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Abstract—The federated learning paradigm protects private data from explicit leakage, yet exposing the model weights still raises
serious privacy concerns with well-known attacks, such as membership inference attacks. It has been acknowledged that mechanisms
such as homomorphic encryption and differential privacy can be adopted to provide a higher level of protection. However, these
mechanisms may incur a formidable amount of overhead and reductions in training performance, which make them unlikely to be
employed in real-world applications. In this paper, we propose MASKCRYPT, a new mechanism designed to balance the trade-off
between security and practicality when homomorphic encryption is used. Rather than encrypting model updates in their entirety,
MASKCRYPT applies an encryption mask to sift out a small portion of the updates for encryption. Specifically, each MASKCRYPT client
adopts a gradient-guided mechanism to select the encryption mask, which aims to obfuscate the training trace by maximizing the local
loss value of exposed model weights, and then sending the individual mask to a special Mask Consensus mechanism to obtain a final
mask for all clients. Our experimental results have shown convincing evidence that with a small encrypt ratio, MASKCRYPT reduced the
communication overhead by up to 4.15x compared with encrypting entire model updates, yet still effectively protected the client’s
private data against inversion attacks, and reduced the accuracy of membership inference attacks to 49.2%.

Index Terms—Federated Learning, Homomorphic Encryption, Data Privacy, Secure Aggregation.
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1 INTRODUCTION

O take full advantage of private data when training

machine learning models, the emerging federated learn-
ing paradigm [1] introduces an appealing solution where
clients train a model locally and absorb knowledge from
others by sending model updates to a server for aggre-
gation. Throughout the entire training session, only the
updated model weights are exchanged while private data
can be secured locally. Consequently, federated learning
allows multiple organizations to collaboratively train a high-
quality machine learning model without exposing private
data. The inherent security of federated learning has gained
a substantial amount of research attention, given its appeal
to financial or medical industries where data privacy is a
top priority.

Though vanilla federated learning managed to protect
privacy-sensitive data from explicit leakage, the behavior
of exposing model weights still raises serious privacy con-
cerns, as adversaries can still breach data privacy with
sophisticated attacks such as membership inference [2] and
gradient inversion [3]. When a model is fully trained, it
can be easily overfitted to the training data, which could
lead to an explicitly higher confidence that the input data
belongs to one category. The attackers can train a machine
learning model to capture the training trace on the input
data, thereby inferring whether a specific data sample exists
in the training set, or even reconstruct the original input
data from scratch. As a result, vanilla federated learning is
not as secure as we expected it to be.

To provide a higher level of security, it is a natural idea
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to block the server’s access to original model weights, which
introduces the combination of federated learning with a
wide range of security mechanisms [4]. For example, clients
can perturb the locally trained model weights by adding
noise with a differential privacy mechanism [5], [6] before
sending them for aggregation. However, adding noise is
double-edged. Though the added noise prevents the server
from obtaining the exact model weights trained on a client’s
private data, it inevitably degrades the validation accuracy
of the converged global model [7], which is a key metric
used for evaluating the training performance in federated
learning.

A noteworthy alternative to differential privacy is homo-
morphic encryption [8]-[10], which allows certain mathemati-
cal operations — such as addition and scalar multiplication
— to be performed on the ciphertext, and still yields correct
results after decryption. With homomorphic encryption, the
clients can encrypt their local model weights before sending
them to the server, where models can be directly aggregated
on the ciphertext. In this process, the server learns nothing
about either the locally trained or the global aggregated
model.

However, most existing homomorphic encryption mech-
anisms in the context of federated learning incurred an exor-
bitant amount of communication overhead [11]. Compared
with the original message, model updates can be inflated
to tens or even hundreds of times after encryption. Without
a doubt, such communication overhead is not acceptable
in real-world federated learning systems, especially when
clients are geographically distributed. Recent work [12] tried
to alleviate this problem by reducing the overall ciphertext
size through a batching technique. Nonetheless, considering
that millions of weights are routinely used in modern deep
learning models, we argue that a further reduction of the



communication overhead is needed for real-world deploy-
ments.

In this paper, we consider an important question: Do
we have to encrypt all the model weights? An intuition
that naturally arises is to encrypt only a portion of the
model weights, and yet manage to achieve the same level
of security. Starting from this intuition, we have designed
and implemented MASKCRYPT, a new mechanism designed
to provide an “affordable” security in practical federated
learning systems. A highlight in MASKCRYPT is our selective
homomorphic encryption mechanism, which allows a client
to selectively apply homomorphic encryption on a subset
of the model weights. By reducing the number of model
weights to be encrypted, we aim to explore the trade-off
between security and practicality and to reduce the commu-
nication overhead by a substantial margin, yet still making
sure that the training session is secure enough against
malicious attacks. Highlights of our original contributions
are as follows.

First, to the best of our knowledge, MASKCRYPT is the
first federated learning system that explores the encryption
sparsity, i.e., encrypting not all but part of the model up-
dates. Specifically, when the local training phase is finished,
the model updates will be sifted into unencrypted and
encrypted ones through an encryption mask, where the en-
crypted ones will be handed to a homomorphic encryption
algorithm before sending to the server and unencrypted
ones remain untouched. MASKCRYPT is agnostic to the
encryption algorithm; any existing encryption mechanism
can be adopted.

Second, clients may choose different encryption masks
due to their own privacy concerns. However, considering
both computation and communication efficiency, we argue
that all clients should share a common encryption mask. To
meet this requirement, we introduce a special mechanism,
called Mask Consensus, to help clients reach an agreement
on the final encryption mask.

Third, to protect the privacy of client as much as possible
within a limited encryption quota, we propose a gradient-
guided mechanism to help clients select the encryption mask.
We formulate the encryption mask as a model delta ap-
plied on the trained model weights. By choosing the mask
whose corresponding deltas are the closest to the gradient
direction, we can maximize the possible increase of the loss
value of the exposed model weights, thereby obfuscating
the training trace on client’s private data.

Finally, We have implemented and evaluated
MASKCRYPT in an open-source federated learning
framework called PLATO. Compared with full weights
encryption, MASKCRYPT reduces the communication
overhead by up to 4.15x with an encrypt ratio of 20%. To
evaluate the security performance, We have performed two
well-known attacks, membership inference attack and data
reconstruction attack, on MASKCRYPT. Our experimental
results have shown clear and convincing evidence that
MASKCRYPT can achieve similar protection as full weight
encryption, but only encrypts a small part of the model
weights.

The remaining part of this paper is organized as follows.
The preliminaries of membership inference attack, federated
learning and homomorphic encryption are introduced in
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Section 2. Then we detail the system design of MASKCRYPT
and the mask consensus mechanism in Section 3, and
elaborate the gradient-guided mask selection algorithm in
Section 4. The security analysis and evaluation results will
be presented in Section 5 and Section 6. And lastly, we high-
light the originality of MASKCRYPT under the comparison
with related works in Section 7 and conclude this paper in
Section 8.

2 PRELIMINARIES
2.1 Federated learning

We consider a general cross-device federated learning sce-
nario where K clients collaboratively train a model with the
help of a central server. The training session starts with an
initial model, wq, on the server. At round ¢, the server will
send the global model weights w;_; to each client k. Each
client defines a loss function L(w, D*) on the model w and
its own dataset D¥, and when w;_1 arrives, it will perform
an optimization algorithm (e.g., SGD) for a few epochs to
obtain a locally updated model, wf, which is then sent to
the server. After the server receives the updates from all its
selected clients, it produces an updated global model using
an aggregation algorithm like below, and uses it for the next

round:
> pewf (1)
k=1,...K

Wy =

Intuitively, federated learning protects data privacy by
keeping the data secured locally and only exposing model
weights to the server. However, recent work has shown that
the unprotected information exchange between the server
and clients still leaves a huge attack surface for adversaries
[4]. For example, based solely on model outputs, a member-
ship inference attack can determine whether a specific data
sample appeared in the training set, which could be a major
threat to sensitive data.

Initially proposed to be a black-box attack, the risk of
membership inference attack is even higher in federated
learning for two reasons. First, the model needs to adapt
to the dataset from all the clients, which means the capacity
of the model has to be greater than the dataset of any single
client. Therefore, the over-fitting problem is more likely to
happen during the local training phase, thereby leaving
more opportunities for the attacker. Second, the server has
white-box access to the model weights trained by each
client, which means there is no way to hide the model
output. Therefore, a vanilla FL training session without
any protection on the shared model weights makes the
participating client a perfect victim to membership inference
attacks.

2.2 Homomorphic Encryption

To defend against attacks targeted on the exposed model,
a natural idea is encrypting the weights to protect original
model weights against adversaries. Homomorphic encryp-
tion is a special family of encryption algorithms for nu-
merical data, e.g.,, CKKS [9] for floating numbers, as well
as Paillier [8] and BFV [10] for integers. Homomorphic
encryption allows operations like addition and multiplica-
tion of plaintext numbers to be evaluated on the encrypted
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Fig. 1. Model weights that can be estimated by adversaries under
different encryption schemes.

ciphertext with some special functions, and only those who
have the secret key can decipher the result. Such a property
makes homomorphic encryption an appealing security solu-
tion in federated learning because the aggregation process of
federated learning is mainly based on addition of the model
updates.

With homomorphic encryption, the clients can obtain
the same aggregation result while the server has no access
to the model updates, which guarantees a high-level of
security because there is no way to conduct inference attacks
on the encrypted model. As illustrated at the middle in
Fig. 1, if clients encrypt all the updated model weights,
the adversaries have no choice but to estimate the model
weights based on the information from previous rounds. For
example, if a client chooses to encrypt the model in a specific
round while the model of the last round is sent without en-
cryption, adversaries can only attack on the model weights
exposed at last round. And if clients conduct encryption at
every round, only the initial model will be exposed which is
randomly generated, and posts no threats to data privacy.

However, despite the outstanding security advantage,
homomorphic encryption algorithms typically yield signif-
icantly larger ciphertext compared with plaintext, which
leads to a formidable communication overhead. While com-
munication efficiency has been the focus of many existing
works in the literature — often presenting marginal im-
provements only — homomorphic encryption can easily
boost the size of data transmission by hundreds of times
[11] depending on the algorithm used. Considering the
inherent size of modern deep learning models, encrypting
all the weights in a model inevitably incurs unbearable
communication overhead.

Therefore, in this paper, we raise a simple question: do
we really have to encrypt all the model weights which
can be up to millions? Or can we just select a part of it
for encryption as presented on the right in Fig. 1, but still
achieve the same level of security?

2.3 Threat Model

Before we proceed to our work, we would like to formally
introduce and justify the threat model in this paper. Follow
existing works in the literature, we assume that the server is
honest-but-curious, which implies the server honestly carries
out the algorithm but tries to learn as much as possible from
the updates received from clients, e.g., performing inference
attacks on the reported model weights.
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Most prior work on federated learning with homomor-
phic encryption (e.g., [13]-[16]) makes the unrealistic as-
sumption that clients will not collude with the server. This
is because clients share the secret key to decrypt aggregated
model weights. If any client provides this key to the server,
the server can decrypt updates from all clients. In this
work, we relax this assumption by allowing potential client
collusion. For example, some clients may collude by sharing
keys with the server or other clients. We discuss the security
implications of such collusion in Section 5.

3 FRAMEWORK DESIGN

In this section, we present how selective homomorphic
encryption can be implemented from a straw man solution
called Individual Masking, where each client individually
chooses which part of the model updates shall be encrypted.
We then analyze the shortcomings of such a method, which
motivates the design of mask consensus. We finally present
our solution called MASKCRYPT.

3.1 Individual Masking

At the end of round ¢, a client k finishes the training and
obtains a locally updated model w¥. Before it uploads wf to
the server for aggregation, the client can choose to encrypt a
part of w} according to an encryption mask m*. We define
the mask as a subset of indices. For example, assuming the
model has a total of N model weights, then a valid mask
m* has to satisfy

m* c{0,1,2,...,N},
[m*| = pN,

where |mF| is the size of m*, and 0 < p < 1 represents the
encrypt ratio that controls the number of encrypted weights,
i.e., no encryption when p = 0, and all model updates will
be encrypted when p = 1.

With the encryption mask, a natural idea to encrypt the
model is simply to replace the target model weights by their
corresponding ciphertext after encryption, i.e., client £ can
encrypt wr[i] by

i ¢ m”
k @

will =4 gxe (wh1i]),

tEmM
where ENC(:) is the homomorphic encryption scheme
adopted in this FL session.

Consider a simple case that each client chooses its own
individual mask m!, m?2, ... mF to encrypt the model, then
some of the weights in a specific position can be encrypted
while others remain plaintext. As long as we choose a
homomorphic encryption algorithm that supports addition
and scalar multiplication, the server can still aggregate them
with Eq. (1), even though the model updates are in a hybrid
form of encrypted and unencrypted values. The server can
then send the aggregation results back to clients and start
the next round of training.

Taking the advantage of homomorphic encryption, it ap-
pears that a complete federated learning session with mask
encryption can be easily implemented with the procedures
above. But unfortunately, there are two major problems with



individual masking. First, the result of any computation that
involves encrypted numbers will also be encrypted, which
could increase the communication overhead if different en-
cryption masks are adopted. Assume that there are only two
clients: A and B. If client A chooses to encrypt the first half
of the model weights while client B encrypts the remaining
half, their model updates can still be processed on the server,
but all the weights will be encrypted after aggregation. This
doubles the ciphertext size when the server dispatches the
global model in the next round.

Second, there is an implicit assumption in Eq. (2) that
the model weights are encrypted separately, such that we
can precisely extract the ciphertext of the model weight at a
specific position and aggregate it with its counterparts from
other clients. But such a one-by-one scheme is not practical,
especially for large-scale encryption over weights in deep
learning models. In practice, most de facto homomorphic
solutions rely on the batching technique [9], [12] to reduce
the ciphertext size, i.e., encrypting multiple numbers in one
single ciphertext.

To back up our claim, we conducted a measurement
study about three commonly used homomorphic encryption
methods including Paillier, CKKS, and BFV. Both CKKS
and BFV support vector-level encryption and benefit from
batching techniques, while Paillier can only encrypt num-
bers one-by-one. As presented in Fig. 2, all three encryp-
tion methods inevitably inflate the space requirement. Since
Paillier encrypts in a one-by-one manner without batching,
the inflation ratio stays at around 200x. In contrast, the
overhead of CKKS and BFV is drastically decreased when
the scale grows and stabilizes around 20x. Considering the
inherent size of modern deep learning models, it is much
more reasonable to encrypt at the vector level.
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Fig. 2. Ciphertext size compared with unencrypted.

As a result, we have no choice but to encrypt the selected
weights in a single vector for the practicality. Notice that it’s
impossible to extract a specific element from the ciphertext
during the aggregation. For example, CKKS encodes a vec-
tor of floating numbers into a polynomial, and the ciphertext
represents the parameters of the polynomial instead of the
value itself. Therefore, if each client chooses a different mask
and uploads an encrypted vector whose value comes from
different positions, the server will not be able to aggregate
them correctly.

3.2 Mask Consensus

Due to these problems, we argue that individual masking is
not practical in real-world systems, and all the clients should
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use the same encryption mask for the following benefits. If
all the clients encrypt the weights at the same positions,
then the encrypted and unencrypted data are naturally
aligned and can be aggregated separately. Also, the number
of encrypted weights remains unchanged, which means the
ciphertext size will be the same after aggregation.

To make this happen, we introduce a special mechanism
called Mask Consensus to help the clients reach an agreement
on the final encryption mask. When each client has deter-
mined its preferred encryption mask mF”, it will propose
it to the server, and the server will aggregate all the mask
proposals to reach a consensus. We will detail how the mask
is selected in the next section, but here we introduce an
assumption on the client’s mask proposal in advance.

Assumption 1. Mask m” is a list sorted based on a client’s
preference.

For example, compared with m*[i], the model weight at
position m¥[i — 1] is considered more important to client k
and should be encrypted with higher priority.

For the sake of both fairness and efficiency, we design
the mask consensus mechanism as Algorithm 1. We first

interleave all the mask proposals m',m?...m¥ into one
list m’ such that
m' = [m! 0], m[0],....m" (0], m" (1], m[1], ..

Based on our previous assumption, clients’ preferences
are implied in the order of the mask. Therefore, we can
evenly distribute the quota to each client by simply choosing
the top pN elements. But it is possible that different clients
may choose the same indices, which leads to duplicated
values in the selection. Thus, we first remove all the du-
plicated values in m’, then pick the top pN elements as the
final mask m and send it to clients to guide their encryption
process.

With a common encryption mask, each client k can split
the model weights into two disjoint vectors: w’;lain,t for
unencrypted weights whose indices are not inside m, and
wé‘nc,t for weights to be encrypted. Similarly, the aggregation
result w} of this round also consists of these two vectors.
And these two vectors can be aggregated separately like

k
Wplain,t = Z PrkWpiain,t>
k=1 K
k
Wenc,t = Z pkENC(wenc,t)' (3)
k=1,...,K

Notice that the summation of the encrypted weights is
not directly adding the ciphertexts together, but evaluating
them with a special function related to the encryption algo-
rithm.

Since the mask consensus procedure introduces extra
communication between server and clients, a concern nat-
urally emerges: is it safe to do so? If the mask is randomly
generated, then there is nothing to worry about since a
random mask doesn’t contain any information about the
training status. Therefore, the security of mask consensus
is determined by the information carried by the masks, and
we will discuss it in Section 4 after we introduce how mask
is selected.



Algorithm 1 Mask Consensus.

Input: Mask proposals from clients m?!,..., m¥, encrypt
ratio p
Output: Final mask m;

1: Initialize m’ as a list of zeros of length pN x K

2: fork=1,2,... K do

3 m'[k: M]=mF > Interleave the mask proposals
4: end for

5: Remove the duplicated elements in m/

6: Select top pN elements of m/' as final mask m

7: return m

3.3 Proposed Framework

With the mask consensus mechanism, we are now ready to
present the workflow of our proposed MASKCRYPT frame-
work, which can be divided into following steps:

Setup. To prevent compromised keys from one client threat-
ening others, MASKCRYPT has each client k generate a
public-secret key pair (pk, sky) using a homomorphic en-
cryption scheme before training begins. The public keys pky,
are synchronized among all clients. This allows encrypting
different weight subsets with different client keys.

Local Training: For each round ¢, the server sends the
current global model weights w;_ to each client k. Client k
trains the model on its local dataset D¥, obtaining updated
weights wy.

Mask Consensus. Client k analyzes w} to determine which
entries are most sensitive, and computes a mask proposal
mF based on the current model. Clients send proposals to
the server for mask consensus, yielding the final mask m.
Model Encryption. After reaching consensus on which
weights to encrypt, clients encrypt the selected weights
wr[i] | i € m using all clients’ public keys pk;. Specifically,
each client £ splits m evenly into K subsets I, ..., I such
that Uszl I; =mand |I;| = --- = |Ig|. For each subset I,
client £ encrypts the corresponding elements of w}:

wy;, = ENC(wili], pk;) Vi € I

Where pk; is client j’s public key for subset I;. This re-
sults in K encrypted subsets wf ;. for each client %, each
encrypted with a different key pk; ]

Along with unencrypted weights, this forms the model

update client k£ sends to the server:
{wip 17=1,..., K}u{wSli] | Vi ¢ m}

Model Aggregation. Since the encrypted and unencrypted
weights are aligned in the clients” model updates, the server
can aggregate them separately. It performs homomorphic
operations on the encrypted weights w; ;; and direct opera-
tions on the unencrypted weights w;[i]. This yields:

{wer [7=1,..., K} U{w[i] | Vi ¢ m}

Where w,[i] | Vi ¢ . contains aggregation results for
unencrypted weights in plaintext form. However, each wy j,
remains encrypted under client j’s public key. One more
decryption step is required to obtain the final aggregated
weights.
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Model Decryption. The server sends each encrypted wy i,
to client j, who decrypts with sk; and returns decrypted
values. The server now holds fully aggregated w, for this
round, which can be used to start the learning of next round.

As a brief summary, MASKCRYPT implements the selec-
tive homomorphic encryption in federated learning, where
each client determines which part of the local model weights
should be encrypted by an encryption mask. Due to the
problems of individual masking, we propose a mask con-
sensus mechanism to obtain a final mask shared by all the
clients. Next, we will introduce how each client can select
an encryption mask within a limited encryption quota.

4 GRADIENT-GUIDED MASK SELECTION

4.1 Problem Formulation

In the special design of MASKCRYPT, parts of the model
updates are always encrypted. This means adversaries can
theoretically never retrieve the full model weights from
clients to conduct malicious attacks. Therefore, adversaries
have no choice but to observe the unencrypted, or ex-
posed, model weights to estimate a full copy of clients” raw
model updates for attack purposes. To this end, we consider
model encryption as a client-side behavior of managing the
weights that are exposed to the server or other potential
adversaries. This strategically minimizes empirical security
concerns by deciding which parts of the model weights
should be protected while others can be safely publicized.

Let ngp,t denote the model weights that client k exposes
at round t. Before federated learning starts, we set ngp.o
to the initial model weights wy for each client. Throughout
training, clients choose different encryption masks to decide
which parts of the model weights to expose in each round.
This leads to an iterative updating process of the exposed
weights. Note that wfxp’t is not equivalent to the model
updates that client k& sends to the server in round ¢. This
is because only the unencrypted weights are exposed, while
the encrypted weights are not exposed in this round, but
were exposed in previous rounds.

When the latest global model weights w;_; arrive at
client k in round ¢, the client needs to update the exposed
model weights from the last round before its local training
starts. This is because w;_; is not encrypted, and an adver-
sary can use these new weights to replace the old ones in the
exposed model of the previous round wé"xp7t_1. We denote
the exposed weights in this phase as @fxp’t to distinguish it
from the final exposed weights of this round. It is defined
as:

i is not encrypted

otherwise

@fxp7t[i] _ {wi];—l [ZL

wexp,tfl [2]7

Conceptually, ﬁgxp}t[i] represents the weights that are
exposed before local training starts. As soon as client k
finishes its training and obtains the locally updated model
wf for this round, an encryption mask m” will be applied
on w! before sending it to the server for aggregation. There
is no doubt that the unencrypted weights will be exposed;



therefore, the final exposed model weights of this round can
be estimated by

wki
whoy il = { ol

75exp,t [Z],

i ¢ mk
iemt’ @)

Apparently, with different encryption mask m* comes
different combinations of the exposed model weights, and
we wish to find the one that minimizes the risk of such
exposure. In federated learning, such a risk mainly comes
from the fact that the model weights trained on local dataset
are prone to memorization of the private training data
samples [4], which gives adversaries the opportunity to
conduct attacks, such as membership inference and feature
inference.

Therefore, we conclude that the choice of the encryption
mask should be able to “untrain” the exposed model. For
example, the purpose of local training is to minimize the
loss value of the model weights on the local dataset and
to make the model more accurate. Therefore it would be
ideal to choose an encryption mask whose corresponding
exposed model w[jxp}t has a higher loss value. In this way,
the exposed model can behavior like not being trained on
the private dataset under adversarial attacks.

Based on the above intuition, we can formulate the
selection of encryption mask as the following optimization
problem:

max L(ws:cp,taDk) (5)
st. mFc{1,2,... N},
[m"| = pN,

where N is the total number of model weights. The first
constraint indicates that m is a subset of the model weight
indices. And the second constraint limits the length of mask,
which ensures that the number of weights to be encrypted
is limited to a preset ratio p.

But unfortunately, this optimization problem is almost
impossible to solve. For machine learning models, it’s hard
to obtain an explicit expression of the loss function, which
means we cannot find an analytical solution to Problem
(5). The total number of all the possible masks is (Aj\;), and
consider that the number of model weights can be up to
millions for modern deep learning models, it is not feasible
in practice to find the single mask that achieves the highest
loss value in such a huge searching space.

Therefore, rather than directly seeking the solution to
problem (5), we turn to finding an encryption mask that has
a greater chance of a higher loss value.

4.2 Gradient-Guided Mask Selection

If we define §(m*) as a function of mask m* that can be
computed by

~J . kr- . k
6(m’f)[i] — wexp,t[z} — wy' [d], Z € mk .
07 1 ¢ m
We can then simplify Eq. (4) by
’wfxp,t = wl 4 §(m"). (6)
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This transformation shows that each mask corresponds
to a model delta, and applying an encryption mask is
mathematically equivalent to adding a delta to the model
weights wf. Therefore, Problem (5) can be interpreted as
finding a model delta that can maximize the loss function if
added to w.

Based on the intuition of gradient descent algorithm,
to maximize the loss function, we can ascend the model
weights on the gradient direction. Let g denote the gradients
of current model weights on the local dataset such that
g = VL(wF, D*). To make sure the encryption mask has
the best chance of increasing the loss value of the exposed
model weights, we can choose the one which is the closest
to the gradient direction.

For each mask m*, we can divide its corresponding
§(m*) into two components:

S(mk) = 5(mk)g + 5(mk)Lg, (7)

where §(m*), is the projection of §(m”) on the gradient
direction, and §(m*) 14 is perpendicular to the gradient.
From the perspective of the loss value, we would like to
maximize the length of the projection || 6(m*), | because
in this way, adding the delta to w} implies a larger step of
ascending on the gradient direction. Therefore, we can turn
mask selection into the following optimization problem:

I 8(m*)g |l ®)
st. mFc{1,2,... N},

max
mk

[m*| = pN,
where the optimization target can be computed by
3(m*) - g
Fo(m®), = =7
! gl

Since || ¢ || is a constant that can be removed without
affecting the optimization problem, all we need to do is to
maximize the dot product between the delta and gradient.

Let §(1) denote the model delta when all the model
weights are encrypted, and v denote the element-wise mul-
tiplication results of (1) and g, such that

6(1) = ’[E(]jxp,t - wf7
v=g041).

Then we have §(m*) - g = >,_; yv[i]. To maximize
it, we can sort v in descending order and obtain the sorted
indices ving, then the first p/N indices represent the positions
that contribute most to the dot product result. Therefore, the
client can naturally select the top pN elements in ving as the
solution to Problem (8) .

This method is referred to as gradient-guided mask selection
because the mask is determined by the gradient at the
current round. A step-by-step procedure is summarized in
Algorithm 2, and we show the correctness of the proposed
method by the following theorem.

Theorem 1. The mask m* generated by Algorithm 2 is the
solution to Problem (8).

Proof. We prove it by contradiction. Assume the above
theorem is not true, which means there exists two indices
i € m* and j ¢ mF, and if we replace i by j we can get a



new mask p = m”* — {i} + j such that §(p) - g > §(m*
which means:

)9,

8(p)-g>6(m*)-g
=0(m"*) - g — vfi] + v[j] > 6(m") - g
=v[j] > vli].

However, since the choice of m is based on the descend-
ing order of each element in v, and the fact that i € m” and
j ¢ m* implies v[j] < v[i] which makes a contradiction to
the above inequality. Therefore the above theorem is true.

O

Algorithm 2 Gradient-guided mask selection.

Input

~exp .+ Exposed model weights;

wt Local model weights;

DP¥: Local dataset;
Output: Encryption mask m;
Compute gradients g = VL(wf, D¥)
Compute model delta (1) = @k, , , — wf
Compute element-wise multiplication v = g © §(1)
Sort v in descending order and obtain indices ving
Select top pN elements of v;,q as the mask proposal m*
return m*

In summary, we have introduced how each client selects
the encryption mask from the perspective of maximizing
the loss value of the exposed model weights. As the original
problem presented in (5) is almost impossible to solve due
to its inherent complexity, we reformulated the encryption
mask as a model delta, and proposed a gradient-quided mask
selection method based on the intuition that the loss value
increases the fastest along the gradient direction.

4.3 Effectiveness Analysis

Previously in Eq. (5), we formulated the selection of the
encryption mask as maximizing the loss function with
respect to the exposed model weights wl;:p’t at round ¢.
However, with an abstract loss function that is only known
to be differentiable, it is impossible to find the exact optimal
encryption mask without a brute force search. Therefore, we
aim to maximize the possibility that a higher loss value can
be achieved with our proposed method. If we further make
the following assumption on the loss function:

Assumption 2. The loss function L(w;D) is convex with
respect to the model parameters w for any dataset D.

Then by the convexity of L, we have the following
inequality holds:

L(wk, s D*) = L(wy; D¥)
va(wz‘ ’ Dk)( exp,t UJf)
>6(m") - g O

where the last inequality is obtained from Eq. (6). Move
L(w}; DF) to the right side, then we have

L(wk, 13 DF) > L(wy'; DF) + 6(m") - g. (10)

exp t)
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In other words, the loss value on the exposed model weights
L(wk,, ;; D¥) is lower bounded by the right hand side term,
which depends on §(m*) - g. Note that w} is the locally
trained model weights which means it is a constant value
after the local training phase, consequently, the local loss
value L(wf; D¥) is also constant. Then by increasing the
value of §(m¥) - g, we are actually raising the lower bound
of L(wk,, ;; D), leading to a greater chance to get a higher
loss value on the exposed model weights.

As we have shown in Theorem 1, the encryption mask
generated by our gradient-guided method is guaranteed to
maximize the dot product value. Therefore, the effectiveness
of Algorithm 2 can be given by the following corollary.

Corollary 1. Let " denote the encryptlon mask generated by
Algorithm 2, then its corresponding (") maximizes the lower
bound of L(wk_ ,; D¥) in Eq. (10).

Even though our proposed method does not directly
maximize the loss value as formulated in Eq. (5), it is able
to maximize its lower bound, and we will show in the
evaluation that such ability will be translated into a robust
protection against adversary attacks.

Remember that in Section 3.2, we assume that the mask
is sorted by the importance such that the mask consensus
mechanism can attend the preference of each client while
selecting the final mask. In this section, we showed that
such importance can be quantitatively measured by the
element-wise multiplication between §(m*) and gradient
g, where a greater value contributes more to the final dot
product result, and consequently increases the lower bound
mentioned in inequality (10).

exp t5

5 SECURITY ANALYSIS
5.1 Mask Selection

Compared with traditional homomorphic encryption so-
lutions, MASKCRYPT introduces extra interaction between
server and clients to synchronize the masks, which raises
another concern: does the encryption mask leak information
about the encrypted weights?

For client k, Assume the i-th weight is encrypted, i.e.,
1 € m, and j is an arbitrary unencrypted weight. According
to Algorithm 2, the only thing that adversaries can learn
about the encrypted weight is that its corresponding delta
has a greater multiplication value with the gradient, which
can be formally summarized by the following inequality:

91i] (@[] = wf (1)) > gli] (@hepili) = wil]) -
And it can be turned into
k] < @l = 2 (e, 1] - 0l D)
The above inequality gives an upper bound of the en-
crypted weights, where @, [i], @k, ,[j] and wf[j] are
exposed to server. But gradient g is locally computed and
not revealed at all, which means the upper bound cannot be
evaluated by adversaries, not to mention the exact value of
encrypted weights. Therefore, we believe there is no trivial
method to breach data privacy from the indices of encrypted
weights until further attack research is specifically designed
and targeted on it.

(11)



5.2 Encrypted Model Weights

MASKCRYPT aims to protect client’s data privacy by strate-
gically mask out a small portion of the model updates from
adversaries’ access. Therefore, the security of MASKCRYPT
is totally depended on weather the selected weights can
remain confidential throughout the entire federated learning
process, i.e., we can be formally defined the objective that
MASKCRYPT trying to achieve as follows:

Definition 1. Encrypted Model Confidentiality. Let
WE e wE o Wk denote the model weights that an
honest client k encrypts at each round. Throughout the entire
federated learning process, no parties other than itself can gain

access to those encrypted weights.

The encryption mechanism in MASKCRYPT works like
a black box, i.e., MASKCRYPT feeds a data vector to the
encrypt function for the ciphertext, and feeds ciphertext
to the decrypt function for the plaintext models. Therefore,
MASKCRYPT doesn’t modify the cryptographic protocols of
the existing homomorphic encryption algorithms - much of
its security properties can thus be directly inherited from
the adopted encryption algorithm. However, the interaction
between the server and clients to enable MASKCRYPT's
partial model encryption could raise potential security con-
cerns, and we address these concerns within the following
theorem.

Theorem 2. If the aggregation server is honese-but-curious, and
the homomorphic encryption used by MASKCRYPT is seman-
tically secure (IND-CPA), Given the server colluding with at
most K — 2 clients, MASKCRYPT achieves the encrypted model
confidentiality in Definition 1.

Proof. A MASKCRYPT client k£ will generate its own key
pairs (pky, ski;) where the public key pky, will be distributed
among all clients. With the possibility of colluding, we as-
sume the server has the access to the public key pk;, of client
k, i.e. the server has access to an encryption oracle of client £
to conduct chosen plaintext attacks. However, since the ho-
momorphic encryption scheme adopted by MASKCRYPT is
IND-CPA secure, potential adversaries (the colluding server
and clients) cannot distinguish between encryptions of any
two messages. Therefore, the encrypted weights cannot be
accessed without client k’s secret key sky.

Additionally, adversaries have access to the decrypted
aggregation results by colluding with clients. This is in-
evitable in federated learning since each client stores a full
copy of the aggregated model. This allows adversaries to try
to infer the encrypted weights of honest clients.

Let C' and H denote the corrupted and honest clients re-
spectively, and |C|+ |H| = K. Then according to the honest-
but-curious assumption, the server will honest perform the
aggregation and send the following aggregation result to
client for decryption:

plwengt + prenc,t'

ieC JjEH
Since adversaries have full access to the encrypted weights
of the corrupted clients and aggregation results, thereby
they can compute the plain text of 3, i pjwi, .- If |[H| =
1, adversaries obtain the plaintext weights of the one honest
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client. However, as long as |H| > 2, adversaries can only ob-
tain the aggregated weights rather than the original weights
of each honest client.

Therefore, given the server colludes with at most K — 2
clients, MASKCRYPT achieves model confidentiality against
honest-but-curious adversaries. If |H| = 1, adversaries
obtain the plaintext weights of the one honest client. How-
ever, as long as |H| > 2, adversaries can only obtain
the aggregated weights rather than the original weights
of each honest client. Therefore, given the server colludes
with at most N — 2 clients, MASKCRYPT achieves model
confidentiality. O

6 PERFORMANCE EVALUATION
6.1 Experimental Settings

Implementation. Our implementation of MASKCRYPT can
be separated into two parts: model learning and homo-
morphic encryption. Our model learning part is built upon
PLATO!, a scalable framework for federated learning re-
search. And the source code of MASKCRYPT is released as
a public example of PLATO. It's worth noting that mask
consensus might incur considerable communication over-
head by directly exchanging lists of indices. Therefore, the
encryption masks are transmitted in the form of bitmaps
where each position is represented by one bit.

On the other hand, homomorphic encryption, decryp-
tion and computation are implemented with TenSEAL [17],
an industrial-grade library for homomorphic operations on
tensors based on Microsoft SEAL?. We adopt CKKS as our
default homomorphic encryption algorithm, with a polyno-
mial modulus degree of 8192 and coefficient modulus sizes
[60, 40, 40, 60].

The encryption context contains a private key and a
public key, where both of them are shared among all the
clients and the server can only access the public key to do
the aggregation in practice. But for evaluation purposes, we
allow the server to decrypt the weights to evaluate testing
accuracy when necessary.

Dataset and models. We conduct all our experiments on
the following four datasets:

CIFAR-10. A commonly used image recognition dataset,
CIFAR-10 contains 60,000 color images with the shape of 32 x
32. The dataset falls in 10 different classes where each class
has 6,000 images. We use 50,000 images for training and the
remaining 10,000 for testing.

MNIST. The well-known handwritten digits dataset in-
cluding 60,000 images for training and 10,000 for testing.

Purchase. We adopt a simplified Purchase dataset from
[2], including 197,324 records and each record has 600
binary features, where each feature indicates whether the
customer buys a specific product or not. These records are
labeled with 100 classes and each class represents a different
purchase style. We use 80% of the records for training and
20% for testing.

Texas. Similar to Purchase, Texas is also a preprocessed
dataset from [2], which contains 67,330 hospital records and
6,170 binary features with 100 labels.

1. https://github.com/TL-System/plato
2. https://github.com/Microsoft/SEAL


https://github.com/TL-System/plato
https://github.com/Microsoft/SEAL

The deep learning models trained on each dataset are
listed in Table 1. Notice that the Purchase and Texas datasets
share the 3-layer perceptron architecture, yet the total num-
ber of weights are not the same due to different sizes of the
input feature.

TABLE 1
Dataset and models used for evaluation.

Dataset  Model Architecture ~Number of Weights

Purchase 3 layer MLP 1,317,348
Texas 3 layer MLP 7,020,004
MNIST LeNet-5 61,706

CIFAR-10 ResNet-18 11,183,582

Training Environment. Our experiments are conducted
on a Ubuntu server equipped with one NVIDIA TITAN V
graphic card, Intel Core i9-9980XE, and 128GB of physical
memory. We simulated 100 federated learning clients with
PLATO, and 20 clients will be selected for local training in
each round. The dataset is randomly and evenly distributed
among all the clients. During the local training phase, each
selected client will train the model using SGD for 5 epochs,
with a common batch size of 32 for all four datasets. The
learning rates for Purchase and MNIST are set to 0.01, 0.05 for
Texas and 0.1 for CIFAR-10.

Metrics. The performance of MASKCRYPT is evaluated
by the following three metrics: communication size, wall
clock time, and membership inference attack accuracy. The
wall clock time is a feature of PLATO that estimates the
actual elapsed time during federated learning, including
both the computation and communication time. The com-
putation time is directly measured during runtime, and the
communication time is computed by dividing the commu-
nication size by the bandwidth, which is set to 100Mbps in
our evaluation.

For the membership inference attack, we adopt similar
settings in [18] and [19]. To provide more non-member
samples to train the attack model, we use only half of the
dataset during training. The attacker will randomly select 5
clients, attacking on their exposed model weights and take
the average attack accuracy as the result.

Beside membership inference attack, we also conducted
the data reconstruction attack [3] to further examine the pro-
tection of MASKCRYPT. The attack takes the model updates
in a local training round as the ground truth, and tries to
reconstruct the input image by optimizing a noise input to
minimize the distance between the model updates on the
noise input and the ground truth. Given a white box access
to the model updates, [3] is considered to be the state-of-the-
art data reconstruction attack against federated learning.

6.2 Experimental Results

Communication overhead. We first evaluate the communi-
cation overhead with different encrypt ratios. As presented
in Fig. 3, the full weights encryption (i.e.,, p = 1) intro-
duces exorbitant communication overhead. For example,
the original model size of ResNet-18 is only 42.7 MB, but can
be boosted into 871.94 MB after encryption, and a similar
inflation ratio is also observed in other models. But if we
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decrease the encrypt ratio, the communication size reduces
linearly as expected, e.g., with an encrypted ratio of 0.2, the
communication size of ResNet-18 can be reduced into 209.83
MB, which is an improvement up to 4.15x compared with
full encryption. This verifies the basic goal of MASKCRYPT
— reducing the communication overhead through sparsity
of encryption.

Besides the default CKKS encryption scheme, we also
experiment with another encryption algorithm, BFV. Since
BFV only supports integers instead of floating numbers, we
scale the original model weights by 10° times and take the
integer part for encryption, and scale it back after aggrega-
tion and decryption. As illustrated in Fig. 3, the ciphertext
size of BFV is smaller than CKKS, and it also decreases
linearly with a smaller encrypt ratio. This shows that our
framework is agnostic to the encryption algorithm and can
be combined with any optimization works of homomorphic
encryption to provide a further improvement.

Training efficiency. Though we initally introduce
MASKCRYPT to reduce the communication overhead of
homomorphic encryption, the ultimate goal is to speed up
the entire federated learning process. With the wall clock
time simulation feature in PLATO, we are able to compare
the training efficiency regarding the elapsed time, and we
present our comparison results in Fig. 4.

As we explained previously, homomorphic encryption
does not change the value of model weights. Therefore, no
matter how many weights are encrypted, the model can
always converge at the same round. But regarding the actual
wall clock time spent on training, there is an huge gap
between the full weights encryption and no encryption in
Fig. 4(a), Fig. 4(c) and Fig. 4(d). For the MNIST dataset, the
model is much smaller and the training time is dominated
by computation instead of communication. Therefore even
if we encrypt the entire LeNet-5 model, it’s only 3.1x slower
than no encryption. But for the CIFAR-19, Purchase, and
Texas datasets, the training speed will be 17.1x, 13.2x,
and 18.5x slower respectively, which leaves a huge space
for improvement using MASKCRYPT. For example, with an
encryption ratio of 10%, MASKCRYPT can speed up the
training on the Purchase dataset by 4.8x.

On the other hand, we also compare MASKCRYPT
against using differential privacy with ¢ = 50 and § = 1075,
which provides a security guarantee without extra commu-
nication overhead. We can see that the perturbation of dif-
ferential privacy noise significantly affects model accuracy
for all four datasets. For the Texas dataset, the test accu-
racy even degrades after reaching a maximum accuracy at
around 45%, which is obviously not acceptable in federated
learning.

Security under membership inference attacks. Finally,
we evaluate the security of MASKCRYPT under membership
inference attacks. We choose two encrypt ratio of p = 0.05
and 0.25. The attack accuracy results presented in Fig. 5
verify that we can still achieve a high-level of security
without encrypting all the model updates in federated learn-
ing. For the MNIST and CIFAR-10 datasets, even if we only
encrypt 5% of the model weights, we can still reduce the
attack accuracy to about 50%. The attack accuracies for the
Purchase and Texas datasets are slightly higher. But if we
increase the encrypt ratio to 0.25, the attack accuracies can
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still be reduced to merely random guessing.

We also compare our proposed gradient-guided mask
selection algorithm with a random masking scheme, where
the encryption mask is randomly generated at each round.
Our experimental results show that such a random scheme
is as vulnerable as unencrypted, suffering from a high attack
accuracy under membership inference. Such a comparison
verifies that the encryption mask selected by our proposed
method does contribute to the protection of data privacy.
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Fig. 5. Attack accuracy under the membership inference attack.

To understand why our method works, we further
evaluate the accuracy of the exposed model on a client’s
private training set, and present the results in Table 2.
With a random mask, the exposed model can still reach
a high accuracy up to 98.6% on Purchase dataset, which
means even with masking encryption, the exposed model
is still overfitted to the private training data and outputs
the predictions of training samples with a confidence that is
high enough to be captured by the attack model. In contrast,
with the same encryption ratio, MASKCRPYT can reduce
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such accuracy to as low as 2.5%. Hence, nothing from the
training can be inferred under attack.

TABLE 2
The accuracy of exposed model evaluated on training set.

Random Mask MaskCrypt
Dataset 405 ,—025 =005 p=0.25
Purchase 0.98 0.95 0.29 0.04
Texas 0.78 0.84 0.034 0.025
MNIST 0.93 0.95 0.22 0.14
CIFAR10 0.92 0.94 0.18 0.08

Membership inference attack is a well-known practical
attack due to its low data requirements and high accuracy
across various model types. Traditional protection methods
typically block access to the entire set of original model
weights. In contrast, MASKCRYPT provides the insight that
obscuring only a small part of the model weights is suf-
ficient to protect clients’ data from membership inference
attacks. More importantly, we have shown that the exposed
model weights of MASKCRYPT exhibit very low accuracy on
clients’ training data. This eliminates traces that the model
was trained on specific datasets, potentially making it robust
against other adversary attacks.

Security under data reconstruction attack. In addition
to evaluating MASKCRYPT against membership inference
attacks, we also tested its ability to defend against data
reconstruction attacks. These attacks aim to reconstruct pri-
vate input data from model updates in federated learning.
We followed the approach from [3], which has been shown
to yield high-quality reconstructed images. Specifically, a
local model is trained on a single image for 5 steps. The
attacker then attempts to recover the original input image
from the model updates.

Without encryption, the inversion attack successfully
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Fig. 6. Reconstructed input images under model updates inversion attack. The horse comes from CIFAR10 dataset and the handwritten digit 3

comes from MNIST.

reconstructed input images with extremely high fidelity on
both the CIFAR10 and MNIST datasets, demonstrating the
effectiveness of reconstruction attacks. However, with just
1% of updates encrypted, MASKCRYPT provided robust
defense. The reconstructed images were completely unrec-
ognizable, consisting of barely more than random pixels,
and not to mention the higher encrypt ratios.

Simply increasing the percentage of encrypted weights
does not necessarily improve defense. With randomly se-
lected encryption masks, we found that even with 16%
updates encryption, the attack can still recover substantial
image details from the updates. This highlights the im-
portance of our proposed gradient-guided mask selection
algorithm for determining which weights to encrypt. When
used as small as 1% encryption, this algorithm allowed
MASKCRYPT to completely obscure reconstruction attacks.

6.3 Experimenting with Transformer Models

In addition to the ML models that we evaluated earlier, we
also applied MASKCRYPT on DistilGPT2, a large-scale lan-
guage model based on the Transformer architecture. Trans-
former models are typically large, requiring a substantial
amount of resources to train. In our experiment, we trained
the DistilGPT2 model using the Tiny-Shakespeare dataset,
involving a total of 5 clients, among which 3 of them are
selected for training in each round.

Similar to our previous experiments, we first show the
communication size of DistilGPT2 in Fig. 7(a). The base
size of DistilGPT2 is 465.74 MB without any encryption,
and if we encrypt the entire model, the communication size
expands to more than 10 GB per client per round, which
means the full encryption scheme is far from practical in
training huge models. Still, MASKCRYPT managed to reduce

the communication size linearly with a smaller encrypt
ratio, i.e.,, 4.3x reduction if we only encrypt 20% of the
weights.
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Fig. 7. Training efficiency of DistilGPT2.

Compared with a vanilla federated learning process, the
encryption of model weights introduces extra computation
overhead, which is relatively negligible with small models.
For example, the computation time is included in the overall
wall-clock time in Fig. 4. In contrast, for large scale models
like transformer models, the cryptographic operations also
take a considerable time due to the increased encryption
scale.

As presented in Fig. 7(b), if we choose to encrypt the en-
tire DistilGPT2 model in a single federated learning round,
it takes about 3 minutes for clients to decrypt the model
weights before it can proceed to local training, 6 minutes to
encrypt all the weights of DistilGPT2. And finally, the server
needs 7.7 minutes to aggregate the encrypted weights from
3 clients, which can be even longer if more participants are
aggregated. Similar to the communication size, MASKCRYPT
reduces the computation time linearly, down to a relatively
acceptable range by shrinking the encryption scale.



But even with only 20% of encrypted weights, the com-
munication size is still up to 2.4 GB, and the corresponding
cryptographic operations takes a few minutes to finish.
Therefore, an essential question is how many model weights
need to be encrypted for DistilGPT2 to be secure. Since
the performance of existing membership inference attack on
transformer models [20] largely depends on a user-defined
threshold (i.e., one can easily adjust the threshold value
to obtain desired attack result), we use a more objective
metric, the model perplexity of the exposed model weights,
to evaluate the security — higher perplexity means the
model has less knowledge on the training data. As pre-
sented in Table 3, without any protection, the perplexity of
DistilGPT2 decreases to 29.31 on the clients’ training data.
Similar perplexities were observed on the random mask en-
cryption scheme across different encrypt ratios. In contrast,
the perplexity of MASKCRYPT is significantly higher with
the same encrypt ratio, which means the model weights of
MASKCRYPT have a worse performance on the local training
data, which implies that they are safer to be exposed.

Notice that if we adopt the full weights encryption
scheme, only the initial, pre-trained model weights from
HuggingFace will be exposed, whose perplexity on clients’
training data is 92.35, while the perplexity of MASKCRYPT
is 97.53 with an encrypt ratio of 10%. In other words, we can
achieve the same level of security as full weights encryption,
from the perspective of perplexity, by only encrypting 10%
of the weights.

An interesting observation is that the perplexity of
MASKCRYPT can be even higher than full encryption with
more weights being encrypted. The reason is that with
full encryption scheme, the perplexity is evaluated on the
initial model because the server has no access to any model
weights during the FL training process. The initial model
performs poorly, but it is still a consistent pre-trained model.
Yet, with MASKCRYPT, the exposed model weights are not
consistent: some weights come from round ¢, and other
weights come from some other rounds. Such inconsistency
corrupts the model, leading to an even worse performance
than the initial model.

TABLE 3
The perplexity of exposed model weights of DistiiGPT2 under different
encryption scheme.

Encryption Scheme Encrypt Ratio

=005 p=010 p=015 p=0.20
No Encryption 27.47
Random Mask 29.63 27.24 31.18 28.79
MASKCRYPT 65.38 97.53 125.36 191.31
Full Encryption 102.47

7 RELATED WORK

Federated learning allows multiple clients to collaboratively
train a machine learning model without sharing their pri-
vate data, yet recent studies [4] show that the model weights
or gradients exchanged between clients and server exposed
the privacy of clients under various privacy attacks, such
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as membership inference [2], [21], feature inference [22] and
even reconstructing input data from model updates [3].

Many strategies have been proposed to protect clients
against attacks of such exposure. One way is to perturb
the model updates with noises such that an adversarial can
barely learn anything from it. For example, based on the
DP-SGD algorithm [5], McMahan et al. extends differential
privacy to federated learning and proposed DP-FedAvg [6]
to inject differential privacy noise during the local training
phase. However, both our experimental results and the
empirical studies in [7], [15] show that differential privacy
noises inevitably degrade the model accuracy, which contra-
dicts the fundamental goal of training a high-performance
model in federated learning.

Secure aggregation [23] is another choice that allows a
server to compute the sum of data vectors from clients
in a secure manner, ie., the server learns nothing but the
aggregation result. SAFELearn [24] further improves the
communication efficiency of secure aggregation in federated
learning. But still, they allow the server to see the plaintext
aggregated model or gradients, based on which the informa-
tion about the trained model or client data can be inferred
by adversarial entities.

In contrast, homomorphic encryption outperforms the
aforementioned methods in the following aspects: first, the
model updates remain unchanged after encryption and
decryption, so there is no worry about any accuracy degra-
dation. Recent works [14], [16] attempt to combine federated
learning with homomorphic operations to provide a secure
environment.

However, homomorphic encryption introduces a signifi-
cant amount of communication overhead due to the inflated
ciphertext size as we presented in the evaluation. Some
encryption algorithm-level optimizations, such as [25], [26],
can be adopted to reduce the ciphertext size. More specifi-
cally, in the context of federated learning, Liu et al. proposed
BatchCrypt [12] to encode a batch of quantized gradients
into a long integer and encrypt it together, which reduces the
communication size in federated learning by a substantial
margin. Jiang et al. introduced FLASHE [11] as a tailored
homomorphic encryption scheme for cross-silo federated
learning. But all of these works choose to encrypt all the
model weights or gradients without considering encryption
sparsity, i.e., how many information we need to encrypt be-
fore we can claim it’s safe enough. Therefore, MASKCRYPT
can be combined with these techniques to further reduce the
communication overhead.

While early work focused solely on one aggregation
scheme, recent years have seen more efforts to combine
multiple secure methods to provide better performance
in terms of privacy and training efficiency. For example,
Kairouz et al. [27] discretize the model updates and adds
discrete Gaussian noise before performing secure aggrega-
tion. Similarly, Stevens et al. [27] combine secure aggregation
with differential privacy to ensure end-to-end privacy in
federated learning. Zheng ef al. [28] introduce a lightweight
secure aggregation protocol, and use quantization-based
model compression to reduce the communication overhead.
These works still operate on the entire model updates,
where computation and communication complexities are
determined by the vector sizes needing aggregation. There-



fore, MASKCRYPT’s findings could also be combined with
them, i.e., by reducing the size of the aggregating vectors to
further improve training efficiency.

8 CONCLUDING REMARKS

The exposure of model updates raises security concerns in
federated learning, where homomorphic encryption can be
an effective way to prevent information from adversarial
access. In this paper, we present the design of MASKCRYPT
to explore the trade-off between encryption sparsity and
security in federated learning, i.e., encrypting not all but
only parts of the model updates, yet still achieving a similar
level of protection. MASKCRYPT manages to do so by care-
fully selecting the encryption mask with our new gradient-
guided mask selection algorithm, which aims to increase the
loss value of the exposed model weights. Our evaluation
results show that, compared with full weights encryption,
MASKCRYPT reduces the communication size linearly as ex-
pected, and consequently improves the training speed with
a smaller encrypt ratio. On the security side, MASKCRYPT
can degrade the membership inference attack to random
guess by encrypting only 5% of the model updates, and
totally neutralize the risk of data reconstruction with 1%
of encryption.

In future work, we will continue improving the robust-
ness of MASKCRYPT in cross-device FL scenarios where
clients dynamically participate and exit. While new partici-
pants can readily wait to be selected after requesting public
keys from others, resuming from the absence of decryp-
tion keys from disconnected clients remains a challenge.
This is because MASKCRYPT’s decryption process requires
assistance from all selected clients. Exploring mechanisms
to handle interrupted decryption in such dynamic environ-
ments is an important direction for further research.
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