
1

Celerity: A Low-Delay Multi-Party Conferencing
Solution

Xiangwen Chen, Minghua Chen, Baochun Li, Yao Zhao, Yunnan Wuand Jin Li

Abstract—In this paper, we revisit the problem of multi-
party conferencing from a practical perspective, and to rethink
the design space involved in this problem. We believe that an
emphasis on low end-to-end delays between any two parties
in the conference is a must, and the source sending rate in a
session should adapt to bandwidth availability and congestion. We
present Celerity, a multi-party conferencing solution specifically
designed to achieve our objectives. It is entirely Peer-to-Peer
(P2P), and as such eliminating the cost of maintaining centrally
administered servers. It is designed to deliver video with low
end-to-end delays, at quality levels commensurate with available
network resources over arbitrary network topologies where
bottlenecks can be anywhere in the network. This is in contrast to
commonly assumed P2P scenarios where bandwidth bottlenecks
reside only at the edge of the network. The highlight in our
design is a distributed and adaptive rate control protocol,that
can discover and adapt to arbitrary topologies and network
conditions quickly, converging to efficient link rate allocations
allowed by the underlying network. In accordance with adaptive
link rate control, source video encoding rates are also dynamically
controlled to optimize video quality in arbitrary and unpre -
dictable network conditions. We have implementedCelerity in
a prototype system, and demonstrate its superior performance
over existing solutions in a local experimental testbed andover
the Internet.

Index Terms—Peer-to-Peer, Video Conferencing, Utility Maxi-
mization, Network Coding.

I. Introduction

With the availability of front-facing cameras in high-end
smartphone devices (such as the Samsung Galaxy S and the
iPhone 4), notebook computers, and HDTVs,multi-party video
conferencing, which involves more than two participants ina
live conferencing session, has attracted a significant amount
of interest from the industry. Skype, for example, has recently
launched a monthly-paid service supporting multi-party video
conferencing in its latest version (Skype 5) [1]. Skype video
conferencing has also been recently supported in a range of
new Skype-enabled televisions, such as the Panasonic VIERA
series, so that full-screen high-definition video conferencing
can be enjoyed in one’s living room. Moreover, Google has
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supported multi-party video conferencing in its latest social
network serviceGoogle+. Facebook cooperates with Skype to
provide video conferencing service to its billions of users. We
argue that these new conferencing solutions have the potential
to provide an immersive human-to-human communication
experience among remote participants. Such an argument has
been corroborated by many industry leaders: Cisco predicts
that video conferencing and tele-presence traffic will increase
ten-fold between 2008-2013 [2].

While traffic flows in a live multi-party conferencing session
are fundamentally represented by a multi-way communication
process, today’s design of multi-party video conferencing
systems are engineered in practice by composing communica-
tion primitives (e.g., transport protocols) over uni-directional
feed-forward links, with primitive feedback mechanisms such
as various forms of acknowledgments in TCP variants or
custom UDP-based protocols. We believe that a high-quality
protocol design must harness the full potential of the multi-
way communication paradigm, and must guarantee the strin-
gent requirements of low end-to-end delays, with the highest
possible source coding rates that can be supported by dynamic
network conditions over the Internet.

From an industry perspective, known designs of commer-
cially available multi-party conferencing solutions are either
largely server-based, e.g., Microsoft Office Communicator,
or are separated into multiple point-to-point sessions (this
approach is called Simulcast), e.g., Apple iChat. Server-based
solutions are susceptible to central resource bottlenecks, and
as such scalability becomes a main concern when multiple
conferences are to be supported concurrently. In the Simulcast
approach, each user splits its uplink bandwidth equally among
all receivers and streams to each receiver separately. Though
simple to implement, Simulcast suffers from poor quality of
service. Specifically, peers with low upload capacity are forced
to use a low video rate that degrades the overall experience of
the other peers.

In the academic literature, there are recently several stud-
ies on peer-to-peer (P2P) video conferencing from a utility
maximization perspective [3]–[8]. Among them, Liet al. [3]
and Chenet al. [4] may be the most related ones to this
work (we call their unified approach Mutualcast). They have
tried to support content distribution and multi-party video
conferencing in multicast sessions, by maximizing aggregate
application-specific utility and the utilization of node uplink
bandwidth in P2P networks. Specific depth-1 and depth-2
tree topologies have been constructed using tree packing, and
rate control was performed in each of the tree-based one-
to-many sessions.However, they only considered the limited
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scenario where bandwidth bottlenecks reside at the edge of the
network, while in practice bandwidth bottlenecks can easily
reside in the core of the network [9], [10]. Further, all existing
industrial and academic solutions, including Mutualcast,did
not explicitly consider bounded delay in designs, and can lead
to unsatisfied interactive conferencing experience.

A. Contribution

In this paper, we reconsider the design space in multi-party
video conferencing, and presentCelerity, a new multi-party
conferencing solution specifically designed to maintain low
end-to-end delays while maximizing source video rates in a
session.Celerity has the following salient features:
• It operates in a pure P2P manner, and as such eliminating

the cost of maintaining centrally administered servers.
• It can deliver video at quality levels commensurate

with available network resources overarbitrary network
topologies, while maintainingbounded end-to-end delays.

• It can automatically adapt to unpredictable network dy-
namics, such as cross traffic and abrupt link failures,
allowing smooth conferencing experience.

Enabling the above features for multi-party conferencing is
challenging. First, it requires a non-trivial formulationthat
allows systematic solution design over arbitrary network ca-
pacity constraints. In contrast, existing P2P system design
works with performance guarantee commonly assume band-
width bottlenecks reside at the edge of the network. Second,
maximizing session rates subject to bounded delay is known
to be NP-Complete and hard to solve approximately [11]. We
take a practical approach that explores all 2-hop delay-bounded
overlay trees with polynomial complexity. Third, detecting and
reacting to network dynamics withouta priori knowledge of
the network conditions are non-trivial. We use both delay and
loss as congestion measures and adapt the session rates with
respect to both of them, allowing early detection and fast
response to unpredictable network dynamics.

The highlight in our design is a distributed rate control pro-
tocol, that can discover and adapt to arbitrary topologies and
network conditions quickly, converging to efficient link rate
allocations allowed by the underlying network. In accordance
with adaptive link rate control, source video encoding rates
are also dynamically controlled to optimize video quality in
arbitrary and unpredictable underlay network conditions.

II. Problem Formulation and Celerity Overview

One way to design a multi-party conferencing system is to
formulate its fundamental design problem, explore powerful
theoretical techniques to solve the problem, and use the
obtained insights to guide practical system designs. In this
way, we can also be clear about potential and limitation of the
designs, allowing easy system tuning and further systematic
improvements. Table I lists the key notations used in this paper.

A. Settings

Consider a network modeled as a directed graphG =

(N ,L), whereN is the set of all physical nodes, including

TABLE I
Key notations.

Notation Definition

L Set of all physical links

V Set of conference participating nodes

E Set of directed overlay links

Cl Capacity of the physical linkl

al,e Whether overlay linke passes physical linkl

cm,e Rate allocated to sessionm on overlay linke

cm Overlay link rates of streamm, cm = [cm,e, e ∈ E]

y Total overlay link traffics, y =
∑M

m=1 cm

D Delay bound

Rm (cm,D) Sessionm’s rate within the delay boundD

ql(z) Price function of violating linkl’s capacity constraint

pl Lagrange multiplier of linkl’s capacity constraint

G (c, p) Lagrange function of variablesc and p
Note: we use bold symbols to denote vectors, e.g.,c = [cT

1 , . . . , c
T
M ]T .

conference participating nodes and other intermediate nodes
such as routers, andL is the set of all physical links. Each
link l ∈ L has a nonnegative capacityCl and a nonnegative
propagation delaydl.

Consider a multi-party conferencing system overG. We use
V ⊆ N to denote the set of all conference participating nodes.
Every node inV is a source and at the same time a receiver
for every other nodes. Thus there are totallyM , |V | sessions
of (audio/video) streams. Each stream is generated at a source
node, sayv, and needs to be delivered to all the rest nodes in
V − {v}, by using overlay links between any two nodes inV.

An overlay link (u, v) meansu can send data tov by setting
up a TCP/UDP connection, along an underlay path fromu to
v pre-assigned by routing protocols. LetE be the set of all
directed overlay links. For alle ∈ E and l ∈ L, we define

al,e =















1, if overlay link e passes physical linkl;

0, otherwise.
(1)

The physical link capacity constraints are then expressed as

aT
l y =

∑

e∈E

al,e

M
∑

m=1

cm,e ≤ Cl, ∀l ∈ L,

wherecm,e denotes the rate allocated to sessionm on overlay
link e and aT

l y describes the total overlay traffic passing
through physical linkl.

Remark: In our model, the capacity bottleneck can be
anywhere in the network, not necessarily at the edges. This
is in contrast to a common assumption made in previous P2P
works that the uplinks/downlinks of participating nodes are
the only capacity bottleneck.

B. Problem Formulation

In a multi-party conferencing system, each session source
broadcasts its stream to all receivers over a complete overlay
graph on which every linke has a ratecm,e and a delay
∑

l∈L al,edl. For smooth conferencing experience, the total
delay of delivering a packet from the source to any receiver,
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traversing one or multiple overlay links, cannot exceed a delay
boundD.

A fundamental design problem is to maximize the overall
conferencing experience, by properly allocating the overlay
link rates to the streams subject to physical link capacity
constraints. We formulate the problem as a network utility
maximization problem:

MP : maxc≥0

M
∑

m=1

Um (Rm(cm,D)) (2)

s.t. aT
l y ≤ Cl, ∀l ∈ L. (3)

The optimization variables arec and the constraints in (3) are
the physical link capacity constraints.

Rm(cm,D) denotes sessionm’s rate that we obtain by using
resourcecm within the delay bound D, and is a concave
function of cm as we will show in Corollary 1 in the next
section.

The objective is to maximize the aggregate system utility.
Um(Rm) is an increasing and strictly concave function that
maps the stream rate to an application-specific utility. For
example, a commonly used video quality measure Peak Signal-
to-Noise Ratio (PSNR) can be modeled by using a logarithmic
function as the utility [4]1. With these settings and observa-
tions,Um(Rm) is concave inc and the problemMP is a concave
optimization problem.

Remarks: (i) The formulation of MP is an overlay link
based formulation in which the number of variables per session
is |E| and thus at most|V |2. One can write an equivalent
tree-based formulation forMP but the number of variables
per session will beexponential in |E| and |V |. (ii) Existing
solutions, such as Simulcast and Mutualcast, can be thought
as algorithms solving special cases of the problemMP. For
example, Simulcast can be thought as solving the problem
MP by using only the 1-hop tree to broadcast content within
a session. Mutualcast can be thought as solving a special case
of the problemMP (with the uplinks of participating nodes
being the only capacity bottleneck) by packing certain depth-1
and depth-2 trees within a session.

C. Celerity Overview

Celerity builds upon two main modules to maximize the
system utility: (1) adelay-bounded video delivery module to
distribute video at high rate given overlay link rates (i.e., how
to compute and achieveRm(cm,D)); (2) a link rate control
module to determinecm.

Video delivery under known link constraints: This prob-
lem is similar to the classic multicast problem, and packing
spanning (or Steiner) trees at the multicast source is a popular
solution. However, the unique “delay-bounded” requirement in
multi-party conferencing makes the problem more challenging.
We introduce a delay-bounded tree packing algorithm to tackle
this problem (detailed in Section III).

Link rate control : In principle, one can first infer the
network constraints and then solve the problemMP centrally.

1Using logarithmic functions also guarantees (weighted) proportional fair-
ness among sessions and thus no session will starve at the optimal solution
[12].
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Fig. 1. An illustrating example of 4-party (A, B, C, andD) conferencing over
a dumbbell underlay topology.E and F are two routers. Solid lines represent
underlay physical links. To make the graph easy to read, we use one solid
line to represent a pair of directed physical links. Dash lines represent overlay
links.

However, directly inferring the constraints potentially requires
knowing the entire network topology and is highly challeng-
ing. In Celerity, we resort to design adaptive and iterative al-
gorithms for solving the problemMP in a distributed manner,
without a priori knowledge of the network conditions.

We explain at a high level howCelerity works in a 4-party
conferencing example in Fig. 1. We focus on sessionA, in
which sourceA distributes its stream to receiversB, C, and
D, by packing delay-bounded trees over a complete overlay
graph shown in the figure. We focus on sourceA and one
overlay link (B,C), which represents a UDP connection over
an underlay pathB to E to F to C. Other overlay links and
other sessions are similar.

We first describe the control plane operations. For the
overlay link (B,C), the head nodeB works with the tail node
C to periodically adjust the session ratecA,B→C according to
Celerity’s link rate control algorithm. Such adjustment utilizes
control-plane information that sourceA piggybacks with data
packets, and loss and delay statistics experienced by packets
traveling from B to C. We show such local adjustments at
every overlay link result in globally optimal session rates.

The head nodeB also periodically reports to sourceA the
session ratecA,B→C and the end-to-end delay fromB to C.
Based on these reports from all overlay links, sourceA period-
ically packs delay-bounded trees usingCelerity’s tree-packing
algorithm, calculates necessary control-plane information, and
delivers data and the control-plane information along the trees.

The data plane operations are simple.Celerity uses delay-
bounded trees to distribute data in a session. Nodes on every
tree forward packets from its upstream parent to its down-
stream children, following the “next-children” tree-routing
information embedded in the packet header.Celerity’s tree-
packing algorithm guarantees that (i) packets arrive at all
receivers within the delay bound, and (ii) the total rate of
a sessionm passing through an overlay linke does not exceed
the allocated ratecm,e.

In the following two sections, we present the designs of the
two main modules inCelerity. Due to the space limitation,
we leave the practical implementation ofCelerity in practical
peers in our technical report [13].

III. Packing Delay-bounded Trees

Given the link rate vectorcm and delay for every over-
lay link e (i.e.,

∑

l∈L al,edl), achieving the maximum broad-
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Fig. 2. (a): Illustration of the directed acyclic sub-graphover which we
pack delay-bounded 2-hop trees. (b): Critical cut example.Sources and its
two receiverst1, t2 are connected over a directed graph. The number associated
with a link represents its link capacity.

cast/multicast stream rate under a delay boundD is a challeng-
ing problem. A general way to explore the broadcast/multicast
rate under delay bounds is to pack delay-bounded Steiner
trees. However, such problem isNP-hard [14]. Moreover, the
number of delay-bounded Steiner trees to consider is in general
exponential in the network size.

In this paper, we pack 2-hop delay-bounded trees in an
overlay graph of sessionm, denoted byDm, to achieve a
good stream rate under a delay bound. Note by graph theory
notations, a 2-hop tree has a depth at most 2. Packing 2-hop
trees is easy to implement. It also explores all overlay links
between source and receiver and between receivers, thus trying
to utilize resource efficiently. In fact, it is shown in [3], [4] that
packing 2-hop multicast trees suffices to achieve the maximum
multicast rate for certain P2P topologies. We elaborate our
tree-packing scheme in the following.

We first define the overlay graphDm. GraphDm is a
directed acyclic graph with two layers; one example of such
graph is illustrated in Fig. 2a. In this example, consider
a session with a sources, three receivers 1, 2, 3. For each
receiveri, we draw two nodes,ri and ti, in the graphDm; ti
models the receiving functionality of nodei andri models the
relaying functionality of nodei.

Suppose that the prescribed link bit rates are given by the
vectorcm, with the capacity for linke beingcm,e. Then inDm,
the link from s to ri has capacitycm,s→ri , the link from ri to
t j (with i , j) has capacitycm,ri→t j , and the link fromri to
ti has infinite capacity. If the propagation delay of an edgee
exceeds the delay bound, we do not include it in the graph. If
the propagation delay of a two-hop paths→ ri → t j exceeds
the delay bound, we omit the edge fromri to t j from the graph.
As a result, every path froms to any receiverti in the graph
has a path propagation delay within the delay bound.

Over such 2-layer sub-graphDm, we pack 2-hop trees
connecting the source and every receiver using the greedy
algorithm proposed in [15]. Below we simply describe the
algorithm and more details can be found in [15].

Assuming all edges have unit-capacity and allowing multi-
ple edges for each ordered node pair. The algorithm packs
unit-capacity trees one by one. Each unit-capacity tree is
constructed by greedily constructing a tree edge by edge
starting from the source and augmenting towards all receivers.

It is similar to the greedy tree-packing algorithm based on
Prim’s algorithm. The distinction lies in the rule of selecting
the edge among all potential edges. The edge whose removal
leads to least reduction in the multicast capacity of the residual
graph is chosen in the greedy algorithm.

The above greedy algorithms is very simple to implement
and its practical implementation details are further discussed
in the technical report [13].

Utilizing the special structure of the graphDm, we obtain
performance guarantee of the algorithm as follows.

Theorem 1: The tree-packing algorithm in [15] achieves
the minimum of the min-cuts separating the source and re-
ceivers inDm and is expressed as

Rm(cm,D) = min
j

∑

i

min
{

cm,s→ri , cm,ri→t j

}

. (4)

Furthermore, the algorithm has a running time ofO(|V ||E|2).
Hence, our tree-packing algorithm achieves the maximum

delay-bounded multicast rate over the 2-layer sub-graphDm.
The achieved rateRm(cm,D) is a concave function ofcm as
summarized below.

Corollary 1: The delay-bounded multicast rateRm(cm,D)
obtained by our tree-packing algorithm is a concave function
of the overlay link ratescm.

IV. Overlay Link Rate Control

A. Considering Both Delay and Loss

We revise original formulation to design our link rate control
algorithm with both queuing delay and loss rate taken into
account. Adapting link rates to both delay and loss allows
early detection and fast response to network dynamics.

Consider the following formulation with a penalty term
added into the objective function of the problemMP:

MP − EQ : max
c≥0

U(c)
∆
=

M
∑

m=1

Um (Rm(cm,D)) −

∑

l∈L

∫ aT
l y

0
ql(z) dz, (5)

s.t. aT
l y ≤ Cl, ∀l ∈ L, (6)

where
∫ aT

l y

0
ql(z) dz is the penalty associated with violating the

capacity constraint of physical linkl ∈ L, and we choose the
price function to be

ql(z)
∆
=

(z −Cl)+

z
, (7)

where (a)+ = max{a, 0}. If all the constraints are satisfied, then
the second term in (5) vanishes; if instead some constraintsare
violated, then we charge some penalty for doing so.

Remark: (i) The problem MP-EQ is equivalent to the
original problemMP. Because any feasible solutionc of these
two problems must satisfyaT

l y ≤ Cl, and consequently the
penalty term in the problemMP-EQ vanishes. (ii) It can be

verified that−
∑

l∈L

∫ aT
l y

0
ql(z) dz is a concave function inc;

hence,U(c) is a linear combination of concave functions and
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is concave. However, becauseRm(cm,D) is the minimum min-
cut of the overlay graphDm with link rates beingcm, U(c) is
not a differentiable function [16].

We apply Lagrange dual approach to design distributed al-
gorithms for the problemMP-EQ. The advantage of adopting
distributed rate control algorithms in our system is that it
allows robust adaption upon unpredictable network dynamics.

The Lagrange function of the problem is given by:

G (c, p) ,

M
∑

m=1

Um (Rm(cm,D)) −
∑

l∈L

∫ aT
l y

0
ql(z) dz −

∑

l∈L

pl

(

aT
l y − Cl

)

, (8)

where pl ≥ 0 is the Lagrange multiplier associated with
the capacity constraint in (6) of physical linkl. pl can be
interpreted as the price of using linkl. Since the problem
MP-EQ is a concave optimization problem with linear con-
straints, strong duality holds and there is no duality gap. Any
optimal solution of the problem and one of its corresponding
Lagrangian multiplier is a saddle point ofG (c, p) and vice
versa. Thus to solve the problemMP-EQ, it suffices to design
algorithms to pursue saddle points ofG (c, p).

B. A Loss-Delay Based Primal-Subgradient-Dual Algorithm

There are two issues to address in designing algorithms for
pursuing saddle points ofG (c, p). First, the utility function
U(c) (and consequentlyG (c, p)) is not everywhere differ-
entiable. Second,G (c, p) is not strictly concave inc, thus
distributed algorithms may not converge to the desired saddle
points under multi-party conferencing settings [4].

To address the first concern, we use subgradient in algo-
rithm design. To address the second concern, we provide a
convergence result for our designed algorithm.

To proceed, we first compute subgradients ofU(c). The
proposition below presents a useful observation.

Proposition 1: A subgradient ofU(c) with respect tocm,e

for any e ∈ E andm = 1, . . .M is given by

U ′m (Rm)
∂Rm

∂cm,e
−
∑

l∈L

al,e
(aT

l y −Cl)+

aT
l y

where ∂Rm
∂cm,e

is a subgradient ofRm(cm,D) with respect tocm,e.
Motivated by the pioneering work of Arrow, Hurwicz, and

Uzawa [17] and the followup works [18] [19], we propose to
use the followingprimal-subgradient-dual algorithm to pursue
the saddle point ofG (c, p):∀eǫE, m = 1, ...M, ∀lǫL,
Primal-Subgradient-Dual Link Rate Control Algorithm:

c(k+1)
m,e = c(k)

m,e + α













U ′m
(

R(k)
m

) ∂R(k)
m

∂cm,e

∑

l∈L

al,e
(aT

l y(k) −Cl)+

aT
l y(k)

−
∑

l∈L

al,e p(k)
l

















+

c(k)
m,e

(9)

p(k+1)
l = p(k)

l +
1
Cl

[

aT
l y(k) −Cl

]+

p(k)
l

(10)

whereα > 0 represents a constant the step size for all the
iterations, and function

[b]+a =















max(0, b), a ≤ 0;

b, a > 0.

We have the following observations for the control algo-
rithm in (9)-(10):

• It is known that
∑

l∈L al,e
(aT

l y−Cl)+

aT
l y

can be interpreted as
the packet loss rate observed at overlay linke [20]. The
intuitive explanation is as follows. The term (aT

l y −Cl)+

is the excess traffic rate offered to physical linkl; thus
(aT

l y−Cl)+

aT
l y

models the fraction of traffic that is dropped at
l. Assuming the packet loss rates are additive (which is
a reasonable assumption for low packet loss rates), the
total packet loss rates seen by the overlay linke is given
by
∑

l∈L al,e
(aT

l y−Cl)+

aT
l y .

• It is also known thatpl updating according to (10) can
be interpreted as queuing delay at physical linkl [21].
Intuitively, if the incoming rateaT

l y > Cl at l, then it

introduces an additional queuing delay of
aT

l y−Cl

Cl
for l. If

otherwise the termaT
l y ≤ Cl, then the present queueing

delay is reduced by an amount of
Cl−aT

l y
Cl

unless hitting
zero. The total queuing delay observed by the overlay
link e is then given by the sum

∑

l∈L al,e pl.
• It turns out that the utility function, the subgradients,

packet loss rate and queuing delay are sufficient statistics
to updatecm,e independently of the updates of other
link rates. This way, we can solve the problemMP-
EQ without knowing the physical network topology and
physical link capacities.

The algorithm in (9)-(10) is similar to the standard primal-dual
algorithm, but sinceU(c) is not differentiable everywhere, we
use subgradient instead of gradient in updating the overlay
link ratesc.

Establishing convergence of subgradient algorithms for
saddle-point optimization is in general challenging [18].We
explore convergence properties for our primal-subgradient-
dual algorithm in the following theorem.

Theorem 2: Let (c∗, p∗) be a saddle point ofG (c, p), and
Ḡ(k) be the average function value obtained by the algorithm
in (9)-(10) afterk iterations:

Ḡ(k)
,

1
k

k−1
∑

i=0

G
(

c(k), p(k)
)

.

Suppose
∣

∣

∣U
′

m(Rm(cm))
∣

∣

∣ ≤ Ū, ∀m = 1, . . . ,M, where Ū is a
constant, then we have

−
B1

2αk
−
∆2

2
α ≤ Ḡ(k) − G (c∗, p∗) ≤

B2

2k
+
∆2

2
max
l∈L

C−1
l ,

where B1 =
∥

∥

∥c(0) − c∗
∥

∥

∥

2
and B2 =

[

p(0) − p∗
]T

diag(Cl, l ∈ L)
[

p(0) − p∗
]

are two positive
distances depending on (c(0), p(0)), and ∆ is a positive
constant depending on̄U and (c(0), p(0)).

Remarks: (i) The results bound the time-average Lagrange
function value obtained by the algorithm to the optimal
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in terms of distances of the initial iterates (c(0), p(0)) to a
saddle point. In particular, the averaged function valuesḠ(k)

converge to the saddle point valueG (c∗, p∗) within a gap of
max
(

α,maxl∈LC−1
l

)

∆2

2 , at a rate of 1/k. (ii) The requirement
of the utility function is easy to satisfied; one example is
Um(z) = log(z + ǫ) with ǫ > 0. (iii) Our results generalize
the one in [18] in the sense that the one in [18] only applies
to the case of uniform step size, while we allow differentpl to
update with different step size1

Cl
, which is critical forpl to be

interpreted as queuing delay and thus practically measurable.
Our results also have less stringent requirement on the utility
function than the one in [18]. (iv) Although the results may
not warranty convergence in the strict sense, our experiments
over LAN testbed and on the Internet in Section V show the
algorithm quickly stabilizes around optimal operating points.

C. Computing Subgradients of Rm(cm,D)

A key to implementing the Primal-Subgradient-Dual algo-
rithm is to obtain subgradients ofRm(cm,D). We first present
some preliminaries on subgradients, as well as concepts for
computing subgradients forRm(cm,D).

Definition 1: Given a convex functionf , a vectorξ is said
to be a subgradient off at x ∈ dom f if

f (x′) ≥ f (x) + ξT (x′ − x),∀x′ ∈ dom f ,

wheredomf = {x ∈ Rn|| f (x)| < ∞} represents the domain of
the function f .

For a concave functionf , − f is a convex function. A vector
ξ is said to be a subgradient off at x if −ξ is a subgradient
of − f .

Next, we define the notion of acritical cut. For sessionm,
let its source besm and receiver set beVm ⊂ V − {sm}. A
partition of the vertex set,V = Z ∪ Z̄ with sm ∈ Z and t ∈ Z̄
for somet ∈ Vm, determines ansm-t-cut. Define

δ(Z) ,
{

(i, j) ∈ E|i ∈ Z, j ∈ Z̄
}

be the set of overlay links originating from nodes in setZ and
going into nodes in set̄Z. Define the capacity of cut (Z, Z̄) as
the sum capacity of the links inδ(Z):

ρ(Z) ,
∑

e∈δ(Z)

cm,e.

Definition 2: For sessionm, a cut (Z, Z̄) is an sm-Vm

critical cut if it separatessm and any of its receivers and
ρ(Z) = Rm(cm,D).

We show an example to illustrate the concept of critical
cut. In Fig. 2b,s is a source, andt1, t2 are its two receivers.
The minimum of the min-cuts among the receivers is 2. For
the cut ({s, h1, h2, t1}, {t2}), its δ({s, h1, h2, t1}) contains links
(h1, t2) and (h2, t2), each having capacity one. Thus the cut
({s, h1, h2, t1}, {t2}) has a capacity of 2 and it is ans − (t1, t2)
critical cut.

With necessary preliminaries, we turn to compute subgra-
dients ofRm(cm,D). SinceRm(cm,D) is the minimum min-cut
of sm and its receivers over the overlay graphDm, it is known
that one of its subgradients can be computed in the following
way [16].

• Find an sm-Vm critical cut for sessionm, denote it as
(Z, Z̄). Note there can be multiplesm-Vm critical cuts in
graphDm, and it is sufficient to find any one of them.

• A subgradient ofRm(cm,D) with respect tocm,e is given
by

∂Rm(cm,D)
∂cm,e

=















1, if e ∈ δ(Z);

0, otherwise.
(11)

In our system, these subgradients are computed by the source
of each session, after collecting the overlay-link rates from
each receiver in the session. More implementation details are
in the technical report [13].

V. Experiments

Using the asynchronous networking paradigm supported by
the asynchronous I/O library (calledasio) in theBoost C++
library, we have implemented a prototype ofCelerity, our
proposed multi-party conferencing system, with about 17, 000
lines of code in C++.

Due to the space limitation, details about practical imple-
mentation are discussed in the technical report [13].

For the performance evaluation ofCelerity, we evaluate our
prototypeCelerity system over a LAN testbed as well as over
the Internet. The LAN experiments allow us to (i) stress-test
Celerity under various network conditions; (ii) see whether
Celerity meets the design goal – delivering high delay-bounded
throughput and adapting to dynamics in the network; (iii)
demonstrate the fundamental performance gains over existing
solutions, thus justifying our theory-inspired design.

The Internet experiments allow us to further accessCeler-
ity’s superior performance over existing solutions in practice.

A. LAN Testbed Experiments

We evaluateCelerity over a LAN testbed illustrated in Fig.
3, where four PC nodes (A, B,C,D) are connected over a
LAN dumbbell topology. The dumbbell topology represents a
popular scenario of multi-party conferencing between branch
offices. It is also a “tough” topology – existing approaches,
such as Simulcast and Mutualcast, fail to efficiently utilize the
bottleneck bandwidth and optimize system performance.
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Fig. 3. The “tough” dumbbell topology of the experimental testbed. Two
conference participating nodesA and B are in one “office” and another twos
nodesC and D are in a different “office”. The two “offices” are connected by
directed links between gateway nodesE and F, each link having a capacity
of 480 kbps. Link propagation delays are negligible.

In our experiments, all four nodes runCelerity. We run
a four-party conference for 1000 seconds and evaluate the
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system performance. In order to evaluateCelerity’s perfor-
mance in the presence of network dynamics, we reduce cross
traffic and introduce link failures during the experiment. In
particular, we introduce an 80kpbs cross-traffic from nodeE
to nodeF between the 300th second and the 500th second,
reducing the available bandwidth betweenE andF from 480
kbps to 400 kbps. Further, starting from the 700th second,
we disconnect the physical link betweenA and E; this corre-
sponds to a practical situation where nodeA suddenly cannot
directly communicate with nodes outside the “office” due to
middleware or configuration errors at the gatewayE.

Figs. 4a-4d show the sending rate of each session (one
session originates from one node to all other three nodes).
For comparison, we also show the maximum achievable rates
by Simulcast and Mutualcast, as well as the optimal sending
rate of each session calculated by solving the problem in (2)-
(3) using a central solver. Fig. 4e shows the utility obtained
by Celerity and its comparison to the optimal. Fig. 4f shows
the average end-to-end delay and packet loss rate of session
A. Delay and loss performance of other sessions are similar
to those of sessionA.

In this experiment,Celerity goes through three different
experiment stages: absence of network dynamics, cross traffic,
and link failure. Due to the space limitation, we only explain
the results according to the first stage. For the other two stages,
please refer to the technical report [13].
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Fig. 7. SessionA’s trees used byCelerity (upon convergence), Mutualcast
and Simulcast in the dumbbell topology, in the absence of network dynamics.

1) Absence of Network Dynamics: We first look at the first
300 seconds when there is no cross traffic or link failure. In
this time period, the experimental settings are symmetric for
all participating peers; thus the optimal sending rate for each
session is 240 kbps.

As seen in Figs. 4a-4d,Celerity demonstrates fast conver-
gence: the sending rate of each session quickly ramps up to
95% to the optimal within 50 seconds. Fig. 4e shows that
Celerity quickly achieves a close-to-optimal utility. These ob-
servations indicate any other solution can at most outperform
Celerity by a small margin.

As a comparison, we also plot the theoretical maximum
rates achievable by Simulcast and Mutualcast in Figs. 4a-
4d. We observe that within 20 seconds, our system already
outperforms the maximum rates of Simulcast and Mutualcast.

Upon convergence,Celerity achieves sending rates that
nearly double the maximum rate achievable by Simulcast and
Mutualcast. This significant gain is due to thatCelerity can
utilize the bottleneck resource more efficiently, as explained

below.
In Fig. 7, we show the trees for sessionA that are used by

Celerity, Mutualcast and Simulcast in the dumbbell topology.
As seen, Simulcast and Mutualcast only explore 2-hop trees
satisfying certain structure, limiting their capability of utilizing
network capacity efficiently. In particular, their trees consumes
the bottleneck link resource twice, thus to deliver one-bitof
information it consumes two-bit of bottleneck link capacity.
For instance, the tree used by Simulcast has two branchesA→
C andA→ D passing through the bottleneck links betweenE
and F, consuming twice the critical resource. Consequently,
the maximum achievable rates of Simulcast and Mutualcast are
all 120 kbps. In contrast,Celerity explores all 2-hop delay-
bounded trees, and upon convergence utilizes the trees that
only consume bottleneck link bandwidth once, achieving rates
that are close to the optimal of 240 kbps.

Fig. 4f shows the average end-to-end delay and packet
loss rate of sessionA. As seen, the packet loss rate and
delay are high initially, but decreases and stabilizes to small
values afterwards. The initial high loss rate is becauseCelerity
increases the sending rates aggressively during the conference
initialization stage, in order to bootstrap the conferenceand
explore network resource limits.Celerity quickly learns and
adapts to the network topology, ending up with using cost-
effective trees to deliver data. After the initialization stage,
Celerity adapts and converges gradually, avoiding unnecessary
performance fluctuation that deteriorates user experience. By
adapting to both delay and loss, we achieve low loss rate upon
convergence as compared to the case when only loss is taken
into account [22].

B. Peer Dynamics Experiments

In order to evaluate theCelerity performance in peer dy-
namics scenario, we conduct another experiment over the same
LAN testbed in Fig. 3. We first run a three-party conference
among nodeA, B, andC, at the 120th second, a nodeD joins
the conferencing session and leaves at the 300th second, the
entire conferencing session lasts for 480 seconds.

Fig. 5a shows the sending rate of each session as well as
the optimal sending rate of each session, Fig. 5b-5c show the
average end-to-end delay and packet loss rate of sessionA
and C. Delay and loss performance of sessionB are similar
to those of sessionA.

As seen in Fig. 5a, when nodeD joins the conferencing
session at the 120th second, the sending rates of sessionA,
B and C first drop immediately, then quickly adapt to close
to the optimal value again. This is because when nodeD
joins, the initial allocated rates for each session in the overlay
links from other nodes to nodeD are very low, when node
A, B andC pack trees respectively according to the allocated
rates to deliver their data to the receivers including nodeD,
the achieved sending rates are low. Then,Celerity detects the
change of underlay topology, updates the allocated rates and
quickly converges to the new close to optimal operating point.
When nodeD leaves, we also observe thatCelerity quickly
adapts to the peer dynamic.

Celerity’s excellent performance adapting to peer dynamics
is expected from its design. We involve both loss and queuing
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Fig. 4. Performance ofCelerity in the LAN Testbed Experiments. (a)-(d): Sending rates and receiving rates of individual sessions. (e): Utility value achieved
compared to the optimum. (f): End-to-end delay and loss rateof sessionA.
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Fig. 5. Performance ofCelerity in the Peer Dynamics Experiments. (a)-(f): Sending rates ofall sessions. (b)-(c): End-to-end delay and loss rate of session
A andC.

delay in our design, when peers join and leave, loss and
queuing delay reflect such events well, thus allowingCelerity
to adapt rapidly to the peer dynamics. For instance, in this
experiment when nodeD joins the conferencing session, we
observe a spike in sessionA’s end-to-end delay and packet
loss rate in Fig. 5b.

In Fig. 5a another important observation is that as compared
to the conference initialization stage, the convergence speed
of node C after nodeD leaves the conferencing session is
slow. This is because during the conference initializationstage,
Celerity uses a method called ”quick start” described in the
technical report [13] to quickly ramp up the rates of all
sessions, while after the initialization stage, such method is not
used in order to avoid unnecessary performance fluctuation.It
is of great interest to design source rate control mechanisms to
achieve quick convergence in peer dynamics scenario without
incurring system fluctuation.

C. Internet Experiments

Beside the prototypeCelerity system, we also implement
two prototype systems of Simulcast and Mutualcast, respec-
tively. Both Celerity and Mutualcast use the same log utility
functions in their rate control modules. We evaluate the
performance of these systems in a four-party conferencing
scenario over the Internet.

We use four PC nodes that spread two continents and tree
countries to form the conferencing scenario. Two of the PC
nodes are in Hong Kong, one is in Redmond, Washington, US,
and the last one is in Toronto, Canada. This setting represents
a common global multi-party conferencing scenario.

We run multiple 15-minute four-party conferences using the
prototype systems, in a one-by-one and interleaving manner.
We select one representative run for each system, and sum-
marize their performance in Fig. 6.

Figs. 6a-6d show the rate performance of each session.
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(g) Average end-to-end delay and loss rate from node
A to other nodes
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Fig. 6. Performance of four-party conferences over the Internet, running prototype systems ofCelerity, Simulcast, and the scheme in [4]. (a)-(d): Throughput
of individual sessions. (e): Total throughput of all sessions. (f): Utility achieved by different systems. (g)-(h): End-to-end delay and loss rate of sessionA, C,
and D for the Celerity system.

(Recall that a session originates from one node to all other
three nodes.) As seen, all the session rates inCelerity quickly
ramp up to near-stable values within 50 seconds, and out-
performs Simulcast within 10 seconds. Upon stabilization,
Celerity achieves the best throughput performance among the
three systems and Simulcast is the worst. For instance, all
the session rates inCelerity is 2x of those in Simulcast and
Mutualcast, except in session C where Mutualcast is able to
achieve a higher rate thanCelerity.

We further observeCelerity’s superior performance in Fig.
6e, which shows the aggregate session rates, and in Fig. 6f,
which shows the total achieved utilities. In both statistics,
Celerity outperforms the other two systems by a significant
margin. Specifically, the aggregate session rate achieved by
Celerity is 2.5x of that achieved by Simulcast, and is 1.8x of
that achieved by Mutualcast.

These results show that our theory-inspiredCelerity solution
can allocate the available network resource to best optimize the
system performance. Mutualcast aims at similar objective but
only works the best in scenarios where bandwidth bottlenecks
reside only at the edge of the network [4].

Figs. 6g-6i show the average end-to-end loss rate and delay
from source to receivers for sessionA, sessionC and session
D. The results for sessionB is very similar to sessionA and is
not included here. As seen, the average end-to-end delays of
all sessions are within 200 ms, which is our preset delay bound
for effective interactive conferencing experience. The average
end-to-end loss rate for all sessions are at most 1%-2% upon
system stabilization.

The overall operation overhead ofCelerity in the 4-party
Internet experiment is around 3.9%. In particular, the packet
overhead accounts for 3.4%, and the link-rate control and link-
state report overhead is around 0.5%.

VI. Concluding Remarks

With the proliferation of front-facing cameras on mobile
devices, multi-party video conferencing will soon become an
utility that both businesses and consumers would find useful.
With Celerity, we attempt to bridge the long-standing gap
between the bit rate of a video source and the highest possible
delay-bounded broadcasting rate that can be accommodated by
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the Internet wherethe bandwidth bottlenecks can be anywhere
in the network. This paper reportsCelerity solution as a
first step in making this vision a reality: by combining a
polynomial-time tree packing algorithm on the source and an
adaptive rate control along each overlay link, we are able to
maximize the source rates without anya priori knowledge
of the underlying physical topology in the Internet.Celerity
has been implemented in a prototype system, and extensive
experimental results in a “tough” dumbbell LAN testbed and
on the Internet demonstrateCelerity’s superior performance
over the state-of-the-art solution Simulcast and Mutualcast.

As future work, we plan to explore source rate control mech-
anisms beyond the 2-hop tree-packing limitation inCelerity to
further improve its performance without incurring excessive
overhead.
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[5] İ. E. Akkuş, Ö. Özkasap, and M. Civanlar, “Peer-to-peer multipoint
video conferencing with layered video,”Journal of Network and Com-
puter Applications, vol. 34, no. 1, pp. 137–150, 2011.

[6] M. Ponec, S. Sengupta, M. Chen, J. Li, and P. Chou, “Multi-rate peer-to-
peer video conferencing: A distributed approach using scalable coding,”
in IEEE International Conference on Multimedia and Expo, New York,
2009.

[7] ——, “Optimizing Multi-rate Peer-to-Peer Video Conferencing Appli-
cations,” IEEE Trans. on Multimedia, 2011.

[8] C. Liang, M. Zhao, and Y. Liu, “Optimal Resource Allocation in Multi-
Source Multi-Swarm P2P Video Conferencing Swarms,”accepted for
publication in IEEE/ACM Trans. on Networking, 2011.

[9] A. Akella, S. Seshan, and A. Shaikh, “An empirical evaluation of wide-
area internet bottlenecks,” inProc. of the 3rd Internet Measurement
Conference, 2003.

[10] N. Hu, L. E. Li, Z. M. Mao, P. Steenkiste, and J. Wang, “Locating
internet bottlenecks: Algorithms, measurements, and implications,” in
Proc. of ACM SIGCOMM, 2004.

[11] V. Vazirani, Approximation algorithms. Springer Verlag, 2001.
[12] J. Mo and J. Walrand, “Fair end-to-end window-based congestion

control,” IEEE/ACM Trans. Netw., no. 5, pp. 556 – 567, Oct. 2001.
[13] X. Chen, M. Chen, B. Li, Y. Zhao, Y. Wu, and J. Li, “Celerity: A

low-delay multi-party conferencing solution,” The Chinese University
of Hong Kong, Hong Kong, Tech. Rep., 2011. [Online]. Available:
http://arxiv.org/abs/1107.1138

[14] L. Guo and I. Matta, “QDMR: An efficient QoS dependent multicast
routing algorithm,” inProc. IEEE Real-Time Technology and Applica-
tions Symposium, Canada, 1999.

[15] L. Lovasz, “On two minimax theorems in graph theory,”Journal of
Combinatorial Theory, Series B, vol. 21, no. 2, pp. 96–103, 1976.

[16] Y. Wu, M. Chiang, and S. Kung, “Distributed utility maximization for
network coding based multicasting: A critical cut approach,” in Proc.
IEEE NetCod 2006, 2006.

[17] K. Arrow, L. Hurwicz, H. Uzawa, and H. Chenery,Studies in linear and
non-linear programming. Stanford university press, 1958.
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