
When the Edge Meets Transformers:
Distributed Inference with Transformer Models

Chenghao Hu, Baochun Li
ch.hu@mail.utoronto.ca, bli@ece.toronto.edu

Department of Electrical and Computer Engineering, University of Toronto

Abstract—Transformer models achieved significant break-
throughs in a wide variety of applications, yet their exorbitant
computation costs pose significant challenges when it comes to
deploying these models for inference, especially on resource-
constrained edge devices. In this paper, we introduce the concept
of cross-device distributed inference to transformer models,
which accelerates the speed of inference by distributing its
workload among multiple edge devices. Unlike previous work
designed for multi-GPU environments, the challenge of dis-
tributing inference workload on edge devices includes not only
limited computation power, but also low bandwidth connections
to exchange intermediate results.

To address these challenges, we propose Voltage, a distributed
inference system tailored for edge devices. By exploiting the inher-
ent parallelizability of the input sequence, Voltage partitions the
transformer inference workload based on positions to accelerate
the inference speed. We also analyze the relationship between
the partition settings and the computation complexity, which
allows Voltage to adaptively select the most efficient computation
scheme. To demonstrate its effectiveness and generalizability, the
performance of Voltage has been evaluated in the context of well-
known transformer models, and in a variety of experimental
settings. Our results show that Voltage significantly outperforms
tensor parallelism by reducing the communication size by 4×,
thereby accelerate the inference speed by up to 32.2% compared
with single device deployment.

Index Terms—Distributed system, distributed inference, trans-
former models

I. INTRODUCTION

The emergence of the transformer architecture [1] has
“transformed” the community of natural language processing
(NLP), and enabled a collection of language models like
BERT [2] and GPT [3] with record-breaking performance.
Recent advances also introduce the transformer into a wide
range of research areas including computer vision [4], which is
previously dominated by convolutional neural networks. While
researchers started to embrace transformers and proposed more
and more complicated models to pursue the best possible
performance, the accompanied computation cost became a
potentially thorny problem: it not only increases the difficulty
to train the model, but also poses a significant challenge
to model inference, especially when these models are to be
deployed on resource-constrained edge devices [5].

Compared with cloud servers, the computation capacity of
edge devices is typically severely limited, making it extremely
challenging to finish the inference task of deep learning models
within the latency budget. Several existing research efforts
were trying to deploy transformer models on the edge devices,

e.g., by reducing the computation cost by pruning the original
model [6], or distilling large models into more compact
ones [7], [8] that can be fitted into the edge devices. Though
these methods managed to reduce the inference latency, their
benefits may come at a price of accuracy loss since the model’s
architecture and weights have been changed.

To keep the models intact and guarantee the quality of
inference, the new paradigm of distributed inference has been
proposed, which distributes the workload across multiple edge
devices to accelerate the inference process [9]. For example,
by utilizing the partial receptive field property of convolution
kernels, the input feature map of a convolution layer can be
partitioned and assigned to different devices for computation.
Based on such an insight, existing works [10], [11] success-
fully distributed and accelerated the inference of convolutional
neural networks.

For transformer models, some recent works have also at-
tempted to distribute the inference workload by borrowing
parallelization techniques from model training. For instances,
tensor parallelism [12], [13] and pipeline parallelism [14]
have been adopted for inference applications. However, tensor
parallelism incurs significant communication overhead and is
therefore typically used in single-device, multi-GPU environ-
ments where intermediate results can be rapidly exchanged
over high-speed internal connections.

On the other hand, pipeline parallelism builds a pipeline
by assigning different layers to different devices. It requires a
sufficiently large batch of input data to fully utilize the pipeline
capacity. However, in edge environments like cellphones or
laptops, the inference system does not have to serve many
concurrent users. Inference requests typically arrive in a spo-
radic manner with small batch sizes, often only a single input.
In these cases, the pipeline is severely underutilized.

While existing parallelisms have proven effective for en-
abling distributed training, we argue that they are not well-
suited for distributed inference, especially within edge envi-
ronments. In this paper, we design and build Voltage, a new
system to distribute the inference workload of transformer
models across resource-constrained devices. Our key insight
stems from the transformer’s position-wise nature, that most
operations of the transformer, except for the self-attention
mechanism, are applied independently to each position. Volt-
age partitions the inference workload so layer outputs at
different positions can be computed in parallel across devices,
thereby accelerating the overall execution speed.

For the self-attention mechanism, we observe that the
computation orders significantly impact the computation com-
plexity. One of the highlights of this work is developing
techniques to rearrange self-attention calculations to generate
partial output more efficiently in a distributed setting. By
thoroughly analyzing the relationship between the computation
complexities and the layer settings, including the partition size,
input size, and feature dimensions, we develop an adaptive
mechanism that selects the most efficient self-attention com-
putation order. We formally prove this scheme chooses the
optimal strategy, delivering a linear speed-up when distributing
a single transformer layer.

Our extensive array of experimental evaluations conducted
on well-known transformer models verifies the effectiveness of
our design and analysis. Our results show that Voltage achieves
the lowest computation complexity and the best scalability for
the distributed execution. Compared with tensor parallelism,
Voltage reduces the communication size by 4×, thereby re-
duces the overall inference latency of transformer models by
up to 32.2% compared with single device deployment.

II. PRELIMINARIES

A. Transformer Models

Transformer models are composed of encoders and de-
coders, which are referred to as transformer layers in this
paper since they share similar computation patterns. There are
two major components of the transformer layer: a multi-head
self-attention mechanism and a position-wise feed-forward
network.

Self-attention is the heart of transformer models. Let
x ∈ RN×F denote the input sequence with length N
and feature dimensionality F . Self-attention projects input
x into three matrices Q,K, V ∈ RN×FH with attention
weights WQ,WK ,WV ∈ RF×FH , where FH is the dimen-
sions of the attention features. Then the self-attention output
Attn(Q,K, V) can be computed by:

Q = xWQ,

K = xWK ,

V = xWV .

Attn(Q,K, V) = softmax

(
QKT

√
FH

)
V.

(1)

Instead of performing a single self-attention function, the
transformer architecture adopts a multi-head self-attention de-
sign to allow the model to attend to information from different
representation spaces. Let H > 1 denote the number of
attention heads. Then there will be H different sets of learned
attention weights to be applied on the input x independently.
The output of these H independent attention heads will be
concatenated and projected as follows:

MultiHead(x) = Concat
(
A1(x), . . . , AH(x)

)
WO,

where Ai(x) = Attn(xW i
Q, xW

i
K , xW i

V), (2)

and WO ∈ RHFH×F is another weight matrix. In practice,
the transformer models typically set HFH = F , such that the

computation cost is similar to a single head attention with full
feature dimensionality [1].

After the projection, the output MultiHead(x) has the same
shape as the input x, which allows the transformer to apply
a residual link to add them together. Lastly, the result is
normalized through a layer normalization [15] step like below:

LayerNorm(MultiHead(x) + x).

The multi-head self-attention mechanism is followed by a
position-wise feed-forward network, which will be applied to
the input at each position separately and identically. Typically
this feed-forward network consists of two linear transforma-
tions and an activation function (e.g. RELU in [1], and GELU
in [2]) in between:

FFN(x) = Act(xW1 + b1)W2 + b2.

The feed-forward network also adopts the residual connec-
tion and layer normalization design to generate the final output
of this transformer layer. The procedures mentioned above are
summarized as an end-to-end illustration in Fig. 1.

B. Tensor Parallelism

The significant amount of computation complexity of trans-
former models has motivated many parallel computation
paradigms to facilitate the computation efficiency of trans-
former models, where some of them have been utilized in
inference systems. For instances, DeepSpeed [16] and Paral-
lelformer [17] adopt tensor parallelism to split weight tensors
of transformer layers across devices (typically GPUs) during
inference.

Tensor parallelism takes advantage of the inherent parallel
nature of transformer architecture, particularly in the multi-
head self attention mechanism. As depicted in Fig. 2, different
attention heads are applied to the input data on each device.
The attention outputs are then combined via a global All-
Reduce operation to produce the final output that incorporates
results from all attention heads. Similarly, the feed-forward
network weights are split across devices and require another
All-Reduce step to gather the outputs and produce the final
inferred representation.

In other words, tensor parallelism works by distributing
the computation of a large transformer model across multiple
devices, at the cost of extra All-Reduce communication steps.
This communication overhead is acceptable in environments
like multi-GPU servers where high bandwidth connections
exist between the GPUs.

However, for distributed inference at the edge, the devices
are typically connected by slower connections like Wi-Fi, and
Ethernet networks, the communication overhead could dom-
inate the inference latency. If we adopted tensor parallelism
to distribute inference across slower connected edge devices,
the required global All-Reduce operations would introduce
substantial communication and synchronization overhead. This
hampers potential computational efficiency gains, especially
on resource constrained edge hardware with lower compute

Input
<latexit sha1_base64="53J6LWTDAEvI8jZolzMNn8+QOY4=">AAAB63icbVBNS8NAEJ3Ur1q/oh69LBbBU0lE1GPRi+Clgv2ANpTNdtMu3d2E3Y1YQv+CFw+KePUPefPfuGlz0NYHA4/3ZpiZFyacaeN5305pZXVtfaO8Wdna3tndc/cPWjpOFaFNEvNYdUKsKWeSNg0znHYSRbEIOW2H45vcbz9SpVksH8wkoYHAQ8kiRrDJpad2/67vVr2aNwNaJn5BqlCg0Xe/eoOYpIJKQzjWuut7iQkyrAwjnE4rvVTTBJMxHtKupRILqoNsdusUnVhlgKJY2ZIGzdTfExkWWk9EaDsFNiO96OXif143NdFVkDGZpIZKMl8UpRyZGOWPowFTlBg+sQQTxeytiIywwsTYeCo2BH/x5WXSOqv5FzX//rxavy7iKMMRHMMp+HAJdbiFBjSBwAie4RXeHOG8OO/Ox7y15BQzh/AHzucP3vqOIQ==</latexit>

xWK

<latexit sha1_base64="cvWHUt+LwacBzEDcgnztGpWtOIM=">AAAB63icbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhNnJbDJkHsvMrBiW/IIXD4p49Ye8+TfOJnvQxIKGoqqb7q4o4cxY3//2VlbX1jc2S1vl7Z3dvf3KwWHLqFQT2iSKK92JsKGcSdq0zHLaSTTFIuK0HY1vc7/9SLVhSj7YSUJDgYeSxYxgm0tP7X6rX6n6NX8GtEyCglShQKNf+eoNFEkFlZZwbEw38BMbZlhbRjidlnupoQkmYzykXUclFtSE2ezWKTp1ygDFSruSFs3U3xMZFsZMROQ6BbYjs+jl4n9eN7XxdZgxmaSWSjJfFKccWYXyx9GAaUosnziCiWbuVkRGWGNiXTxlF0Kw+PIyaZ3XgstacH9Rrd8UcZTgGE7gDAK4gjrcQQOaQGAEz/AKb57wXrx372PeuuIVM0fwB97nD++mjiw=</latexit>

xWV

<latexit sha1_base64="jKmO79SQ9SoqRzUlbAdsUD/6yLI=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomIeix6Eby0YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbqd+6wmV5rF8MOME/YgOJA85o8ZK9fteqexW3BnIMvFyUoYctV7pq9uPWRqhNExQrTuemxg/o8pwJnBS7KYaE8pGdIAdSyWNUPvZ7NAJObVKn4SxsiUNmam/JzIaaT2OAtsZUTPUi95U/M/rpCa89jMuk9SgZPNFYSqIicn0a9LnCpkRY0soU9zeStiQKsqMzaZoQ/AWX14mzfOKd1nx6hfl6k0eRwGO4QTOwIMrqMId1KABDBCe4RXenEfnxXl3PuatK04+cwR/4Hz+AKP9jNU=</latexit>

K

<latexit sha1_base64="/UPluFGRsvRyTFUN+sF0QXICgdE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUaPXLFbfqzkFWiZeTCuSo98tfvUHM0gilYYJq3fXcxPgZVYYzgdNSL9WYUDamQ+xaKmmE2s/mh07JmVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeGNn3GZpAYlWywKU0FMTGZfkwFXyIyYWEKZ4vZWwkZUUWZsNiUbgrf88ippXVS9q6rXuKzUbvM4inACp3AOHlxDDe6hDk1ggPAMr/DmPDovzrvzsWgtOPnMMfyB8/kDtKmM4A==</latexit>

V

<latexit sha1_base64="PgSP7kw312LshxorGQPhn5lciug=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU9kVUY9FL4KXFvoF7VqyabYNTbJLkhXK0r/gxYMiXv1D3vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewtr6xuVXcLu3s7u0flA+P2jpKFKEtEvFIdQOsKWeStgwznHZjRbEIOO0Ek7vM7zxRpVkkm2YaU1/gkWQhI9hkUuPhsTkoV9yqOwdaJV5OKpCjPih/9YcRSQSVhnCsdc9zY+OnWBlGOJ2V+ommMSYTPKI9SyUWVPvp/NYZOrPKEIWRsiUNmqu/J1IstJ6KwHYKbMZ62cvE/7xeYsIbP2UyTgyVZLEoTDgyEcoeR0OmKDF8agkmitlbERljhYmx8ZRsCN7yy6ukfVH1rqpe47JSu83jKMIJnMI5eHANNbiHOrSAwBie4RXeHOG8OO/Ox6K14OQzx/AHzucPnUCN9g==</latexit>

QKT

<latexit sha1_base64="5IpmpLP+af/fZDu+nfOQQPrPVEw=">AAACH3icbVBNS8NAFNz4WetX1aOXxSLopSRSqseiIAUvLdhaaGLYbDft4m4Sd1/EEvJPvPhXvHhQRLz5b9zWHtQ6sDDMvMfbmSARXINtf1pz8wuLS8uFleLq2vrGZmlru6PjVFHWprGIVTcgmgkesTZwEKybKEZkINhVcHM29q/umNI8ji5hlDBPkkHEQ04JGMkv1VxJYKhkpuMQJLnPXcFCOMBuqAjNWhfXl3nm6lsF2bnfyHNX8cEQDjt+qWxX7AnwLHGmpIymaPqlD7cf01SyCKggWvccOwEvIwo4FSwvuqlmCaE3ZMB6hkZEMu1lk3w53jdKH4exMi8CPFF/bmREaj2SgZkcp9F/vbH4n9dLITzxMh4lKbCIfh8KU4EhxuOycJ8rRkGMDCFUcfNXTIfENAOm0qIpwfkbeZZ0jipOrVJtVcv102kdBbSL9tABctAxqqMGaqI2ougBPaEX9Go9Ws/Wm/X+PTpnTXd20C9Yn18STaQ4</latexit>

softmax

✓
QKT

p
FH

◆
V

Add & Layer Normalization

Concat FFN

Output

Add & Layer Normalization

Fig. 1. The computation flow of a transformer layer and an illustration of position-wise layer partition where the elements involved in computation are
colored, while irrelevant entries are left blank.

capacity. Therefore, we argue that tensor parallelism is not
the optimal solution for distributed inference across networks
of edge devices.

Device A

X All
Reduce

Split
Attention

Split
Feed-Forward YAll

Reduce

Device B

X All
Reduce

Split
Attention

Split
Feed-Forward YAll

Reduce

Fig. 2. An illustration of tensor parallelism for a single transformer layer.

III. POSITION-WISE LAYER PARTITION

To alleviate the communication overhead of tensor paral-
lelism and fully exploit the computation power of multiple
devices to reduce inference latency, we introduce a novel
position-wise layer partition method for transformer models.
The key inspiration comes from the position-wise nature of
the transformer. For instances, most of the operations inside
the transformer layer, like the feed-forward network and layer
normalization, are applied independently to each position. This
motivates a position-wise partitioning of the layer, where each
device computes outputs for a subset of positions.

As an example, assume we intend to compute the first two
rows of the output in Fig. 1, representing the output at the
first and second positions. We can still follow the standard
computation procedure, but only some parts of the weight
matrices are needed. The elements involved in the computation
are highlighted with different colors, we can see that most
matrix entries are unused, as they are irrelevant for producing
the desired outputs.

Formally, let xp denote the input partition for the selected
positions. To obtain the desired output partitions, we simply
replace the full query matrix Q with the sub-matrix Qp =
xpWQ during attention. That is, we modify Eq. (2) to:

Ai
p(x) = Attn(xpW

i
Q, xW

i
K , xW i

V).

Concatenating the output partitions from different heads
then gives the multi-head self-attention outputs for those
positions. As remaining transformer operations are position-
wise, this output partition can flow through them to obtain
the final layer output at desired positions. In this way, we can
partition the workload of a single transformer layer into pieces
and assign them to different devices for computation.

In tensor parallelism, the model weights are partitioned and
processed by different devices, such that the computation on
each device has no overlapping, i.e., the workload is perfectly
partitioned among devices. But in our method, though we only
wish to obtain a part of the output, we still need to compute
the whole K, V matrices (fully colored in Fig. 1) no matter
how small the partition is, which means the computation
is redundantly executed on each device. To avoid such a
situation, we can optimize the computation process of self-
attention to partition the workload more efficiently, which will
be discussed in the next section.

IV. REVISITING SELF-ATTENTION

In this section, we measure the computation complexity of
the naive computation method to understand why it fails to
partition the self-attention function efficiently. Then we show
that the computation process can be optimized according to
the input and layer settings. Based on this observation, we
present a partitioned transformer layer which achieves linear
acceleration with respect to the partition numbers.

A. Computation Complexity Analysis

Since the computation cost of the multi-head self-attention
mechanism is exactly the sum of the cost of every attention
head, we focus on the analysis of a single self-attention
function for simplicity. Follow the notation in Section II, let
xp ∈ RP×F denote the input partition corresponding to the
positions of output partition Ap(x). According to Eq. (1),
the naive computation method to compute Ap(x) can be
condensed into the following equation:

Ap(x) = softmax

(
(xpWQ)(xWK)T√

FH

)
(xWV) (3)

where the parentheses indicate the order of the computation,
i.e., compute Q,K, V matrices in advance.

The matrix multiplication is the main operation of the self-
attention, therefore we use the number of the floating opera-
tions, denoted as Γ(·), to measure the computation complexity.
For example, with x ∈ RN×F , and WQ ∈ RF×FH , the
computation complexity of computing Q = xWQ can be
measured by

Γ(xWQ) = N × F × FH = NFFH .

Follow this rule, we give the computation complexity of
Eq. (3) by the following theorem.

Theorem 1. Given input x ∈ RN×F and input partition
xp ∈ RP×F where P = N

K , attention weights WQ,WK ,WV ∈
RF×FH . The computation complexity of Eq. (3) is

Γ(Eqn.3) =
NFFH + 2N2FH

K
+ 2NFFH +O

(
N

K
FH

)

= O

(
1

K

)
+ 2NFFH . (4)

Proof. The computation of Eq. (3) can be separated into the
following steps:

1) Compute Qp,K, V
2) Compute QpK

T

3) Compute softmax(
QpK

T

√
FH

)

4) Compute softmax(
QpK

T

√
FH

)V

And the computation complexity of Eq. (3) will be the sum
of the above steps. For step 1, the computation complexity is

Γ(step1) = Γ(xpWQ) + Γ(xWK) + Γ(xWV)

= PFFH +NFFH +NFFH

since xP ∈ RP×F , x ∈ RN×F , and WQ,WK ,WV ∈ RF×FH .
Then we have Qp ∈ RP×FH and K ∈ RN×FH , which gives

the complexity of step 2

Γ(step2) = PFHN.

Step 3 includes a position-wise division applied on QpK
T ∈

RP×N and a softmax function. The computation complexities
for both of them are linear with the number of elements.
Therefore the computation complexity of step 3 can be given
by

Γ(step3) = O(PN).

For the last step, we have softmax(
QpK

T

√
FH

) ∈ RP×N , and
V ∈ RN×FH . Therefore

Γ(step3) = PNFH .

Combining all the complexities of these four steps, we have

Γ(Eq. (3)) = PFFH + 2PNFH + 2NFFH +O(PN).

Replacing P by N
K yields the result and finishes the proof.

Due to the existence of the constant term 2NFFH , the
naive computation method fails to achieve linear acceleration,
which means no matter how small the partition is or how many

available devices we have, the time spent on computing K,V
matrices remains the same and possibly becomes the bottle-
neck. Thereby the naive computation method cannot efficiently
distribute the workload of the self-attention function.

B. Computation Order Matters

By observing Eq. (3), we have a simple question: do we
really have to compute K,V in advance? For example, if we
define S ∈ RP×N by

S ≜ softmax

(
(xpWQ)(xWK)T√

FH

)
, (5)

then we have the following two equivalent ways to compute
Ap(x) with different computation complexity:

Γ (S(xWv)) = PNFH +NFFH ,

Γ ((Sx)Wv) = PNF + PFFH .
(6)

By changing the order of the matrix multiplication, we don’t
have to compute V in advance and leave WV until the last,
which could be better in computation complexity when certain
conditions apply.

Similarly, it’s unnecessary to compute K = xWk in advance
to obtain QpK

T . We can expand the term by

QpK
T = (xpWQ)(xWK)T = xpWQW

T
Kx. (7)

The above calculation involves four matrices and can be
computed in 5 different orders, where computing Q, K in
advance is only one of them. Combined with Eq. (5), there will
be 10 different orders in total to obtain Ap(x). We can easily
enumerate all the possibilities or use dynamic programming to
find the optimal way to multiply these matrices given different
settings. But this adds extra computation overhead to each
layer which is not acceptable in a possibly real-time system
where the quality of service is measured by the latency.

Fortunately, in the context of transformer models, the feature
size and the shape of the attention weights are fixed for a
given layer, which left the input and partition size the only
two variables. We introduce the following theorem to reveal
the relationship between the optimal computation order and
the input settings.

Theorem 2. Given input x ∈ RN×F , input partition xp ∈
RP×F , attention weights WQ,WK ,WV ∈ RF×FH , and F =
HFH where H is the number of attention heads,

1) when 1
P − 1

N ≤ F−FH

FFH
, Eq. (3) achieves the lowest

computation complexity;
2) when 1

P − 1
N > F−FH

FFH
, the following equation achieves

the lowest computation complexity

Ap(x) =

(
softmax

(
((xpWQ)W

T
K)xT

√
FH

)
x

)
WV . (8)

Proof. To compute Ap(x), we have to go through the follow-
ing two steps sequentially.

1) Compute S = softmax
(

xpWQWT
KxT

√
FH

)

2) Compute AP (x) = SxWV

We start with the second step, which only involves three
matrices. There are only two different orders to compute
SxWV : (Sx)WV and S(xWV). According to Eq. (6), we can
solve the inequality Γ(S(xWV)) > Γ((Sx)WV) to determine
the better one:

Γ((Sx)WV) > Γ(S(xWV))

⇒PNFH +NFFH > PNF + PFFH

⇒(N − P)FFH > PN(F − FH)

⇒N − P

PN
>

F − FH

FFH

⇒ 1

P
− 1

N
>

F − FH

FFH
. (9)

Therefore when inequality Eq. (9) holds, the computation
complexity of S(xWV) is greater than (Sx)WV , and vice
versa.

Next we focus on the first step to find the best order
to compute xpWQW

T
KxT . There are five different orders in

total to do the computation, which are ((xpWQ)W
T
K)xT ,

(xpWQ)(W
T
KxT), (xp(WQW

T
K))xT , xp((WQW

T
K)xT) and

xp((WQ(W
T
KxT)). Notice that (WQW

T
K) can be computed in

advance since they are fixed attention weights. Their respective
computation complexities can be computed by

Γ
(
((xpWQ)W

T
K)xT

)
= 2PFFH + PFN, (10)

Γ
(
(xpWQ)(W

T
KxT)

)
= PFFH +NFFH + PNFH , (11)

Γ
(
(xp(WQW

T
K))xT

)
= PF 2 + PFN, (12)

Γ
(
xp((WQW

T
K)xT)

)
= NF 2 + PFN, (13)

Γ
(
xp((WQ(W

T
KxT))

)
= 2NFFH + PNFH . (14)

Firstly, we can eliminate the last candidate xp((WQ(W
T
KxT)).

Comparing Eq. (11) and Eq. (14), we have
Γ
(
(xpWQ)(W

T
KxT)

)
< Γ

(
xp((WQ(W

T
KxT))

)
always

holds since P < N .
Next we eliminate the third and fourth candidates. In multi-

head self-attention, we have H ≥ 2 and HFH = F . Therefore,
the following inequality always holds

Γ
(
(xp(WQW

T
K))xT

)
= PF 2 + PFN

= HPFFH + PFN

≥ 2PFFH + PFN

≥ Γ
(
((xpWQ)W

T
K)xT

)
,

which means the computation complexity of ((xpWQ)W
T
K)xT

can never be worse than xp(WQW
T
K))xT . Similarly

we can eliminate xp((WQW
T
K)xT) when compared with

xp(WQW
T
K))xT .

Now we can see that within the context of a multi-head
self-attention mechanism. There are only two available can-

didate computation order to achieve the lowest computation
complexity. Solving the following inequality:

Γ
(
(xpWQ)(W

T
KxT)

)
> Γ

(
((xpWQ)W

T
K)xT

)

⇒PFFH +NFFH + PNFH > 2PFFH + PFN

⇒NFFH + PNFH > PFFH + PFN

⇒ 1

P
− 1

N
>

F − FH

FFH

which means when the above condition holds
((xpWQ)W

T
K)xT is better than (xpWQ)(W

T
KxT) regarding

the computation complexity. Notice that the condition is the
same as Eq. (9). Therefore when Eq. (9) holds, the following
equation achieves the lowest computation complexity to
obtain Ap(x):

Ap(x) =

(
softmax

(
((xpWQ)W

T
K)xT

√
FH

)
x

)
WV

Otherwise

Ap(x) = softmax

(
(xpWQ)(xWK)T√

FH

)
(xWV)

is the best computation order. The proof is finished.

According to the theorem above, there are only two candi-
dates among all the possible computation orders. Notice that
there is a deceptive method to optimize the computation of
Eq. (7). Since attention weights WQ,WK are constants during
the inference, it seems we can compute WQW

T
K in advance

such that there will be only three matrices involved in Eq. (7).
This actually works for the single-head attention mechanism,
but when it comes to multi-head attention, WQW

T
K ∈ RF×F

is much bigger than WQ,WK ∈ RF×FH , which eventually
increases the computation complexity.

Also, Theorem 2 indicates that when the model is deployed
on a single device, i.e. P = N , the original computation flow
is already the most efficient one. The opportunity that we
can change the computation orders to reduce the computation
complexity exclusively exists when we try to partition the
self-attention function. With different input sizes and partition
sizes, Theorem 2 guarantees that we can always choose the
most efficient way to do the computation.

C. Partitioned Transformer Layer

Based on our previous analysis, we can formally introduce
our partitioned transformer layer. The layer takes the whole
input sequence x and a range of the desired output partition p,
which can be specified by the positions, as the input, and gen-
erates the corresponding output partition of this transformer
layer. Based on the input and layer settings, the algorithm
automatically chooses the most efficient way and applies it to
each head of the self-attention function1. Then the attention
output can be directly fed into the subsequent position-wise

1The multi-head attention can be implemented through tensor multiplica-
tions instead of iterating each head, but the computation complexities are the
same.

Algorithm 1 Partitioned Transformer Layer.
Require: x ∈ RN×F , desired partitions p
Ensure: Transformer layer output partition Tp(x)

1: P ← partition length
2: for each head of attention i = 1, . . . ,H do
3: if 1

P − 1
N > F−FH

FFH
then

4: Compute A
(i)
p (x) with Eq. (8)

5: else
6: Compute A

(i)
p (x) with Eq. (3)

7: end if
8: end for
9: R← Concat(A

(1)
p (x), . . . , A

(H)
p (x))WO

10: Y ← LayerNorm(R+ xp)
11: Tp(x)← LayerNorm(Y + FFN(Y))
12: Return Tp(x)

feed-forward network and layer normalization to generate
the desired output partition. The step-by-step procedures are
illustrated in Algorithm 1.

Theorem 2 guarantees that the algorithm can always choose
the most efficient way to do the computation for a specific
input and layer settings. We further introduce the following
theorem to show its scalability.

Theorem 3. Given input x ∈ RN×F and input partition xp ∈
RP×F , if P = N

K , we have Γ(Algorithm 1) = O(1
K).

Proof. Except for the self-attention part, the remain operations
of Algorithm 1 are position-wise, therefore the computation
complexity is naturally O(P) = O(NK) = O(1

K). We only
have to show that the self-attention part of Algorithm 1 is
O(1

K).
Replace P by N

K , Eq. (9) becomes

1

P
− 1

N
>

F − FH

FFH

⇒K − 1

N
>

F − FH

FFH

⇒K >
F − FH

FFH
N + 1.

Therefore when K > F−FH

FFH
N + 1 , Algorithm 1 uses the

following equation to compute the self-attention function:

Ap(x) =

(
softmax

(
((xpWQ)W

T
K)xT

√
FH

)
x

)
WV .

The computation complexity can be computed through the
same procedure as the proof of Theorem 1, which is

3PFFH + 2PNF +O(PN).

Replace P by N
K yields the result and finishes the proof.

Compared with the naive computation method, our proposed
method gets rid of the constant term in Eq. (3) therefore
doesn’t have the bottleneck. Theorem 3 indicates that Algo-
rithm 1 achieves linear acceleration with respect to the number

of partitions for a single transformer layer, which means it can
be perfectly scaled to more devices in practice.

V. Voltage DESIGN

A. System overview

Now we have presented how to efficiently partition the
computation workload of a single transformer layer in a
position-wise manner, in this section, we introduce the design
of Voltage, a distributed inference system that expands our
method to the entire transformer model.

Voltage considers the transformer model as a stack of
transformer layers where the output of one layer feeds directly
into the next. Despite transformer layers, the model also
contains some layers for pre- and post-processing, such as an
embedding layer that converts language tokens into embed-
dings, and a classifier that generates predictions. Therefore, as
illustrated in Fig. 3, users will submit their inference requests
to a terminal device which will perform pre-processing on
the user input and then distributes the input features to all
other computing devices where transformer layers are located,
thereby initiates the distributed inference process.

Let T (x) denote the output for transformer layer, T (x) can
be parallel obtained at different devices with Algorithm 1, but
the subsequent layer still requires the entire T (x) as input
since both Eq. (3) and Eq. (8) involve all elements in x. This
means we have to synchronize the output partitions among all
the devices through an All-Gather operation to obtain T (x)
before entering the next layer.

As a result, the computation workload of each transformer
layer is partitioned and executed at different devices while the
layer computations are interleaved by data synchronizations
to get the input data ready. This process repeats until the last
transformer layer, and then the terminal device will collect
the computation results of transformer layers and deliver the
inference results to users.

The above process is formally described in Algorithm 2,
Voltage takes the inference data x and a partition scheme as the
input, where the partition scheme indicates how the workload
is distributed among the devices. When the inference request
comes, Voltage will distribute the input data x to all devices,
then for each transformer layer, the device computes the
assigned output partition according to Algorithm 1, and then
synchronize the output through an All-Gather communication
primitive. By the end of this layer, all the devices should be
able to assemble the full output of the layer, which becomes
the input for the next layer, and starts a new round of
computation.

B. Partition Scheme

Voltage partitions the inference workload along the sequence
dimension, which means the partition scheme should dictate
which positions each device is supposed to compute. However,
the input sequences of transformer models typically have
different sizes. Therefore, we cannot give a fixed partition size
for each device. Instead, we express the partition scheme as a
vector of ratios.

Device A

Layer …Transformer Layer 2

Transformer All Gather

Terminal
Device

Layer …

Transformer Layer 1

Transformer All Gather

Device B

Transformer Layer 1

Transformer All Gather

Transformer Layer 2

Transformer All Gather

“This is a
sample sentence.”

User input

Layer …

…

…

Pre
Processing

Post
Processing

Fig. 3. Overview of Voltage. The user will submit inference requests and gather results from a terminal device, which performs pre-processing before
distributing inputs to other devices for transformer computation, and post-processes the transformer outputs to generate predictions.

Assume there are K computing devices, then a partition
scheme P can be represented as:

P = [p1, p2, · · · , pK]

where pi should satisfy the following two conditions:

0 ≤ pi ≤ 1, ∀i = 1, 2, · · · ,K
K∑

i=1

pi = 1.

In this way, given an input sequence with length N , pi
indicates the positions that device i will be computing during
the inference falls in between N

∑i−1
j=0 pj and N

∑i
j=0 pj .

And the second condition guarantees all positions are covered
during the inference. Since the output of each transformer
layer T and the input are bijective, the above conditions also
imply

Tpi
(x) ∩ Tpj

(x) = ∅, ∀i ̸= j,

∪i=1,...,kTpi
(x) = T (x),

which means there are no overlapping areas between different
devices, and a full-position output of the layer can be rebuilt
from the output partitions.

Notice that we enforce that all transformer layers share the
same partition ratio at this point for the sake of simplicity. But
each transformer layer has all the input data ready after data
synchronization, which means it is totally able to compute any
other positions other than the assigned ones. As illustrated in
Fig. 3, the positions that device A and B computes at layer 1
and layer 2 are different. This implies that Voltage is flexible
enough to dynamically adjusting partition schemes for each
layer during the runtime without any penalty, and we will
leave it for the future discussion.

C. Comparison with Existing Parallelisms

Unlike existing works that borrow parallel computation
mechanisms from model training phase, the position-wise par-
titioning of Voltage is tailor-designed to improve the inference
latency in the edge environment. We outline the difference
and advantage of Voltage compared with existing parallelism
as follows:

Algorithm 2 Distributed Transformer Inference.
Require: Partition scheme P = [p1, p2, . . . , pK]

1: User submit inference request to terminal device.
2: Pre-processing request to obtain input features x
3: Distribute x to all devices
4: for each transformer layer T do
5: for each device k = 1, 2, . . . ,K do
6: Compute Tpk

(x) with Algorithm 1
7: if T is the last transformer layer then
8: Send Tpk

(x) to terminal device
9: else

10: Synchronize Tpk
(x) with other devices

11: end if
12: Assemble output partitions to obtain T (x)
13: x← T (x)
14: end for
15: end for
16: Terminal device collects output from other devices
17: Return inference result to user

Data parallelism and pipeline parallelism, two common
model parallelism techniques, are not well-suited for low-
latency inference serving in edge environments. Data paral-
lelism requires dividing a large batch of input data into smaller
microbatches that are computed in parallel across devices.
Similarly, pipeline parallelism partitions the model layer-wise
across devices, so that each device starts computing the next
microbatch while handing intermediate results to the next
device. Both techniques therefore rely on having a sufficiently
large batch size to fully utilize the pipeline or parallel devices.
However, in edge environments, inference requests typically
arrive in a discrete, sporadic manner with a batch size of 1.
These techniques aim to improve throughput given sufficient
input samples rather than optimizing the latency of individual
requests. As edge environments are latency-sensitive with vari-
able and often small batch sizes, data and pipeline parallelism
struggle to effectively distribute the inference workload. In
contrast, Voltage manages to efficiently distribute the inference
workload among multiple devices even though the batch size

is only one.
Unlike data and pipeline parallelism, tensor parallelism is

able to partition the computation workload across devices
even with a batch size of 1. Tensor parallelism splits the
weight matrices of each matrix multiplication operation among
multiple devices. Therefore, the partitioning method of tensor
parallelism is independent of batch size. Though the batch
size may be small or even 1 in edge environments, tensor
parallelism can still distribute the computations by splitting
individual weight matrices across available devices.

However, tensor parallelism incurs high communication
costs that can negate performance gains from parallelism.
As shown in Fig. 2, tensor parallelism requires two All-
Reduce operations per layer, incurring substantial commu-
nication overhead. According to [13], given an input length
N , device number K and feature size F , the total per-
device communication volume per layer is 4(K − 1)NF/K
with tensor parallelism. In contrast, Voltage only requires a
single All-Gather operation for data synchronization between
layers. Consequently, Voltage’s communication size is just
(K − 1)NF/K per layer, only 1/4 that of tensor parallelism.

The reason Voltage achieves substantially lower commu-
nication overhead compared to tensor parallelism is because
Voltage is designed solely for efficient inference, while ten-
sor parallelism targets both training and inference. During
backward propagation in training, tensor parallelism performs
a transposed synchronization of gradients similar to what it
does for activations in the forward pass. This adds another
4(K−1)NF/K of communication per layer for the backward
pass. In contrast, since Voltage replicates the full model
weights on each device, the weights get updated with gradients
from different input position slices at different devices. To
complete the backward pass, the updated model weights must
be synchronized across all devices after the entire batch
gradient computation. By focusing only on optimization for
inference, Voltage sacrifices communication efficiency of the
backward pass, which will never happen, to attain minimal
communication overhead during the forward inference phase.

VI. EVALUATION

A. Experiment Settings

Environment. We use PyTorch 1.9 CPU version to implement
Voltage and the transformer models since most of the edge
devices don’t have a sophisticated accelerator. The system is
then deployed on six virtual machines hosted on Compute
Canada, where each of them has one virtual CPU and 7.6
GB of physical memory. To simulate the edge environment,
we limit the network bandwidth to 500Mbps by default.

Transformer Models. We adopt three well-known trans-
former models from Huggingface for evaluation, including
BERT-Large-Uncased, ViT and GPT2. BERT and GPT2
will be deployed to handle text classification task, and ViT
will be used for image classification.

During the inference, another device in the same network
will take the role of a terminal device, which generates the

corresponding input data for the model, e.g., a random string
with 200 words for BERT and GPT2, and a 224 × 224 image
for ViT. The input features of transformer layers will be
broadcast to all devices, and the latency is measured by the
time between the device broadcasting the request data and
receiving the results. Following other distributed inference
works, we set the batch size to 1.

Baseline. Voltage aims to reduce the inference latency by ex-
ploiting the computation capacity of multiple devices. There-
fore, one of our baselines is deploying the transformer model
on a single device. Besides single device deployment, we also
compared Voltage with the tensor parallelism we introduced
before. But we skip the comparison with pipeline parallelism
because this paper focuses only on inference latency while
pipeline parallelism optimizes throughput and has no improve-
ment for individual latency.

The inference workload is evenly partitioned among the
devices, which means each of them computes 1

K of the
positions for Voltage, or 1

K of attention heads for tensor
parallelism, where K is the number of available devices.

B. Experiment Results

Inference Latency. We first evaluate the overall inference
latency of these three transformer models. Our results are
presented in Fig. 4, we can see that with the increasing of
available device, Voltage manages to reduce the inference
latency which verifies the effectiveness of our approach. The
experimental results show that compared with single device
deployment, Voltage exhibits a better scalability, reducing the
inference latency of BERT by up to 27.9% with six devices,
29.1% and 32.1% for ViT and GPT2, respectively.

On the other hand, the results of tensor parallelism
show that it fails to achieve acceleration regarding inference
latency. Though both Voltage and tensor parallelism efficiently
partitions the computation workload among devices, the two
All-Reduce operation of tensor parallelism not only incurs
significant communication overhead, but also interrupts
the computation process, adding extra delay. As a result,
distributing inference workloads with tensor parallelism is
even slower than a single device.

Impact of Bandwidth. As cross-device distributed inference
requires intermediate results to be exchanged over network
connections, the performance can be extremely sensitive to
network conditions.

Next, we fix the device number at 6 and compare the
inference latency of Voltage and tensor parallelism under
different bandwidth settings. As presented in Fig. 5 where the
inference latency of single device deployment is represented
by the orange dashed line, Voltage consistently outperforms
tensor parallelism across all scenarios.

Due to the huge communication overhead, the inference
time of tensor parallelism is dominated by the communication
which makes it extremely sensitive to the network bandwidth.
With the increasing of available bandwidth, the inference

1 2 3 4 5 6
Device Number

0.0

0.5

1.0

1.5

2.0

2.5

In
fe

re
nc

e
La

te
nc

y
(s

) Tensor Parallelism
Voltage

(a) BERT

1 2 3 4 5 6
Device Number

0.0

0.5

1.0

1.5

2.0

In
fe

re
nc

e
La

te
nc

y
(s

) Tensor Parallelism
Voltage

(b) ViT

1 2 3 4 5 6
Device Number

0.0

0.2

0.4

0.6

0.8

In
fe

re
nc

e
La

te
nc

y
(s

) Tensor Parallelism
Voltage

(c) GPT2

Fig. 4. Overall inference latency with increasing device number.

200 400 600 800 1000
Bandwidth (Mbps)

0

2

4

6

8

In
fe

re
nc

e
La

te
nc

y
(s

) Tensor Parallelism
Voltage

(a) BERT

200 400 600 800 1000
Bandwidth (Mbps)

0

2

4

6
In

fe
re

nc
e

La
te

nc
y

(s
) Tensor Parallelism

Voltage

(b) ViT

200 400 600 800 1000
Bandwidth (Mbps)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In
fe

re
nc

e
La

te
nc

y
(s

) Tensor Parallelism
Voltage

(c) GPT2

Fig. 5. Overall inference latency with different bandwidth limit, orange dashed line represents the single device deployment.

latency of tensor parallelism can be improved but still slower
than Voltage. Voltage achieves improved performance starting
from 400Mbps, while tensor parallelism requires at least
1000Mbps to outperform the deployment on single device.
Both methods fail to improve the inference latency when the
bandwidth is as low as 200Mbps, and tensor parallelism even
takes about 4.2× longer to finish the inference on BERT.
Therefore, distributed inference with tensor parallelism is
impractical for edge environments.

Partition Efficiency. Dynamically selecting the best compu-
tation order is one of the highlight of Algorithm 1. Therefore,
to evaluate the effectiveness of our proposed method, we
isolate the multi-head self-attention mechanism and compare
the speed-up ratio from different perspectives. Since Algo-
rithm 1 is determined by the configurations of the self-attention
mechanism, we manipulate the settings, including number of
attention heads H and feature dimension of each head FH ,
and create the following three synthetic layers to evaluate
Algorithm 1 from different scenarios: (H = 16, FH = 64),
(H = 8, FH = 128) and (H = 4, FH = 256). We record the
time that our proposed method and the naive method need to
compute the output partition with length P = N

K where the
input lengths N are chosen from (100, 200, 300). The time is
then compared with computing the full-size output to obtain
the speed-up ratio.

The results are presented in Fig. 6. We can observe that
across all three settings, the speed-up ratio of the naive

partition can be slightly improved but soon stops increasing,
which verifies our claim that the naive partition method cannot
distribute the self-attention mechanism efficiently. In contrast,
Voltage has a similar performance as the naive method when
the partition number is small, but as the number of partitions
increases, Voltage is able to achieve linear acceleration, which
verifies the correctness of Theorem 3 and proves Voltage has
better scalability if there are more available devices to join the
partition.

Also, we can see that the advantage of our proposed method
is closely related to the attention settings. When the attention
feature dimension FH increases from 64 to 256, the gap
between the naive and proposed method becomes greater, and
our method can be up to 3.4× faster than the naive one. This
is because the naive method has to compute the intermediate
matrices K,V ∈ RN×FH in advance, which takes more time
when FH increases. On the contrary, our proposed method
doesn’t have to compute these two matrices thus won’t be
affected by the size of FH .

While our method achieves linear acceleration relative to a
single transformer layer, this acceleration is not that significant
when looking at the entire model due to communication
overhead. Specifically, although Voltage only requires 1/4 of
the communication overhead of tensor parallelism, it still
remains a bottleneck when the number of devices scales
up. Further optimizations to communication protocols and
exchange mechanisms may help relieve this bottleneck in
future work.

2 4 6 8 10
Number of Partitions (K)

1.5

2.0

2.5

3.0

3.5

Sp
ee

d
U

p
Ra

tio

Voltage (N=100)
Voltage (N=200)
Voltage (N=300)
Naive (N=100)
Naive (N=200)
Naive (N=300)

(a) H = 16, FH = 64

2 4 6 8 10
Number of Partitions (K)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Sp
ee

d
U

p
Ra

tio

Voltage (N=100)
Voltage (N=200)
Voltage (N=300)
Naive (N=100)
Naive (N=200)
Naive (N=300)

(b) H = 8, FH = 128

2 4 6 8 10
Number of Partitions (K)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Sp
ee

d
U

p
Ra

tio

Voltage (N=100)
Voltage (N=200)
Voltage (N=300)
Naive (N=100)
Naive (N=200)
Naive (N=300)

(c) H = 4, FH = 256

Fig. 6. Speed-up ratio when partitioning the multi-head self-attention mechanism.

VII. RELATED WORK

A. Deploying Transformer on Edge Devices

There have been enormous efforts to deploy transformer
models on edge devices by compressing them into smaller
models. For instance, Paul et al. proposed reducing the number
of attention heads to decrease computational complexity [18].
Q8bert [19] quantizes the weights of BERT models from 32
bits to 8 bits so they can execute on memory-constrained
devices. Similarly, parameter factorization [20] and knowledge
distillation [7] have been adopted to find more compact
transformer architectures suitable for edge hardware. These
methods aim to find an acceptably accurate compact model
that fits edge resource constraints.

In contrast, Voltage makes no modifications to the orig-
inal model architecture or weights. Therefore, it does not
need to balance model compression and accuracy loss. More
importantly, the compressed transformer models from above
techniques can also leverage Voltage’s distributed inference
system for further acceleration, as long as they retain the
core transformer architecture. This provides an orthogonal
performance boost without re-engineering model architecture
or re-training for different hardware targets.

B. Distributed Inference System

Distributed inference is an effective way to accelerate infer-
ence speed on edge devices. Techniques like DeepThings [10]
take advantage of properties like partial receptive fields in
convolutional neural networks to parallelize inference by split-
ting input feature maps across devices. The follow-up works
like CoEdge [11], DeepSlicing [21] and EdgeFlow [22] take
the network and device heterogeneity into consideration for
further improvements. However, these methods are exclusively
designed for CNNs and cannot be applied to transformer
models.

On the other hand, some works have tried distributing
transformer model inferences by borrowing techniques from
parallel training. For instances, DeepSpeed [16] and Paral-
lelformer [17] use tensor parallelism to partition weight matri-
ces across devices. PipeEdge [23] adopts pipeline parallelism
instead to improve overall throughput. However, as discussed
previously, tensor parallelism incurs high communication costs

for cross-device inference. Meanwhile, pipeline parallelism
requires sufficient batch size to keep the pipeline utilized and
does not optimize the latency of individual requests.

C. Transformer Optimization

Due to the significant computational complexity of the
transformer layer, especially the self-attention mechanism, an-
other line of work tries to redefine self-attention to achieve ac-
celeration. For example, Reformer [24] uses locality-sensitive
hashing to reduce the attention complexity from O(N2) to
O(N logN) regarding the input length N . [25] even achieves
linear complexity by exploiting the associative property of
matrix multiplication. Additionally, Linformer [26] proposes
to approximate the original attention function through low-
rank matrix multiplications, which is also a linear transformer
implementation. Since these models follow the overall trans-
former architecture and workflow except for modifications
to the attention phase, Voltage can be easily extended to
distribute them with minor changes to the customized attention
procedures.

VIII. CONCLUDING REMARKS

In summary, this paper introduces Voltage to distribute the
inference workload of transformer models to multiple devices
for acceleration. The core design of Voltage is to partition
the outputs of each single transformer layer such that they
can be computed at different devices in a parallel manner. By
investigating the computation complexities of the multi-head
self-attention mechanism, Voltage achieves linear acceleration
on a single transformer layer, which has been verified both
theoretically and empirically. Due to the communication over-
head, Voltage cannot speed up the whole transformer model
as much as a single transformer layer, but still outperforms
tensor parallelism, and significantly reduces the inference
latency compared with single device deployment. Therefore
besides the existing efforts, we believe the distributed infer-
ence paradigm introduced by Voltage can be a promising start
for future research to deploy transformer models on resource-
constrained devices.

REFERENCES

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is All You Need,” in Proceedings
of the 31st International Conference on Neural Information Processing
Systems, 2017, pp. 6000–6010.

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-Training
of Deep Bidirectional Transformers for Language Understanding,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), 2019, pp. 4171–4186.

[3] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language Models
are Few-Shot Learners,” arXiv preprint arXiv:2005.14165, 2020.

[4] P. Ramachandran, N. Parmar, A. Vaswani, I. Bello, A. Levskaya, and
J. Shlens, “Stand-Alone Self-Attention in Vision Models.”

[5] Z. Sun, H. Yu, X. Song, R. Liu, Y. Yang, and D. Zhou, “Mobilebert:
a Compact Task-Agnostic Bert for Resource-Limited Devices,” arXiv
preprint arXiv:2004.02984, 2020.

[6] M. A. Gordon, K. Duh, and N. Andrews, “Compressing Bert: Studying
the Effects of Weight Oruning on Transfer Learning,” arXiv preprint
arXiv:2002.08307, 2020.

[7] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “DistilBERT, a Distilled
Version of BERT: Smaller, Faster, Cheaper and Lighter,” arXiv preprint
arXiv:1910.01108, 2019.

[8] H. Tsai, J. Riesa, M. Johnson, N. Arivazhagan, X. Li, and A. Archer,
“Small and Practical BERT Models for Sequence Labeling,” in Pro-
ceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), 2019, pp. 3632–3636.

[9] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
Intelligence: Paving the Last Mile of Artificial Intelligence with Edge
Computing,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1738–1762,
2019.

[10] Z. Zhao, K. M. Barijough, and A. Gerstlauer, “Deepthings: Distributed
Adaptive Deep Learning Inference on Resource-Constrained IoT Edge
Clusters,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 11, pp. 2348–2359, 2018.

[11] L. Zeng, X. Chen, Z. Zhou, L. Yang, and J. Zhang, “CoEdge: Co-
operative DNN Inference with Adaptive Workload Partitioning over
Heterogeneous Edge Devices,” IEEE/ACM Transactions on Networking,
vol. 29, no. 2, pp. 595–608, 2020.

[12] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catan-
zaro, “Megatron-LM: Training Multi-Billion Parameter Language Mod-
els using Model Parallelism,” arXiv preprint arXiv:1909.08053, 2019.

[13] D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary, V. Ko-
rthikanti, D. Vainbrand, P. Kashinkunti, J. Bernauer, B. Catanzaro et al.,
“Efficient Large-Scale Language Model Training on GPU Clusters using
Megatron-LM,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2021, pp.
1–15.

[14] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu et al., “Gpipe: Efficient Training of
Giant Neural Networks using Pipeline Parallelism,” Advances in neural
information processing systems, vol. 32, pp. 103–112, 2019.

[15] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer Normalization,” arXiv
preprint arXiv:1607.06450, 2016.

[16] R. Y. Aminabadi, S. Rajbhandari, A. A. Awan, C. Li, D. Li, E. Zheng,
O. Ruwase, S. Smith, M. Zhang, J. Rasley et al., “DeepSpeed-Inference:
Enabling Efficient Inference of Transformer Models at Unprecedented
Scale,” in 2022 SC22: International Conference for High Performance
Computing, Networking, Storage and Analysis (SC). IEEE Computer
Society, 2022, pp. 646–660.

[17] H. Ko, “Parallelformers: An Efficient Model Parallelization Toolkit for
Deployment,” https://github.com/tunib-ai/parallelformers, 2021.

[18] P. Michel, O. Levy, and G. Neubig, “Are Sixteen Heads Really Better
than One?” Advances in Neural Information Processing Systems, vol. 32,
pp. 14 014–14 024, 2019.

[19] O. Zafrir, G. Boudoukh, P. Izsak, and M. Wasserblat, “Q8bert: Quantized
8bit bert,” arXiv preprint arXiv:1910.06188, 2019.

[20] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and
R. Soricut, “ALBERT: A Lite BERT for Self-supervised Learning of
Language Representations,” in International Conference on Learning

Representations, 2020. [Online]. Available: https://openreview.net/
forum?id=H1eA7AEtvS

[21] S. Zhang, S. Zhang, Z. Qian, J. Wu, Y. Jin, and S. Lu, “Deepslicing:
Collaborative and Adaptive CNN Inference with Low Latency,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 9, pp.
2175–2187, 2021.

[22] C. Hu and B. Li, “Distributed Inference with Deep Learning Models
across Heterogeneous Edge Devices,” in IEEE INFOCOM 2022-IEEE
Conference on Computer Communications. IEEE, 2022, pp. 330–339.

[23] Y. Hu, C. Imes, X. Zhao, S. Kundu, P. A. Beerel, S. P. Crago, and
J. P. Walters, “PipeEdge: Pipeline Parallelism for Large-Scale Model
Inference on Heterogeneous Edge Devices,” in 2022 25th Euromicro
Conference on Digital System Design (DSD). IEEE, 2022, pp. 298–
307.

[24] N. Kitaev, L. Kaiser, and A. Levskaya, “Reformer: The Efficient Trans-
former,” in International Conference on Learning Representations, 2020.
[Online]. Available: https://openreview.net/forum?id=rkgNKkHtvB

[25] A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret, “Transformers
are RNNs: Fast Autoregressive Transformers with Linear Attention,”
in International Conference on Machine Learning. PMLR, 2020, pp.
5156–5165.

[26] S. Wang, B. Z. Li, M. Khabsa, H. Fang, and H. Ma, “Linformer: Self-
Attention with Linear Complexity,” arXiv preprint arXiv:2006.04768,
2020.

https://github.com/tunib-ai/parallelformers
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=rkgNKkHtvB

	Introduction
	Preliminaries
	Transformer Models
	Tensor Parallelism

	Position-Wise Layer Partition
	Revisiting Self-Attention
	Computation Complexity Analysis
	Computation Order Matters
	Partitioned Transformer Layer

	Voltage Design
	System overview
	Partition Scheme
	Comparison with Existing Parallelisms

	Evaluation
	Experiment Settings
	Experiment Results

	Related Work
	Deploying Transformer on Edge Devices
	Distributed Inference System
	Transformer Optimization

	Concluding Remarks
	References

