com-
munication, but not computation, due to limited and unsta-
ble network connections. To provide realistic evaluations, we
separately deploy the central server in the public cloud, so
that the bandwidth from institutions to the central server is
limited and communication would take most of the training
time. We deploy the central server on a production server
with DigitalOcean, with a Droplet of 1 GB CPU. Institutions
and clients are deployed on machines with 4 GPUs of 16 GB.

We evaluate Tempo with training popular machine learn-
ing models LeNet-5 and ResNet-18 on three widely used
benchmark datasets: MNIST, FashionMNIST, and CIFAR-
10. The first two datasets use LeNet-5, while the last one
uses ResNet-18. As there is no existing method designed
for the same problem as we study, we compare Tempo with
FedAdp [18], one of the state-of-the-art methods of two-layer
FL. We modify it to a three-layer version by using its ag-
gregating method for both global aggregations on the central
server and local aggregations on institutions, and test with
three values of τc: 4, 6, 8. For Tempo, we set c = 6.

There are 5 institutions and 200 clients in total. Each insti-
tution communicates with 40 clients and τi = 4. Each client
has 600 samples as its local dataset and conducts local train-
ing with a batch size of 10 and a learning rate of 0.01. we
study three different data distributions: (1) IID, where clients
get independent and identically distributed data samples; (2)
non-IID, where data samples are sampled by the symmetric
Dirichlet distribution with the concentration parameter of 1;
(3) same as (2) but with the concentration parameter of 0.1.

Fig. 2 illustrates the global model accuracy through global
training iterations when we use the FashionMNIST dataset
and clients have non-IID local datasets with the concentration
parameter of 0.1 as an example of our results. This figure
indicates that compared with FedAdp using any of the three
values of τc, Tempo can converge to the highest accuracy
85.37%. And if the training goal is to each a target accuracy,
for instance, 84%, Tempo can complete its training within the
smallest number of global training iterations, indicating that
it can improve communication efficiency as well.

Table 1 presents the elapsed training time to reach a target
accuracy under different settings. For each setting, the train-
ing time of FedAdp shown in the table is the least training
time of using a constant τc among 4, 6, 8 to reach the tar-
get accuracy. Generally, Tempo takes less training time than
FedAdp. Its superiority is more obvious when local datasets
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Fig. 2: Global model accuracy of FashionMNIST non-IID
local datasets with the concentration parameter of 0.1.

are non-IID with a smaller concentration. This is reasonable
since the data distribution of one client will affect its locally
trained model and thus affect the aggregated model on this
client’s intuition. As we use the weight difference between
this aggregated model and the global model to tune the epoch
number of this client, the weight difference in the next itera-
tion could be indirectly decreased, leading to better training
performance.

Table 1: Elapsed training time to reach a target accuracy.

Settings Training Time (h)

Dataset
Data Dist.,

Target Accuracy FedAdp Tempo

MNIST
(1), 98.2% 4.90 4.87
(2), 96.5% 5.88 5.62
(3), 92.5% 8.27 7.65

FashionMNIST
(1), 85.9% 7.35 7.34
(2), 85.5% 8.04 7.93
(3), 85.0% 10.66 8.82

CIFAR-10
(1), 79.1% 19.13 18.97
(2), 67.3% 24.45 22.62
(3), 55.2% 24.76 21.29

5. CONCLUDING REMARKS

In this paper, we focus on improving the training performance
of the rarely studied cross-silo FL with three layers. Based
on our analysis that the number of local training epochs ef-
fectively affects the training performance, we design a new
framework, Tempo, to adaptively tune the epoch number of
each client. The results of our experiments conducted under
real network environments indicate that Tempo can improve
training performance in terms of global model accuracy, com-
munication efficiency, and elapsed training time.
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