
Celerity: Towards Low-Delay Multi-Party Conferencing
over Arbitrary Network Topologies

Xiangwen Chen
Dept. of Information

Engineering
The Chinese University of

Hong Kong

Minghua Chen
Dept. of Information

Engineering
The Chinese University of

Hong Kong

Baochun Li
Dept. of Electrical and
Computer Engineering
University of Toronto

Yao Zhao
Alcatel-Lucent

Yunnan Wu
Facebook Inc.

Jin Li
Microsoft Research at

Redmond

ABSTRACT

In this paper, we attempt to revisit the problem of multi-party con-
ferencing from a practical perspective, and to rethink the design
space involved in this problem. We believe that an emphasis on
low end-to-end delays between any two parties in the conference
is a must, and the source sending rate in a session should adapt
to bandwidth availability and congestion. We present Celerity, a
multi-party conferencing solution specifically designed to achieve
our objectives. It is entirely Peer-to-Peer (P2P), and as such elim-
inating the cost of maintaining centrally administered servers. It
is designed to deliver video with low end-to-end delays, at quality
levels commensurate with available network resources over arbi-
trary network topologies where bottlenecks can be anywhere in the

network. This is in contrast to commonly assumed P2P scenarios
where bandwidth bottlenecks reside only at the edge of the net-
work. The highlight in our design is a distributed and adaptive rate
control protocol, that can discover and adapt to arbitrary topologies
and network conditions quickly, converging to efficient link rate al-
locations allowed by the underlying network. In accordance with
adaptive link rate control, source video encoding rates are also dy-
namically controlled to optimize video quality in arbitrary and un-
predictable network conditions. We have implemented Celerity in
a prototype system and demonstrate its superior performance in a
local experimental testbed.

Categories and Subject Descriptors

C.2.4 [COMPUTER-COMMUNICATION NETWORKS]: Dis-
tributed System—Distributed applications; H.4.3 [INFORMATION

SYSTEMS APPLICATIONS]: Communications Applications—
video conferencing

General Terms:Algorithm, Design, Experimentation, Performance

Keywords:Peer-to-peer, Multi-party video conferencing, Low de-
lay, Utility maximization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’11, June 1–3, 2011, Vancouver, British Columbia, Canada.
Copyright 2011 ACM 978-1-4503-0752-9/11/06 ...$10.00.

1. INTRODUCTION
With the availability of front-facing cameras in high-end smart-

phone devices (such as the Samsung Galaxy S and the iPhone 4),
notebook computers, and HDTVs, multi-party video conferencing,
which involves more than two participants in a live conferencing
session, has attracted a significant amount of interest from the in-
dustry. Skype, for example, has recently launched a monthly-paid
service supporting multi-party video conferencing in its latest ver-
sion (Skype 5) [1]. Skype video conferencing has also been re-
cently supported in a range of new Skype-enabled televisions, such
as the Panasonic VIERA series, so that full-screen high-definition
video conferencing can be enjoyed in one’s living room. We argue
that these new conferencing solutions have the potential to provide
an immersive human-to-human communication experience among
remote participants. Such an argument has been corroborated by
many industry leaders: Cisco predicts that video conferencing and
tele-presence traffic will increase ten-fold between 2008-2013 [2].

While traffic flows in a live multi-party conferencing session are
fundamentally represented by a multi-way communication process,
today’s design of multi-party video conferencing systems are engi-
neered in practice by composing communication primitives (e.g.,

transport protocols) over uni-directional feed-forward links, with
primitive feedback mechanisms such as various forms of acknowl-
edgments in TCP variants or custom UDP-based protocols. We
believe that a high-quality protocol design must harness the full po-
tential of the multi-way communication paradigm, and must guar-
antee the stringent requirements of low end-to-end delays, with the
highest possible source coding rates that can be supported by dy-
namic network conditions over arbitrary network topologies over
the Internet.

From the industry perspective, known designs of commercially
available multi-party conferencing solutions are either largely server-
based, e.g., Microsoft Office Communicator, or are separated into
multiple point-to-point sessions (this approach is called Simulcast),
e.g., Apple iChat. Server-based solutions are susceptible to cen-
tral resource bottlenecks, and as such scalability becomes a main
concern when multiple sessions are to be supported concurrently.
In the Simulcast approach, each user splits its uplink bandwidth
equally among all receivers and streams to each receiver separately.
Though simple to implement, Simulcast suffers from poor quality
of service. Specifically, peers with low upload capacity are forced
to use a low video rate that degrades the overall experience of the
other peers.

In the academic literature, there are recently several studies on
Peer-to-Peer (P2P) video conferencing from a utility maximization
perspective [3] [4] [5] [6] [7]. Among them, Mutualcast [3] and
Chen et al. [4] may be the most related ones to this work. They
have tried to support content distribution and multi-party video con-
ferencing in multicast sessions, by maximizing aggregate application-
specific utility and the utilization of node uplink bandwidth in P2P
networks. Depth-1 and depth-2 tree topologies have been con-
structed using tree packing, and rate control was performed in each
of the tree-based one-to-many sessions. However, they only con-
sidered the limited scenario where bandwidth bottlenecks reside at
the edge of the network, while in practice bandwidth bottlenecks
can easily reside in the core of the network.

In this paper, we reconsider the design space in multi-party video
conferencing solutions, and present Celerity, a new multi-party con-
ferencing solution specifically designed to maintain low end-to-end
delays while maximizing source coding rates in a session. Celerity

is designed to operate in a pure P2P manner, and as such elimi-
nating the cost of maintaining centrally administered servers. It is
designed to deliver video at quality levels commensurate with avail-
able network resources over arbitrary network topologies, while
maintaining low end-to-end delays. The highlight in our design
is a distributed and adaptive rate control protocol, that can discover
and adapt to arbitrary topologies and network conditions quickly,
converging to efficient link rate allocations allowed by the underly-
ing network. In accordance with adaptive link rate control, source
video encoding rates are also dynamically controlled to optimize
video quality in arbitrary and unpredictable network conditions.
We have implemented a prototype Celerity system and demonstrate
its superior performance in a local experimental testbed.

2. PROBLEM FORMULATION AND CELER-

ITY OVERVIEW

2.1 Problem Formulation
Consider a network modeled as a directed graph G = (N ,L),

where N is the set of all physical nodes, including conference par-
ticipating nodes and other intermediate nodes such as routers, and
L is the set of all physical links. Each link l ∈ L has a nonnegative
capacity Cl and a nonnegative propagation delay dl.

Consider a multi-party conferencing system over G. We use V ⊆

N to denote the set of all conference participating nodes. Every
node in V is a source and at the same time a receiver for every other
nodes. Thus there are totally M , |V | sessions of (audio/video)
streams. Each stream is generated at a source node, say v, and
needs to be delivered to all the rest nodes in V − {v}. We use E

to denote the set of directed overlay links between these nodes.
Note an overlay link (u, v) means u can send data to v by setting up
TCP/UDP connections. For all e ∈ E and l ∈ L, we define

al,e =

1, if overlay link epasses physical link l;

0, otherwise.
(1)

Remark: In our model, the capacity bottleneck can be anywhere
in the network, not necessarily at the edge of the network. This is in
contrast to a popular assumption made in previous P2P works that
the uplinks/downlinks of participating nodes are the only capacity
bottleneck.

A fundamental system design problem is to maximize the application-
specific performance, by properly allocating the overlay link rates

to the streams subject to physical link capacity constraints:

max
c≥0

M
∑

m=1

Um (Rm(cm)) (2)

s.t. a
T
l (c1 + . . . + cM) ≤ Cl, ∀l ∈ L, (3)

The variables in the above optimization are c = [c1, . . . , cM]T ,
where cm is the vector of overlay link rates allocated to stream m

(with one entry for each overlay link). Rm(cm) denotes the stream
rate that we obtain by using resource cm within the given delay

bound, and is a concave function of cm as we will show in Corol-
lary 1 in the next section. The constraint in (3) is the physical link
capacity constraint, where a

T
l

c describes the load on the physical
link l incurred by overlay traffic c.

The objective is to maximize the aggregate system utility. Um(Rm)
is an increasing and strictly concave function that maps the stream
rate to an application-specific utility. For example, a commonly
used video quality measure Peak Signal-to-Noise Ratio (PSNR)
can be modeled by using a logarithmic function as the utility [4].

Remarks: Simulcast can be thought as solving the problem MP

by using only the 1-hop tree to broadcast content within a session.
Mutualcast can be thought as solving a special case of the prob-
lem MP (with node uplinks being the only capacity bottleneck) by
packing only certain depth-1 and depth-2 trees within a session.

2.2 Celerity Overview
To achieve the maximum system utility, the Celerity system has

two main modules: (1) delay-bounded packet delivery at the high-
est possible source rate given known rates on each of the links (i.e.,
how to compute and achieve Rm(cm)); and (2) a link rate control

module to determine cm.
Video content delivery under known link constraints: This

problem is similar to the classic multicast problem, and packing
spanning (or Steiner) trees at the multicast source is a popular solu-
tion. However, the unique “delay-bounded” requirement in multi-
party conferencing makes the problem more challenging, and we
introduce a delay-bounded tree packing algorithm in this paper to
address this problem (detailed in Section 3).

Link rate control: Under our setting, the formulation in (2)–(3)
is a concave optimization problem. In principle, one can first infer
the network constraints and then solve the problem centrally. How-
ever, directly inferring the constraints potentially requires knowing
the entire network topology and is highly challenging.

In Celerity, instead of trying to learn the constraints directly, we
resort to adaptive and iterative algorithms for solving an approxi-
mate version of the problem given in (2)-(3) in a distributed way
(detailed in Section 4).

3. PACKING DELAY-BOUNDED TREES
Given the link rate vector cm, achieving the maximum broad-

cast/multicast stream rate under a delay bound is a challenging
problem. A general way to explore the broadcast/multicast rate
under delay bounds is to pack delay-bounded Steiner trees. How-
ever, such problem is NP-hard [8]. Moreover, the number of delay-
bounded Steiner trees to consider is in general exponential in the
network size.

In this paper, we pack 2-hop delay-bounded trees in an overlay
graph of session m, denoted by Dm, to achieve a good stream rate
under a delay bound. Note by graph theory notations, a 2-hop tree
has a depth at most 2. Packing 2-hop trees is easy to implement.
It also explores all overlay links between source and receiver and
between receivers, thus trying to utilize resource efficiently. In fact,
it is shown in [3, 4] that packing 2-hop trees suffices to achieve the

1
r

2
r

3
r

1
t

2
t 3

t

s

∞
∞

∞

Figure 1: Illustration of the directed acyclic sub-graph over which
we pack delay-bounded 2-hop trees.
maximum multicast rate for certain P2P topologies. We elaborate
our tree-packing scheme in the following.

We first define the overlay graph Dm. Graph Dm is a directed
acyclic graph with two layers; one example of such graph is illus-
trated in Fig. 1. In this example, consider a session with a source
s, three receivers 1, 2, 3. For each receiver i, we draw two nodes,
ri and ti, in the graph Dm; ti models the receiving functionality of
node i and ri models the relaying functionality of node i.

Suppose that the prescribed link bit rates are given by the vector
cm, with the capacity for link (i, j) being cm,(i, j). Then in Dm, the
link from s to ri has capacity cm,(s,i) , the link from ri to t j (with i , j)
has capacity cm,(i, j), and the link from ri to ti has infinite capacity. If
the propagation delay of an edge (i, j) exceeds the delay bound, we
do not include it in the graph. If the propagation delay of a two-hop
path s→ i→ j exceeds the delay bound, we omit the edge from ri

to t j from the graph. As a result, every path from s to any receiver
ti in the graph has a path propagation delay within the delay bound.

Over such 2-layer sub-graph Dm, we pack 2-hop trees connect-
ing the source and every receiver using the greedy algorithm pro-
posed in [9], which achieves the optimal throughput in multicast.
Below we simply describe the algorithm and more details can be
found in [9].

Assuming all edges have unit-capacity and allowing multiple
edges for each ordered node pair. The algorithm packs unit-capacity
trees one by one. Each unit-capacity tree is constructed by greedily
augmenting a tree edge by edge, similar to the greedy tree-packing
algorithm based on Prim’s algorithm. The distinction lies in the rule
of selecting the edge among all potential edges. The edge whose
removal leads to least reduction in the multicast capacity of the
residual graph is chosen in the greedy algorithm. Our tree-packing
algorithm is easy to implement.

Utilizing the special structure of the graphDm, we obtain perfor-
mance guarantee of the algorithm as follows.

Theorem 1. The tree-packing algorithm in [9] achieves the min-

imum of the min-cuts separating the source and receivers inDm and

is expressed as

Rm(cm) = min
j

∑

i

min{cm,(s,i), cm,(i, j)}. (4)

Furthermore, the algorithm has a running time of O(|V ||E|3).

Hence, our tree-packing algorithm achieves the maximum delay-
bounded multicast rate over the 2-layer subgraphDm. The achieved
rate Rm(cm) is a concave function of cm as summarized below.

Corollary 1. The delay-bounded multicast rate Rm(cm) obtained

by our tree-packing algorithm is equal to the minimum min-cut over

Dm, and thus is a concave function of the overlay link rates cm.

4. OVERLAY LINK RATE CONTROL

4.1 Packet Loss Rate Based Primal Subgradi-
ent Algorithm

The primal algorithm is derived by relaxing the constraints and
adding a penalty to the objective function whenever constraints are
violated. This leads to an unconstrained version of the original
problem, making it easier to solve.

Consider a penalized version of the problem in (2)-(3):

max
c≥0
U(c)

∆

=

M
∑

m=1

Um (Rm(cm)) −
∑

l∈L

∫

a
T
l

c

0

pl(y) dy, (5)

where
∫

a
T
l

c

0
pl(y) dy is the penalty associated with violating the ca-

pacity constraint of physical link l ∈ L, and we choose the price
function to be

pl(y)
∆

=
(y −Cl)+

y
dy, (6)

where (a)+ = max{a, 0}. If all the constraints are satisfied, then the
second term in (5) vanishes; if instead some constraints are vio-
lated, then we charge some penalty for doing so.

We seek to maximize U(c) as an approximation of the original
constrained optimization problem. With this choice of price func-
tion,U(c) is a linear combination of concave functions and is thus
concave. However, because Rm(cm) is the minimum min-cut of the
overlay graph Dm with link rates being cm, U(c) is not a differen-
tiable function [10].

For the unconstrained concave optimization problem with non-
differentiable objective function, we can solve it by using subgradi-
ent algorithms. To proceed with subgradient algorithm design, we
need to first compute subgradients ofU(c). The proposition below
presents a useful observation.

Proposition 1. A subgradient of U(c) with respect to cm,e for

any e ∈ E and m = 1, . . .M is given by

U′m (Rm)
∂Rm

∂cm,e

where ∂Rm

∂cm,e
represents a subgradient of Rm(cm) with respect to cm,e.

Based on the above observation, we apply the following subgradi-
ent algorithm to solve the problem in 5: ∀e ∈ E, m = 1, . . .M,

c(k+1)
m,e = c(k)

m,e + α(k)

U′m

(

R(k)
m

) ∂R
(k)
m

∂cm,e

−
∑

l∈L

al,e

(a
T
l

c
(k) −Cl)+

a
T
l

c
(k)

+

c
(k)
m,e

,

(7)

where α(k) is a positive step size for the k-th iteration, and function

[b]+a =

max(0, b), a ≤ 0;

b, a > 0.

We have the following observations to the control law in (7):

• It is known that
∑

l∈L al,e

(a
T
l

c−Cl)
+

a
T
l

c

can be interpreted as the

packet loss rate observed at overlay link e [11]. The intuitive
explanation is as follows. The term (a

T
l

c −Cl)+ is the excess

traffic rate offered to physical link l; thus
(a

T
l

c−Cl)
+

a
T
l

c

models the

fraction of traffic that is dropped at l. Assuming the packet
loss rates are additive (which is a reasonable assumption for

low packet loss rates), the total packet loss rate seen by the

overlay link e is given by
∑

l∈L al,e

(a
T
l

c−Cl)
+

a
T
l

c

.

• It turns out that the utility function, the subgradients, and
packet loss rate are sufficient statistics to update cm,e inde-
pendently of the updates of other link rates. This way, we
can solve the problem in (5) without knowing the physical
network topology and physical link capacities.

The subgradient method [12] maximizes a non-differentiable con-
cave function in a way similar to gradient methods for differen-
tiable functions — in each step, the variables are updated in the
direction of a subgradient. However, such a direction may not be
an ascent direction; instead, the subgradient method relies on a dif-
ferent property. If the variable takes a sufficiently small step along
the direction of a subgradient, then the new point is closer to the set
of optimal solutions.

We have the following convergence results for the algorithm in
(7), which is adapted from those for standard subgradient algo-
rithms [12].

Theorem 2. AssumeU∗ is the optimal value of the problem in

(5) and |U′m| is upper bounded by ū for all m = 1, . . . ,M. The

l2-norm of any subgradients of Rm(c
(k)
m) is upper bounded by ∆ =

ū2 |V |2|E|2 for all k. Thus,

• if α(k) = α is constant, then limk→∞

[

U∗ − maxi=1,...kU(c
(k))
]

≤

∆
2α.

• if α(k) → 0 or
∑∞

k=1 α
2(k) < ∞, and

∑∞
k=1 α(k) = ∞, then

limk→∞

[

U∗ −maxi=1,...kU(c
(k))
]

= 0.

In this paper, we choose a constant step size for easy implementa-
tion.

4.2 Computing Subgradient of Rm(cm)

A key to implementing the primal subgradient algorithm is to
obtain subgradients of Rm(cm). We first present some preliminaries
on subgradients, as well as concepts for computing subgradients
for Rm(cm).

Definition 1. Given a convex function f , a vector ξ is said to

be a subgradient of f at x ∈ dom f if

f (x′) ≥ f (x) + ξT (x′ − x), ∀x′ ∈ dom f ,

where dom f = {x ∈ Rn|| f (x)| < ∞} represents the domain of the

function f .

For a concave function f , − f is a convex function. A vector ξ is
said to be a subgradient of f at x if −ξ is a subgradient of − f .

Next, we define the notion of a critical cut. For session m, let
its source be sm and receiver set be Vm ⊂ V − {sm}. A partition of
the vertex set, V = Z ∪ Z̄ with sm ∈ Z and t ∈ Z̄ for some t ∈ Vm,
determines an sm-t-cut. Define

δ(Z) ,
{

(i, j) ∈ E|i ∈ Z, j ∈ Z̄
}

be the set of overlay links originating from nodes in set Z and going
into nodes in set Z̄. Define the capacity of cut (Z, Z̄) as the sum
capacity of the links in δ(Z):

ρ(Z) ,
∑

e∈δ(Z)

cm,e.

Definition 2. For session m, a cut (Z, Z̄) is an sm-Vm critical cut

if it separates sm and any of its receivers and ρ(Z) = Rm(cm).

1
h

1
t

2
t

s

� �

� �

� �

2
h

Figure 2: Critical cut example. Source s and its two receivers t1, t2

are connected over a directed graph. The number associated with a
link represents its link capacity.

We show an example to illustrate the concept of critical cut.
In Fig. 2, s is a source, and t1, t2 are its two receivers. The
minimum of the min-cuts among the receivers is 2. For the cut
({s, h1, h2, t1}, {t2}), its δ({s, h1, h2, t1}) contains links (h1, t2) and (h2, t2),
each having capacity one. Thus the cut ({s, h1, h2, t1}, {t2}) has a ca-
pacity of 2 and it is an s − (t1, t2) critical cut.

With necessary preliminaries, we turn to compute subgradients
of Rm(cm). Since Rm(cm) is the minimum min-cut of sm and its
receivers over the overlay graph Dm, it is known that one of its
subgradients can be computed in the following way [10].

• Find an sm-Vm critical cut for session m, denote it as (Z, Z̄).
Note there can be multiple sm-Vm critical cuts in graph Dm,
and it is sufficient to find any one of them.

• A subgradient of Rm(cm) with respect to cm,e is given by

∂Rm(cm)

∂cm,e

=

1, if e ∈ δ(Z);

0, otherwise.
(8)

In our system, these subgradients are computed by the source of
each session, after collecting the overlay-link rates from each re-
ceiver in the session. More implementation details are in Section 5.

5. PRACTICAL IMPLEMENTATION
Using the asynchronous networking paradigm supported by the

asynchronous I/O library (called asio) in the Boost C++ library,
we have implemented a prototype of Celerity, our proposed multi-
party conferencing system, with about 17, 000 lines of code in C++.

In our Celerity prototype implementation, all peers are to per-
form the following functions:

• Peers in broadcast trees forward packets received from its
upstream parent to its downstream children. Sufficient infor-
mation about downstream children in the tree is embedded
in the packet header, for a packet to become “self-routing”
from the source to all leaf nodes in a tree.

• Every 200 ms, each peer adjusts the rates of its incoming
links based on the link rate control algorithm, and then sends
them to their corresponding upstream senders for the new
rates to take effect.

• Every 300 ms, each peer sends the allocated rates of all its
outgoing links for each session to the source of the session.

Upon receiving allocated rates for all the links, the source of each
session uses the received link rates to pack a new set of delay-
bounded trees, and starts transmitting session packets along these
trees. When a source packs delay-bounded trees, it also calculates
one critical cut and the source sending rate for its session based on

�

�

�

�

��������

��������

	���

���

	���

���

	���

���

	���

���

Figure 3: Dumbbell topology of the experimental testbed. Two
conference participating nodes A and B are in one “office” and an-
other twos nodes C and D are in a different “office”. The two “of-
fices” are connected by directed links, each having a capacity of
480 kbps. Link propagation delays are negligible.

the allocated link rates. In addition, the source embeds the informa-
tion about the critical cut and the source sending rate in the header
of outgoing packets. When these packets are received, a peer learns
the source rate and whether a link belongs to the critical cut or not;
it then adjusts the link rate accordingly.

The calculation of critical cuts, i.e., the subgradient of Rm(Cm), is
the key to our implementation of the primal subgradient algorithm.
There can be multiple critical cuts in one session, but it is sufficient
to find any one of them. Since the source collects allocated rates
of all overlay links in its own session, it can calculate the min-cut
from the source to every receiver, and record the cut that achieves
the min-cut. Then, the source compares capacities of these min-
cuts, and the cut with the smallest capacity is a critical cut.

With respect to the utility function in our prototype implemen-
tation, the PSNR (peak-to-peak signal-to-noise ratio) metric is the
de facto standard criterion to provide objective quality evaluation
in video processing. We observed that the PSNR of a video stream
coded at a rate z can be approximated by a logarithmic function
β log(z + δ), in which a higher β represents videos with a larger
amount of motion [4]. δ is a small positive constant to ensure the
function has a bounded derivative for z ≥ 0. Due to this observa-
tion, we use a logarithmic utility function in our implementation.

In order to quickly bootstrap our system to close-to-optimal op-
erating points, we implement a method called “quick start” to ag-
gressively ramp up the rates of all sessions during a conference
initialization stage, during which peers are joining the conference
and nothing significant is going on. We achieve this by using larger
values for β in the utility functions and a large step size in link rate
adaptation during the first 30 seconds. After the initialization stage,
we reset β and step sizes to proper values and allow our system con-
verge gradually and avoid unnecessary performance fluctuation.

6. EXPERIMENTS
We evaluate our prototype Celerity system over a LAN testbed.

The testbed is illustrated in Fig. 3, where four PC nodes (A, B,C,D)
are connected over a LAN dumbbell topology. The dumbbell topol-
ogy represents a popular scenario of multi-party conferencing be-
tween branch offices. It is also a “tough” topology – existing ap-
proaches, such as Simulcast and the scheme in [4], fail to efficiently
utilize the bottleneck bandwidth and optimize system performance.

In our experiments, all four peers run our prototype system. We
run a four-party conference for 300 seconds, evaluate the system
performance, and show the results in Fig. 5. Since the experimental
settings are symmetric for each participating peer, it is straightfor-
ward to verify the optimal source rate for each peer to be 240 kbps,
and the optimal aggregate utility is around 175.

Figs. 5a-5d show the source sending rate and receivers’ receiving
rates of each session (one session originates from one peer to all

other 3 peers). As seen, our system demonstrates fast convergence:
the sending rate of each session quickly ramps up to 95% to the
optimal within 50 seconds. Fig. 5e shows that our system quickly
achieves the optimal utility. The tiny gap between the converged
sending rate and the optimal one is because our proposed system
only aims to solve an approximate version of original problem and
hence is only expected to obtain close-to-optimal solutions.

As a comparison, we also plot the theoretical maximum rates
achievable by Simulcast and the scheme in [4] in Figs. 5a-5d. As
seen, within 20 seconds, our system already outperforms the maxi-
mum achievable rates of Simulcast and the scheme in [4].

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��������

�	�
��	��

��
���

��������

Figure 4: Session A’s trees used by Celerity (upon convergence),
the scheme in [4] and Simulcast in dumbbell topology.

Upon convergence, our system achieves sending rates that are
nearly twice of the theoretical maximum rate achievable by Simul-
cast and the scheme in [4]. This significant gain is due to that our
system can utilize the bottleneck resource more efficiently.

In Fig. 4, we show the trees that are used by our algorithm,
the scheme in [4] and Simulcast in the dumbbell topology. As
seen, for session A, every tree used by Simulcast and the scheme
in [4] consumes the bottleneck link resource twice, thus to deliver
one-bit of information they consume two-bit of bottleneck link ca-
pacity. For instance, the tree used by Simulcast has two branches
A → C and A → D passing through the bottleneck link between
the two “offices” , consuming twice of the bottleneck link resource.
Consequently, the maximum achievable rates of Simulcast and the
scheme in [4] are all 120 kbps. In contrast, our system upon con-
vergence utilizes the trees that only consume bottleneck bandwidth
once, thus it achieves close-to-optimal rates of about 240 kbps.

There are small gaps between the sending rate and the receiv-
ing rates in the same session. For instance, upon convergence, the
lowest receiving rate is about 97% of the sending rate in session
A. This is because our system relies on packet loss to adapt and
converge, and the gaps are due to the packet loss that occurs at the
bottleneck links. To verify, we show the end-to-end packet loss
rate of session A in the bottom sub-figure in Fig. 5f. The packet
loss rate is about 3% upon convergence, and explains the 3% gap
between the sending rate and the lowest receiving rate of session A.

We show the end-to-end delay and packet loss rate in Fig. 5f, all
for session A. The results for the other sessions are essentially the
same due to their symmetric settings.

As seen in the top sub-figure in Fig. 5f, When our system con-
verges, the average end-to-end delay from node A to the receiver in
the same “office” (in this case node B) is negligible. The delays to
the receivers in the other “office” (nodes C and D) are about 90 ms
on average, which is contributed by the queuing delay at the bottle-
neck links. All delays are within the acceptable range for smooth
conferencing experience.

The bottom sub-figure in Fig. 5f shows the average end-to-end
packet loss rate of session A. As seen, the packet loss rate is high
initially, and decreases and stabilizes to small values afterwards.

0 50 100 150 200 250 300
0

100

200

300

400

500

time(s)

R
a
te

(k
b
p
s
)

total tree sending rate
receiving rate of session A in node B
receiving rate of session A in node C
receiving rate of session A in node D
optimal total sending rate of session A
optimal total sending rate using Simulcast
optimal total sending rate using the scheme in [4]

(a) Rate performance of session A

0 50 100 150 200 250 300
0

100

200

300

400

500

time(s)

R
a
te

(k
b
p
s
)

total tree sending rate
receiving rate of session B in node A
receiving rate of session B in node C
receiving rate of session B in node D
optimal total sending rate of session B
optimal total sending rate using Simulcast
optimal total sending rate using the scheme in [4]

(b) Rate performance of session B

0 50 100 150 200 250 300
0

100

200

300

400

500

time(s)

R
a

te
(k

b
p

s
)

total tree sending rate
receiving rate of session C in node A
receiving rate of session C in node B
receiving rate of session C in node D
optimal total sending rate of session C
optimal total sending rate using Simulcast
optimal total sending rate using the scheme in [4]

(c) Rate performance of session C

0 50 100 150 200 250 300
0

100

200

300

400

500

time(s)

R
a
te

(k
b
p
s
)

total tree sending rate
receiving rate of session D in node A
receiving rate of session D in node B
receiving rate of session D in node C
optimal total sending rate of session D
optimal total sending rate using Simulcast
optimal total sending rate using the scheme in [4]

(d) Rate performance of session D

0 50 100 150 200 250 300
0

50

100

150

200

time(s)

u
ti
lit

y

utility value of session A

utility value of session B

utility value of session C

utility value of session D

total utility value

optimal total utility value

(e) Aggregate system utility performance

0 50 100 150 200 250 300
0

0.1

0.2

0.3

time(s)

e
n

d
−

to
−

e
n

d
 d

e
la

y
(s

)

average delay from node A to node B
average delay from node A to node C
average delay from node A to node D

0 50 100 150 200 250 300
0

0.1

0.2

time(s)

e
n

d
−

to
−

e
n

d
 l
o

s
s
 r

a
te

average loss rate from node A to node B
average loss rate from node A to node C
average loss rate from node A to node D

(f) Average end-to-end delay and loss rate from
node A to other nodes

Figure 5: Performance of Celerity over a dumbbell LAN testbed. (a)-(d): Sending rates and receiving rates of individual sessions. (e): Utility
value achieved compared to the optimum. (f): End-to-end delay and loss rate of session A.

The initial high loss rate is because at the beginning our system
increases the sending rates aggressively to bootstrap the conference
and explore the network resource limit. For instance, for session A,
the source node A explores all possible paths to deliver packets to
node B at the beginning, including path A→ C → B and path A→

D→ B. These two paths suffer from high loss rate. This aggressive
behavior introduces high loss rate, but only during the conference
initialization stage when usually nothing significant is transmitted.
Our system quickly learns the resource bottleneck and adapts to
the network topology, ending up with using the cost-effective trees
to deliver data. After the initialization stage, our system adapts and
converges gradually, avoiding unnecessary performance fluctuation
that deteriorates user experience.

7. CONCLUDING REMARKS
With the proliferation of front-facing cameras on mobile devices,

multi-party video conferencing will soon become an utility that
both businesses and consumers would find useful. With Celerity,

we attempt to bridge the long-standing gap between the bit rate
of a video source and the highest possible delay-bounded broad-
casting rate that can be accommodated by the Internet where the

bandwidth bottlenecks can be anywhere in the network. This paper
reports a first step towards making this vision a reality: by combin-
ing a polynomial-time tree packing algorithm on the source and rate
control along each overlay link, we are able to maximize the source
rates without any a priori knowledge of the underlying physical
topology in the Internet. Celerity has been implemented in a pro-
totype system, and preliminary experimental results over a “tough”
dumbbell topology are very encouraging. As future work, we will

continue to fine-tune our rate control algorithm and evaluate Celer-
ity’s performance by Internet experiments. We will also consider
alternatives and additions that involve random network coding.

8. REFERENCES
[1] Skype, “http://www.skype.com/intl/en-us/home.”
[2] Cisco, “http://newsroom.cisco.com/dlls/2010/prod_111510c.html.”
[3] J. Li, P. A. Chou, and C. Zhang, “Mutualcast: an efficient mechanism for

content distribution in a P2P network,” in Proc. ACM SIGCOMM Asia

Workshop, Beijing, 2005.
[4] M. Chen, M. Ponec, S. Sengupta, J. Li, and P. A. Chou, “Utility maximization

in peer-to-peer systems,” in Proc. ACM SIGMETRICS, Annapolis, MD, 2008.
[5] İ. E. Akkuş, Ö. Özkasap, and M. Civanlar, “Peer-to-peer multipoint video

conferencing with layered video,” Journal of Network and Computer

Applications, vol. 34, no. 1, pp. 137–150, 2011.
[6] M. Ponec, S. Sengupta, M. Chen, J. Li, and P. Chou, “Multi-rate peer-to-peer

video conferencing: A distributed approach using scalable coding,” in IEEE

International Conference on Multimedia and Expo, New York, 2009.
[7] C. Liang, M. Zhao, and Y. Liu, “Optimal Resource Allocation in Multi-Source

Multi-Swarm P2P Video Conferencing Swarms,” accepted for publication in

IEEE/ACM Trans. on Networking, 2011.
[8] L. Guo and I. Matta, “QDMR: An efficient QoS dependent multicast routing

algorithm,” in Proc. IEEE Real-Time Technology and Applications Symposium,
Canada, 1999.

[9] Y. Wu, P. A. Chou, and K. Jain, “A comparison of network coding and tree
packing,” in International Symposium on Information Theory, Chicago, USA,
2004.

[10] Y. Wu, M. Chiang, and S. Kung, “Distributed utility maximization for network
coding based multicasting: A critical cut approach,” in Proc. IEEE NetCod

2006, Boston, 2006.
[11] F. Kelly, “Fairness and stability of end-to-end congestion control,” European

Journal of Control, vol. 9, no. 2-3, pp. 159–176, 2003.
[12] D. P. Bertsekas, Nonlinear programming. Athena Scientific Belmont, MA,

1999.

