
Understanding the Performance Gap between
Pull-based Mesh Streaming Protocols

and Fundamental Limits
Chen Feng, Baochun Li Bo Li

Dept. of Electrical and Computer Engineering Dept. of Computer Science
University of Toronto Hong Kong University of Science & Technology

Abstract—Pull-based mesh streaming protocols have recently
received much research attention, with successful commercial
systems showing their viability in the Internet. Despite the
remarkable popularity in real-world systems, the fundamental
properties and limitations of pull-based protocols are not yet
well understood from a theoretical perspective, as there exists
no prior work that studies the performance gap between the
fundamental limits and the actual performance. In this paper, we
develop a unified framework based on trellis graph techniques
to mathematically analyze and understand the performance of
pull-based mesh streaming protocols, with a particular focus
on such a performance gap. We show that there exists a
significant performance gap that separates the actual and optimal
performance of pull-based mesh protocols. Moreover, periodic
buffer map exchanges account for most of this performance gap.
Our analytical characterization of the performance gap brings us
not only a better understanding of several fundamental tradeoffs
in pull-based mesh protocols, but also important insights on
the design of practical streaming systems that can achieve high
streaming rates and short initial buffering delays.

I. I NTRODUCTION

Live peer-to-peer (P2P) streaming has recently witnessed
unprecedented growth on the Internet, delivering live stream-
ing content to millions of users at any given time. The es-
sential advantage of P2P streaming is to dramatically increase
the number of peers a streaming channel may sustain with
dedicated streaming servers. Intuitively, as participating peers
contribute their upload bandwidth capacities to serve one
another in the same channel, the load on dedicated streaming
servers is significantly mitigated.

With a large number of P2P streaming protocols proposed,
they generally fall into two strategic categories.Push-based
tree streamingstrategies (e.g., [1]) organize participating peers
into one or more multicast trees, and disseminate streaming
content along these trees. In contrast, inpull-based mesh
streamingstrategies (e.g., [2]), the streaming content is pre-
sented as a series ofsegments, each representing a short
duration of playback. Every peer maintains a list of neigh-
boring peers, andperiodically exchanges segment availability
information of streaming buffers (often referred to asbuffer
maps) with its neighboring peers. Based on such information,

This work was supported in part by Bell Canada through its Bell University
Laboratories R&D program. Bo Li’s research was supported in part by grants
from RGC under the contracts 615608, 616207 and 616406, by a grant
from NSFC/RGC under the contract NHKUST603/07, and by a grant from
HKUST under the contract RPC06/07.EG27.

segments arepulled from appropriate neighbors, in order to
meet their playback deadlines. Compared to push-based tree
strategies, pull-based mesh strategies take advantage of the
philosophy thatgossipingsegment availability is more resilient
to peer dynamics and simpler to implement, which is com-
monly adopted in BitTorrent-like file swarming systems. How-
ever, such an advantage is achieved at the cost of increased
delay of distributing streaming content to all participating
peers, due to delays caused by periodic buffer map exchanges
[3]. Nevertheless, most real-world systems (e.g.,PPLive) are
implemented using pull-based mesh strategies, mainly due to
their simplicity.

Despite the remarkable popularity in real-world systems, a
number of fundamental questions on pull-based mesh proto-
cols are not yet well understood from a theoretical perspective:
What are the fundamental limits of the performance of pull-
based mesh protocols? How large is the gap between the
fundamental limits and the actual performance? What factors
account for most of the gap separating the actual and optimal
performance of pull-based mesh protocols? In this paper, we
seek to mathematically analyze and understand the perfor-
mance of pull-based mesh protocols, with a particular focus
on these important questions. To achieve this objective, we
have developed a unified theoretical framework based on the
concept oftrellis graphs [4] and provided a number of new
analytical results along this direction.

With trellis graph techniques that have been traditionally
used in the network coding literature [4], we have unified
the treatment on the analysis of the fundamental limits and
the actual performance of pull-based mesh protocols. This
provides a solid theoretical foundation for the characterization
of the performance gap between the fundamental limits and
the actual performance. We perform an in-depth study of
several important factors that account for the performancegap
and quantify their impact on the performance of pull-based
mesh protocols. Our analytical results show that there exists a
significant performance gap between the fundamental limits
and the actual performance of pull-based mesh protocols.
Moreover, periodic buffer map exchanges account for most
of the gap that separates the actual and optimal performance.
To our knowledge, there has been no existing work in the
literature that provides a thorough analytical understanding of
pull-based mesh protocols, with a particular focus on both
fundamental limits and the performance gap.

The remainder of the paper is structured as follows. In
Sec. II, we highlight our original contributions in the context
of related work. Sec. III presents our system model along with
fundamental constraints in P2P streaming systems. In Sec. IV,
we generalize several existing results on the fundamental limits
of pull-based mesh protocols. Sec. V performs an in-depth
study of important factors that account for the performance
gap. Finally, Sec. VI concludes the paper.

II. RELATED WORK

Coolstreaming [2] has pioneered a promising practice of
pull-based mesh streaming protocols, which uses the basic
concepts ofgossipingand swarming in file sharing systems.
Salient advantages of pull-based mesh streaming protocols
include the simplicity and resilience to peer dynamics, which
make them the choice of many real-world streaming systems.
Due to the remarkable popularity, pull-based streaming pro-
tocols have received considerable research attention in recent
years, with a large number of new protocols proposed (e.g.,
[3], [5], [6], [7], [8], [9]).

Rather than designing a new streaming protocol and trying
to evaluate the design with empirical studies (e.g.,Coolstream-
ing+ [5], [6] and GridMedia [3], [7]), this paper focuses
on a thorough analytical understanding on the fundamen-
tal properties and limitations of pull-based mesh protocols.
Rather than developing an elaborate algorithm to optimize the
streaming rate (e.g., [8], [9]), this paper focuses on exploring
the performance gap that separates the actual and optimal
performance of pull-based mesh protocols.

With respect to fundamental limits of pull-based mesh
streaming protocols, the maximum sustainable streaming rate
[10] and minimum delay bound [11] have been studied, with
centralized scheduling algorithms proposed to approach the
optimal values. Our work first generalizes the minimum delay
bound in [11] by relaxing the assumption that the upload
capacity of each peer should be divisible by the streaming
rate. We then apply this result to derive tighter bounds on the
maximum sustainable streaming rate.

Recently, Liuet al. [12] investigated the fundamental limits
of push-based tree streaming protocols. In particular, they
studied the effects of restrictions on the number of neighbors
each peer can have. They derived several performance bounds
on the maximum streaming rate, minimum server load, and
minimum tree depth. They also proposed centralized tree-
constructing algorithms to achieve these bounds. Our work is
in parallel with theirs in that our focus is on pull-based mesh
streaming protocols, which are widely adopted in real-world
streaming systems.

More importantly, our work not only provides new and
tighter performance bounds for pull-based mesh streaming
protocols, but also explores the performance gap by examining
the effects of periodic buffer map exchanges (i.e., gossiping)
and lack of centralized scheduling, which are essential features
of pull-based mesh protocols that should not be ignored.

There also exist a small number of analytical papers on
the performance modeling and analysis of P2P streaming

protocols. For instance, Zhouet al. [13] developed a simple
stochastic model for streaming systems using pull-based mesh
protocols. With this model, they evaluated and compared three
different segment selection strategies. However, they didnot
take into account the feature of periodic buffer map exchanges.
In contrast, we have considered this feature in our theoretical
framework and demonstrated that it indeed plays a crucial role
in the performance of pull-based mesh protocols.

Bonald et al. [14] studied several push-based protocols
and proved that some of them can achieve near-optimal rate
and delay in static streaming systems. Different from their
work, we investigate the performance of pull-based protocols
in dynamic streaming systems, with a particular focus on
the performance gap between the fundamental limits and the
actual performance.

III. SYSTEM MODEL AND FUNDAMENTAL CONSTRAINTS

In this section, we present our mathematical model for
P2P streaming systems, including the underlying assumptions
and the key notations summarized in Table I. Consider a
streaming system withN participating peers. In accordance
with measurement studies of existing P2P systems (e.g., [15]),
we assume peer upload capacities are the onlybottlenecksin
the streaming system. LetUi denote the upload capacity of
peeri (i ∈ {1, 2, . . . , N}). For a given streaming rateR, we
define therelative capacityui of peer i as theratio of the
upload capacityUi to the streaming rateR. Let Up be the
average peer upload capacity andup be the relative average
peer capacity, which is defined as the ratio of the average peer
upload capacityUp to the streaming rateR.

We assume there is only one streaming server in the system
with upload capacityUs. If multiple streaming servers exist in
the system, they can be regarded as asuper streaming server
with upload capacityUs equaling to the total upload capacities.
The relative server capacityus is defined as theratio of the
server upload capacityUs to the streaming rateR.

Without loss of generality, we assume time isslotted in
the sense that it takes one time slot to playback a segment.
We further assume peeri can send⌊ui⌋ segments per time
slot, plus one additional segment with probabilityui − ⌊ui⌋,
corresponding to its relative capacityui. Similarly, the stream-
ing server can send⌊us⌋ segments per time slot, plus one
additional segment with probabilityus − ⌊us⌋, corresponding
to the relative server capacityus.

TABLE I
KEY NOTATIONS IN THE SYSTEM MODEL

N Number of peers in the system.
R Streaming rate.
Ui Upload capacity of peeri.
ui Relative capacity of peeri (= Ui/R).
Up Average peer upload capacity.
up Relative average peer capacity(= Up/R).
Us Server upload capacity.
us Relative server capacity(= Us/R).
B Number of segments in a buffer.

Now we discuss several fundamental constraints and their
implications for P2P streaming systems, which are instrumen-
tal to establish an in-depth understanding of pull-based mesh
protocols. First of all, we observe thatthe total bandwidth
consumption should not be greater than the total bandwidth
supply. This leads to the following lemma, which has been
proved in [10].

Lemma 1:For a streaming system with given server upload
capacityUs and average peer upload capacityUp, the maxi-
mum sustainable streaming rateRmax has the following upper
bound:

Rmax ≤ Up +
Us

N
,

whereN is the number of peers in the system.

In particular, if N tends to infinity, then the upper bound
in Lemma 1 reduces toRmax ≤ Up. In other words, the
relative average peer capacityup satisfiesup ≥ 1 in large-
scale streaming systems.

Another fundamental constraint for P2P streaming systems
is as follows:a peer cannot upload a segment until it completes
the download of this segment. As shown in [11], this constraint
sets up a limit on how fast a segment can be disseminated to all
peers in the system. The special case of homogeneous upload
capacity withup = 1 has been discussed in both [11] and
[14]. Here we consider the general homogeneous case where
ui = up ≥ 1 for all i ∈ {1, 2, . . . , N}. (We refer readers to
our extended manuscript [16] for the discussions on several
typical heterogeneous cases.)

Without loss of generality, we assume only one peer has
this segment at the beginning of time slot0. Afterwards, par-
ticipating peers with this segment cooperatively disseminate
it to other peers subject to their upload capacities. We are
particularly interested in the following question:What is the
minimum number of time slots it takes for this segment to
reach all N peers in the system?

We observe that such a segment dissemination process can
be well modeled by abranching process. More specifically, let
Zn denote the number of peers that have this segment at the
beginning of time slotn. We know that{Zn, n = 0, 1, . . .} is
a branching process, withZ0 = 1 and E[Z1] = 1 + up. We
define the delay functionD(k) as the minimum number of
time slots it takes for at leastk peers to receive this segment.
More precisely,D(k) = min{n : Zn ≥ k}, for 1 ≤ k ≤ N .
We are interested in the asymptotic behavior ofD(k), when
k tends to infinity.

Lemma 2:Let D(k) = min{n : Zn ≥ k} be the minimum
delay for at leastk peers to receive a particular segment. Then
it holds almost surely that

D(k) ≈ ⌈logm k⌉,

whenk tends to infinity, wherem = E[Z1] = 1 + up.

Proof: Let Wn = Zn/mn, n = {0, 1, . . .}. Kesten and
Stigum [17] proved that ifm > 1 and E[Z1 log Z1] < ∞,
then the random variables{Wn} converge almost surely to a

random variableW , for which

E[W] = 1, V ar[W] =
V ar[Z1]

m2 −m
.

It follows that
ZD(k)

mD(k)
→W,

almost surely ask →∞. Therefore,

W

m
←

ZD(k)−1

mD(k)
<

k

mD(k)
≤

ZD(k)

mD(k)
→W.

In other words,

logm k − logm W ≤ D(k) ≤ logm k − logm W + 1.

Finally, note thatlogm k ≫ logm W with high probability
whenk is sufficiently large. We thus have

D(k) ≈ ⌈logm k⌉,

for sufficiently largek.
Lemma 2 suggests that it takes at least⌈logm N⌉ time slots

for a particular segment to reach allN peers in the system,
when the populationN is very large. Intuitively, although
D(N) is a random variable in the branching process,D(N)
converges to⌈logm N⌉ as N increases, due to the effect of
law of large numbers.

IV. A STUDY OF FUNDAMENTAL L IMITS

In this section, we proceed to the fundamental limits of
pull-based mesh protocols with regard to several important
performance metrics.First, an initial buffering delaymust be
experienced by a peer when it first joins or switches to a new
channel. How do we improve user experience with the shortest
initial buffering delay?Second,if media segments do not arrive
in a timely fashion, they have to be skipped at playback. How
do we consistently sustain a high streaming rate with as few
playback skips as possible?

We believe these two performance metrics should be given
priority when evaluating a pull-based mesh protocol, as they
matter most to theuser satisfaction. We derive several fun-
damental limits on the initial buffering delay and sustainable
streaming rate. In particular, we focus on theflash crowdsce-
nario where most of the peers join the system at approximately
the same time, just after a new live event has been released.
We note that typically, in steady state, it is quite possible
to maintain a high streaming rate with short initial buffering
delays [6]. Hence, we have mainly focused on the flash crowd
scenario as it exercises the streaming systems the most. Our
theoretical framework may also be extended to other dynamic
scenarios of interest, such as peer churning.

The first question we are interested in is that:What is the
minimum initial buffering delay that should be experiencedby
a flash crowd ofN peers? Here we give a lower bound on
the minimum initial buffering delay. For simplicity, we assume
that the relative server capacityus is an integer number. This
is a reasonable assumption, as the total upload capacities of
commercial streaming servers are typically much larger than
the streaming rate [18] so that the round error can be ignored.

Lemma 3:Let Dmin denote the minimum initial buffering
delay that should be experienced by a flash crowd ofN peers,
for the given relative server capacityus and relative peer
capacityup. Then

Dmin ≥ ⌈logm(N/us)⌉+ 1,

wherem = 1 + up.
Proof: Lemma 2 suggests that it takes at least⌈logm N⌉

time slots for a particular segment to reach allN peers. It
follows that it takes at least⌈logm(N/us)⌉ time slots forus

copies of a particular segment to reach allN peers. Note that
one additional time slot is required for the streaming server
to upload theseus copies. Therefore, a lower bound for the
minimum initial buffering delayDmin is given by Dmin ≥
⌈logm(N/us)⌉+ 1.

It has been shown in [11] that this lower bound can be
achieved by a centralized snow-ball algorithm in the special
homogeneous case ofup = 1. We will show later that this
lower bound can also be achieved for the general homogeneous
case ofup ≥ 1. To this end, we introduce the concept oftrellis
graphsand develop a centralizedgraph labelingalgorithm that
achieves this lower bound. In the extended manuscript [16],we
extend this lower bound to several typical heterogeneous cases
and discuss how to achieve it using trellis graph techniques.

Trellis Graphs and the Graph Labeling Algorithm
The concept of trellis graphs has been originally proposed

in the network coding literature [4]. We now introduce it in the
context of P2P streaming systems. Given a streaming system,
the associated trellis graph is defined as follows. For each
peer p in the system andt ∈ {0, 1, . . .}, the trellis graph
includes a nodept, which corresponds to the associated peer
p at the beginning of time slott. Similarly, for the streaming
serverS and t ∈ {0, 1, . . .}, the trellis graph includes a node
St. Fig. 1 illustrates an example of the trellis graph for a
streaming system with6 peers. The trellis graph can be treated
as a detailed description of the original streaming system that
allows us to convenientlydesignandanalyzecertain streaming
protocols for the system.

We are now ready to introduce the graph labeling algorithm
that achieves the minimum delay bound. Consider a streaming
system withN participating peers. There is a single streaming
server which distributes media segments, in playback order, to
the N peers subject to its upload capacity. Each segment has
a unique sequence number, starting from1. In other words,
the streaming server sends segmenti to a number ofus peers
during time sloti− 1.

The label on the nodept in the trellis graph represents
the newest segment (i.e., the segment of the largest sequence
number) in the playback buffer on peerp at the beginning of
time slot t. When peerp has a chance to serve others during
time slot t, it would send the segment corresponding to the
label on the nodept. In other words, a peer always selects
the newest segment in the buffer to serve others in our graph
labeling algorithm.

The basic idea behind our graph labeling algorithm is
simple. The minimum delay bound can be achieved, if each

node in the trellis graph is appropriately labeled according to
certain patterns. We are particularly interested in such labeling
patterns that achieve the minimum delay bound.

To this end, we introduce the following notations. Letmi(t)
denote the number of labeli on the nodes in the trellis graph
at the beginning of time slott. Denote bySi(t) the set of
peers that have labeli at the beginning of time slott. Clearly,
we have|Si(t)| = mi(t). Algorithm 1 specifies the evolution
patterns for{mi(t)} and {Si(t)} that achieve the minimum
delay bound.

Algorithm 1 Graph Labeling Segment Scheduling Algorithm
1. Compute the minimum delay boundDmin.

Here,Dmin = ⌈logm(N/us)⌉+ 1.
2. Set current time slott = 1.
3. Setp = up − ⌊up⌋.
4. Initialize mi(1) andSi(1). Set

mi(1) =

{

us, if i = 1,
0, otherwise,

Si(1) =

{

{1, 2, . . . , us}, if i = 1,
∅, otherwise.

5. while current time slott < the maximum time slotdo
6. Sets = t−Dmin + 2.
7. Computemi(t + 1) for eachi as follows:
8. if i = t + 1 then
9. mi(t + 1) = us.

10. else if max{s + 1, 0} < i < t + 1 then
11. mi(t + 1) = (1 + ⌊up⌋)mi(t) + binornd(mi(t), p),

where binornd(M,p) is a binomial random number
with parametersM andp.

12. else if i = s + 1 > 0 then
13. mi(t + 1) = min{g(t + 1), (1 + ⌊up⌋)mi(t) +

binornd(mi(t), p)},
whereg(t + 1) = N −

∑t+1
j=s+2 mj(t + 1).

14. else
15. mi(t + 1) = 0.
16. end if
17. Label the nodes in the trellis graph at the beginning

of time slot t + 1 according tomi(t + 1) such that
{Si(t + 1)} are pairwise disjoint andSi(t) ⊆ Si(t + 1)
if mi(t) ≤ mi(t + 1).

18. Schedule the segment transmissions during time slott
according to{Si(t)} and{Si(t + 1)}.

19. Set t = t + 1.
20. end while

To illustrate how to achieve the minimum delay bound
using our graph labeling algorithm, we provide the following
example.

Example: We consider a streaming system withN = 6
peers. We illustrate the associated trellis graph in Fig. 1.We
setus = up = 1 in this example. It is easily verified that the
minimum delay bound is4 time slots in this example.

Initially, we havem1(1) = 1 andS1(1) = {1}. Hence, we

1

1

2

2

3

4

2

2

3

3

4

4

5

3

3

1

2

3

4

5

6

S

4

4

5

6

5

2

1

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

1

1

1

2

3

4

1 2 3 4 5 6

Fig. 1. An example to illustrate segment scheduling using the Graph Labeling
algorithm. We setN = 6 and us = up = 1 in this example. That is,
both the streaming server and the participating peer can upload only one
segment during each time slot. The minimum delay bound in this example is
4 time slots. This example shows that each segment can be disseminated to
all participating peers within the minimum delay bound (4 time slots) after it
is injected by the streaming server.

give label1 to peer1 at the beginning of time slot1. In the
first iteration (t = 1), we havem1(2) = 2 and m2(2) = 1.
We chooseS1(2) = {1, 2} andS2(2) = {3}. Clearly,S1(2)
andS2(2) are disjoint withS1(1) ⊆ S1(2), which satisfies the
requirement of Line17 in Algorithm 1. Thus, we give label1
to peer2 and label2 to peer3 at the beginning of time slot2.
Next we schedule the segment transmissions during time slot
1 according to the labels. As shown in Fig. 1, the streaming
server uploads segment2 to peer3 and peer1 uploads segment
1 to peer2.

In the second iteration (t = 2), we havem1(3) = 3,
m2(3) = 2, and m3(3) = 1. We chooseS1(3) = {1, 2, 6},
S2(3) = {3, 4}, and S3(3) = {5}, which satisfies the
requirement of Line17 in Algorithm 1. We label the nodes
based on{Si(3)} at the beginning of time slot3 and schedule
the segment transmissions during time slot2 (see Fig. 1 for
details). We repeat the iteration process in Algorithm 1, which
results in a trellis graph with a segment scheduling scheme as
shown in Fig. 1.

TABLE II
DOWNLOADING SEGMENTS ONEACH PARTICIPATING PEER

Participating PeersTime Slot
1 2 3 4 5 6

0 1
1 1 2
2 2 1, 3 1
3 2, 4 2 1 1 3
4 4 3, 5 3 2 2
5 3 3 5 4, 6 4

Now we verify that the minimum delay bound has been
achieved with no playback skips in this example. We focus on
the downloading process on each participating peer. Table II
shows the downloading segments on each participating peer
during each time slot. It is easily verified that each segmentcan
be disseminated to all participating peers within the minimum
delay bound (4 time slots) after it is injected by the streaming
server.

The correctness of our graph labeling segment scheduling
algorithm is shown by the following theorem.

Theorem 1:If the relative peer capacityup is an integer
number, the minimum delay bound can be achieved with no
playback skips. Otherwise, the minimum delay bound can be
achieved with some playback skips.

Due to space constraints, we omit the proof here. Interested
readers are referred to our extended manuscript [16]. The key
idea of the proof is to show that the minimum delay bound
can be achieved if Line17 and18 in Algorithm 1 are feasible
and then prove the feasibility of Line17 and 18. In [16],
we also quantify the playback skips when the relative peer
capacityup is a fraction. Theorem 1 generalizes the minimum
delay bound in [11] by allowingup to be a fraction. This
relaxation enables us to derive tighter bounds on the maximum
sustainable streaming rate, as shown by the following theorem.

Theorem 2:Let Rmax denote the maximum sustainable
streaming rate for a streaming system with given server
capacityUs and peer capacityUp, then

Rmax =

{

Up if N ≤ 2B−1 Us

Up
,

R∗ otherwise,
(1)

whereB is the number of segments in the playback buffer and
R∗ is the maximumR such that

(1 +
Up

R
)B−1 Us

R
≥ N.

.
Proof: Theorem 1 states that it takesDmin time slots for

a particular segment to arrive at almost all the peers in the
system. Therefore, the buffer sizeB should be no less than
the initial buffering delayDmin. In other words, we need to
enforce the following condition:

logm(N/us) + 1 ≤ B. (2)

After simple algebraic manipulations, we obtain an equiva-
lent condition as follows:

(1 +
Up

R
)B−1 Us

R
≥ N. (3)

If we set the streaming rateR to its maximum valueUp,
then condition (3) reduces to

2B−1 Us

Up

≥ N,

completing the proof.
The term2B−1 Us

Up
reflects thescalability of the streaming

system during a flash crowd. It suggests that a streaming
system can accommodate a flash crowd of scale less than
2B−1 Us

Up
with maximum streaming rate. Hence, the most

effective approach to improve the scalability of a streaming
system is to increase the buffer size on participating peers.

Previous performance bounds on the sustainable streaming
rate (e.g., [12]) have not taken into account the impact of
buffer size. In contrast, Theorem 2 characterizes how a limited
buffer size affects the sustainable streaming rate, as wellas the
scalability of the streaming system during a flash crowd. We
believe this would shed new insight on the design of playback
buffers for practical streaming systems.

V. UNDERSTANDING THEPERFORMANCEGAP

In this section, we identify several important factors that
separate the actual and optimal performance of pull-based
mesh protocols, and mathematically quantify their effectson
the initial buffering delay and sustainable streaming rate. We
mainly focus on the general homogenous case in this section
and refer the readers to [16] for the discussions on several
typical heterogeneous cases.

A. Effect of Periodic Buffer Map Exchanges

In practical streaming systems, the buffer maps are pe-
riodically exchanged so as to maintain an acceptable level
of overhead. We are interested in how periodic buffer map
exchanges affect the system performance in terms of the initial
buffering delay and sustainable streaming rate. Without loss of
generality, we assume buffer maps are exchanged everyT time
slots.

Theorem 3:Assume that buffer maps are exchanged every
T time slots. LetDmin(T) denote the corresponding minimum
initial buffering delay that should be experienced by a flash
crowd of N peers, for the given relative server capacityus

and relative peer capacityup. Then

Dmin(T) = T ⌈log(1+upT)(N/us)⌉+ T.

Due to space constraints, we omit the proof and interested
readers are referred to our extended manuscript [16]. The main
idea of the proof is to show that the minimum initial buffering
delay Dmin(T) can be achieved by ourgeneralized graph
labeling algorithm.

Note that the only constraint imposed by periodic buffer
map exchanges is that:a new segment on a peer cannot be
uploaded until the peer has a chance to exchange buffer maps
with its neighbors. Therefore, we need to schedule the segment
transmissions everyT time slots, corresponding to the period
of buffer map exchanges. We hence group every continuousT
segments into asegment group. More precisely, the segment
group of sequence numberi is defined as the segments{(i−
1)T +1, (i− 1)T +2, . . . , iT}. Thenewest segment groupon
peerp is defined as the segment group of the largest sequence
number in the playback buffer on peerp.

In the first stage of our generalized graph labeling algorithm,
we schedule the transmissions of segment groups rather than
individual segments. The output of the first stage of the
algorithm is a trellis graph with labels representing the newest
segment group on each node. In the second stage of our
generalized graph labeling algorithm, we further schedulethe
transmissions of individual segments within each segment
group based on the trellis graph obtained in the first stage
of the algorithm. The final output of our algorithm is a
trellis graph with labels representing individual segments being
uploaded. Note that a node in the final trellis graph may have
multiple labels, as the associated peer may upload several
different segments inT time slots.

In the extended manuscript [16], we formally describe our
generalized graph labeling algorithm and prove its correctness.

To illustrate how to schedule segments using our generalized
graph labeling algorithm, we provide the following example.

Example: We consider a streaming system withN = 6
peers. We setT = 2 andus = up = 1 in this example. That
is, buffer maps are exchanged every2 time slots and both the
streaming server and the participating peer can upload only
one segment during each time slot. It is easily verified that
the minimum initial buffering delayDmin(2) equals to6 time
slots in this example.

We schedule the segment transmissions every2 time slots
in this example, corresponding to the period of buffer map
exchanges. Hence, we change the time unit from1 time slot
to 2 time slots. The associated trellis graph is defined based
on the new time unit, as shown in Fig. 2.

1

2

3

4

5

6

S

k = 0 k = 1 k = 2 k = 3

3

4

34

34

5

6

7

5

6

56

56

8

1

2

3

12

12

4

1

2

12 34 56 78

Fig. 2. An example to illustrate segment scheduling using the generalized
Graph Labeling algorithm. We set the number of peersN to 6, the period of
buffer map exchangesT to 2. Both the relative server capacityus and the
relative peer capacityup are set to1. In this example, the minimum initial
buffering delay is6 time slots, and the time unit is2 time slots. This example
shows that each segment can be disseminated to all participating peers within
the minimum initial buffering delay (6 time slots or3 time units) after it is
injected by the streaming server.

TABLE III
DOWNLOADING SEGMENTS ONEACH PARTICIPATING PEER

Participating PeersTime Unit
1 2 3 4 5 6

0 1 2
1 2 1 3 4 1 2
2 3 4 1, 2, 4 1, 2, 3 2, 5 1, 6
3 4, 7 3, 8 5 6 3, 4, 6 3, 4, 5

Fig. 2 shows the final output of our generalized graph
labeling algorithm for this example: a trellis graph with labels
on each node representing the segments being uploaded. Ta-
ble III shows the downloading segments on each participating
peer during each time unit. It is easily verified that each
segment can be disseminated to all participating peers within
the minimum initial buffering delay (6 time slots or3 time
units) after it is injected by the streaming server.

Theorem 3 characterizes the performance gap in terms of the
initial buffering delay due to periodic buffer map exchanges.
This is closely related to the fundamental overhead-delay
tradeoff ([3], [7]). To minimize the initial buffering delay, each
peer has to exchange buffer maps in a timely fashion, resulting
in an excessive overhead. On the other hand, to reduce the
overhead, peers need to exchange buffer maps periodically,
leading to a considerable delay.

A by-product of Theorem 3 is the firstexactcharacterization
of the overhead-delay tradeoff during flash crowds. As the
overhead is inversely proportional to the period of buffer map
exchanges, the overhead-delay tradeoff can be quantified by
investigating how the initial buffering delay increases with the
period of buffer map exchanges, which has been answered
completely in Theorem 3. For large-scale streaming systems,
Theorem 3 can be restated as follows.

Corollary 1: Assume that buffer maps are exchanged every
T time slots. The corresponding minimum initial buffering
delay Dmin(T) that should be experienced by alarge flash
crowd can be approximated as follows:

Dmin(T)

Dmin
≈

T

logm(1 + upT)
,

wherem = 1 + up andDmin is the fundamental limit on the
initial buffering delay.

Proof: From Theorem 3, we have

Dmin(T) = T ⌈log(1+upT)(
N

us

)⌉+ T.

The fundamental limitDmin of the initial buffering delay is
given by

Dmin = ⌈log(1+up)(
N

us

)⌉+ 1.

Therefore,

Dmin(T)

Dmin
=

T ⌈log(1+upT)(N/us)⌉+ T

⌈log(1+up)(N/us)⌉+ 1

≈
T log(1+upT)(N/us)

log(1+up)(N/us)
(whenN is large)

=
T

logm(1 + upT)
.

Corollary 1 suggests that the performance gap in terms
of the initial buffering delay increases significantly withthe
period of buffer map exchanges. However, it does not depend
on the scale of the system. The periodic buffer map exchanges
also lead to a performance gap in terms of the sustainable
streaming rate, as shown by the following theorem.

Theorem 4:Assume that buffer maps are exchanged every
T time slots. LetRmax(T) denote the corresponding maxi-
mum sustainable streaming rate for a streaming system with
given server capacityUs and peer capacityUp. Then

Rmax(T) =

{

Up if N ≤ (1 + T)
B
T
−1 Us

Up
,

R∗(T) otherwise,
(4)

whereB is the number of segments in the buffer andR∗(T)
is the maximumR such that

(1 + T
Up

R
)

B
T
−1 Us

R
≥ N.

.
The proof of Theorem 4 is a straightforward extension of

that of Theorem 2. We omit the details here due to space
constraints. Theorem 4 suggests that under the constraint of

periodic buffer map exchanges, a streaming system can accom-
modate a flash crowd of scale less than(1+T)

B
T
−1 Us

Up
with the

maximum streaming rate. It unveils the overhead-scalability
tradeoff in pull-based mesh protocols during flash crowds. This
tradeoff has received little attention in the literature, as it is
not as intuitive as the overhead-delay tradeoff.

B. Effect of Lack of Centralized Scheduling

In practical streaming systems, the participating peers em-
ploy simple decentralized schemes in order to maintain the
simplicity. Intuitively, a simple decentralized scheme would
lead to a certain degree of performance loss, compared to
a sophisticated centralized streaming scheme that approaches
the optimal performance (e.g.,our generalized graph labeling
algorithm in Sec. V-A). Such performance loss is referred to
as the performance gap due to lack of centralized scheduling.
We are interested in characterizing this performance gap and
comparing it with the performance gap caused by periodic
buffer map exchanges.

The first question is that: What pull-based streaming scheme
should be analyzed in this section? We naturally prefer a
simple streaming scheme with minimum performance gap
to the optimal centralized scheme and minimum disruption
to traditional pull-based protocols that real-world streaming
systems use. To achieve this objective, we choose to make
minimum modifications to traditional pull-based protocols,
based on the insights from our generalized graph labeling
algorithm. Specifically, we slightly modify the segment se-
lection component of the pull-based protocol implemented in
[3] and keep other components of that protocol (e.g.,overlay
construction and peer selection) unchanged.

The pull-based protocol in [3] employs a random segment
selection strategy: when a downstream peer has a chance
to request a segment from an upstream peer, itrandomly
selects a missing segment in its own playback buffer. In
our simple pull-based streaming scheme, we adopt anewest
group first segment selection strategy: when a downstream
peer has a chance to request a segment from an upstream peer,
it randomly selects a segment in thenewest segment group
(defined in Sec. V-A) on that upstream peer, which is inspired
by our generalized graph labeling algorithm.

We again use trellis graph techniques to study the perfor-
mance of our simple streaming scheme. For ease of presen-
tation, we introduce the following notations. We say a peer
has segment groupi if it has at least one segment in that
group. The label on each node in the trellis graph represents
the newest segment group on the associated peer. Letmi(k)
denote the average number of labeli on the nodes in the trellis
graph at the beginning of time unitk. Let qi(k) denote the
average number of peers that have segment groupi at the
beginning of time unitk. We are interested in the evolution
patterns for{mi(k)} and{qi(k)} in the trellis graph.

Proposition 1: The evolution patterns for{mi(k)} and
{qi(k)} in the trellis graph using our simple streaming scheme

can be approximated by the following difference equations.

qk+1(k + 1) = usT

qk(k + 1) = qk(k) + upTmk(k)
(

1−
qk(k)

N

)

qk−i(k + 1) = qk−i(k) + upTmk−i(k)
(

1−
qk−i(k)

N

)

mk(k) = qk(k)

mk−i(k) = qk−i(k)

i−1
∏

j=0

(

1−
qk−j(k)

N

)

Proof: Consider the system performance during time unit
k. Note that segment groupk + 1 is the newest group on the
streaming server during this time unit. Thus, we haveqk+1(k+
1) = usT . Let us turn to segment groupk. Note that there are
a total ofmk(k) peers with labelk that would upload segment
groupk during this time unit. If a peer without any segment in
groupk receives such a segment during time unitk, then the
number of peers that have segment groupi at the beginning of
time unit k + 1 would be increased by1. Therefore, we have
qk(k+1) = qk(k)+upTmk(k)(1−qk(k)/N). This argument
also applies to other segment groups.

Now let us turn to the number of labels at the beginning of
time unit k. Note that a peer has labelk − i at the beginning
of time unitk if and only if segment groupk− i is the newest
group in its buffer. Assume that for any given peer, the event
that it has segment groupk − i is independent of the event
that it has any other segment group. Thus, the probability that
segment groupk− i is the newest group for a given peer can
be approximated by

∏i−1
j=0(1−qk−j(k)/N). We therefore have

mk−i(k) = qk−i(k)
∏i−1

j=0(1− qk−j(k)/N).
The following corollary characterizes the evolution of peers

that have a given segment group.
Corollary 2: For a given segment group, letf(k) denote the

fraction of peers that have this segment groupk time units later
after it is injected by the streaming server. Then the evolution
of f(k) can be approximated as follows.

f(1) = usT/N

f(i + 1) = f(i) + upTf(i)
(

1− f(i)
)

i−1
∏

j=1

(

1− f(j)
)

Fig. 3 compares the fraction of peers that have a given
segment group obtained by Corollary 2 and by running large-
scale simulations, in a number of different scenarios. We
observe that our analytical approximations correctly predict
the evolution behavior of the system, both qualitatively and
quantitatively. As seen in Fig. 3, the fraction of peers thathave
a given segment group increases almost exponentially under
our newest group first strategy. This implies that our simple
streaming scheme is able to approach the performance of our
generalized graph labeling algorithm, in which the fraction of
peers that have a given segment group increases exponentially.

Now we are ready to study the performance gap due to lack
of centralized scheduling and compare it with the performance
gap caused by periodic buffer map exchanges. To achieve

1 2 3 4 5 6 7
10

−4

10
−3

10
−2

10
−1

10
0

Time

F
ra
c
ti
o
n
 o
f
p
e
e
rs

sim. T = 4

ana. T = 4

sim. T = 2

ana. T = 2

(a)

1 2 3 4 5 6 7
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Time

F
ra
c
ti
o
n
 o
f
p
e
e
rs

sim. T = 6

ana. T = 6

sim. T = 3

ana. T = 3

(b)
Fig. 3. Validation of the difference equation approximations for our simple
pull-based streaming scheme. In (a), we set the relative server capacityus to
2 and the relative peer capacityup to 1.1. The number of peers in the system
is set to10000. In (b), we set the relative server capacityus to 2 and the
relative peer capacityup to 1.1. The number of peers in the system is set to
100000. We observe that our analytical approximations match the simulation
results quite well.

this objective, we compare the fundamental limits (referred
to as limit) obtained in Sec. IV with the performances of our
generalized graph labeling algorithm (referred to asperiod)
and our simple streaming scheme (referred to assimple). The
performance difference betweenlimit and period reflects the
performance gap due to periodic buffer map exchanges, as
buffer maps are periodically exchanged in our generalized
graph labeling algorithm. The performance difference between
period andsimplereflects the performance gap due to lack of
centralized scheduling, as explained earlier.

2 4 6 8 10
0

15

30

45

60

Period of buffer map exchanges

In
it
ia

l
b

u
ff
e

ri
n

g
 d

e
la

y

limit
period
simple

(a)

2 4 6 8 10
0

15

30

45

60

Number of peers (× 10
4
)

In
it
ia

l
b

u
ff
e

ri
n

g
 d

e
la

y

limit
period
simple

(b)

Fig. 4. Comparisons of the performance gap in terms of the initial buffering
delay. In (a), we set the relative server capacityus to 2 and the relative peer
capacityup to 1.1. The number of peers in the system is set to100000. We
vary the period of buffer map exchanges from2 time slots to10 time slots. In
(b), we set the relative server capacityus to 2 and the relative peer capacity
up to 1.1. The period of buffer map exchanges is set to4 time slots. We
vary the number of peers in the system from20000 to 100000. We observe
that periodic buffer map exchanges account for most of the gap that separates
the actual and optimal initial buffering delay in pull-basedmesh protocols. In
contrast, the lack of centralized scheduling only results in a small degree of
performance loss. Moreover, the performance gap increases significantly as
the period of buffer map exchanges increases, but is insensitive to the number
of peers in the system.

Fig. 4 illustrates the comparisons of the performance gap
between the fundamental limits and the actual performance
of pull-based mesh protocols in terms of the initial buffering
delay. From Fig. 4, we observe that periodic buffer map
exchanges account for most of the gap that separates the
actual and optimal initial buffering delay in pull-based mesh
protocols. In contrast, the lack of centralized schedulingonly
results in a small degree of performance loss. Moreover, we
observe that the performance gap increases significantly asthe
period of buffer map exchanges increases, but is insensitive to

the number of peers in the system. This observation agrees
with Corollary 1.

We now turn to the performance gap in terms of the sus-
tainable streaming rate. As shown in Fig. 5, we observe again
that periodic buffer map exchanges account for most of the
performance gap, while the lack of centralized scheduling only
leads to a small degree of performance loss. Furthermore, the
sustainable streaming rate deteriorates significantly after the
system scale exceeds a threshold and this threshold depends
critically on the period of buffer map exchanges. This confirms
the overhead-scalability tradeoff in Sec. V-A. Both Fig. 4
and Fig. 5 suggest that periodic buffer map exchanges play
a critical role in the actual performance of pull-based mesh
protocols and should deserve special treatment in the system
design. Moreover, simple pull-based streaming schemes with
fine tuned system parameters are good enough to achieve
high streaming rates and short initial buffering delays, asthe
lack of centralized scheduling only leads to a small degree of
performance loss.

10
4

10
5

10
6

0.6

0.7

0.8

0.9

1

Number of peers

S
u

s
ta

in
a

b
le

 s
tr

e
a

m
in

g
 r

a
te

limit
period (T = 2)
simple (T = 2)
period (T = 3)
simple (T = 3)

Fig. 5. Comparisons of the performance gap in terms of the sustainable
streaming rate. We set the server upload capacityUs to be 2 times of the
average peer upload capacityUp. We vary the number of peers in the system
from 12500 to 800000. We observe again that periodic buffer map exchanges
account for most of the performance gap, while the lack of centralized
scheduling only leads to a small degree of performance loss. Furthermore,
the sustainable streaming rate deteriorates significantly after the system scale
exceeds a threshold and this threshold depends critically on the period of
buffer map exchanges.

VI. CONCLUSION

The unique strength of pull-based mesh streaming protocols
is the simplicity, which makes them the choice of many real-
world streaming systems. The essential features of pull-based
mesh protocols include periodic buffer map exchanges and
lack of centralized scheduling. These features contributemost
to the simplicity of pull-based mesh protocols, but at the same
time, lead to a performance gap between the fundamental
limits and the actual performance.

In this paper, we have developed a unified framework based
on trellis graph techniques to mathematically analyze and
understand the performance of pull-based mesh protocols, with
a particular focus on such a performance gap. Our analytical
results show that there exists a significant performance gap
between the fundamental limits and the actual performance
of pull-based mesh protocols. Moreover, periodic buffer map
exchanges account for most of the gap that separates the actual
and optimal performance of pull-based mesh protocols. In

contrast, the lack of centralized scheduling only results in a
small degree of performance loss.

Our analytical characterization of the performance gap
brings us not only a better understanding of several fundamen-
tal tradeoffs in pull-based mesh protocols, but also important
insights on the design of practical streaming systems that
can achieve high streaming rates and short initial buffering
delays. For example, we give the first exact characterization
of the overhead-delay tradeoff in pull-based mesh protocols
during flash crowds. We further unveil the overhead-scalability
tradeoff that receives little attention in the literature.More
importantly, our analytical results suggest that simple pull-
based streaming protocols are good enough to achieve high
streaming rates and short initial buffering delays, with fine
tuned system parameters, such as the buffer size and the period
of buffer map exchanges.

REFERENCES

[1] V. Venkataraman, K. Yoshida, and P. Francis, “Chunkyspread: Hetero-
geneous Unstructured Tree-based Peer-to-Peer Multicast,” in Proc. of
IEEE International Conference on Network Protocols (ICNP), 2006.

[2] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “CoolStreaming/DONet: A
Data-Driven Overlay Network for Efficient Live Media Streaming,” in
Proc. of IEEE INFOCOM, 2005.

[3] M. Zhang, Q. Zhang, L. Sun, and S. Yang, “Understanding the Power
of Pull-based Streaming Protocol: Can We Do Better?”IEEE J. on Sel.
Areas in Communications, December 2007.

[4] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung, “Network Information
Flow,” IEEE Transactions on Information Theory, July 2000.

[5] B. Li, S. Xie, G. Y. Keung, J. Liu, I. Stoica, H. Zhang, and X. Zhang,
“An Empirical Study of the Coolstreaming+ System,”IEEE J. on Sel.
Areas in Communications, December 2007.

[6] B. Li, S. Xie, Y. Qu, G. Y. Keung, C. Lin, J. Liu, and X. Zhang, “Inside
the New Coolstreaming: Principles, Measurements and Performance
Implications,” in Proc. of IEEE INFOCOM, 2008.

[7] M. Zhang, Y. Xiong, Q. Zhang, and S. Yang, “A Peer-to-PeerNetwork
for Live Media Streaming: Using a Push-Pull Approach,” inProc. of
ACM Multimedia 2005, November 2005.

[8] M. Zhang, C. Chen, Y. Xiong, Q. Zhang, and S. Yang, “Optimizing the
Throughput of Data-Driven based Streaming in HeterogeneousOverlay
Network,” in Proc. of ACM Multimedia Modeling 2007, January 2007.

[9] L. Massoulie, A. Twigg, C. Gkantsidis, and P. Rodriguez,“Randomized
Decentralized Broadcasting Algorithms,” inProc. of IEEE INFOCOM,
2007.

[10] R. Kumar, Y. Liu, and K. W. Ross, “Stochastic Fluid Theoryfor P2P
Streaming Systems,” inProc. of IEEE INFOCOM, 2007.

[11] Y. Liu, “On the Minimum Delay Peer-to-Peer Video Streaming: How
Realtime Can It Be?” inProc. of ACM Multimedia, 2007.

[12] S. Liu, R. Z. Shen, W. Jiang, J. Rexford, and M. Chiang, “Performance
Bounds for Peer-Assisted Live Streaming,” inProc. of ACM SIGMET-
RICS, 2008.

[13] Y. Zhou, D. M. Chiu, and J. C. Lui, “A Simple Model for Analyzing
P2P Streaming Protocols,” inProc. of IEEE International Conference
on Network Protocols (ICNP), 2007.

[14] T. Bonald, L. Massoulie, F. Mathieu, D. Perino, and A. Twigg, “Epi-
demic Live Streaming: Optimal Performance Trade-Offs,” inProc. of
ACM SIGMETRICS, 2008.

[15] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang, “Measure-
ments, Analysis, and Modeling of BitTorrent-like Systems,” in Proc. of
Internet Measurement Conference, 2005.

[16] C. Feng and B. Li, “Understanding the Performance Gap be-
tween Pull-based Mesh Streaming Protocols and Fundamental Limits,”
http://www.eecg.toronto.edu/∼bli/techreports/gap.pdf, ECE, University
of Toronto, Tech. Rep., 2008.

[17] H. Kesten and B. Stigum, “A Limit Theorem for Multidimensional
Galton-Watson Processes,”Ann. Math. Statist., vol. 37, 1966.

[18] C. Wu, B. Li, and S. Zhao, “Multi-channel Live P2P Streaming:
Refocusing on Serves,” inProc. of IEEE INFOCOM, 2008.

