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Abstract—Recent years witnessed an increasing research at-
tention in deploying deep learning models on edge devices for
inference. Due to limited capabilities and power constraints, it
may be necessary to distribute the inference workload across
multiple devices. Existing mechanisms divided the model across
edge devices with the assumption that deep learning models are
constructed with a chain of layers. In reality, however, modern
deep learning models are more complex, involving a directed
acyclic graph (DAG) rather than a chain of layers.

In this paper, we present EdgeFlow, a new distributed inference
mechanism designed for general DAG structured deep learning
models. Specifically, EdgeFlow partitions model layers into in-
dependent execution units with a new progressive model parti-
tioning algorithm. By producing near-optimal model partitions,
our new algorithm seeks to improve the run-time performance
of distributed inference as these partitions are distributed across
the edge devices. During inference, EdgeFlow orchestrates the
intermediate results flowing through these units to fulfill the
complicated layer dependencies. We have implemented Edge-
Flow based on PyTorch, and evaluated it with state-of-the-
art deep learning models in different structures. The results
show that EdgeFlow reducing the inference latency by up to
40.2% compared with other approaches, which demonstrates the
effectiveness of our design.

I. INTRODUCTION

As deep learning models are used in a wide variety of
tasks such as image recognition, video analysis, and natural
language processing, they are typically deployed at remote
cloud servers and require users to upload local data for infer-
ence, incurring considerable overhead with respect to the time
needed for transferring large volumes of data over the Internet.
An intuitive solution to reduce such overhead is to “offload”
these inference tasks from the cloud server to the edge devices.
Unfortunately, edge devices are typically resource-constrained
while the inference process is extremely computation-intensive
[1]. Directly using a deep learning model for inference on
devices with limited computation power may result in an even
longer inference time. For this reason, it is desirable to design
distributed inference mechanisms that accelerate the inference
process by partitioning the workload and distributing them to
a cluster of edge devices for cooperative inference [2].

Though distributed inference has received much attention
in the recent literature, existing works generally assume that
deep learning models are constructed as a chain of sequen-
tially executed layers. Unfortunately, such an assumption is
too simplified to hold with modern deep learning models:
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besides stacking deeper layers, structural modifications are
also applied to the models to pursue the best performance, such
as residual blocks in ResNet [3] and PANet [4]. Generally,
modern models are constructed as DAGs (directed acyclic
graphs) instead of chains to represent complicated layer de-
pendencies, e.g., a layer may require outputs from multiple
preceding layers, or its output has to be fed into multiple
subsequent layers.

Such a DAG structure comes with new challenges in the
distributed deployment of deep learning models. For example,
DAG structured models require new layers, like upsampling
and concatenation, to maintain the consistency of the in-
termediate results, which are barely discussed in existing
distributed inference mechanisms. The execution sequence of
the layers is undetermined as there could be parallel paths
in the computation graph. Also, the fact that one layer may
depend on multiple preceding layers increases the complexity
of model partitioning, since the partitioning of a specific layer
should consider how its preceding layers are partitioned.

Unfortunately, existing works failed to provide adequate
support for DAG structured models. Most of them tried to turn
a DAG back into a chain with two intuitive methods: ignoring
the branches and manually fix the dependency [5]; or finding
cut points — whose removal adds the connected components
of the graph — such that the branchy layers between two
cut points can be treated as a single one [6], [7]. Though
these methods may work well with simple DAG structures like
ResNet, they cannot deal with more complex models, such as
Yolo V5 [8], a state-of-the-art deep learning model for object
detection, which contains no cut points except the input and
output layers, and there are so many branches that it will be
almost impossible to manually fix the layer dependency.

To address these challenges, this paper introduces Edge-
Flow, a new distributed inference mechanism specifically
designed for general DAG structured deep learning models.
Rather than turning a DAG into a chain, EdgeFlow breaks
layers of the computation graph into a set of execution units,
which contain a list of input requirements, the computation
operator, and a forwarding table. During the inference, when
the required input is ready, the execution unit will apply the
computation operator on the input to get an intermediate result.
According to the forwarding table, it will send the interme-
diate result to other units to fulfill their input requirements.
Intuitively, the intermediate results flow among execution units
that are distributed among edge devices according to the



dependency to finish a logically equivalent inference as the
original computation graph.

EdgeFlow achieves acceleration by partitioning a layer into
multiple independent execution units, such that they can be
assigned to different devices for parallel execution. One of
the major challenges, therefore, is how these layers should be
partitioned. Since we have to decide the partitioning scheme
for each layer, the decision space could be too large to find
the optimum solution. In addition, the partitioning decision
for a specific layer is related to how its preceding layers are
partitioned, which further adds complexity. Considering both
the run-time efficiency and partition optimality, we propose
a new progressive algorithm that partitions the computation
graph layer by layer in topological order, such that we can
optimally partition the workload of a specific layer when the
partition schemes for its preceding layers are fixed.

Though such a partitioning problem can be formulated as
an integer programming problem, such a formulation may not
be practical to solve as solving integer programming problems
is NP-hard in general. In this context, another highlight in our
contributions is that we are able to transform such an integer
programming problem to a linear programming (LP) problem
as an approximation, such that it can be solved to optimality
efficiently, without resorting to heuristics. Our transformed LP
problem can then be solved efficiently using off-the-shelf LP
solvers. We have implemented EdgeFlow with PyTorch, and
evaluate it on various deep learning model structures, including
the latest Yolo V5 model. Our comparison results show that
EdgeFlow outperforms the latest distributed inference works,
reducing the inference latency by up to 40.2%.

II. BACKGROUND AND MOTIVATION

In this section, we briefly introduce the structure of deep
learning models and their inference process, and show how
the inference can be distributed among edge devices. We then
analyze the challenges brought by the DAG structure, which
directly motivates the design of EdgeFlow.

A. Deep Learning Model Structures

With modern deep learning models, their structure is be-
coming more and more complicated. Generally, they can be
modeled as a DAG structured computation graph G = {L, E},
where each vertex l ∈ L represents a layer in a deep learning
model and defines a specific algorithmic operation. The edges
E dictates the execution order of the inference process. An
edge (m, l) ∈ E means layer l takes the output of m as
its input, and m has to be finished before the execution of
l. Therefore the layers should be executed in the topological
order of the graph during the inference.

In the context of this paper, the layers can be classified
into two groups according to the dependency property. For
example, convolution layer can be regarded as a partially
dependent layer, which means, as illustrated in Fig. 1(a),
the computation of each output only requires parts of the
input. Similar layers include pooling, batch normalization, and
element-wise activations like RELU. In contrast, the other
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Fig. 1. Input and output dependency among convolution and fully-connected
layers.

layers can be grouped as fully dependent layers, where the
computation of every single element of the output requires
the entire input from the previous layers, such as the flatten
and fully-connected layers, which is exemplified in Fig. 1(b).

B. Distributed Inference across Edge Devices

The simplest way to distribute the inference workload can
be borrowed from the model parallelism in distributed machine
learning, where layers are atomically assigned to different
devices for computation [6], [9]. As illustrated in Fig. 2(a),
the input data is firstly processed by two convolution layers
at device A, and then the intermediate result will be passed
to device B for the following computation. In this case, the
inference process is sequentially executed even though there
could be multiple devices, and the computing resources are
underutilized unless there are enough inference requests to
fulfill the pipeline.

To fully exploit the computing resources of devices, an
important observation is that inference can be processed in
a parallel manner by taking advantage of the partial feature
dependency of some layers like convolution and pooling as
we described in Fig. 1(a). Since parts of the output of a
convolution layer only require a subset of the input, one can
partition the input into multiple pieces and feed to different
devices, such that each of them can compute parts of the output
which can then be assembled back to get the original output.

Motivated by this intuition, DeepThings [10] proposed a
Fused Tile Partitioning method, which partitions the last 2-
dimension output feature map into small non-overlapping tiles,
whose computation task will be assigned to devices. For each
partition, DeepThings computes the feature dependency all the
way back to the input to find the required partition of the
input, which means by feeding this specific input partition
into the model, the device can obtain the target output tile
independently. As a result, the computation of the final result
can be parallelized and hence accelerated as each device only
has to compute a subset of the original output.

However, the adjacent partition may require overlapping
intermediate input, which could be redundantly computed
at different devices, and the overlapping area grows when
the model becomes deeper. According to [11], the redundant
computation overhead can be up to 3 × 5× with only 12
layers. To address this issue, CoEdge [5] partitions the output
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Fig. 2. Two different distributed inference mechanisms.

of each layer with no overlapping, and pulls the required data
when necessary. Since the range of the overlapping area is tiny
for two consecutive layers, CoEdge significantly reduces the
redundant computation overhead with the cost of relatively
small margin data transmission, therefore demonstrates the
state-of-the-art performance regarding distributed inference.

C. Challenges with DAG Structures

Though distributed inference has gained broad research
attention, most of them assume the model is in the chain
structure, which strongly hinders the applicability since most
modern deep learning models are constructed as complicated
DAGs. The adaptation to the DAG structure is non-trivial,
and the challenges can be summarized in the following two
aspects.

In distributed inference, it is important to maintain the
layer dependencies because the layer dependencies indicate
the proper execution order of the layers and guarantee that
the correct results are obtained. With the chain structure, the
relationship of the layers is very straightforward as one layer
only has one preceding and one succeeding layer, respectively.
However, in a DAG structure, one layer may be needed
by multiple subsequent layers or require the results from
multiple preceding layers as input. Compared with the chain
structure, the layer dependencies inside a DAG are much
more complicated, adding complexity to ensure the correct
execution, especially after the layers can be partitioned and
distributed among different devices.

Also, the fact that a layer may have multiple preceding
layers has an important impact on the partition scheme for the
current layer. Since the preceding layers could be partitioned
and distributed among different devices, the output of these
layers, which is also the required input of the current layer,
will be scattered around. Therefore an inappropriate partition
scheme of the current layer may result in a considerable

overhead with respect to network traffic, in order to collect
the required input from other devices.

III. EdgeFlow DESIGN

In this section, we introduce EdgeFlow, a distributed infer-
ence system with natural support for DAG structured models,
and then show how EdgeFlow partitions and distributes the
model among different devices while maintaining the com-
plicated layer dependencies to ensure the correct inference
results.

A. EdgeFlow Overview
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Fig. 3. System overview of EdgeFlow.

The architecture overview of EdgeFlow is presented in
Fig. 3. It can be divided into a setup and an inference phase.
During the setup phase, a partitioner takes the computation
graph of a deep learning model as an input and partitions its
layers into execution units. Specifically, EdgeFlow partitions
the output feature map of the layers along the height dimension
as illustrated in Fig. 2(b) and assign to these execution
units, which means each of the units will be responsible for
calculating part of the output features of the current layer. The
execution units should ensure the completeness of the layer.
In other words, the original layer output can be obtained by
combining all the outputs of the execution units.

The execution unit is defined by three fields: (1) Required
input indicating all the input features needed to compute the
assigned output partition. The required input range of the
preceding layers is determined by both the edges pointing
to this layer in the computation graph and the mathematical
property, which we will discuss in the following subsection;
(2) Computation Operator including the operation type (e.g.,
convolution, pooling and etc.) of the current layer, as well as



the parameters of the layer; and lastly, (3) Forward Table tells
the execution units where to forward its output features since
they can be demanded by other execution units. Notice that the
next execution unit might only require parts of the results to
complete its task. Therefore the forward table should include
both the target and the required range of its output.

After partition, the execution units will be deployed on the
device for inference. Initially, all the execution units hibernate
in the task pool since they have to wait for the required input.
When an inference request arrives, the input data will be
delivered to the execution units representing the first layer. In
the following inference process, whenever the required inputs
of an execution unit are ready, the execution unit will be moved
into an execution queue waiting to be processed (e.g., there
could be multiple active execution units representing the layers
in the parallel paths of the computation graph). The received
input feature maps need to be preprocessed before feeding into
the inference engine, e.g., assemble the data from different
execution units in the correct order. Then do the computation
to obtain the result. When the current execution unit finishes
computing, the results will be partitioned and forwarded
according to the forward table. If the target execution units are
not deployed at the same device, the corresponding data slice
“flows” to the other devices through the network connection.
In this way, the flow of the intermediate result continues until
the inference finishes when the last execution unit sends the
inference result back to the requester.

Intuitively, EdgeFlow maintains the connection between the
layers in the computation graph by directing the flow of the
intermediate result using the forward table. Also, the required
input guarantees the correct execution order of the execution
units.

B. Calculating the Feature Dependency
To ensure the execution units generate the expected partition

of the output features, we need to calculate the range of the
input required to calculate the desired output. Assume for layer
l with output height H , we let integers (os, oe), which satisfies
0 ≤ os < oe ≤ H , denote the target output range. Then we
can calculate the corresponding input range (is, ie) according
to the mathematical property of the layer.

The input and output features are bijective for element-
wise operations like activation (e.g., Sigmoid and Relu), batch
normalization, concatenate and etc. In these cases, the input
range can be simply obtained by

(is, ie) = (os, oe). (1)

In DAG structured models, the upsampling layer is used to
enlarge the feature map by a scale factor, and the input and
output dependency has to been considered separately due to
the different upsampling methods it takes. The most common
way of upsampling is the nearest-neighbor, which directly
copies the value from the nearest position. The input range
of this upsampling layer can be calculated by

(is, ie) = (os/scale factor, oe/scale factor). (2)

For convolution and pooling layers, their computation can
be modeled as applying a sliding kernel with parameters of
kernel size and stride on the width and height dimension of
the feature map. Sometimes the input feature map will be
padded around if parameter padding 6= 0. The corresponding
input range can be calculated by

is = os × stride− padding, (3)
ie = (oe − 1)× stride + kernel size− padding. (4)

Now we have the required input, but directly feeding it to
the convolution/pooling layer may not yield the desired output
due to the stride and padding settings. A simple illustration
is presented in Fig. 4, where a 4 × 4 input feature map is
passed to a convolution layer with kernel size equals 2, stride
2, and padding 1. The pink region is the desired output, and
we can easily obtain the required area in the original input
feature map. But applying the layer on the required input will
not generate the desired output because the upper and bottom
paddings should not be added as the required area is in the
middle of the original input.

To solve this problem, EdgeFlow adopts a pre-padding
method, which set the padding parameter of the convolu-
tion/pooling layer to 0 and do the padding in the processing.
Since the feature maps are partitioned along the height dimen-
sion, the left and right paddings can be automatically added to
the input, and we have to determine the value of the upper and
bottom paddings. Notice that according to Eqn. (3), is may
have a negative value, meaning that the region starts in the
padding region outside the upper bound of the original input
feature map. Therefore, the upper padding can be calculated
by

upper padding =

{
−is, is < 0
0, otherwise

. (5)

And similarly, ie could be larger than the input height Hi.
It means that the required region ends in the padding region
outside the bottom bound of the original input feature map,
and the bottom padding is

bottom padding =

{
ie −Hi, ie > Hi

0, otherwise
. (6)

In this way, EdgeFlow automatically decides if the padding
is necessary and how many paddings are required to obtain
the desired output.

C. Dependency-Aware Layer Partitioning

Now we are ready to describe how to partition a layer into
multiple execution units and maintain the dependencies. As
illustrated in Fig. 5, the output features are firstly partitioned
into some parts with no overlapping, and assigned to different
execution units respectively. The execution units share the
same computation operator as the original layer. But if the
layer is convolution or pooling with non-zero padding, then
the padding value will be set to 0 in the execution units and
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Fig. 4. A demonstration of stride and padding issue.

EdgeFlow will automatically add the paddings in the pre-
processing phase as we described previously. Then for each
unit, EdgeFlow will calculate the corresponding input range
according to the type of the layer, which defines the required
input of this execution unit.

Notice that the previous layers may also be partitioned,
which means the required input might be distributed at mul-
tiple execution units too. For example, in Fig. 5, the input
features have been divided into two parts and assigned to
two different units. The second execution unit for the current
layer, which is responsible for computing the pink region of
the output, requires inputs from both parts. Therefore after
obtaining the corresponding input range, the forwarding table
of the preceding execution units needs to be updated about
which part of their outputs are demanded so that the correct
and complete input features will be forwarded to the next
execution units. In a DAG-structured deep learning model, one
layer may require inputs from multiple preceding layers, which
means for these required layers, all of their corresponding
execution units need to be notified.

During the inference, the execution units are assigned to
different devices. Intuitively, we would prefer to put two units
on the same device if they have a feature dependency, such that
the demanding data can be delivered locally without network
transmission. But unfortunately, the transmission still exists if
we don’t want any redundant computation, and some outputs
are depending on the input features that cross the partition
boundary, e.g., the pink region in Fig. 5. And this problem
becomes even complicated with the DAG-structured model
since the execution unit may have multiple dependencies on
the previous layers. Therefore how to make proper partition
decisions to balance the computation and transmission is the
most critical problem of EdgeFlow, which we will discuss in
the next section.

IV. PROGRESSIVE MODEL PARTITIONING

As discussed previously, the partition scheme for a specific
layer should consider how its preceding layers are distributed.
In this section, we firstly formulate how to optimally partition
a layer when its preceding layers have already been parti-
tioned, then approximate it with an LP problem for run-time
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Fig. 5. Partition a layer into multiple execution units.

efficiency. And finally, we introduce how to partition the whole
model layer by layer in a progressive manner.

A. Problem Formulation

Consider n available edge devices, and the output features
of the current layer l range from 0 to H . Then the parti-
tion decision can be expressed as an integer vector xl =
(xl,0, xl,1, . . . , xl,n), which means device i will be assigned
with a execution unit responsible for calculating the output
features that ranges from xl,i−1+1 to xl,i. The following con-
straints are required to make xl a valid partitioning decision.
Firstly, Eqn. (7) requires xi has to be non-negative integers as
the features are indexed discretely. The decision range shall
not exceed the output range of this layer, which is expressed
in Eqn. (8). And lastly, constraint (9) restricts that there should
be no overlapping between two different assignments to avoid
redundant computation.

xi ∈ Z+, i = 0, 1, . . . , n (7)
x0 = 0, xn = H (8)

x0 ≤ x1 ≤ · · · ≤ xn (9)

Our target is to minimize the finish time of the current layer.
Since the computation workload of this layer is distributed
among different devices, we have to estimate the finish time on
each device separately. During the inference process of layer
l, device i has to wait for the required input before starting to
compute the output features in the assigned range. Thus the
finish time of the assigned workload of layer l on device i,
denoted as Tl,i, can be estimated as follows

Tl,i = ttrans(i; l) + tcomp(i; l) (10)

where ttras(i; l) is the finish time of the transmission needed
to collect required input, and tcomp(i; l) is the computation
time.

We firstly estimate the transmission time. A key difference
between chain and DAG structured models is that a layer may
depend on multiple preceding layers. Thus how these layers
are partitioned and assigned has an essential impact on the
transmission time. Let M denote the set of the layers that are



required by l, i.e., for each layer m ∈M , we have (m, l) ∈ E
and the partition scheme of m is denoted as xm. Given the
output range xl,i−1 and xl,i , we can get the corresponding
required regions starting from is to ie in the input using the
equation from (1) to (4).

Then device j, which has the output range (xm,j−1, xm,j)
assigned previously, it has to send the overlapping area to
device i. The length of the overlapping area can be calculated
by

pm,i,j = min(ie, xm,j)−max(is, xm,j−1). (11)

When pm,i,j ≤ 0, there is no overlapping between (si, ei)
and (xm,j−1, xm,j), which means device i doesn’t require any
input from device j, and there is no transmission between
device i and j related to layer m and l. Thus to identify
the valid transmission, we introduce an indicator function
1{pm,i,j>0} whose value is 1 if pm,i,j > 0 otherwise 0. The
transmission phase ends when the last piece of the required
input arrives. Therefore the finish time of transmission can be
expressed as

ttrans(i; l) = max
j∈{1,...,n},m∈M

1{pm,i,j>0}(Tm,j +
pm,i,j
Bi,j

)

(12)

where Tm,j is the time that device j finished its execution
unit of layer m, and Bi,j is the available bandwidth between
device i and j.

On the other hand, the estimation of computation time can
be much easier. Previous works have successfully adopted
regression models to predict the computation time of a layer
with the hyper-parameters of the layer as input variables. Also,
empirical studies of [7] have shown that for a specific layer
and device, the computation time is proportional to the size of
the input or output features. Hence we can confidently build
a linear regression model Yi for each device, which takes the
output range as input to predict the computation time. Then for
a specific layer l, the output range that device i is responsible
for computing is xi−xi−1, and we can predict the computation
time by

tcomp(i) = Yi(xi − xi−1; l). (13)

we take the longest finish time of these devices as our
objective, and we can formulate the partition decision as the
following optimization problem.

min
x

max(Tl,1, Tl,2, . . . , Tl,n) (14)

s.t. Constraints (7), (8) and (9)

Problem (14) has non-convex optimization constraints and
objective including indicator, minimum and maximum func-
tions. Thus directly solving the above problem is not practical,
not to mention this is only the partition problem for a single
layer instead of the whole model. Next, we try to approximate
the above problem with a linear programming problem such
that we can solve it efficiently.

B. LP Approximation

The first step of finding a linear approximation of the
original problem is to relax the integer constraint (7) by
allowing continuous variables. And in this case, the linear
constraints (8), (9) still guarantee the decision falls in the
correct range. Also, the maximum function in the objective
can be equivalently transformed by introducing an auxiliary
variable λ, such that

min
x,λ

λ (15)

s.t. Tl,i ≤ λ, i ∈ {1, . . . , n} (16)
Constraints (8) and (9)

We then focus on eliminating the nonlinear constraint (16),
which, according to Eqn. (10), (12) and (13), can be expanded
as a series of constraints

1{pm,i,j>0}(Tm,j +
pm,i,j
Bi,j

) + Yi(xi − xi−1; l) ≤ λ (17)

where i, j ∈ {1, . . . , n},m ∈ M . Constraints (17) and (16)
are equivalent because of the maximum property.

Next, we show that as long as layer m is also partitioned
with the same objective that minimizes the longest finish time
of all the devices, the constraint whose indicator function
values 0 will not be tight even when the value is set to 1, and
therefore the indicator function can be removed safely without
affecting the optimal solution. The consequence of removing
the indicator function is that those devices that do not have to
communicate with device i will also be considered during the
computation of transmission time. Assume device i receives
the last piece of the input from device j0, representing the
constraint

Tm,j0 +
dm,i,j0
Bi,j0

+ Yi(xi − xi−1; l) ≤ λ. (18)

And j̃ is any device that has no communication with device i
such that 1{dm,i,j̃>0} = 0. If we ignore the indicator function,
the corresponding constraint becomes

Tm,̃j +
dm,i,̃j
Bi,̃j

+ Yi(xi − xi−1; l) ≤ λ (19)

which should not exists. But notice that λ is the upper bound.
As long as constraint (19) is not tight, it won’t affect the
optimization result. if it was tight, then we have

Tm,j0 +
dm,i,j0
Bi,j0

≤ Tm,̃j +
dm,i,̃j
Bi,̃j

≤ Tm,̃j

where the last inequality holds because dm,i,̃j ≤ 0. The above
inequality indicates that device j̃ didn’t finish the assigned
computation of the last layer m even when device i has
received all the required input from other devices. In this case,
the workload of device j̃ is not assigned properly and should
be offloaded to other devices since our optimization objective
is to minimize the longest finish time. Therefore, as long as
we partition the previous layers in the same way, the constraint



(19) will not be tight, and the indicator function can be safely
removed, and the constraint (17) can be transformed into

Tm,j +
pm,i,j
Bi,j

+ Yi(xi − xi−1; l) ≤ λ (20)

The last step is to handle the computation of the overlapping
length in (11), which can be transformed as

pm,i,j = min(ei, xm,j)−max(si, xm,j−1)

= min(ei − si,
ei − xm,j−1,
xm,j − si,
xm,j − xm,j−1) (21)

by simply expanding minimum and maximum function. Unfor-
tunately, there is still a minimum function, and [12] has proved
that solving a linear programming with minimum functions
added to their constraints is NP-complete. But notice that the
minimum function (21) can be expressed as an LP problem
by

min
pm,i,j

− pm,i,j
s.t. pm,i,j ≤ ei − si, pm,i,j ≤ ei − xm,j−1, (22)

pm,i,j ≤ xm,j − si, pm,i,j ≤ xm,j − xm,j−1. (23)

By adding −pm,i,j to the objective of (15), we can try our
best to enforce the Eqn. (21) holds in the feasible solution and
eliminates the minimum function. And the problem becomes

min
x,λ,p

λ−
∑
m,i,j

pm,i,j (24)

s.t. Constraints (8) and (9),
(20) ,(22) and (23),∀i, j ∈ {1, . . . , n},m ∈M.

Now all of the related functions of the above problem are
linear. Thus problem (24) can be an LP approximation to the
original problem (14), which we can use existing LP solvers
to find the partitioning scheme for the current layer quickly.
Considering the running efficiency, we use the solution of (24)
to approximate the optimal partition decision.

C. Progressive Partitioning Algorithm

Based on the LP problem (24), we propose a model par-
titioning algorithm for EdgeFlow which partitions the model
progressively layer by layer. The algorithm is presented in
Algorithm 1. The input of the algorithm includes the layers
L and edges E of the computation graph, the number of the
available edge devices n, and their respective pre-established
linear regression model Yi to predict the computation time as
well as the bandwidth between the devices B.

The idea of Algorithm 1 is that for each layer, we tried to
find an optimal partition based on how its preceding layers
are partitioned, and the partition decision for the current layer
will then becomes the foundation for the subsequent layers.
Therefore for each layer, the algorithm starts from picking
out its preceding layers and initialize the variables of the LP

problem (24). Then solve the problem with LP solvers (e.g.,
Mosek 8.1 is adopted in evaluation) to obtain a solution x̃l,
which is a float vector and needs to be rounded to integers to
become a valid partition decision xl. Then based on xl, we
will estimate the finish time for l on each devices using (10)
for the following loops. In our evaluation, the algorithm can
be finished in a few seconds.

Notice that the entry layers, which directly accepts input
data from the requesters, have no preceding layers in the
computation graph, therefore cannot be process directly in
Algorithm 1. But they can be adapted into the loop by
assuming an input layer deployed at requester devices, and
add the record of the input layer to the related variables.

Algorithm 1 Progressive Model Partitioning Algorithm.
Input:
L: layers of the computation graph;
E : layers of the computation graph;
n: number of available devices;
B: Bandwidth matrix of devices;
Yi, i ∈ {1, . . . , n}: pre-established linear regression model
for each devices;

Output: Partitioning decision x for each layer;
1: for layer l in L in topological order do
2: Obtain the preceding layer set M = {m ∈ L|(m, l) ∈
E}

3: Initializing the problem variables
4: Solve LP Problem (24) to obtain x̃l
5: Round x̃l to the integer decision xl for layer l
6: Calculate the finish time Tl,i for each device with (10)
7: end for
8: return x

V. EVALUATION

A. Evaluation Setup

Prototype Implementation: Consider that most of the edge
devices do not have the privilege to be equipped with a GPU
accelerator, we implement EdgeFlow based on PyTorch CPU
version, and deploy it on the emulated testbed building upon
Compute Canada. The testbed includes 6 virtual machines
and the detailed settings are presented in Table. I. We also
use Wondershaper tool to limit the available bandwidth to be
2000Mbps, which is the same as the wired connection setting
used in [7].

TABLE I
DETAILED SETTINGS OF THE VIRTUAL MACHINE USED IN EVALUATION.

Type Number of vCPUs Memory Number of Instances

C1 1 7.5GB 3
C2 2 7.5GB 2
C4 4 15GB 1

Inference workload: Though EdgeFlow is designed to tackle
the complicated DAG-structured models, we take both the
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Fig. 6. Inference latency comparison with VGG-16 and Yolo V5 X.

chain and DAG structures into consideration in the evaluation
to show the compatibility of EdgeFlow. For chain struc-
ture, we use VGG-16 [13], a traditional image classification
model which organizes the layers sequentially. And for DAG-
structure, the state-of-the-art object detection model, Yolo V5
X [8], is adopted. During the inference, we use another device
as a requester to initiate the inference request. For VGG-16,
the input data is a 224× 224 image with 3 channels, and for
Yolo V5, the image shape is 640× 640.
Baselines: We compare the performance of EdgeFlow with
the following baselines. (1) DeepThings partitions the output
features of the last convolution layer and fuses all the nec-
essary intermediate computation as independent tasks for the
devices. (2) CoEdge splits the output features for each layer
with no overlapping, and pulls the overlapped features when
necessary. Also, CoEdge adopts a simple heuristic method to
enforce that the data is transmitted between neighbor devices
in a single direction to avoid mutual waiting. To demonstrate
the effectiveness of our model partitioning method, we also
compare with (3) EdgeFlow-H, which uses our proposed
framework but the same heuristic scheme for the intermediate
layers like CoEdge, and we label our proposed method as
EdgeFlow-P for distinction. At last, we also take the (4) Local
deployment into consideration, which deploys the model on
every single device. In this case, the inference requests are
distributed to these devices randomly and take the average
latency as the result.

B. Evaluation Results

Inference Latency. The comparison of the overall inference
latency is presented in Fig. 6. We firstly discuss the case of
VGG-16. DeepThings is slightly faster than the local deploy-
ment, while CoEdge achieves a significant latency reduction
compared with the local deployment, but not as good as the
reported improvement in [5]. The reasons are that we deploy
the model on all devices instead of only the slowest one. But
with Yolo V5 X, CoEdge only has little improvement, and
DeepThings is even slower than the local deployment.

Our proposed EdgeFlow-P achieves the fast inference speed
in both cases, and even with the Yolo V5 X model, EdgeFlow-
P reduces the inference latency by 40.2% compared with
local deployment. With the same partition scheme of Yolo,
EdgeFlow-H reduces 19.8% of the inference of CoEdge, which

demonstrates the effectiveness of the architecture design of
EdgeFlow. And compared with the heuristic method used in
CoEdge, our model partitioning method further reduces the
latency by 18.1%.
Workload Distribution. To have a better understanding of
why EdgeFlow outperforms other methods, we plot their
workload distributions for each layer of Yolo V5 X as a heat
map in Fig. 7, where the value indicates the ratio of the output
range over the complete output of the layer. Value 1.0 means
that the device has computed 100% of the outputs of this layer.

Firstly, DeepThings only considers the partitioning of the
last convolution layer. The devices have to compute all the
required input partitions locally to obtain these target pa
independently. And the overlapping area in the input increases
layer by layer until each device has to compute the whole layer
as illustrated in Fig. 7(a). This explains why DeepThings could
be even slower than the local deployment in Fig. 6(b) since
more than half of the computations are redundant.

In contrast, CoEdge and EdgeFlow distribute the inference
workload among the devices with no overlapping, and Edge-
Flow achieves a better load balancing compared with CoEdge
as shown in Fig. 7(c). This is because CoEdge enforces the
transmission of the intermediate results in the same direction,
which means the computation workload gathers in the same
direction and finally concentrates on a single device, as illus-
trated in Fig. 7(b), leading to a bad utilization of the devices.
And this is why EdgeFlow with our proposed progressive
partition method is faster than the one with the same heuristic
as CoEdge in Fig. 6.
Transmission Size. Fig. 8 shows the average communication
size for each devices at different layers of Yolo V5 X. As we
explained in Fig. 7(a), DeepThings treats the whole model as a
single task unit and feed all the necessary data to the model in
the input layer such that all the intermediate features required
to compute the target slice of the output can be obtained
locally. In other words, there is no transmission among the
intermediate layers. Notice that DeepThings has three peaks
of transmission in the final phase of the inference because the
last layer of Yolo V5 is a non-dividable detection layer and
requires three inputs from the previous layers.

In terms of the transmission size, DeepThings has a distinct
advantage compared with the other two methods. But unfortu-
nately, the advantage does not show up in the overall inference
latency due to the heavily redundant computation, especially
with the resource-constrained devices. In contrast, EdgeFlow
and CoEdge sacrifice the transmission to avoid redundancy.
For two consecutive layers, only the margin features need to
be transmitted [5]. However, in a DAG structured model like
Yolo V5, the output features of one layer might be required
by a layer far behind itself. Due to the workload concentration
we explained in Fig. 7(b), the layer could be assigned solely
on a single device, while the required inputs are scattered at
different places and need to be transmitted, and this causes
the high transmission peak in the early phase of CoEdge in
Fig. 8.

Also, an important design that differentiates EdgeFlow from
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CoEdge is that instead of pulling the required input from other
devices when needed, which blocks the inference process of
the current layer, the execution units actively push their output
features to the subsequent layers as soon as the computation is
finished. Therefore even if the transmission size of EdgeFlow
is also huge at the fork point, the corresponding receiver units
don’t have to be blocked by requesting data that was ready
long ago.
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VI. RELATED WORK

The exploration of deploying inference service at the edge
side starts from fitting the model on the edge devices to keep
all the computation locally. Bhattacharya et al. [14] reduced
the size of the model by layer sparsification. Han et al. [15]
jointly considered quantization and pruning approaches to
compress the model for fast inference. Once-for-all [16] takes
a big model as input and generates a large number of sub-
models for different edge device configurations. These meth-
ods generally involve the modification of the original model
structure, raising the concern of performance degradation like
accuracy loss, while EdgeFlow keeps the model as it is.

When the model is too complicated to fit in a single edge
device even after compression, a natural idea is to offload
the computation to more powerful devices like cloud servers.
Neurosurgeon [9] proposed to find a partition point between
the layers such that the previous layers will be executed on

edge and the remaining part will be offloaded to the cloud
server. Hu et al. [17] proposed a dynamic adaptive method
to partition the model under different network conditions,
and [18] tried to reduce the transmission size by encoding
the features. However, sending the intermediate results to the
cloud server still incurs huge WAN transmission overhead, and
sometimes the intermediate results can be even bigger than the
original input data [6].

Besides offloading the workload to the cloud servers, coop-
erative inference among edge devices is another way to deploy
deep learning models on the edge side, which is exactly the
category that EdgeFlow falls in. DeepThings [10] proposed to
divide the convolution layers into independent tasks, which
allows the parallel execution of the distributed inference.
MODNN [19] assigns workload according to the computation
capacity. CoEdge [5] further considers the bandwidth and
adopted a heuristic data transmission scheme to reduce the
overhead. The highlight feature that characterizes EdgeFlow
is the natural support of DAG structures, while the previous
works try to adapt with heuristic methods. DeepSlicing [7] also
considers the varieties of the model structure, but it requires
finding specific points to cut the model into two sub-models
that can be executed sequentially, which does not apply to the
models whose main body is not separable, such as PANet [4]
and UNet [20].

VII. CONCLUSION

The structure of deep learning models is becoming more
and more complicated to pursue the best performance, ex-
hibiting significant challenges to the edge deployment of the
inference service. In this paper, we introduce EdgeFlow, a
general distributed inference system with high applicability
to support deep learning models in complicated structures.
Instead of transforming the model into the chain structure,
which is relatively simple and has been extensively studied.
EdgeFlow encapsulates the layer dependencies inside carefully
partitioned execution units, which are distributed among edge
devices and collaboratively complete the inference task to
achieve acceleration. The evaluation results show that Edge-
Flow has distinct advantages compared with baselines, espe-
cially for complicated DAG structured model, which shows
great potential to handle the ever increasing complexity of
deep learning models.
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