
Menos: Split Fine-Tuning Large Language Models with
Efficient GPU Memory Sharing

Chenghao Hu

ch.hu@mail.utoronto.ca
University of Toronto

Toronto, Ontario, Canada

Baochun Li

bli@ece.toronto.edu
University of Toronto

Toronto, Ontario, Canada

Abstract
Fine-tuning of pre-trained large language models has be-

come increasingly popular, yet existing fine-tuning methods

are typically centralized, requiring users to send local data

to centralized servers, or model owners to open-source their

models. However, data and models are valuable assets that

few enterprises and users wish to share. In this paper, we

deviate from conventional wisdom and advocate the use of

split learning for fine-tuning models with private data, local

to each of the clients. The most formidable challenge to split

fine-tuning is the size of large language models: when mul-

tiple clients start their fine-tuning tasks, their use of GPU

memory will overwhelm a GPU-equipped server, especially

as the number of clients scales up. To address this challenge,

we presentMenos, the first memory-efficient split fine-tuning

framework designed to optimize the server GPU footprint

through spatial and temporal sharing. Specifically, Menos
utilizes the adapter-based nature of modern fine-tuning tech-

niques, and proposes to spatially share the base model pa-

rameters among multiple clients. It also schedules memory-

intensive operations during the communication gaps of split

learning, thereby temporally sharing limited GPU memory

at runtime. Comprehensive real-world evaluations using

state-of-the-art large language models demonstrate the ef-

fectiveness of Menos, reducing GPU memory consumption

by up to 72%, yet incurring negligible overhead.

CCS Concepts: • Computer systems organization →
Client-server architectures; • Computing methodolo-
gies → Distributed algorithms; Neural networks.

Keywords: Split Learning, Fine-Tuning, Cloud Computing,

System Design

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong
© 2024 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 979-8-4007-0623-3/24/12. . . $15.00

https://doi.org/10.1145/3652892.3700758

ACM Reference Format:
Chenghao Hu and Baochun Li. 2024.Menos: Split Fine-Tuning Large
LanguageModels with Efficient GPUMemory Sharing. In 25th Inter-
national Middleware Conference (MIDDLEWARE ’24), December 2–6,
2024, Hong Kong, Hong Kong. ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3652892.3700758

1 Introduction
In recent years, large pre-trained language models have be-

come increasingly popular across a wide range of applica-

tions [35]. More and more users are employing model fine-

tuning techniques to customize these models for their own

specific purposes [28]. Fine-tuning allows users to adapt

pre-trained models to perform well on downstream tasks by

training on a smaller dataset relevant to the target domain.

However, most existing fine-tuning approaches rely on cen-

tralized architectures. Users must send their local private

data to a central server in order to fine-tune a model [29].

Alternatively, if users insist on carrying out the fine-tuning

process locally, model owners must open-source their pre-

trained parameters.

Unfortunately both scenarios are undesirable, as user data

and model parameters are valuable assets that few enter-

prises and users wish to share. It is especially the case for

user data, as they often contain sensitive or confidential

information [18], putting user data under potential data pri-

vacy risks if that data is mishandled or breached. At the same

time, commercially successful model owners have invested

substantial resources into developing their pre-trained mod-

els like ChatGPT, and are reluctant to release their full model

parameters publicly because doing so would allow competi-

tors to freely use those models and undermine their own

competitive advantage.

Split learning [7, 26, 34] offers a potential solution to this

privacy dilemma of model fine-tuning. In split learning, the

training process is distributed between the server and its

clients. As the term readily suggests, the model itself is split,

with one portion residing on the client and the remaining

portion on the server. The server and clients iteratively ex-

change intermediate model activations and gradients to col-

laboratively update the model without directly sharing raw

data or full model parameters. In this way, clients are able

to maintain the privacy and confidentiality of their data,

only sharing intermediate results. Meanwhile, model owners

can keep a majority of the model parameters secret on the

https://doi.org/10.1145/3652892.3700758
https://doi.org/10.1145/3652892.3700758

MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong Chenghao Hu and Baochun Li

server side. This enables a privacy-preserving approach to

collaborative model fine-tuning.

However, since most of the model parameters and oper-

ations are hosted and conducted on the server, fine-tuning

large pre-trained models introduces new challenges around

server GPU memory consumption. State-of-the-art models

like Llama 2 [32] requires more than 20 GB of GPU mem-

ory to store the smallest version with 7 billion parameters,

not including other states, such as activations and optimizer

variables, that must be maintained during the fine-tuning

process. As the number of clients grows, the total burden of

GPU memory on the servers accumulates rapidly. With bil-

lions of parameters per model, supporting split fine-tuning

across many clients can quickly exceed the memory capacity

of even high-end GPUs, not to mention the exorbitant costs

of operating these GPU servers to support split fine-tuning.

A variety of techniques have been proposed for reducing

GPU memory consumption during model training that could

be adapted to fine-tuning scenarios. For instances, model

quantization [2–5] aims to compress the model footprint

by quantizing parameters to lower bit depths. Other meth-

ods like gradient checkpointing [1, 15] and accumulation

can decrease runtime memory for activations and gradients.

However, these approaches do not consider the unique chal-

lenges of split learning across multiple clients. They optimize

GPU memory for a single task, but do not address scalability

when handling many model variants across clients.

In this paper, we introduceMenos, the firstmemory-efficient

split fine-tuning framework optimizing server GPU footprint

as the number of clients scales. Unlike existing methods,

Menos identifies unique challenges and opportunities in com-

bining split learning with model fine-tuning. In particular,

it provides a tailored solution to address GPU memory lim-

itations when the number of clients scales up. Therefore,

existing methods are complementary to Menos and can be

combined for further improvements. The original contribu-

tions of this work can be summarized as follows:

First, Menos utilizes the special feature of adapter-based
model fine-tuning techniques [9, 10, 16] where only the

adapter parameters are trained while the base model pa-

rameters are fixed. Adapters are lightweight neural net-

work modules attached to a pre-trained model. Fine-tuning

only the adapters while freezing the base model has been

shown to achieve comparable performance to full model

fine-tuning [9]. This allows Menos to spatially share the

base model parameters among multiple clients. Such base

model sharing mechanism allows Menos to conduct concur-

rent fine-tuning with multiple clients using significantly less

GPU memory compared to duplicating the base model for

each client.

Second, GPU resources in split learning are significantly

under-utilized, as the computations are constantly inter-

rupted by communications, yet the GPU memory is still

preserved. This severely limits the system’s scalability to

more clients. To address this problem, Menos introduces an
on-demand memory allocation mechanism, which allocates

the minimum amount of required GPU memory to clients

only when computation is ready. When a client’s turn for

computation arrives, Menos dynamically allocates the nec-

essary GPU memory, performs the forward and backward

passes, and immediately release the memory upon comple-

tion. During waiting times, GPU memory will be released

to allow other clients’ tasks to be scheduled. This temporal

sharing of GPU memory improves utilization and allows

more clients to be served.

Finally, we have implemented Menos and conducted an

extensive array of experiments to evaluate its performance in

a real-world environment. Our results show that, using our

base model sharing mechanism, Menos substantially reduces

GPU memory consumption by up to 72% as the number of

clients increases. At the same time, the on-demand mem-

ory allocation and scheduling in Menos achieves a highly

efficient temporal sharing of GPU resources, allowing multi-

ple clients conducting split fine-tuning with limited server

GPU memory, while the time overhead is negligible. Our

extended experiments in multi-GPU environments and with

CPU clients further demonstrate that Menos can be widely

adopted across different hardware settings.

2 Adapter-Based Split Fine-Tuning
2.1 Adapter-Based Model Fine-Tuning
Due to the enormous number of parameters in large pre-

trained models, fine-tuning the entire model is often too

computationally expensive for most users [14]. Instead, the

prevailing techniques typically rely on adapter-based fine-

tuning [10], which means adding a small “adapter” module

to the pre-trained model and only updating the adapter pa-

rameters, while keeping the original pre-trained model or

the base model fixed.

As examples, LoRA (Low Rank Adaptation) [9] injects low-

rank parameterized matrices to target model operations, and

adapts to the fine-tuning data by optimizing these low-rank

matrices without modifying the original model parameters.

Prefix-tuning [16] concatenates adapter layers to the be-

ginning of the base model, and other customized adapter

modules [8, 17] are also presented in different forms. With

these techniques, the adapter modules learn task-specific

representations and patterns, avoiding the cost of updating

all the base model’s parameters.

Formally, assume we have a pre-trained model with pa-

rameters 𝜃 . We add a small adapter module with parameters

𝜙 that gets inserted into the pre-trained model such that

the model becomes 𝑓 (𝑥 ;𝜃, 𝜙), where 𝑓 is the function repre-

sented by the model, and 𝑥 is the input. With a loss function

𝐿(𝜃, 𝜙) defined as

𝐿(𝜃, 𝜙) = Loss (𝑓 (𝑥 ;𝜃, 𝜙), 𝑦)

Menos: Split Fine-Tuning Large Language Models with Efficient GPU Memory Sharing MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong

where 𝑦 is the target output or label. In this way, the adapter-

based model fine-tuning can be formulated as:

𝜙∗ = argmin𝜙𝐿(𝜃, 𝜙). (1)

So only the adapter parameters 𝜙 are optimized and the base

model parameters 𝜃 remain untouched.

2.2 Split Fine-Tuning
Split learning [7], as the term suggests, splits the model train-

ing process between the server and clients. As presented in

Fig. 1, a model is topologically partitioned into three sec-

tions: the input and output sections 𝑓𝑖 and 𝑓𝑜 , including the

input/output layers and some nearby layers, reside on the

client-side so that the fine-tuning dataset can be processed

locally. The main body of the model 𝑓𝑠 will be hosted on the

server-side.

Client ClientServer

Main Body

Input Layer

Output Layer

Hidden Layer

Hidden Layer

<latexit sha1_base64="46wcT3ANJ/ikeHr6suBK122sebs=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYnvcmQ2dllZlYMSz7BiwdFvPpF3vwbJ8keNFrQUFR1090VJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtB1Sax/LejBP0IzqQPOSMGivdPfZYr1xxq+4M5C/xclKBHPVe+bPbj1kaoTRMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsljVD72ezUCTmySp+EsbIlDZmpPycyGmk9jgLbGVEz1IveVPzP66QmvPQzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2nZEPwFl/+S5onVe+8enZ7Wqld5XEU4QAO4Rg8uIAa3EAdGsBgAE/wAq+OcJ6dN+d93lpw8pl9+AXn4xtauI3c</latexit>xc

<latexit sha1_base64="Sm4eD54S/fWbxxLkdQjLs+lQYhA=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYns8mQ2dllplcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSQ9gTvXLFrbozkGXi5aQCOeq98le3H7M04gqZpMZ0PDdBP6MaBZN8UuqmhieUjeiAdyxVNOLGz2anTsiJVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPYzoZIUuWLzRWEqCcZk+jfpC80ZyrEllGlhbyVsSDVlaNMp2RC8xZeXSfOs6l1WL+7PK7WbPI4iHMExnIIHV1CDO6hDAxgM4Ble4c2Rzovz7nzMWwtOPnMIf+B8/gBIZI3Q</latexit>

fi
<latexit sha1_base64="gwplvTQpil7dFdMrT7Sq+TUjrl0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYns8mQ2dllplcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSQ9gzvXLFrbozkGXi5aQCOeq98le3H7M04gqZpMZ0PDdBP6MaBZN8UuqmhieUjeiAdyxVNOLGz2anTsiJVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPYzoZIUuWLzRWEqCcZk+jfpC80ZyrEllGlhbyVsSDVlaNMp2RC8xZeXSfOs6l1WL+7PK7WbPI4iHMExnIIHV1CDO6hDAxgM4Ble4c2Rzovz7nzMWwtOPnMIf+B8/gBXjI3a</latexit>

fs
<latexit sha1_base64="eKc3fjaQS/jGBn8FKktdVqkbgds=">AAAB6nicbVDJSgNBEK2JW4xb1KOXxiB4CjPidgx68RjRLJAMoafTkzTpZejuEcKQT/DiQRGvfpE3/8ZOMgdNfFDweK+KqnpRwpmxvv/tFVZW19Y3ipulre2d3b3y/kHTqFQT2iCKK92OsKGcSdqwzHLaTjTFIuK0FY1up37riWrDlHy044SGAg8kixnB1kkPcU/1yhW/6s+AlkmQkwrkqPfKX92+Iqmg0hKOjekEfmLDDGvLCKeTUjc1NMFkhAe046jEgpowm506QSdO6aNYaVfSopn6eyLDwpixiFynwHZoFr2p+J/XSW18HWZMJqmlkswXxSlHVqHp36jPNCWWjx3BRDN3KyJDrDGxLp2SCyFYfHmZNM+qwWX14v68UrvJ4yjCERzDKQRwBTW4gzo0gMAAnuEV3jzuvXjv3se8teDlM4fwB97nD1F8jdY=</latexit>

fo

<latexit sha1_base64="mvA5zdIO+GVC80bUaEerS1GjnBc=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYnvcmQ2dllZlYMSz7BiwdFvPpF3vwbJ8keNFrQUFR1090VJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtB1Sax/LejBP0IzqQPOSMGivdPfZ0r1xxq+4M5C/xclKBHPVe+bPbj1kaoTRMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsljVD72ezUCTmySp+EsbIlDZmpPycyGmk9jgLbGVEz1IveVPzP66QmvPQzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2nZEPwFl/+S5onVe+8enZ7Wqld5XEU4QAO4Rg8uIAa3EAdGsBgAE/wAq+OcJ6dN+d93lpw8pl9+AXn4xty+I3s</latexit>xs

<latexit sha1_base64="UvyhH7bK5k1ed8ggcVJoqtopa+M=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYns8mQ2dllplcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSw6DHeuWKW3VnIMvEy0kFctR75a9uP2ZpxBUySY3peG6CfkY1Cib5pNRNDU8oG9EB71iqaMSNn81OnZATq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieO1nQiUpcsXmi8JUEozJ9G/SF5ozlGNLKNPC3krYkGrK0KZTsiF4iy8vk+ZZ1busXtyfV2o3eRxFOIJjOAUPrqAGd1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AFA0o3L</latexit>gc
<latexit sha1_base64="CRd2yjlu3ugbWp5S9OmpaSdFDGE=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYns8mQ2dllplcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSw6BneuWKW3VnIMvEy0kFctR75a9uP2ZpxBUySY3peG6CfkY1Cib5pNRNDU8oG9EB71iqaMSNn81OnZATq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieO1nQiUpcsXmi8JUEozJ9G/SF5ozlGNLKNPC3krYkGrK0KZTsiF4iy8vk+ZZ1busXtyfV2o3eRxFOIJjOAUPrqAGd1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AFZEo3b</latexit>gs

Figure 1. The split fine-tuning process.

Clients start fine-tuning by feeding input data 𝑥 into the

input section 𝑓𝑖 to obtain intermediate activations 𝑥𝑐 =

𝑓𝑖 (𝑥 ;𝜃𝑖 , 𝜙𝑖) and sending them to the server. The server con-

tinues the forward computation via 𝑥𝑠 = 𝑓𝑠 (𝑥𝑐 ;𝜃𝑠 , 𝜙𝑠) and
return 𝑥𝑠 to client. The client then computes the output

𝑓𝑜 (𝑥𝑠 ;𝜃𝑜 , 𝜙𝑜) using its output section 𝑓𝑜 and calculates the

loss to begin back-propagation.

When the gradients 𝑔𝑐 =
𝜕𝐿
𝜕𝑥𝑠

from the loss reach the cut

point between 𝑓𝑠 and 𝑓𝑜 , they will be sent to the server to

continue gradient propagation through 𝑓𝑠 , yielding the gradi-

ents 𝑔𝑠 with respect to 𝑥𝑐 . The server returns 𝑔𝑠 to the client

to complete gradient computation across all three model

sections. With the full set of gradients, the adapter parame-

ters 𝜙𝑖 , 𝜙𝑠 , and 𝜙𝑜 can now be updated with their respective

gradients using the selected optimization algorithm.

From the perspective of the server, a complete fine-tuning

cycle can be summarized in the following steps:

• Step 1. The server waits to receive intermediate activa-

tions 𝑥𝑐 from the client.

• Step 2. The server performs forward computation to ob-

tain 𝑥𝑠 , and returns it to the client.

• Step 3. The server waits to receive gradients 𝑔𝑐 from the

client.

• Step 4. The server executes back-propagation to get 𝑔𝑠 ,

and returns it to the client.

The four steps above comprise the core fine-tuning loop

between the clients and the server in split fine-tuning. This

process iterates, with the client and server exchanging acti-

vations and gradients, until a predetermined exit criterion is

met — such as the model reaching a target performance, or

completing a maximum number of iterations.

2.3 GPU Memory Footprint Analysis
During the runtime of a model fine-tuning process, the GPU

memory footprint mainly comes from the following compo-

nents:

• Model parameters (M). The original model parameters

need to be stored in GPUmemory so they can be efficiently

accessed and used during fine-tuning. Since modern large

pre-trained models can have billions of parameters, this

typically consumes the most GPU memory.

• Adapter parameters (A). The additional adapter parame-

ters used for model fine-tuning also reside in GPUmemory.

With existing parameter-efficient adapter techniques, we

typically have A ≪ M.

• Optimizer states (O). Most optimization algorithms like

Adam and SGD maintain momentum buffers and other

state variables for each trainable parameter. As only the

adapter parameters are trained during fine-tuning, the

optimizer states are on the same order of magnitude as A,
and much smaller thanM.

• Intermediate results (I). Gradient back-propagation re-

quires access to activations from the forward pass, so these

are cached in the GPU memory between the forward and

backward passes. Larger batch sizes result in higher acti-

vation memory.

In the context of split fine-tuning, the vanilla split learning

approaches need to allocate GPU memory for each client,

which makes the GPU memory consumption linearly grows

with the number of clients, i.e., the GPU memory required

for 𝑁 clients can be estimated by

(M + A + O + I) × 𝑁 . (2)

To understand how much GPU memory is needed in prac-

tice, we conducted a measurement study on split fine-tuning

using the Llama 2-7B model [32] with the LoRA technique
1
.

In this setup, the server offloads the transformer blocks, leav-

ing the remaining model on the client. With a batch size of 4,

the server requires approximately 28.7 GB of GPU memory

to support fine-tuning. This consists of 24 GB for the base

Llama model parameters (M), 246 MB for the adapter param-

eters and optimizer states (A + O), and 4 GB for intermediate

results (I).
The substantial GPU memory requirement for split fine-

tuning large pre-trained models poses significant challenges

when scaling to multiple clients. For example, with the Llama

1
The evaluation section will provide full details on the model architecture,

dataset, and fine-tuning configurations.

MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong Chenghao Hu and Baochun Li

2-7B model, most high-end server GPUs like the NVIDIA

V100 (32 GB) or A100 (40 GB) can only support split fine-

tuning for a single client at a time, which significantly limits

the scalability of such split fine-tuning systems. To address

this problem, the unique features of model fine-tuning and

split learning jointly motivate our design of Menos to opti-
mize the GPU memory utilization in split fine-tuning scenar-

ios.

3 Framework Design
Based on the measurement results, we can see that the ma-

jority of GPU memory during large model fine-tuning is

occupied by the base model parameters and intermediate

results, while the adapter and optimizer make up a much

smaller fraction. Therefore, the high-level design philosophy

of Menos aims to optimize the GPU memory consumption

by efficiently memory sharing.

3.1 Base Model Sharing Mechanism
As we mentioned above, adapter-based approaches are the

most common way to fine-tune large models. Their key fea-

ture is that the base model parameters remain fixed, while

only the adapter parameters are optimized during fine-tuning.

In other words, the base model parameters are read-only

throughout the process. This naturally motivates sharing

the base model across clients to avoid duplication in GPU

memory.

Due to the privacy-efficiency trade-off, clients may choose

to cut the model at different layers [39]. Clients concerned

more about privacy cut the model at deeper layers, exposing

less information to the server. Clients focused on efficiency

cut earlier to utilize more server resources. Also, clients may

choose different fine-tuning methods like LoRA or prefix tun-

ing based on their needs. These methods insert adapter pa-

rameters into the model and modify the computation graph

to redirect activations through the adapters.

Both model layer cutting and fine-tuning methods require

exclusive modifications to the model structure. Once the

structure is modified by one client, it cannot be directly

reused by other clients. To safely share the basemodel among

different clients,Menos separates the model parameters from

the model structure. In other words, there are multiple client-

specific model structures that can be modified, while the

underlying parameters remain in a single shared copy.

Loading a pre-trained model requires two steps: 1) con-

structing the model according to the model definition, and

2) reading pre-trained model parameters from files and asso-

ciating them with the model. Menos intercepts this process
by skipping the process of reading. As presented in Fig. 2,

only one copy of the base model (layers in solid boxes) are

preloaded into the GPU memory in advance. Whenever new

clients arrive,Menos creates different model instances (layers

in dashed boxes) for them individually. Yet the parameters

Base Model
Parameters Free GPU MemoryAdapter

Parameters

Layer 1 Layer 2 Layer 3 Layer 4

Layer 1 Layer 2 Layer 3Adapter Adapter

Base model

Processed models for different clients

GPU Memory Allocation

Layer 1 Layer 2 Layer 3 Layer 4

Adapter Adapter

Figure 2. Base model sharing mechanism.

of these models point to the same area in the GPU memory.

In this way, the parameters are detached from the model

structure, allowing those model instances to be customized

for each client (adapters in different colors and structures).

Notice that the GPU memory illustrated in Fig. 2 is an

abstraction of all available GPUs, which means Menos is
compatible with multi-GPU and multi-server environments.

For instance, when dealing with multiple GPUs on a single

server and an LLM too large to fit into any single GPU, we

can manually assign different layers across multiple GPUs

while loading the model, which is a fundamental feature

provided by most deep learning frameworks. Likewise, for

GPUs distributed across multiple servers, we can employ

the PyTorch Distributed library to allocate workload among

servers and manage internal communications.

Compared with duplicating the base model for all clients,

Menos can significantly save more GPU memory for com-

putation purpose. With the base model sharing mechanism,

we reduce the GPU memory estimation for 𝑁 clients from

Eq. (2) to

M + (A + O + I) × 𝑁,

which takes the most memory consuming part out of the

scaling factor. By eliminating the need to duplicate the base

model for each client, Menos provides a more efficient uti-

lization of GPU resources.

3.2 On-Demand Memory Allocation
In traditional on-device model training, the GPUmemory for

intermediate results is typically preserved throughout the

entire training process. This is efficient because the backward

pass immediately follows the forward pass, allowing those

cached intermediate results to be immediately accessed for

gradient calculations. Preserving this GPU memory ensures

Menos: Split Fine-Tuning Large Language Models with Efficient GPU Memory Sharing MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong

GP
U

M
em

or
y

W F W B W F W B

Iteration 1 Iteration 2

(a) Vanilla

GP
U

M
em

or
y

W F W B W F W B

Iteration 1 Iteration 2

(b) Release GPU memory after back-

ward

GP
U

M
em

or
y

W F W F B W F W

Iteration 1

(c) Release GPU memory during

waiting time

GP
U

M
em

or
y

W F W F B W F W

Iteration 1

(d) Forward without preparing gra-

dient computation

Figure 3. GPU memory usage patterns in split fine-tuning with different optimization mechanisms. ‘W’ indicates waiting for

data from clients, ‘F’ is forward computation, and ‘B’ is backward computation.

the results are available when needed during each backward-

forward training step.

In contrast to traditional on-device training, in split fine-

tuning the forward and backward passes are interleaved with

communication between the server and client. As shown in

Fig. 3(a), vanilla split fine-tuning preserves GPU memory for

intermediate results even when the server is blocked waiting

for information from the client. In this scenario, preserving

GPU memory leads to a huge waste, as it remains allocated

but underutilized during the waiting time.

To address this inefficiency and optimize resource utiliza-

tion, Menos adopts an on-demand memory allocation mecha-

nism. The key idea behind this approach is to dynamically

allocate GPU memory for intermediate results only when

they are needed during forward and backward passes. When

the server becomes blocked waiting for client communica-

tion, any unnecessary memory allocation will be freed up to

serve other clients. This temporal sharing strategy improves

overall GPU utilization compared to the vanilla split learn-

ing that preserves all intermediate memory throughout the

process.

Our optimization starts by releasing GPU memory after

the backward computation is complete. Since the intermedi-

ate results for the current optimization round are no longer

needed for the subsequent steps, they can be safely freed

without modifying the split fine-tuning workflow. As pre-

sented in Fig. 3(b), this optimization reduces GPU memory

usage during the period when the server is waiting for client

activations 𝑥𝑐 of next iteration. Note that the base model

parameters are shared, and the GPU memory for this client

only contains the adapter and optimizer, which require a

much smaller amount of GPU memory than the intermedi-

ate results.

However, such a short reduction may not offer sufficient

opportunity to schedule another client’s computation within

that time frame. To further optimize the memory efficiency,

we can also release the GPU memory while the server waits

for gradients 𝑔𝑐 , as shown in Fig. 3(c). But as intermedi-

ate results needed to compute gradients are discarded, the

server must redo the forward pass when 𝑔𝑐 arrives for back-

propagation. Compared with storing the entire set of inter-

mediate results in GPU memory, we just need to cache the

forward activations for the re-forward computation, which

is negligible. This process inevitably increases computation,

but it allows for more efficient memory utilization during

the waiting period, and we will show in the evaluation that

the benefit of doing so significantly outweighs the extra

computation overhead.

Finally, since activations are recomputed, caching them

during the initial forward pass becomes unnecessary. Thus,

the server can conduct the first forward pass in a non-gradient
environment, only generating the activations 𝑥𝑠 needed by

clients without preparing for gradient back-propagation,

which requires much less GPU memory than the typical

forward computation. In this way, the GPU memory usage

pattern becomes as depicted in Fig. 3(d).

As a result of these optimizations, Menos only allocates

the minimum required memory to clients for computation.

As shown in Fig. 3(d), GPU memory usage stays low for

most of the split fine-tuning iteration, leaving ample room

to schedule other clients’ memory-intensive operations —

the second forward and backward passes — during this time.

And compared with Fig. 3(a), the peak memory usage only

happens in a very short period, which achieves an efficient

temporal sharing of GPU memory.

In summary, the computation pattern of the split learn-

ing paradigm inherently leaves huge idle time on the GPU,

which traditional split learning fails to utilize. Menos takes
the advantage of this idle GPU time to share the resource

across multiple clients. Combining with base model sharing

mechanism for adapter-based model fine-tuning, Menos re-
duces the minimum GPU memory requirement for 𝑁 clients

to

𝑀 + (A + O) × 𝑁 + 𝐼 , (3)

where we have already shown that (A + O) is much smaller

than𝑀 and 𝐼 thereby increases much slower when the client

number 𝑁 scales up.

MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong Chenghao Hu and Baochun Li

3.3 Framework Architecture
Combining the basemodel sharingmechanism and on-demand

memory allocation, we are now ready to present the frame-

work architecture ofMenos in Fig. 4.Menos’ workflow begins

with the client sending the fine-tuning configurations to the

server for profiling.Menos enforces a strict on-demand mem-

ory allocation policy, therefore it is crucial for the server to

know the exact amount of GPU memory required for for-

ward and backward computation to avoid out-of-memory

errors.

Given that basemodel parameters are preloaded and shared,

there are two important factors that determine runtime GPU

memory demands:

1. Adapter settings, such as LoRA ranks and target layers,

which affect the size of the model adapter (i.e.,A in Eq. (3)).

2. Fine-tuning settings, such as optimizer hyperparameters,

batch size, and maximum sequence length, which affect

the memory consumption of the optimizer states and in-

termediate results (i.e., O and I in Eq. (3)).

When a new client connects to the server, it will first

report its fine-tuning configurations. The server then initial-

izes the adapter and optimizer for the client. To accurately

profile the runtime GPU memory requirements, the server

generates random input sequences based on the reported

configurations (e.g., sequence length and batch size). These

sequences are passed through forward and backward com-

putations to measure the GPU memory demands for these

operations.

Since fine-tuning configurations typically are constant

throughout the fine-tuning process, the GPU memory de-

mand remains static. As a result, theMenos server only needs
to profile the client once, then it can use these measurements

as an accurate reference during runtime. It’s worth noting

that during profiling, the Menos server only feeds the model

with random input sequences with no need to know the

information of the model to be fine-tuned, making this pro-

cess generic and applicable to any combination of model and

adapter.

After profiling clients and obtaining knowledge of the

GPU memory demands for each client, the server will start

to serve the computation tasks from all clients. Clients fine-

tune models with their respective local datasets, and send

forward and backward requests to the server. These requests

arrive at the server accompanied by different data inputs to

be processed, specifically:

• Intermediate activations for forward computations (col-

ored purple in Fig. 4).

• Gradients for backward computations (colored red in Fig. 4).

These requests will be placed in a queue maintained by

the task scheduler, whose job is to decide which task shall

be scheduled based on the GPU memory demands obtained

from the profiling phase, as well as the real-time available

GPU memory by actively monitoring the GPU status.

As shown in the GPU activities in Fig. 4, all computation

tasks conclude by releasing the occupied GPU memory of

the intermediate results. The scheduler captures these up-

dates, and if the remaining GPU memory is sufficient, it

schedules one or more computation tasks to run on the GPU.

The design details of the scheduler will be elaborated in the

next section, and we present a brief working logic of Menos’
serving process in Algorithm 1.

Algorithm 1 Menos’ serving process.

1: Initialize model 𝑓 (𝜃) from shared parameters 𝜃

2: Crop the layers and inject adapter parameters 𝑓𝑠 (𝜃𝑠 , 𝜙𝑠)
3: while fine-tuning is not done do
4: Wait for client’s activations 𝑥𝑐
5: if scheduled then
6: Compute 𝑥𝑠 = 𝑓𝑠 (𝑥𝑐 ;𝜃𝑠 , 𝜙𝑠) without caching ac-

tivations

7: Release GPU memory

8: Return 𝑥𝑠 and wait for client’s gradients 𝑔𝑐
9: if scheduled then
10: Forward 𝑥𝑠 = 𝑓𝑠 (𝑥𝑐 ;𝜃𝑠 , 𝜙𝑠) with gradient prepa-

ration

11: Backward from 𝑔𝑐 to obtain 𝑔𝑠
12: Optimize the server side adapter 𝜙𝑠
13: Release GPU memory

14: Return 𝑔𝑠 to client

4 Task Scheduling
4.1 Overview
Menos dynamically requests GPU memory on demand in-

stead of preserving GPU memory for forward and backward

computations, therefore we need a scheduler to coordinate

the computation tasks and available GPU memory such that

the memory can be efficiently utilized and reused among

clients and computation tasks. Unlike traditional GPU sched-

uling problems that operate at job level where job lengths

can be hours [6, 18], Menos schedules at the operation level,

where operations like forward and backward computations

finish very quickly. These operations arrive at a high fre-

quency, typically requiring just few seconds per round.

The high frequency and short duration of these operations

pose unique challenges that Menos scheduler has to solve. It

must be able to assess the memory requirements of incom-

ing operations, allocate available memory efficiently, and

coordinate the execution of operations to avoid conflicts and

optimize throughput. This requires a sophisticated schedul-

ing algorithm that can make decisions in real-time based on

the current state of the system and the characteristics of the

pending operations.

We can summarize the key principles that guide theMenos
scheduler as follows:

Menos: Split Fine-Tuning Large Language Models with Efficient GPU Memory Sharing MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong

Menos Server

Task Scheduler

Profiling
GPU Activities

GPU Memory Monitor
Client N

Task Queue

Forward Task

Backward Task

Forward Task

Backward Task

forward and backward
GPU demand

Available GPU Memory

Client 1

Configurations

Fine-tune args Adapter args

Fine-Tune Process

Client 2

Scheduled

Exclusively
Occupied

GPU
Updates

intermediate Activations
and Gradients

intermediate Activations
and Gradients

intermediate Activations
and Gradients

Local
Dataset

Forward Release GPU Memory

Re-Forward Backward
Optimization Release GPU Memory

Figure 4. Framework architecture of Menos.

1. Avoid out-of-memory errors by tracking memory us-

age and allocating memory only when it is available.

2. Maximize the utilization of GPU memory by releasing

and reusing memory blocks whenever possible.

3. Make quick scheduling decisions to keep up with the

requests and prevent the system from being blocked

by the scheduler.

With these principles in mind, we next introduce the imple-

mentation details of the Menos scheduler.

4.2 Implementation Details

Algorithm 2 Menos scheduler.

1: Gather the available GPU memory𝑀𝑎𝑣𝑎𝑖𝑙

2: Measure thememory demands𝑀𝑓 and𝑀𝑏 for each client

3: Initialize waiting list𝑊 = []
4: Initialize allocation dictionary 𝐴 = {}
5: while True do
6: Block and wait for trigger event.

7: if triggered by incoming data from client 𝑖 then
8: Add 𝑆𝑖 to waiting list𝑊

9: Call schedule procedure

10: if triggered by task completion of client 𝑖 then
11: Reclaim available memory𝑀𝑎𝑣𝑎𝑖𝑙 = 𝑀𝑎𝑣𝑎𝑖𝑙 +𝐴[𝑖]
12: Clear the allocation entry for client 𝑖 𝐴[𝑖] = 0

13: Call schedule procedure

14: procedure schedule
15: if waiting list𝑊 is not empty then
16: Select the first request in waiting list 𝑠 =𝑊 [0]
17: 𝑚 = 𝑀𝑓 [𝑖] if 𝑠 requests forward else𝑀𝑏 [𝑖]
18: if GPU memory is sufficient𝑀𝑎𝑣𝑎𝑖𝑙 ≥ 𝑚 then
19: Send scheduling signal to 𝑠

20: Reduce available memory𝑀𝑎𝑣𝑎𝑖𝑙 = 𝑀𝑎𝑣𝑎𝑖𝑙−𝑚
21: Set the allocated memory 𝐴[𝑠] =𝑚

22: Remove 𝑠 from waiting list

23: for remaining clients 𝑟 in waiting list𝑊 do
24: Schedule 𝑟 if remaining memory is suffi-

cient

Assume there are 𝑁 clients conducting split fine-tuning

with the server, whose corresponding serving processes are

identified by 𝑆1, 𝑆2, . . . , 𝑆𝑁 . To properly schedule operations,

we first need to measure the GPU memory consumption of

their forward and backward computations. Given a fixed

model, batch size, and sequence length, the GPU memory re-

quired for the forward pass𝑀𝑓 [𝑖] and backward pass𝑀𝑏 [𝑖]
of process 𝑆𝑖 is constant. To track the current GPU memory

usage, Menos maintains the available memory𝑀avail and an

allocation dictionary 𝐴 where 𝐴[𝑖] is the memory allocated

to serving process 𝑆𝑖 .

The scheduling logic is presented in Algorithm 2. The

scheduler is event-driven, triggered by the following two

events:

1. Activations or gradients arrive from client 𝑖 , indicating

the input data of forward or backward computation is

ready. In this case, the serving process 𝑆𝑖 is added to the

waiting list (Lines 7-9).

2. An ongoing computation finishes and frees up GPU mem-

ory. The scheduler will reclaim the allocated memory

(Lines 10-13).

These two events represent the behaviors of requesting and

releasing the GPU memory, indicating a potential waiting

task can be scheduled within the remaining GPU resources,

therefore trigger the scheduling logic to pick a pending task

for execution.

To achieve the three principleswementioned above,Menos
borrows the scheduling logic from [23] which combines FCFS

(first-come-first-serve) and backfilling strategy, and adapts

it to fit the application scenario of Menos. If the waiting list
is not empty, Menos checks the first request in the waiting

list and the available GPU memory (Lines 15-18). If the avail-

able GPU memory is not enough to fulfill the first request in

the line, Menos quits the current scheduling cycle and waits

for more available memory. This FCFS behavior guarantees

that memory-intensive operations (e.g. backwards with large

batch sizes) will not be starved.

MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong Chenghao Hu and Baochun Li

However, if the first request can be fulfilled with the avail-

able memory, Menos sends the scheduling signal to the cor-

responding serving process and adjusts the values of sched-

uler variables (Lines 19-22). It then performs backfilling by

scanning the remaining requests in the waiting list to see

if the remaining GPU memory can support more clients. If

so, those requests are directly scheduled regardless of their

positions on the waiting list (Lines 23-24) to fully utilize the

available resources.

As we have shown in Fig. 3(d), the re-forward and back-

ward operations can take significantly larger GPU memory

than the initial forward operations. Therefore, in a sched-

uling queue where backward requests are mixed with less

demanding forward requests, the FCFS logic prevents long-

waiting backward requests from being consistently bypassed

by newer, smaller forward requests.

On the other hand, once heavy backward operations are

scheduled, the remaining GPU memory may not be enough

to support another backward computation, but able to al-

low forward computations since they take less GPU mem-

ory. In this case, the backfilling mechanism takes advantage

of any remaining GPU memory to schedule additional re-

quests, even if they arrive later, thereby improving overall

system throughput. As a result, this combination of FCFS

and backfilling ensures that no clients are starved while still

optimizing GPU memory utilization.

Note that while this scheduling method may not result

in the optimal GPU memory utilization, it achieved a good

balance between fairness, efficiency, and speed. In practice,

we implemented Menos framework
2
and scheduler using

Python and PyTorch [25], where the scheduler takes less

than 0.1 milliseconds to make a decision, which is critical

for a real-time system where fast scheduling decisions are

essential to keep up with the high frequency of incoming

requests.

5 Evaluation
5.1 Evaluation Settings
Experimental environment. To evaluate our system un-

der real-world conditions, we conduct experiments in a geo-

distributed client-server environment connected over the

Internet. The clients are situated in Toronto on a machine

with 36 GB of RAM, an Intel (R) Xeon (R) Silver 4210R CPU,

and one NVIDIA RTX A4500 GPU with 20 GB of GPU mem-

ory. On the other side, the server is hosted on a GPU compute

node located in Vancouver at the Cedar cluster
3
, configured

with 128 GB of RAM, 8 virtual CPU cores, and an NVIDIA

V100 Volta GPU with 32 GB of GPU memory.

2
Code will be released soon at https://github.com/iQua/split-fine-tuning

3
https://docs.alliancecan.ca/wiki/Cedar

Models and datasets. To thoroughly evaluate our system

across models with different computational needs, we se-

lect two language models for evaluation to represent differ-

ent scales of model size and computational requirements.

The first is OPT [38], the version with 1.3 billion parame-

ters, which represents smaller models that do not consume

extensive GPU memory during fine-tuning. The second is

Llama 2 [32], comprising 7 billion parameters and repre-

senting cutting-edge, gigantic models that demand substan-

tial resources to fine-tune. The main evaluation results are

obtained with wikitext-2-raw-v1 dataset [21], but we also

demonstrate the convergence results of Menos with Tiny-

shakespeare [13].

Fine-tuning configurations.We use the most prevailing

LoRA technique as the fine-tuning method in our experi-

ments. To maintain the consistency of experimental results,

all the clients share the same LoRA configurations borrowed

from [19], where the LoRA parameters will be injected to the

query and value projections in the transformer layer with

𝑟 = 8 and 𝛼 = 16. For both OPT and Llama 2, we split the

model as presented in Fig. 1. The embedding layer, output

layer, and the first transformer layer are computed on the

client device, while the remaining transformer layers are

located on the server. Batch sizes for OPT and Llama 2 are

16 and 4 respectively. Under these settings, the transmission

size of intermediate activations and gradients is 13.1 and 12.5

MB for OPT, 6.4 MB and 6.2 MB for Llama 2.

Comparison. Menos aims to optimize GPU memory utiliza-

tion for split fine-tuning to serve more clients within the

same memory capacity. To the best our knowledge, no ex-

isting work specifically targets this goal for split learning,

and other optimization techniques like quantization and gra-

dient checkpointing are orthogonal to Menos, which means

Menos can adopt these methods for further improvements.

Therefore, to enable fair comparison, we implement a com-

monly used task-level sharing mechanism for vanilla split

learning: the server accommodates fine-tuning tasks for all

clients if sufficient GPU memory is available. When capacity

is exceeded, client tasks are swapped out of GPU memory

upon completion of each iteration, allowing new incoming

clients to be served.

5.2 Evaluation Results
GPUmemory reduction.Wefirst present the GPUmemory

reduction ofMenos. Since the GPU memory for intermediate

results is temporally shared among clients instead of com-

pletely removed from GPU memory, for fair comparison, we

only compare the GPU memory footprint for components

that need to persist in GPU memory during training. This

includes the base model parameters, adapter parameters and

optimizer states.

As demonstrated in Fig. 5, Menos significantly reduces

GPU memory consumption compared to vanilla split learn-

ing. Without weight sharing, the base model parameters are

Menos: Split Fine-Tuning Large Language Models with Efficient GPU Memory Sharing MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong

1 2 3 4
Number of Clients

0

5

10

15

20

GP
U

M
em

or
y

(G
B)

4.7

9.4

14.0

18.7

5.6 5.9 6.3 6.7

Vanilla
Menos

(a) OPT

1 2 3 4
Number of Clients

0

20

40

60

80

100

GP
U

M
em

or
y

(G
B)

23.8

47.6

71.4

95.2

25.3 25.6 26.0 26.4

Vanilla
Menos

(b) Llama 2

Figure 5. GPU memory consumption

for persistent components.

1 2 3 4 5 6
Number of Clients

0

5

10

15

20

Ti
m

e
pe

r I
te

ra
tio

n
(s

)

6.8 7.2 7.0

12.8

15.7

18.2

6.8 7.0 7.5 8.0 8.3 8.7

Vanilla
Menos

(a) OPT

1 2 3 4
Number of Clients

0

50

100

150
Ti

m
e

pe
r I

te
ra

tio
n

(s
)

3.7

63.1

101.6

154.4

4.7 4.5 5.4 6.0

Vanilla
Menos

(b) Llama 2

Figure 6. Average time for clients to

complete one round of fine-tuning.

1 2 3 4
Number of Clients

10−4
10−3
10−2
10−1
100
101
102

Sc
he

du
lin

g
Ti

m
e

(s
) Preserving

On-Demand

(a) OPT

2 4 8 16
Number of Clients

10−4
10−3
10−2
10−1
100
101

Sc
he

du
lin

g
Ti

m
e

(s
) Preserving

On-Demand

(b) Llama 2

Figure 7. Average schedule time with

increasing number of clients.

duplicated for each client in vanilla split learning, leading to

a linear GPU memory increase. For example in Fig. 5(a), with

4 clients, the GPU memory for OPT increased from 4.7 GB

to 18.7 GB. In contrast, Menos only requires 6.7 GB, a 64.1%

reduction, by sharing base parameters across clients.

The benefits are even greater for larger models like Llama

2. With 23.8 GB for the full model, vanilla split learning can-

not support multiple clients fine-tuning simultaneously with

only one NVIDIA V100 GPU unless swapping to main mem-

ory or including more GPUs. Menos instead needs just 26.4

GB for 4 clients, 72.2% less than duplicating the full model

as presented in Fig. 5(b). While quantization techniques like

QLoRA [4] and GPTQ [5] are commonly used to reduce the

GPU memory demands of large models, these methods could

also be applied to the shared model parameters in Menos
therefore doesn’t affect the benefits of Menos.

Notice that when there is only a single client, Menos uses
slightly more GPU memory than vanilla because it requires

an extra process to manage the shared base parameters.

Vanilla has just one process so requires only one GPU con-

text. But as soon as there are multiple clients,Menos provides
substantial savings by sharing parameters.

Fine-tuning efficiency. Despite reducing the GPU mem-

ory footprint of persistent components, Menos temporally

shares GPU for the intermediate results through on-demand

memory allocation and scheduling during fine-tuning. This

naturally raises concerns about the time-space trade-off: does

such sharing affect fine-tuning efficiency?

For relatively small models like OPT, as presented in Fig. 6(a),

one NVIDIA V100 GPU can support 3 clients simultane-

ously when each client preserves the required GPU memory.

Therefore, with less than 4 clients, the fine-tuning speeds are

roughly the same at around 7 seconds per iteration. Menos
takes about the same time. However, with over 4 clients,

the GPU memory is insufficient for vanilla split learning to

keep everything on the GPU concurrently. It must offload

tasks to main memory to accommodate more clients. This

significant task-level swapping slows down the fine-tuning

process substantially, increasing the time per iteration to

18.2 seconds with 6 clients. In contrast, scaling the number

of clients has a minor impact on Menos, requiring only 8.7

seconds with 6 clients fine-tuning simultaneously.

While vanilla split learning performs reasonably well for

small models like OPT with few clients, the situation differs

drastically for larger models like Llama 2. As mentioned be-

fore, one single V100 GPU cannot hold two full copies of

the Llama 2 model. Therefore, vanilla split learning must

swap tasks starting with just 2 clients. The tremendous time

MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong Chenghao Hu and Baochun Li

to transfer the 24 GB model from GPU to main memory

increases the per-iteration time from 3.7 seconds to 63.1 sec-

onds. With more clients queuing up, the wait time accumu-

lates, leading to an average of 154.4 seconds per fine-tuning

iteration with 4 clients. At 5 clients, even main memory is

insufficient, so comparison stops at 4 clients. In contrast,

Menos’ per-iteration time only increases from 4.7 to 6.0 sec-

onds, showing that Menos is highly efficient even with a

model as large as Llama 2.

Performance analysis. To understand the root causes of

Menos’ performance advantage, we will break down the fine-

tuning time into three components: communication time,

computation time, and scheduling time.

We first examine communication time. As shown in Ta-

ble 1, the communication time for a given model remains

roughly the same across different numbers of clients. It may

take slightly longer as the number of clients increases since

clients must share the server’s bandwidth, but the impact is

negligible. Compared to the overall per-iteration fine-tuning

time, we can see that communication is the biggest compo-

nent forMenos and vanilla split learning when GPU memory

is sufficient. This is because transmission over Internet is

involved.

Table 1. Average communication time (s) per fine-tuning

iteration.

Model Methods

Number of Clients

1 2 3 4 5 6

OPT

Vanilla 6.37 6.69 6.84 6.45 6.75 6.43

Menos 5.93 6.29 7.10 6.73 6.44 6.87

Llama 2

Vanilla 3.23 3.53 3.91 3.66 N/A N/A

Menos 3.11 3.47 3.53 3.55 N/A N/A

Next, we present the computation time in Table 2. Since

vanilla split learning preserves all required GPU memory

to perform forward and backward computations, computa-

tion times are roughly the same for a given model. However,

Menos’ computation time is clearly larger than vanilla split

learning. There are two reasons for this. First, Menos re-
leases GPU memory after the initial forward computation

is complete, then re-conduct the forward pass to obtain the

required intermediate results when receiving gradients. Sec-

ond, Menos needs to constantly release GPU memory. As

the number of clients increases, GPU memory allocation

becomes more fragmented, increasing the time spent on re-

leasing and re-collecting GPU memory. To this end, Menos
does introduce additional computation overhead compared

to vanilla split learning that preserves GPUmemory through-

out forward and backward passes.

Table 2. Average computation time (s) per fine-tuning itera-

tion.

Model Methods

Number of Clients

1 2 3 4 5 6

OPT

Vanilla 0.41 0.47 0.43 0.52 0.51 0.54

Menos 0.71 0.75 0.93 1.24 1.46 1.68

Llama 2

Vanilla 0.46 0.52 0.55 0.51 N/A N/A

Menos 1.15 1.17 1.53 2.16 N/A N/A

Finally, the scheduling time, defined as the time between

when the server receives intermediate activations (or gra-

dients) and starts forward (or backward) computation, is

compared in Table 3. For vanilla split learning with OPT,

scheduling time is 0 when GPU memory is sufficient. Other-

wise, it increases as clients must wait for others to complete

their computations and swap out their tasks, resulting in

considerable scheduling overhead. In contrast, Menos main-

tains very low scheduling times across all the number of

clients. This is because by sharing base model parameters,

the saved GPU memory allows clients to be served immedi-

ately without waiting, i.e., no scheduling overhead for OPT

in our settings.

For Llama 2, the scheduling time for vanilla rapidly in-

creases and accumulates due to the overhead of moving large

amounts of data between GPU and main memory. Since the

GPU can only support one client, Menos clients also need to

wait when it is occupied. However, Menos does not transfer
data between GPU and main memory — clients just wait

for previous clients to release GPU memory. Therefore, its

scheduling overhead is very small compared to computation

and communication times.

There are two scheduling requests for forward and back-

ward computation respectively in Menos. We discover that

there is almost no waiting time for forward requests even

for Llama 2. This is because forward operations require far

less GPU memory, and our scheduling algorithm can always

select and parallelize them with the backward computations

of other clients.

Table 3. Average schedule time (s) per fine-tuning iteration.

Model Methods

Number of Clients

1 2 3 4 5 6

OPT

Vanilla 0 0 0 4.99 7.81 8.18

Menos Ranging from 0.000126 ∼ 0.000132

Llama 2

Vanilla 0 39.9 81.6 121.1 N/A N/A

Menos 0.0001 0.08 0.25 0.38 N/A N/A

Menos: Split Fine-Tuning Large Language Models with Efficient GPU Memory Sharing MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong

0 20 40 60 80
Elapsed Time (Minutes)

20

25

30

35

Pe
rp

le
xi

ty

Client #1
Client #2
Client #3
Client #4
Client #5
Baseline

(a) Wikitext

0 20 40
Elapsed Time (Minutes)

18
20
22
24
26
28
30

Pe
rp

le
xi

ty

Client #1
Client #2
Client #3
Client #4
Client #5
Baseline

(b) Tiny-Shakespeare

Figure 8. Convergence of OPT 2.

0 20 40
Elapsed Time (Minutes)

10

20

30

40

50

Pe
rp

le
xi

ty

Client #1
Client #2
Client #3
Baseline

(a) Wikitext

0 50 100 150
Elapsed Time (Minutes)

5

10

15

Pe
rp

le
xi

ty

Client #1
Client #2
Client #3
Baseline

(b) Tiny-Shakespeare

Figure 9. Convergence of Llama 2.

On-demand allocation vs. memory preserving policies.
Our evaluations so far have validated the effectiveness of

Menos’ design in most cases. However, the on-demand mem-

ory allocation policy remains controversial since it inevitably

increases the time spent on computation. However, we argue

that this overhead is preferable compared with preserving

intermediate results during waiting for client-side gradients.

Fig. 7 compares our design with the memory preserving

policy. For OPT, the scheduling time is less than 1millisecond

with 2 and 4 clients, and rises to only 0.12 seconds with 8

clients. However, when the client number reaches 16, the

scheduling time drastically increases to 6.1 seconds. This

is because the time spent waiting for gradients adds up to

the queuing delay of those clients waiting to be scheduled.

The situation is even worse with Llama 2. The queuing delay

occurs when there are only 2 clients and quickly increases

to about 10 seconds with just 4 clients.

In contrast, the on-demand memory allocation policy of

Menos allows queuing clients to avoid suffering from such

communication overhead. In practice, the average scheduling

times with Llama 2 are only 0.38 seconds with 4 clients,

and 1.01 seconds for OPT with 16 clients. Although this

is a slight increase, it is still significantly smaller than the

communication overhead that the memory preserving policy

must endure.

Exploration onmulti-GPU environment. In our previous
experiments, we limited the client number to a small range

as the GPUmemory on the client side cannot be shared. Next,

we launch clients on CPU devices to increase the scale of

clients, and explore the performance ofMenos in amulti-GPU

environment with Llama 2 model.

Our results, as illustrated in Fig. 10, firstly reveal that even

without GPU acceleration, the fine-tuning time for 2 clients

only slightly increased (from 4.5 to 5.3 seconds) compared to

GPU clients shown in Fig. 6(b). This is because there are only

minimum computations happened on client side, as most

layers are offloaded toMenos server, therefore the client side
computation power doesn’t affect performance too much.

This also implies that Menos client doesn’t have to own a

GPU device to fine-tune LLMs.

On the other hand, as the client number increases from 2

to 10, the time for one step of fine-tuning rises from 5.3 to

11.2 seconds when only 1 GPU is available. However, with 4

GPUs, the fine-tuning time is only 6.6 seconds for 10 clients.

As mentioned before, more GPUs mean more available GPU

memory for Menos to schedule. If the GPU memory cannot

accommodate all clients simultaneously, such as 1 GPU for

10 clients, GPUmemory swapping inevitably slows down the

fine-tuning speed. This slowdown goes roughly linearly with

the number of clients, and can be avoided by incorporating

more GPUs.

2 4 6 8 10
Number of Clients

0
2
4
6
8

10

Ti
m

e
pe

r I
te

ra
tio

n
(s

) 1 GPU
2 GPUs

3 GPUs
4 GPUs

Figure 10. Fine-tuning time with multi-GPU server and scal-

ing clients on CPU device. The blue dashed line represents

the baseline time for 2 GPU clients.

Model convergence. Finally, we address the concern about

Menos’s model convergence. Mathematically, the fine-tuning

results of Menos are identical to single-device fine-tuning, as
it only distributes computation while maintaining the same

logical flow. We validate this by examining convergence for

multiple clients fine-tuning OPT and Llama 2, including an

additional dataset, Tiny-Shakespeare.

Results in Fig. 8 and Fig. 9 show that all clients reached

the same final perplexities as local fine-tuning (represented

by the lowest dashed blue line), despite taking longer due

to cross-internet communication. This demonstrates that

MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong Chenghao Hu and Baochun Li

Menos preserves the convergence properties of fine-tuning
methods across different models and datasets.

6 Related Work
Model fine-tuning.Model fine-tuning allows transferring

knowledge from pre-trained models to downstream tasks

without training the model from scratch. With the emerging

of large pre-trained models containing billions of parame-

ters, fine-tuning techniques have evolved from retraining

the entire model [14, 27] on a new dataset, to freezing most

parameters but retraining some layers [37], and finally to

adapter-based methods [8–10, 16] which update only small

adapter modules while freezing the full model. However,

these fine-tuning methods are typically conducted in a cen-

tralized environment, requiring users to send local data to

centralized servers, or model owners to open-source their

models. Both scenarios are undesirable, which is why we

advocate for split fine-tuning in this paper.

Split learning. Split learning [7] was a distributed machine

learning paradigm that divides training between clients and

a server. Existing research on split learning mainly focused

on enabling multiple clients to collaboratively train a model

from scratch using their distributed datasets [26, 34]. Some

recent works [24, 30, 33] combined split learning with fed-

erated learning to improve model accuracy and computa-

tion/communication efficiency.

Instead of training a model from scratch using datasets

from different sources, fine-tuning tasks start with a power-

ful pre-trained model and aim to adapt it to a local dataset.

Therefore, Menos only adopts the computation paradigm of

split learning, but has a very different objective compared to

existing split learning works.

Federated Learning. Split fine-tuning and federated learn-

ing [20] are two distinct approaches to distributed machine

learning. While federated learning trains models across mul-

tiple devices without sharing raw data, the split fine-tuning

method proposed in the Menos paper has several key differ-

ences. First, federated learning shares model updates with

server, while Menos exchanges intermediate activations and

gradients. Second, multiple clients are involved in a federated

learning session, whereas split fine-tuning occurs between

each client and server independently. Last and most impor-

tantly, federated learning requires each client to hold the

entire model, which is challenging for LLMs. In contrast, split

fine-tuning allows fine-tuning of large LLMs with limited

client resources.

GPU memory optimization. With the trend of large mod-

els becoming even larger, reducing GPU memory usage dur-

ing training has become an important research area. Methods

like gradient checkpointing [1] can reduce memory needed

during back-propagation by only storing a subset of activa-

tions from the forward pass. Selective re-computation [15]

improved this by storing activations that are space-efficient

but expensive to recompute while recomputing activations

that are space-intensive but cheap to recompute.

However, for fine-tuning tasks, pre-trained model param-

eters typically dominate GPU memory consumption. There-

fore, quantization has commonly been used to reduce the bit

depth of model parameters. For instances, reducing precision

from 32-bit floats to 16-bit cuts memory usage in half [22].

[2] and [3] further reduced the parameters and optimizers

to 8-bit. Further, QLoRA [4] pushed the limit to 4 bits, by

introducing a novel NormalFloat4 data format. Similarly,

GPTQ [5] quantized the model to 3 or 4 bits per param-

eter based on approximate second-order information, yet

incurring negligible accuracy degradation compared with

the original model. These methods are orthogonal to Menos,
which implies they can be combined with Menos for further
improvements.

GPU sharing and scheduling. While the aforementioned

techniques sought to optimize GPU memory usage for indi-

vidual tasks, GPU sharing becomes essential as the number

of concurrent tasks increases. [12] and [6] analyzed deep

neural network training workloads to schedule and allocate

GPUs in multi-tenant clusters. [11] improved upon schedul-

ing algorithms to reduce job completion times. These meth-

ods schedule machine learning tasks spanning minutes to

hours, with the allocation unit being GPUs rather than GPU

memory. In contrast, Menos requires more fine-grained GPU

sharing and scheduling since it works on an operation-level

schedule. KubeShare [36] and KubeKnots [31] provided GPU

memory sharing at the container level, but they were still

designed for general machine learning tasks, while Menos is
tailored for the computation and communication patterns of

split fine-tuning tasks.

7 Concluding Remarks
Split fine-tuning allows large pre-trained models to be fine-

tuned without requiring model users or model owners to

share private data or model parameters. However, as the

number of clients scales up, the massive model size can over-

whelm GPU-equipped servers, driving costs higher for pro-

viding such split fine-tuning services. To address this chal-

lenge, we present Menos, the first memory-efficient frame-

work optimized for split fine-tuning across multiple clients.

Menos strategically utilizes the unique features of split learn-

ing and model fine-tuning to achieve highly efficient re-

source sharing over limited GPU memory. Our extensive ex-

periments in real-world settings have clearly demonstrated

its effectiveness, in that it significantly reduces the GPU

memory footprint — yet incurring negligible overhead — as

the number of clients increases. As the demand for model

fine-tuning increases over time, we expect that Menos will
substantially reduce operating expenses for providing fine-

tuning services in a privacy-preserving fashion with respect

to each client’s data.

Menos: Split Fine-Tuning Large Language Models with Efficient GPU Memory Sharing MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong

References
[1] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016.

Training Deep Nets with Sublinear Memory Cost. arXiv preprint
arXiv:1604.06174 (2016).

[2] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer.

2022. GPT3.int8(): 8-bit Matrix Multiplication for Transformers at

Scale. In Advances in Neural Information Processing Systems, Alice H.
Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (Eds.).

https://openreview.net/forum?id=dXiGWqBoxaD
[3] Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 2022.

8-bit Optimizers via Block-wise Quantization. In International Confer-
ence on Learning Representations. https://openreview.net/forum?id=
shpkpVXzo3h

[4] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer.

2023. QLoRA: Efficient Finetuning of Quantized LLMs. arXiv preprint
arXiv:2305.14314 (2023).

[5] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. 2023.

GPTQ: Accurate Quantization for Generative Pre-trained Transform-

ers. In The Eleventh International Conference on Learning Representa-
tions. https://openreview.net/forum?id=tcbBPnfwxS

[6] Juncheng Gu, Mosharaf Chowdhury, Kang G Shin, Yibo Zhu, Myeong-

jae Jeon, Junjie Qian, Hongqiang Liu, and Chuanxiong Guo. 2019.

Tiresias: A GPU Cluster Manager for Distributed Deep Learning. In

16th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 19). 485–500.

[7] Otkrist Gupta and Ramesh Raskar. 2018. Distributed Learning of

Deep Neural Network over Multiple Agents. Journal of Network and
Computer Applications 116 (2018), 1–8.

[8] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone,

Quentin De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and

Sylvain Gelly. 2019. Parameter-efficient transfer learning for NLP. In

International Conference on Machine Learning. PMLR, 2790–2799.

[9] Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean

Wang, Lu Wang, Weizhu Chen, et al. 2021. LoRA: Low-Rank Adapta-

tion of Large Language Models. In International Conference on Learning
Representations.

[10] Zhiqiang Hu, Yihuai Lan, Lei Wang, Wanyu Xu, Ee-Peng Lim, Roy

Ka-Wei Lee, Lidong Bing, and Soujanya Poria. 2023. LLM-Adapters: An

Adapter Family for Parameter-Efficient Fine-Tuning of Large Language

Models. arXiv preprint arXiv:2304.01933 (2023).
[11] Changho Hwang, Taehyun Kim, Sunghyun Kim, Jinwoo Shin, and

KyoungSoo Park. 2021. Elastic Resource Sharing for Distributed Deep

Learning. In 18th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 21). 721–739.

[12] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie

Qian, Wencong Xiao, and Fan Yang. 2019. Analysis of Large-Scale

Multi-Tenant GPU Clusters for DNN Training Workloads. In 2019
USENIX Annual Technical Conference (USENIX ATC 19). USENIX Asso-

ciation, Renton, WA, 947–960. https://www.usenix.org/conference/
atc19/presentation/jeon

[13] Andrej Karpathy. 2015. char-rnn. https://github.com/karpathy/char-
rnn.

[14] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova.

2019. BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding. In Proc. NAACL-HLT. 4171–4186.
[15] Vijay Anand Korthikanti, Jared Casper, Sangkug Lym, Lawrence

McAfee, Michael Andersch, Mohammad Shoeybi, and Bryan Catan-

zaro. 2023. Reducing Activation Recomputation in Large Transformer

Models. Proceedings of Machine Learning and Systems 5 (2023).
[16] Xiang Lisa Li and Percy Liang. 2021. Prefix-Tuning: Optimizing Con-

tinuous Prompts for Generation. In Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing. 4582–
4597.

[17] Bingyan Liu, Yifeng Cai, Hongzhe Bi, Ziqi Zhang, Ding Li, Yao Guo,

and Xiangqun Chen. 2023. Beyond Fine-Tuning: Efficient and Effective

Fed-Tuning for Mobile/Web Users. In Proceedings of the ACM Web
Conference 2023. 2863–2873.

[18] Nils Lukas, Ahmed Salem, Robert Sim, Shruti Tople, Lukas Wutschitz,

and Santiago Zanella-Béguelin. 2023. Analyzing Leakage of Personally

Identifiable Information in Language Models. In 2023 IEEE Symposium
on Security and Privacy (SP). IEEE Computer Society, 346–363.

[19] Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada,

Sayak Paul, and Benjamin Bossan. 2022. PEFT: State-of-the-

art Parameter-Efficient Fine-Tuning methods. https://github.com/
huggingface/peft.

[20] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Aguera y Arcas. 2017. Communication-Efficient Learning of

Deep Networks from Decentralized Data. In Artificial Intelligence and
Statistics. PMLR, 1273–1282.

[21] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher.

2016. Pointer Sentinel Mixture Models. arXiv:1609.07843 [cs.CL]

[22] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos,

Erich Elsen, David Garcia, Boris Ginsburg, Michael Houston, Olek-

sii Kuchaiev, Ganesh Venkatesh, and Hao Wu. 2018. Mixed Preci-

sion Training. In International Conference on Learning Representations.
https://openreview.net/forum?id=r1gs9JgRZ

[23] AhuvaW.Mu’alem and Dror G. Feitelson. 2001. Utilization, predictabil-

ity, workloads, and user runtime estimates in scheduling the IBM SP2

with backfilling. IEEE Transactions on Parallel and Distributed Systems
12, 6 (2001), 529–543.

[24] Seungeun Oh, Jihong Park, Praneeth Vepakomma, Sihun Baek, Ramesh

Raskar, Mehdi Bennis, and Seong-Lyun Kim. 2022. Locfedmix-sl: Lo-

calize, Federate, and Mix for Improved Scalability, Convergence, and

Latency in Split Learning. In Proceedings of the ACM Web Conference
2022. 3347–3357.

[25] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward

Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga,

and Adam Lerer. 2017. Automatic Differentiation in PyTorch. In NIPS-
W.

[26] Maarten G Poirot, Praneeth Vepakomma, Ken Chang, Jayashree

Kalpathy-Cramer, Rajiv Gupta, and Ramesh Raskar. 2019. Split Learn-

ing for Collaborative Deep Learning in Healthcare. arXiv preprint
arXiv:1912.12115 (2019).

[27] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al.

2018. Improving language understanding by generative pre-training.

(2018).

[28] Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois

and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B.

Hashimoto . 2023. Stanford Alpaca: An Instruction-following LLaMA

model. https://github.com/tatsu-lab/stanford_alpaca.
[29] Albert Yu Sun, Eliott Zemour, Arushi Saxena, Udith Vaidyanathan, Eric

Lin, Christian Lau, and VaikkunthMugunthan. 2023. Does Fine-Tuning

GPT-3 with the OpenAI API Leak Personally-Identifiable Information?

arXiv preprint arXiv:2307.16382 (2023).
[30] Chandra Thapa, Pathum Chamikara Mahawaga Arachchige, Seyit

Camtepe, and Lichao Sun. 2022. Splitfed: When Federated Learning

meets Split Learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 36. 8485–8493.

[31] Prashanth Thinakaran, Jashwant Raj Gunasekaran, Bikash Sharma,

Mahmut Taylan Kandemir, and Chita R Das. 2019. Kube-knots: Re-

source Harvesting through Dynamic Container Orchestration in GPU-

Based Datacenters. In 2019 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE, 1–13.

[32] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Alma-

hairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal

Bhargava, Shruti Bhosale, et al. 2023. Llama 2: Open Foundation and

Fine-tuned Chat Models. arXiv preprint arXiv:2307.09288 (2023).

https://openreview.net/forum?id=dXiGWqBoxaD
https://openreview.net/forum?id=shpkpVXzo3h
https://openreview.net/forum?id=shpkpVXzo3h
https://openreview.net/forum?id=tcbBPnfwxS
https://www.usenix.org/conference/atc19/presentation/jeon
https://www.usenix.org/conference/atc19/presentation/jeon
https://github.com/karpathy/char-rnn
https://github.com/karpathy/char-rnn
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://arxiv.org/abs/1609.07843
https://openreview.net/forum?id=r1gs9JgRZ
https://github.com/tatsu-lab/stanford_alpaca

MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong Chenghao Hu and Baochun Li

[33] Valeria Turina, Zongshun Zhang, Flavio Esposito, and Ibrahim Matta.

2021. Federated or Split? a Performance and Privacy Analysis of

Hybrid Split and Federated Learning Architectures. In 2021 IEEE 14th
International Conference on Cloud Computing (CLOUD). IEEE, 250–260.

[34] Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh

Raskar. 2018. Split Learning for Health: Distributed Deep Learning

without Sharing Raw Patient Data. arXiv preprint arXiv:1812.00564
(2018).

[35] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebas-

tian Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald

Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy Liang,

Jeff Dean, and William Fedus. 2022. Emergent Abilities of Large Lan-

guage Models. Transactions on Machine Learning Research (2022).

https://openreview.net/forum?id=yzkSU5zdwD Survey Certification.

[36] Ting-An Yeh, Hung-Hsin Chen, and Jerry Chou. 2020. KubeShare: A

Framework to Manage GPUs as First-Class and Shared Resources in

Container Cloud. In Proceedings of the 29th International Symposium
on High-Performance Parallel and Distributed Computing (Stockholm,

Sweden) (HPDC ’20). Association for Computing Machinery, New York,

NY, USA, 173–184. https://doi.org/10.1145/3369583.3392679
[37] Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. 2022. BitFit:

Simple Parameter-efficient Fine-tuning for Transformer-based Masked

Language-models. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers). 1–9.

[38] Susan Zhang, Stephen Roller, NamanGoyal, Mikel Artetxe, Moya Chen,

Shuohui Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria

Lin, et al. 2022. OPT: Open Pre-Trained Transformer Language Models.

arXiv preprint arXiv:2205.01068 (2022).
[39] Zongshun Zhang, Andrea Pinto, Valeria Turina, Flavio Esposito, and

Ibrahim Matta. 2023. Privacy and Efficiency of Communications in

Federated Split Learning. IEEE Transactions on Big Data (2023).

https://openreview.net/forum?id=yzkSU5zdwD
https://doi.org/10.1145/3369583.3392679

	Abstract
	1 Introduction
	2 Adapter-Based Split Fine-Tuning
	2.1 Adapter-Based Model Fine-Tuning
	2.2 Split Fine-Tuning
	2.3 GPU Memory Footprint Analysis

	3 Framework Design
	3.1 Base Model Sharing Mechanism
	3.2 On-Demand Memory Allocation
	3.3 Framework Architecture

	4 Task Scheduling
	4.1 Overview
	4.2 Implementation Details

	5 Evaluation
	5.1 Evaluation Settings
	5.2 Evaluation Results

	6 Related Work
	7 Concluding Remarks
	References

