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Abstract— With the constraints of network topologies and link
capacities, achieving the optimal end-to-end throughput in data
networks has been known as a fundamental but computationally
hard problem. In this paper, we seek efficient solutions to the
problem of achieving optimal throughput in data networks, with
single or multiple unicast, multicast and broadcast sessions.
Although previous approaches lead to solving NP-complete prob-
lems, we show the surprising result that, facilitated by the recent
advances of network coding, computing the strategies to achieve
the optimal end-to-end throughput can be performed in poly-
nomial time. This result holds for one or more communication
sessions, as well as in the overlay network model. Supported by
empirical studies, we present the surprising observation that in
most topologies, applying network coding may not improve the
achievable optimal throughput; rather, it facilitates the design of
significantly more efficient algorithms to achieve such optimality.
Index terms: Graph theory, Information theory, Mathematical
programming/optimization, Simulations.

I. I NTRODUCTION

In its most general form, a data network consists of a set
of end hosts and switches interconnected via undirected (or
duplex) communication links. In data networks with known
topologies and bandwidth capacity bounds for each undirected
link, a fundamental problem is to compute and achieve the
maximum end-to-end throughput for one or multiple active
communication sessions. Depending on the objectives of ap-
plications, a communication session may be in the form
of unicast (one-to-one), multicast (one-to-many), broadcast
(one-to-all), or group communication (many-to-many). The
solutions to this problem may lead to fundamental and new
insights with respect to optimal routing and traffic engineering.
For example, the recent paradigm of selfish routing [1] allows
end hosts to choose routes themselves using source routing
strategies. Finding the optimal strategy to disseminate data to
multiple destinations with maximum throughput is of natural
interests in such a paradigm, especially when we wish to
optimally exploit existing network capacities to disseminate
large volumes of data.

The focus on the undirected network model is supported by
the following justifications. First, as past research in network
flow theory [2] and information theory [3] suggests, the
undirected network model has its own rhythm, and results
obtained there may be drastically different from those obtained
in the directed network model. In fact, the undirected modelis
more general and fundamental in that, a solution constructed
for undirected networks can usually be applied to solve the
same problem in directed networks, but not vice versa. This
is particularly true for our problem and solution in this paper.

Second, undirected communication links provide the complete
flexibility in capacity allocation, and consequently leadsto
higher transmission rates that better represent the optimal in-
formation flow rate. Finally, in special network scenarios such
as wireless ad hoc networks, communication links are naturally
undirected, in the sense that data transmission along both
directions of the wireless link share the available spectrum.

In this paper, we seek to bring fundamentally new insights
and efficient solutions to the problem of optimizing end-to-
end throughput in undirected data networks. We first illustrate
the power ofnetwork coding[4], [5] with respect to achiev-
ing optimal throughput. In the paradigm of network coding,
information flows in data networks may not only be stored
and forwarded, but also be encoded and decoded in any nodes
in the network. We show that, although previous directions
of computing optimal multicast throughput involve solving
NP-complete problems, the maximum multicast throughput
and the corresponding optimal multicast strategy can indeed
be computed efficientlyin polynomial time, with the unique
encodable property of information flows considered. We then
show that this conclusion can be extended to multiple con-
current sessions, as well as to other types of communication,
including unicast, broadcast and group communication. Even
when the general form of data networks is modified to reflect
realistic characteristics of overlay networks (where onlyend
hosts at the edge may be able to replicate, encode and decode
data), the same conclusion still holds. The solutions to the
problems include not only optimal routing strategies to trans-
mit data in the network, but also how data may be encoded and
decoded as they are relayed towards the destinations. Though
there exist previous results on network coded throughput in
directednetworks, to the best of our knowledge, this paper is
the first work that systematically studies the effects of network
coding with respect to optimizing throughput inundirected
data networks.

The availability of efficient solutions makes it finally pos-
sible to study various aspects of properties of the achievable
throughput, in realistically sized networks. We present em-
pirical studies based on simulation results over thousandsof
test scenarios using our algorithms. We compare the optimal
multicast throughput with and without network coding, and
show that noticeable throughput gains can only be experienced
in contrived network topologies; for random and irregular
network topologies it is almost always zero. This agrees with
out previous theoretical results on the upper bound of the
advantage of network coding in undirected networks [3]: rather
than increasing throughput, the advantage of network coding



is indeed to facilitate significantly more efficient computation
of the strategies to achieveoptimal throughput of information
flows. Our empirical studies also show that overlay multicast,
which has recently attracted extensive research efforts, may
approach optimal throughput quite well.

The remainder of this paper is organized as follows. We first
discuss related work in Sec. II. In Sec. III, we present our main
theorems and algorithm with respect to achieving optimal end-
to-end throughput with a single multicast session. In Sec. IV,
we extend our results to the cases of multiple sessions of
unicast, multicast, broadcast, and group communication. We
also consider the model of overlay networks, where only a
subset of nodes are capable of replication and coding. We then
present empirical studies in Sec. V, and conclude the paper in
Sec. VI.

II. RELATED WORK

The open problem of achieving optimal end-to-end through-
put with efficient algorithms has not been discussed in depth
in existing literature. There exist, however, similar problems
that have been extensively studied. Towards the direction of
Quality of Service (QoS) routing, the objective is to find end-
to-end paths or multicast trees that satisfy specific bandwidth
or delay constraints, and therefore providing the desired QoS
guarantees [6]. With respect to end-to-end throughput, finding
good topologies that satisfy bandwidth requirements is obvi-
ously different from — and arguably easier than — finding
optimal ones.

There exists an extensive body of research in the area of
multicast routing in wide-area IP networks (e.g., [7]). The
advantage of IP-based multicast is brought by data packet
replication on multicast-capable switches, improving band-
width efficiency and throughput compared to all (naive) unicast
between the source and the multicast receivers. However, since
it is based on the construction of a single tree, the end-to-end
throughput is not optimal compared to what is achievable by
a topology beyond a tree.

As IP multicast is not readily deployed, algorithms pro-
moting application-layer overlay multicast have recentlybeen
proposed as remedial solutions, focusing on the issue of
constructing and maintaining a multicast tree using only end
hosts [8], [9]. Though a single multicast tree may not lead to
optimized throughput, recent studies (e.g., SplitStream [10],
CoopNet [11], Digital Fountain [12] and Bullet [13]) have
proposed to utilize either multiple multicast trees (forest) or a
topologicalmeshto deliver striped data from the source, using
either multiple description coding or source erasure codesto
split content to be multicast. These proposals have indeed
improved end-to-end throughput beyond that of a single tree,
but there have been no discussions on whether the optimal
throughput may be achieved, or how close the proposed
algorithms approach optimality. In this paper, we study such
achievable optimality, while considering the most generalcase
where the data source transmits a stream of bytes, and is not
assumed to perform any source or error correction coding.

There have been studies on achieving optimality with
respect to computingoblivious routing strategies in data
networks. The objectives are to maximize throughput for a
source-destination pair, and to minimize congestion on the
network. Most notably, using linear programming techniques,
polynomial timealgorithms (with a polynomial number of
variables and constraints in the LP formulation) can be con-
structed to compute strategies foroptimaloblivious routing for
any network, directed or undirected [14]. Though we also em-
ploy linear optimization tools and study undirected networks,
our problem domain is more general: while optimal oblivious
routing focuses on origin-destination pairs ofunicastsessions
(possibly exploiting path diversity), we focus on a varietyof
communication sessions, including unicast, multicast, broad-
cast and group communication. We seek fundamental insights
on how optimal a routing strategy may become, and what is the
maximum achievable throughput in a communication session.

The theory ofnetwork flowsstudies the transmission of
commodities of the same type (unicommodity flows) through
a capacitied network. The maximum flow rate between the
source and the destination which may be computed with vari-
ous efficient combinatorial algorithms [2]. When commodities
to be transmitted are of different types (multicommodity
flows), computing the maximum flow rate can be solved as
a linear optimization problem. In both unicommodity and
multicommodity flows, commodities may only beforwardedat
intermediate nodes, comparable to all unicast in data networks.
The concept ofnetwork codingextends the capabilities of
network nodes in a communication session: from basic data
forwarding (as in all unicast) and data replication (as in IPor
overlay multicast), tocoding in Galois fields. Fig. 1 illustrates
a classic example of how network coding assists to improve
end-to-end throughput. AsR1 receives botha and a + b
(encoded over GF(2)), it is able to decode and retrieve both
a andb. If the link capacities are1, the maximum achievable
throughput with network coding is2. Without coding, it can
be computed that the optimal throughput is1.875 [3]. If only
one multicast tree is used (as in IP multicast), the achieved
throughput is1.
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Fig. 1. The advantage of network coding with respect to improving the
end-to-end multicast throughput fromS to R1 andR2.

The recent breakthrough theorem in network coding shows
that, for a multicast session in directed networks, if a rate
x can be achieved from the sender to each of the multicast
receivers independently, it can also be achieved for the entire
multicast session (refer to independent proofs of Ahlswede



et al. [4] and Koetteret al. [5]). In addition, Li et al. [15]
show thatlinear codessuffice to achieve such a property. All
linear coding operations are defined as linear combinations
over Galois fields with fixed element lengths, thus the size of
the data does not increase after being encoded.

III. A CHIEVING OPTIMAL THROUGHPUT INUNDIRECTED

DATA NETWORKS: THE SINGLE MULTICAST CASE

We begin our study from the case of a single multicast
session. We consider the most general form of data networks,
represented by a simple graphG = (V,E) with undirected
edges between network nodes. Each edge represents a com-
munication link, and the edge capacities are specified by a
function C : E → Q+ (whereQ+ denotes the set of positive
rational numbers), representing the available bandwidth capac-
ities of communication links. Throughout this paper, we focus
on thefractional model of data routing, where the capacity of
each link may be shared fractionally in both directions, and
information flows may be split and merged at arbitrarily fine
scales.

We useM = {m0,m1, . . . ,mk} ⊆ V to specify the set
of nodes in the multicast group, withm0 being the sender. In
graphical illustrations throughout this paper, nodes inM are
shown as black, and nodes inV − M are shown as white.
Links are labeled with their capacities, andall unlabeled links
have a capacity of1.
A. Steiner tree packing and Steiner strength

To compute the optimal throughput of multicast sessions,
Steiner tree packing[16], [17] andSteiner strengthhave been
the state-of-the-art. Unfortunately, both are NP-hard solutions.
Steiner tree packing.Consider the case of information flows
in one multicast session from a source to a set of destinations.
It can be theoretically shown that, if coding is not considered,
achieving optimal throughput via multiple multicast treesis
equivalent to the problem ofSteiner tree packing, which seeks
to find the maximum number of pairwise edge-disjoint Steiner
trees, in each of which the multicast group remains connected.
An intuitive explanation to such equivalence is that, each
unit throughput corresponds to a unit information flow being
transmitted along a tree that connects every node in the group.
The maximum number of trees we can find corresponds to the
optimal throughput for the session. Fig. 2(a) shows such an
example. In the figure, each letter corresponds to a distinct
Steiner tree, and nine such Steiner trees (a to i) exist in the
shown packing scheme, where the tree corresponding toa
is highlighted. Since each link with unit capacity needs to
accommodates5 Steiner trees, the achievable throughput on
each tree is, therefore,0.2. This leads to a multicast throughput
of 1.8, which is optimal without coding.

Unfortunately, Steiner tree packing has been shown to be
NP-complete [17], [18], and the best known polynomial time
algorithm has an approximation ratio of around1.55 [18].
With the same example, we can also show that the achievable
optimal throughput with network coding is2 (Fig. 2(b)), which
is higher than that achieved without coding. Consequently,
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Fig. 2. The achievable optimal throughput is1.8 without coding, and2 with
coding.

even if Steiner tree packing is computationally feasible, it may
not always yield the actual optimal multicast throughput.
Steiner strength. In an undirected capacitied networkN ,
we consider partitions of the network where there exists at
least one source or receiver node in each component of the
partition. LetP be the set of all such partitions. TheSteiner
strengthof N is defined asminp∈P |Ec|/(|p|−1), where|Ec|
is the total inter-component link capacity on the set of links
Ec being cut, and|p| is the number of components in the
partition p. It is a natural extension ofnetwork strength[19]
defined for a broadcast network. It is known from our previous
work that network strength is equivalent to the achievable
optimal throughput in broadcast sessions [3]. Therefore, it is a
natural direction to compute optimal multicast throughputby
computing the Steiner strength.

Unfortunately, the Steiner strength problem turns out to be
NP-complete as well. The fact that computing Steiner strength
is NP-complete also rules out the possibility that Steiner
strength and optimal multicast throughput are always equal. In
fact, we find that Steiner strength is either equal to or higher
than the achievable optimal throughput1.

B. Efficient solutions for throughput optimization: the cFlow
Linear Program

Contrary to the previous pessimistic views, we present the
surprising result that efficient solutions do exist for computing
optimal throughput in undirected networks. We first formulate
the problem as a linear network optimization problem, in
which both the number of variables and the number of
constraints are bounded byO(|M ||E|). We then show that
the result of such optimization exactly gives the maximum
achievable throughput, as well as the corresponding routing
strategy. We also discuss possible solutions to the linear
program.

We begin by presenting theorientation constraintsof the
linear program that computes optimal throughput. Anorien-
tation of a networkN is a strategy to replace each undirected
link e = uv with two directed linksa1 =

−→
uv and a2 =

−→
vu ,

such thatC(e) = C(a1) + C(a2). After the orientation, the

1Observing space constraints, we exclude the proofs of this result and the
NP-completeness of Steiner strength. Interested readers are referred to our
technical report [20], which also includes more detailed explanations and an
example in which the Steiner strength is higher than the optimal throughput.



set of undirected linksE becomes a set of directed linksA,
with the number of links in the set doubled.

We proceed to consider flows from the source to the
multicast receivers. To take advantage of the power of network
coding to resolve competition for link capacities, we introduce
the concept ofconceptual flows(cFlow). We define conceptual
flows as network flows that co-exist in the networkwithout
contending for link capacities.

Our linear program to compute the optimal throughput,
shown in Table I, is referred to as thecFlow LP since it
is based on conceptual flows. In the LP,f1 . . . fk are the
conceptual flows from senderm0 to each of the receivers. Each
flow vectorf i specifies a flow ratef i(a) for each directed link
a ∈ A. f i

in(v) denotes the total incomingf i flow rate at a node
v, similar for f i

out(v). Finally, the scalarχ is the target flow
rate of optimization.

In addition to the orientation constraints, thecFlow LP also
includes thenetwork flowconstraints for each conceptual flow,
and theequal rateconstraints. The network flow constraints
are specified in a compact form for all conceptual flows,
which requires (1) flow rates must be upper bounded by link
capacities; (2)flow conservation, i.e., the incoming flow rate in
the conceptual flowf i equals to outgoing flow rate inf i at a
relay node forf i; and (3) the incoming flow rate at the source
and the outgoing flow rates at the receiver are all zero, for
eachf i. The equal rate constraints require that the flow rates
of conceptual flows are identical, withχ being the uniform
flow rate. With these linear constraints, the target flow rateχ
is then maximized.

TABLE I

THE cFlow LP

Maximize: χ
Subject to:
Orientation constraints:


0 ≤ C(a) ∀a ∈ A
C(a1) + C(a2) = C(e) ∀e ∈ E

Independent network flow constraints for each conceptual flow:
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0 ≤ f i(a) ∀i ∈ [1..k], ∀a ∈ A
f i(a) ≤ C(a) ∀i ∈ [1..k], ∀a ∈ A
f i

in(v) = f i
out(v) ∀i ∈ [1..k], ∀v ∈ V − {m0, mi}

f i
in(m0) = 0 ∀i ∈ [1..k]

f i
out(mi) = 0 ∀i ∈ [1..k]

Equal rate constraints:
χ = f i

in(mi) ∀i ∈ [1..k]

We are now ready to present one of our main contributions
of this paper, by showing that thecFlow LP provides an effi-
cient algorithm to compute the achievable optimal throughput,
as well as the routing strategy.

Theorem 1. For an undirected data network with a single
multicast session,N = {G(V,E), C : E → Q+,M =
{m0,m1, . . . ,mk} ⊆ V }, the maximum end-to-end through-
put χ(N) and its corresponding optimal routing strategy can
be computed inpolynomial timeusing thecFlow LP, in which
both the number of variables and the number of constraints are

polynomial, and on the order ofO(|M ||E|). The conceptual
flows f1 . . . fk constitute the optimal routing strategy.

Proof: The orientation constraints reflect complete flexibility
in orienting the undirected networkN , without being too
restrictive or too relaxed. For each fixed orientation, conceptual
flows are being maximized with independent and standard
network flow constraints, as well as the extra constraint that
conceptual flow rates are equal to each other. Therefore, the
result of the maximization is the maximum possible flow rate
that can be independently achieved from the source to all
receivers, over all possible orientations of the network:

χ = max
o∈O

[ min
mi∈M−{m0}

(maximumm0 → mi flow rate)],

whereO denotes all possible orientations of the network,
and M − {m0} is the set of multicast receivers. Recall the
recent breakthrough in network coding [4], [5] shows that, for
a fixed orientation of the network, a ratex can be achieved for
the entire multicast session if and only if it can be achieved
for each multicast receiver independently. This implies that,
the maximum throughput in each orientation equals to the
minimum of the maximum source to receiver flow rate. The
cFlow LP essentially maximizes this min-max flow over all
possible network orientations, and obtains the max-min-max
flow that is precisely the maximum multicast throughput in the
original undirected network. Further, the source may transmit
information to each receivermi according to the conceptual
flow f i. Should more than one conceptual flows utilize ca-
pacity on the same link, the conflict can always be resolved,
provided that network coding is applied appropriately [4],[5].

The cFlow LP contains2|E| orientation variablesC(a),
2|M ||E| virtual flow variablesf i(a), and one target flow
rate variableχ. Therefore, the total number of variables is
2(|M | + 1)|E| + 1, which is on the order ofO(|M ||E|). In
addition, thecFlow LP contains3|E| orientation constraints,
(4|E| + |V |)(|M | − 1) network flow constraints, as well as
|M |−1 equal rate constraints. The total number of constraints
is, therefore,(4|E|+ |V |+ 1)(|M | − 1) + 3|E|, which is also
on the order ofO(|M ||E|). ⊓⊔

The optimal routing strategy computed bycFlow LP spec-
ifies the rate of data streams being transmitted along each
link. Based on the routing strategy, we need to perform the
additional step ofcode assignmentto compute thecoding
strategy, before data streams may be transmitted. The coding
strategy includes one transformation matrix for each node,
which specifies how incoming data streams are linearly coded
into outgoing streams. Given the routing strategy from the
cFlow LP, there exist polynomial time algorithms to perform
such code assignments [21]. Therefore, we have the following
corollary of Theorem 1:

Corollary 1. The complete solution that achieves optimal
throughput in undirected data networks with a single multicast
session can be computed in polynomial time, including both
the routing and coding strategies.

In order to evaluate the advantage of network coding with



respect to improving achievable optimal throughput, we have
implemented both thecFlow LP and a brute-force algorithm
to compute the Steiner tree packing number. The Steiner tree
packing algorithm enumerates all steiner trees in the network,
assigns a flow variable to each tree, and then maximizes the
summation of all tree flows, subject to the constraints that the
total weight (throughput) of trees using each link should not
exceed its capacity.

We have evaluated both thecFlow LP and Steiner tree
packing (denoted asπ(N)) using our previous example in
Fig. 1, as well as a set ofuniform bipartitenetworks, which are
believed to be good candidates to show the power of coding on
improving throughput [21], [22]. A uniform bipartite network
C(n, k) consists of the data source and two layers: one withn
relay nodes and the other with

(

n
k

)

receivers. Each relay node
is connected to the sender, and each receiver is connected toa
different group ofk relay nodes, and all links have a capacity
of 1. For instance, the network in Fig. 2 isC(3, 2), and the
classic example of network coding in Fig. 1 is isomorphic to
C(3, 2).

Table II summarizes the results of our empirical studies,
from which we have derived the following observations. First,
thecFlow LP is much more scalable and efficient than Steiner
tree packing, which fails to compute a solution for a networkas
small asC(5, 3), with only 16 nodes and35 links, but almost
50 million different Steiner trees. In separate experiments,
the cFlow LP is able to compute the optimal throughput
for networks having thousands of nodes. Second, optimal
throughput with coding is always lower bounded by that
without coding; however, network coding only introduces a
slight advantage, with theχ(N)/π(N) ratio no higher than
1.125. Third, coded transmission may lead to more integral
flow rates and throughput than uncoded transmission.

TABLE II

COMPUTING OPTIMAL THROUGHPUT: cFlow LP VS. STEINER TREE

PACKING

Network |V | |M | |E| χ(N) π(N) χ(N)
π(N)

# of trees
Fig. 1 7 3 9 2 1.875 1.067 17
C(3, 2) 7 4 9 2 1.8 1.111 26
C(4, 3) 9 5 16 3 2.667 1.125 1,113
C(4, 2) 11 7 16 2 1.778 1.125 1,128
C(5, 4) 11 6 25 4 3.571 1.12 75,524
C(5, 2) 16 11 25 2 1.786 1.12 119,104
C(5, 3) 16 11 35 3 – – 49,956,624

As a final note, we point out that beyond applying general
linear programming solutions — such as the simplex method
— it is also possible to design custom-tailored algorithms for
the cFlow LP, to take advantage of its underlying network
flow structure. In an accompanying paper [23], we apply
Lagrangian relaxation on the dual program of the cFlow LP,
and design a distributed subgradient solution. The algorithm
iteratively refines an existing orientation of the originalnet-
work, until an optimal one is reached. At this point,|M | max-
flow computations are invoked to find the optimal multicast

throughput.

IV. A CHIEVING OPTIMAL THROUGHPUT INUNDIRECTED

DATA NETWORKS: MORE GENERAL CASES

Our efficient solution, thecFlow LP, can be extended to
solve the optimal throughput problem in cases beyond a single
multicast session. We now present its extensions (1) to unicast,
broadcast and group communication sessions, (2) to the case
of multiple communication sessions, and (3) to the model of
overlay networks.

A. The cases of unicast, broadcast and group communication
sessions

Since unicast and broadcast can be viewed as special cases
of multicast, where two nodes and all nodes are in the mul-
ticast group, respectively, our solution in the single multicast
case can be readily applied to a single unicast or broadcast
session without modifications. In the case of a unicast session,
the cFlow LP essentially solves a linear program for a single
network flow. In the case of a broadcast session, thecFlow
LP computes the optimal broadcast throughput, which has
been shown by our previous work to be the same as both
the spanning tree packing number and the network strength
[3].

Traditionally, these three equal quantities have been com-
puted from either the perspective of network strength or span-
ning tree packing. Cunningham [19] first gave a combinatorial
algorithm that computes the network strength, which was
later improved by Barahona [24]. Both algorithms are based
on matroid theory, and are highly sophisticated. Though the
spanning tree packing problem has an LP formulation, the
number of variables is exponential. It is therefore necessary
to work on its dual program, where the minimum spanning
tree algorithms can serve as the separation oracle. In com-
parison, thecFlow LP provides an efficient alternative, with a
polynomial number of constraints and variables, and with both
general LP solvers and custom-tailored distributed subgradient
solutions [23] available.
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Fig. 3. Transforming group communication into multicast transmission.

Group communication refers to many-to-many communi-
cation sessions where multiple sources multicast independent
data to the same group of receivers, the set of senders and the
set of receivers may or may not overlap. Previous work [5] has
shown that a many-to-many session can be easily transformed
into a multicast session, by adding asupersource, which is a
traditional technique in network flows. As illustrated in Fig. 3,



we can add an additional sourceS to the network, and connect
it to each of the sources in the group communication session,
with links of unbounded capacity. We may then apply the
cFlow LP to maximize the multicast throughput fromS to
all the receivers. Additional constraints can be applied toflow
rates on the newly added links between the super source and
the original sources in the session, governing fairness among
the original sources. The outcome from thecFlow LP is the
optimal throughput and its corresponding routing strategyfor
the original group communication session.

B. The case of multiple sessions

In its most general form, the optimal throughput problem
allows multiple communication sessions of different typesto
co-exist in the same network. Since multicast is representative
— in that unicast, broadcast and group communication can all
be transformed into multicast — it is sufficient to consider the
optimal throughput problem in the case of multiple multicast
sessions.

To achieve optimal throughput with multiple sessions, we
need to consider the problem of inter-session fairness. The
definition of fairness is usually application dependent; how-
ever, as long as it can be expressed using linear constraints, we
can easily include them in the LP formulation. With respect to
network coding in multiple sessions, it is theoretically possible
to apply network coding on multiple incoming streams of
different sessions. However, we argue against this possibility,
and usecoding by superposition[4], i.e., network coding
is applied only to incoming streams of the same session.
This argument is mainly supported by the computational
intractability of the optimal throughput problem if inter-session
coding is allowed2. In addition, our empirical experiences
show that allowing inter-session coding can hardly improve
optimal throughput, and it is not practical to code data streams
from different applications either.

The mFlow LP given in Table III is designed to solve the
optimal throughput problem with multiple multicast sessions,
where we use weighted proportional fairness as the fairness
model. It is the result of extending thecFlow LP to its
multicommodity variant. We assume there exist a total ofs
multicast sessions, numbered as1 . . . s. Each sessioni has
a sourcemi0 , a number of receiversmi1 . . . miki

, a set of
conceptual flowsf i1 . . . f iki , as well as a weightwi indicating
the importance of the session. The scalarχi is the common
rate for conceptual flows within sessioni, the scalarχ is the
common weighted throughput for all the multicast sessions,
and the target of themFlow LP is to maximizeχ.

The mFlow LP replaces the standard network flow con-
straints in thecFlow LP with a set of multicommoditycFlow
constraints. Since flows of different sessions contend for link
capacity, the summation of the per-session flow rates should
not exceed link capacities. Since flows within the same session
do not compete for link capacity, the effective flow rate within

2It is known that finding sufficient and necessary conditions for the
feasibility of multiple sessions in this case is equivalent to finding a point
in an algebraic variety, which is NP-hard [5].

a sessioni on link a is f i(a) = maxj∈[1..ki] f
ij (a). The

max function is not linear, so this constraint is relaxed to
f i(a) ≥ f ij (a),∀j ∈ [1 . . . ki].

TABLE III

THE mFlowLP

Maximize: χ
Subject to:
Orientation constraints:


0 ≤ C(a) ∀a ∈ A
C(a1) + C(a2) = C(e) ∀e ∈ E

Multicommodity cFlow constraints:
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:

0 ≤ f ij (a) ∀i ∈ [1..s], ∀j ∈ [1..ki],
∀a ∈ A

f ij (a) ≤ f i(a) ∀i ∈ [1..s], ∀j ∈ [1..ki],
∀a ∈ A

Ps

i=1 f i(a) ≤ C(a) ∀a ∈ A

f
ij

in(v) = f
ij

out(v) ∀i ∈ [1..s], ∀j ∈ [1..ki]
∀v ∈ V − {mi0 , mij

}

f
ij

in(mi0) = 0 ∀i ∈ [1..s], ∀j ∈ [1..ki]

f
ij

out(mij
) = 0 ∀i ∈ [1..s], ∀j ∈ [1..ki]

Equal rate constraints:
χi = f

ij

in(mij
) ∀i ∈ [1..s], ∀j ∈ [1..ki]

Fairness constraints:
χ = χi/wi ∀i ∈ [1..s]

Theorem 2. In the case of multiple multicast sessions with
coding by superposition, the optimal end-to-end throughput
and its corresponding optimal routing strategy in undirected
data networks can be computed in polynomial time, by the
mFlow LP.
Proof: The correctness of themFlow LP builds upon the
correctness of thecFlow LP, which is proved in Theorem 1,
plus the fact that for coding by superposition, data transmission
from different sessions constitute totally different commodities
when competing for link capacity. Furthermore, it is easy to
check that both the number of variables and the number of
constraints in themFlow LP are on the order ofO(s|M ||E|),
wheres is the number of sessions. ⊓⊔

C. The case of overlay networks

Since neither network coding nor data replication (for
IP multicast) are widely supported in the current-generation
network elements in the core, we consider the case ofoverlay
networkswhere only the end hosts have the full capabilities to
forward, replicate and code data streams, and the core network
elements (henceforth referred to asrouters) may only forward
data packets as is. We note that the case of overlay networks
is actually more general than the classical model of undirected
data networks we have used so far, which hints that the optimal
throughput problem may become harder to solve.

Let N = {G(V,E), C :→ Q+,M = {m0, . . . ,mk},H =
M ∪ {mk+1, . . . mh} ⊆ V } be an overlay network with
a multicast session. The multicast groupM is a subset of
the end hostsH. If M = H, i.e., all end hosts are in the
multicast group, Garget al. [25] has shown that the optimal
multicast throughput can be efficiently computed in this case,



by working on the dual program of a natural LP formulation.
It has also been shown in [25] that, in the general case the
optimal throughput problem without network coding is the
overlay Steiner tree packing problem, and is still NP-complete.

With the support of network coding, however, we are able
to extend thecFlow LP to its overlay variant, referred to as
the oFlow LP, to solve the optimal throughput problem in
the model of overlay networks. TheoFlow LP takes a hier-
archical view of the multicast transmission, with anunderlay
and anoverlay level. The underlay level corresponds to the
physical network topology, and has multicommodity flowsgij

connecting each pair of end hostsmi andmj , via only routers
as intermediate nodes. The overlay level is conceptual, and
contains end hosts fully connected as a complete graph. The
link a′

ij from mi to mj has a capacity equal to the underlay
flow rategij . We then apply thecFlow LP in the overlay level
to maximize the end-to-end throughput, where each node is
capable of replication and coding.

In the oFlow LP shown in Table IV, we include three
groups of constraints. First, the orientation constraintsare
identical to those included in thecFlow LP. Second, the
standard multicommodity flow constraints are specified for
the underlay flows between end hosts and via routers only.
Third, we introduce the mapping constraints that map the
underlaygij flow rate to the overlay link capacity (referred
to asC ′(a′

ij)), and then apply the original constraints in the
cFlow LP at the overlay level. The target of theoFlow LP is
to maximize throughput in the overlay level.

TABLE IV

THE oFlow LP

Maximize: χ
Subject to:
Orientation constraints:


0 ≤ C(a) ∀a ∈ A
C(a1) + C(a2) = C(e) ∀e ∈ E

Underlay multicommodity flow constraints:
8

>

>

>

>

<

>

>

>

>

:

0 ≤ gij(a) ∀i, j ∈ [1..h], ∀a ∈ A
P

gij(a) ≤ C(a) ∀i, j ∈ [1..h], ∀a ∈ A
gij

in(v) = gij
out(v) ∀i, j ∈ [1..h], ∀v ∈ V − H

gij

in(v) = 0 ∀i, j ∈ [1..h], ∀v ∈ H − {mj}
gij

out(v) = 0 ∀i, j ∈ [1..h], ∀v ∈ H − {mi}
OverlaycFlow constraints:
8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

C′(a′

ij) = gij
out(mi) ∀i, j ∈ [1..h]

0 ≤ f i(a′) ∀i ∈ [1..k],
∀a′ ∈ A′ = {a′

ij |1 ≤ i, j ≤ h}
f i(a′) ≤ C′(a′) ∀a′ ∈ A′, ∀i ∈ [1..k]
f i

in(v) = f i
out(v) ∀i ∈ [1..k], ∀v ∈ H − M

f i
in(m0) = 0 ∀i ∈ [1..k]

f i
out(mi) = 0 ∀i ∈ [1..k]

χ = f i
in(mi) ∀i ∈ [1..k]

Theorem 3. In the case of a single multicast session in the
model of overlay networks, the optimal end-to-end throughput
and its corresponding optimal routing strategy can be com-
puted in polynomial time, using theoFlow LP.

Proof: Since relay nodes in the overlay network can not
replicate or encode data, a data stream that is transmitted
between two end hosts without passing a third end host
remains unchanged throughout the transmission and upon ar-
rival. Therefore, it is valid to model these direct transmissions
between end hosts as multicommodity flows. The validity of
the cFlow constraints in the overlay layer may be derived
from the correctness of thecFlow LP, which we have proved
in Theorem 1. Furthermore, inspection on the variables and
constraints in theoFlow LP reveals that, the number of both
are on the order ofO(|H|2|E|). ⊓⊔

Similar to the extension fromcFlow to mFlow, one may
extend theoFlow LP into its multicommodity variant to
accommodate multiple sessions in overlay networks. More
specifically, one needs to replace the overlaycFlow constraints
with the overlaymFlow constraints in the third group of con-
straints of theoFlow LP. The resulting linear program has both
its number of variables and number of constraints bounded by
O((|H|2 + s|M |)|E|). This is usually not worse than those
of the single-sessionoFlow LP, since|H|2 dominatess|M | in
most cases.

V. EMPIRICAL STUDIES

Due to the lack of efficient algorithms, previous studies
on the problem of improving session throughput are largely
based on experimental or intuitive insights. We argue that the
availability of thecFlow, mFlow and oFlow LPs has signifi-
cantly changed the landscape, and has made it computationally
feasible to study the exact benefits of various proposals to
achieve higher throughput, including a single multicast tree
with data replication, multiple multicast trees, and network
coding. Our empirical studies are based on the implementation
of all three LPs that we have proposed. In comparison studies,
we have also implemented algorithms to compute the optimal
throughput with multiple multicast trees but without coding,
the optimal throughput with a widest multicast tree, as wellas
the optimal throughput with all unicast from the source to all
receivers. Topologies used in our simulations are generated by
the BRITE topology generator [26], with sizes ranging from
10 to 500 nodes, both with and without power-law properties,
with heavy-tailed or constant link capacities.

How advantageous is network coding with respect to improv-
ing optimal throughput?

The ratio of achievable optimal throughput with coding over
that without coding is referred to as thecoding advantage.
Recall that we have investigated the coding advantage in Table
I, and are unable to experimentally find cases where network
coding may improve optimal throughput by a factor higher
than1.125. We are naturally led to the question:What is the
upper bound of the coding advantage?

Previous work [21] shows that in directed acyclic networks
with integral routing requirement, there exist multicast net-
works where the coding advantage grows proportionally as
log(|V |), and is thus not finitely bounded. However, we found
the situation is drastically different in undirected networks. In



[3], we use undirected splitting and graph orientation to prove
that, for multicast transmissions in undirected networks,the
coding advantage is bounded by a constant factor of2.

Given the bound1.125 obtained for contrived networks, and
the bound2 proven in theory, we further studied the coding
advantage in over one thousandrandomly generated topolo-
gies. Our observation is that, forall the random topologies we
tested, the coding advantage always remains1.0, i.e., network
coding does not introduce any improvement in achievable
throughput. This implies that the fundamental benefit of net-
work coding isnot higher optimal throughput, but to facilitate
significantly more efficient computation and implementation of
strategies to achieve such optimal throughput.

How advantageous is standard multicast compared to unicast
and overlay multicast?

The cFlow LP is instrumental to precisely compute the
achievable optimal throughput with one multicast communi-
cation session, either with network coding or with multiple
multicast trees, since the outcomes from the two are hardly
different. In either case, data replication need to be supported
on all network nodes, including core network elements. It has
been common knowledge that, when compared to unicast from
the source to all receivers, standard multicast brings better
bandwidth efficiency and higher end-to-end session through-
put. However, even in the case of unicast, path diversity needs
to be exploited to achieve optimal throughput, equivalent to the
maximum unicommodity flow problem. It is not immediately
clear how advantageous standard multicast is.

Overlay multicast balances the tradeoff between the practi-
cality of standard multicast and unicast. It refers to the case
where only the members of the multicast group may replicate
or code data, whereas all other nodes may only forward
data. The optimal throughput achieved by overlay multicast
is efficiently computed by theoFlow LP.

We perform a quantitative study that compares the optimal
throughput achieved with standard multicast, overlay multicast
and unicast. The study is performed in random networks with
up to 500 nodes and over1000 links. There are3 and 10
members in the multicast group respectively, in two different
sets of tests. Multicast nodes are randomly selected, with
different multicast groups being as disjoint as possible. For
each network size, multiple tests are performed with different
network topologies and different choices of the multicast
group, the results are then averaged.

As we may observe from Fig. 4, there exists obvious
differences between standard multicast throughput and all
unicast throughput, and the differences are more significant
in Fig. 4(b), where the scale of the multicast transmission is
larger. This is due to the fact that with a large number of
receivers, the number of unicast flows increases in the all
unicast approach, and links incident to the sender become
bottlenecks for the transmission. Surprisingly, the figurealso
suggests that, the optimal throughput achieved by overlay
multicast is almost identical to that achieved by standard
multicast, where all network nodes are able to replicate or code
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(a) Size of multicast group = 3
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(b) Size of multicast group = 10
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Fig. 4. Achievable optimal throughput using standard multicast, overlay
multicast, and all unicast from the sender to all receivers.

data. On average, the optimal throughput of overlay multicast
is over 95% of standard multicast. This observation shows
that, from the perspective of maximum achievable throughput,
while there may exist contrived network topologies that show
more significant advantages of standard multicast over overlay
multicast, little difference remains once large scale practical
network topologies are considered. In summary, the all unicast
approach does not scale, while overlay multicast may closely
approach optimal throughput without requiring core routers to
be modified.

How sensitive is optimal throughput to node joins?

When new nodes join the multicast session, how may
achievable optimal throughput be affected? Intuitively, if a
relay node joins the multicast group and becomes a new
receiver, the achievable session throughput should decrease,
due to the following two causes: (1) a larger number of
receivers may lead to more intense competition for bandwidth;
and (2) a new node with low capacity may become a bottleneck
and limit the throughput for the entire session. Our simulation
results show that, the second cause has a much more significant
impact than the first one.

Fig. 5(a) shows variations of optimal throughput as the
number of nodes in the multicast group increases from three
to ⌈|V |/2⌉, and then to|V | (effectively a broadcast session),
for various network sizes|V |. In this experiment, network
topologies are generated with two edges per node without
power-law relationships, with heavy-tailed bandwidth distri-
bution between 10 and 50 Kbps on the links. As we can
observe, when the size of the multicast group increases from
three to⌈|V |/2⌉, the effects on achievable throughput is rather
significant. However, further expanding the multicast group
to the entire network leads to a much smaller decrease. Both
causes that we have discussed contribute to the initial decrease



of throughput, while the second cause (i.e., the effects of a
bottleneck node) plays a less important role in the subsequent
decrease — when the multicast group contains half of the
nodes in the network, it is very likely for the group to have
already contained a node with low capacity.
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(a) Heavy−tailed link capacity
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(b) Constant link capacity
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Fig. 5. Variations of optimal throughput due to new nodes joining the
multicast session.

We further performed the same tests on power-law network
topologies with10 Kbps constant link bandwidth, and the
results are shown in Fig. 5(b). In the power-law topologies,
most nodes have small degrees of two or three, while a
small number of nodes have high degrees. Therefore, the
initial multicast group usually contains a node with a small
degree already, which also has a low capacity, since the
link bandwidth is constant. In this case, only inter-receiver
bandwidth competition remains as a major concern. However,
as we can observe in the figure, in most cases the optimal
multicast throughput remains roughly constant, even afterall
the nodes have joined the multicast session. This counter-
intuitive observation shows that, new receivers may share
bandwidth with existing receivers well, and do not significantly
affect the achievable throughput, as long as their capacities are
not too low. Spikes in Fig. 5(b) correspond to the occasional
cases where nodes in the initial multicast group all have
relatively high capacities. Both results in Fig. 5(a) and 5(b)
have led to the same observation that, when new nodes join a
multicast session, the decreased optimal throughput is mainly
due to bottleneck receivers with lower capacities.

How sensitive is optimal throughput to the addition of new
sessions?

When new sessions are added to the network, how do
they affect achievable optimal throughput? ThemFlow LP,
presented in Sec. IV, makes it feasible to carry out our
empirical studies. Fig. 6 shows the variation of optimal
throughput as new communication sessions are created. Three

types of throughput are shown: (1)previous optimal, which
represents the optimal weighted session throughput beforethe
new session is added; (2)incremental, which is the weighted
throughput for the new session using residual link capacities
only, or just the previous optimal throughput if the achievable
throughput of the new session is higher; and (3)re-optimized,
which is the re-computed optimal session throughput after
the new session is added. Four groups of simulations are
performed, with two, three, four, and five existing sessions,
respectively, before the new session is established. Each mul-
ticast group has a size five, and nodes in different multicast
groups are chosen to be as disjoint as possible. Each session
is assigned an equal weight.
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Fig. 6. Throughput variations as a new session is created.

Results in Fig. 6 show that, the addition of an extra session
does not dramatically affect the achievable optimal throughput,
especially when the network size is large in comparison to
the number of nodes involved in the transmissions. However,
if the existing sessions remain transmitting according to the
optimal transmission strategy computed before the new session
joins, and only residual capacities can be utilized to serve
the new session (theincremental throughputcase), then the
resulting throughput is not satisfactory unless the numberof
sessions is very small (s = 2). In general, this may lead to
very low, even zero, throughput for the new session. Therefore
it is necessary to perform re-optimization before a new session
starts to transmit.

How sensitive is optimal throughput to fairness constraints?

In order to investigate how inter-session fairness require-
ments affect the optimal throughput, we establish three one-
to-two multicast sessions in networks of various sizes between
10 and 350, and computed their total optimal throughput with
the following fairness constraints, respectively: (a) no fairness
requirement, which leads to the maximum value possible for



the total throughput; (b) absolute fairness, in which each
session is required to have exactly the same throughput; (c)
weighted proportional fairness, where the throughput of each
session is proportional to the associated weight of that session;
and (d) max-min fairness, in which no session throughput
can be increased without decreasing another already smaller
session throughput.

As a first small-scale experiment to gain some insights,
Fig. 7 shows the total throughput of three sessions in a network
with twenty nodes, using themFlow LP. Multicast groups
are chosen to be as disjoint as possible. The total weight
of three sessionsw1 + w2 + w3 = 1. As we can see, the
weight distribution has a significant impact on the achievable
total throughput. When the three weights are heavily unbal-
anced, the session with the smallest weight can not realize
its throughput potential, and consequently leads to a small
value of total throughput. The achievable throughput with
absolute fairness atw1 = w2 = w3 = 0.333 is 91.8 Kbps.
The global optimal throughput107.0 Kbps is achieved at
(w1, w2, w3) = (0.287, 0.407, 0.306), which turns out to be
identical to the throughput with max-min fairness in this case.
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Fig. 7. Total throughput of three multicast sessions, as inter-session fairness
requirements change.

Further results in Table V show that the excellent perfor-
mance of max-min fairness in the above example is not a
coincidence. As we may observe, when the network size is
relatively large (50 and above in the table), max-min fairness
always leads to optimal throughput. When the network size is
small (10 and20 in the table), the inter-session competition for
bandwidth becomes more intense. The throughput with max-
min fairness may be inferior to the optimal throughput in this
case, but the difference is usually small.

TABLE V

TOTAL ACHIEVABLE THROUGHPUT WITH MAX -MIN FAIRNESS VS. GLOBAL

OPTIMAL THROUGHPUT

network size 10 50 100 150 250 350
max-min (Kbps) 120.0 173.3 160.0 146.7 146.7 183.3
optimal (Kbps) 126.1 173.3 160.0 146.7 146.7 183.3

Does optimal throughput lead to low bandwidth efficiency?

In order to find out whether achieving optimal throughput
sacrifices bandwidth efficiency, we have conducted perfor-

mance comparisons between optimal throughput multicast and
single tree multicast. In the latter case, we compute thewidest
Steiner tree, which has the highest throughput from all possible
multicast trees. The throughput of a tree is the lowest capacity
of its links. We choose the tree with the highest throughput
rather than the one that is most bandwidth efficient, since the
latter is equivalent to the minimum Steiner tree problem, which
is hard to compute or to approximate. Even when we can find
such a bandwidth efficient tree, it may have an exceedingly
low throughput, which is not practical for data transmissions.

0

10

20

30

40
Heavy−tailed link capacity

10 50 100 200 300 400 500

O
pt

im
al

 th
ro

ug
hp

ut
 (

K
bp

s)

0

20

40

60

80
Heavy−tailed link capacity

10 50 100 200 300 400 500

B
an

dw
id

th
 e

ffi
ci

en
cy

 (
%

)

0

10

20

30

40
Constant link capacity

10 50 100 200 300 400 500
0

20

40

60

80
Constant link capacity

10 50 100 200 300 400 500

Number of nodes in the network

cFlow
Widest tree

Fig. 8. Achievable throughput and bandwidth efficiency: a comparison
between the optimal throughput multicast (cFlow LP) and the widest Steiner
tree.

In Fig. 8, we compare both achievable throughput and
bandwidth efficiency between the two approaches. Bandwidth
efficiency is computed as the total receiving rate at all receivers
divided by the total bandwidth consumption. We tested two
groups of networks, one with variable link capacity conform-
ing to the heavy-tailed distribution, the other with constant
link capacity. For the variable link capacity case, optimal
throughput is higher than the widest Steiner tree throughput by
a factor of over2 on average, showing the advantage of using
the optimal transmission strategy computed with thecFlowLP,
beyond a single multicast tree. Interestingly, the bandwidth ef-
ficiency of optimal throughput multicast also outperforms that
of the widest Steiner tree multicast. The widest Steiner tree
insists to use links with the highest bandwidth possible, and
therefore may result in rather long tree branches, especially
when the network size is large. For the constant link capacity
case, the difference between the optimal and widest Steiner
tree throughput becomes even larger. Every tree in this casehas
the same throughput, therefore the “widest” selection criterion
becomes irrelevant. However, the difference in bandwidth
efficiency decreases, since it is no longer necessary to include
long tree branches to achieve the maximum tree throughput.



VI. CONCLUDING REMARKS

The main problem we have studied in this paper is to
compute and achieve optimal throughput in data networks,
in the general case of undirected communication links. We
have been pleasantly surprised at how results from network
coding are able to facilitate the design of efficient solutions
to this fundamental problem that was previously viewed as
very hard. We also show the counter-intuitive conclusion
that, the most significant benefit of network coding is not to
achieve higher optimal throughput, but to make it feasible
to achieve such optimality in polynomial time. We show
that such efficient algorithms may be designed for multiple
communication sessions of a variety of types, and for the
more realistic model of overlay networks. Simulation studies
also suggest that, overlay multicast techniques may approach
optimal multicast throughput quite well.
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