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ABSTRACT

In this paper, we attempt to revisit the problem of multi-party con-
ferencing from a practical perspective, and to rethink the design
space involved in this problem. We believe that an emphasis on
low end-to-end delays between any two parties in the conference
is a must, and the source sending rate in a session should adapt
to bandwidth availability and congestion. We present Celerity, a
multi-party conferencing solution specifically designed to achieve
our objectives. It is entirely Peer-to-Peer (P2P), and as such elim-
inating the cost of maintaining centrally administered servers. It
is designed to deliver video with low end-to-end delays, at quality
levels commensurate with available network resources over arbi-
trary network topologies where bottlenecks can be anywhere in the

network. This is in contrast to commonly assumed P2P scenarios
where bandwidth bottlenecks reside only at the edge of the net-
work. The highlight in our design is a distributed and adaptive rate
control protocol, that can discover and adapt to arbitrary topolo-
gies and network conditions quickly, converging to efficient link
rate allocations allowed by the underlying network. In accordance
with adaptive link rate control, source video encoding rates are also
dynamically controlled to optimize video quality. We have imple-
mented Celerity in a prototype system, and demonstrate its superior
performance over existing solutions in a local experimental testbed
and over the Internet.

Categories and Subject Descriptors

C.2.4 [COMPUTER-COMMUNICATION NETWORKS]: Dis-
tributed System—Distributed applications; H.4.3 [INFORMATION
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SYSTEMS APPLICATIONS]: Communications Applications—
video conferencing

General Terms: Algorithms, Design, Experimentation, Perfor-
mance

Keywords: Peer-to-peer, Multi-party video conferencing, Low de-
lay, Utility maximization, Arbitrary network topology

1. INTRODUCTION
With the availability of front-facing cameras in high-end smart-

phone devices (such as the Samsung Galaxy S and the iPhone 4),
notebook computers, and HDTVs, multi-party video conferencing,
which involves more than two participants in a live conferencing
session, has attracted a significant amount of interest from the in-
dustry. Skype, for example, has recently launched a monthly-paid
service supporting multi-party video conferencing in its latest ver-
sion (Skype 5) [1]. Skype video conferencing has also been re-
cently supported in a range of new Skype-enabled televisions, such
as the Panasonic VIERA series, so that full-screen high-definition
video conferencing can be enjoyed in one’s living room. We argue
that these new conferencing solutions have the potential to provide
an immersive human-to-human communication experience among
remote participants. Such an argument has been corroborated by
many industry leaders: Cisco predicts that video conferencing and
tele-presence traffic will increase ten-fold between 2008-2013 [2].

While traffic flows in a live multi-party conferencing session are
fundamentally represented by a multi-way communication process,
today’s design of multi-party video conferencing systems are engi-
neered in practice by composing communication primitives (e.g.,

transport protocols) over uni-directional feed-forward links, with
primitive feedback mechanisms such as various forms of acknowl-
edgments in TCP variants or custom UDP-based protocols. We
believe that a high-quality protocol design must harness the full po-
tential of the multi-way communication paradigm, and must guar-
antee the stringent requirements of low end-to-end delays, with the
highest possible source coding rates that can be supported by dy-
namic network conditions over the Internet.

From the industry perspective, known designs of commercially
available multi-party conferencing solutions are either largely server-
based, e.g., Microsoft Office Communicator, or are separated into
multiple point-to-point sessions (this approach is called Simulcast),
e.g., Apple iChat. Server-based solutions are susceptible to central
resource bottlenecks, and as such scalability becomes a main con-
cern when multiple conferences are to be supported concurrently.
In the Simulcast approach, each user splits its uplink bandwidth
equally among all receivers and streams to each receiver separately.



Though simple to implement, Simulcast suffers from poor quality
of service. Specifically, peers with low upload capacity are forced
to use a low video rate that degrades the overall experience of the
other peers.

In the academic literature, there are recently several studies on
peer-to-peer (P2P) video conferencing from a utility maximization
perspective [3–8]. Among them, Li et al. [3] and Chen et al. [4]
may be the most related ones to this work (we call their unified
approach Mutualcast). They have tried to support content distribu-
tion and multi-party video conferencing in multicast sessions, by
maximizing aggregate application-specific utility and the utiliza-
tion of node uplink bandwidth in P2P networks. Specific depth-1
and depth-2 tree topologies have been constructed using tree pack-
ing, and rate control was performed in each of the tree-based one-
to-many sessions. However, they only considered the limited sce-
nario where bandwidth bottlenecks reside at the edge of the net-
work, while in practice bandwidth bottlenecks can easily reside in
the core of the network [9, 10]. Further, all existing industrial and
academic solutions, including Mutualcast, did not explicitly con-
sider bounded delay in designs, and can lead to unsatisfied interac-
tive conferencing experience.

1.1 Contribution
In this paper, we reconsider the design space in multi-party video

conferencing solutions, and present Celerity, a new multi-party con-
ferencing solution specifically designed to maintain low end-to-end
delays while maximizing source coding rates in a session. Celerity

has the following salient features:

• It operates in a pure P2P manner, and as such eliminating the
cost of maintaining centrally administered servers.

• It can deliver video at quality levels commensurate with avail-
able network resources over arbitrary network topologies,
while maintaining bounded end-to-end delays.

• It can automatically adapt to unpredictable network dynam-
ics, such as cross traffic and abrupt link failures, allowing
smooth conferencing experience.

Enabling the above features for multi-party conferencing is chal-
lenging. First, it requires a new formulation that allows system-
atic solution design over arbitrary network capacity constraints.
In contrast, existing P2P system design works with performance
guarantee commonly assume bandwidth bottlenecks reside at the
edge of the network. Second, maximizing session rates subject to
bounded delay is known to be NP-Complete and hard to solve ap-
proximately [11]. We take a practical approach in this paper that ex-
plores all 2-hop delay-bounded overlay trees with polynomial com-
plexity. Third, detecting and reacting to network dynamics without
a priori knowledge of the network conditions are non-trivial. We
use both delay and loss as congestion measures and adapt the ses-
sion rates with respect to both of them, allowing early detection and
fast response to unpredictable network dynamics.

The highlight in our design is a distributed rate control proto-
col, that can discover and adapt to arbitrary topologies and network
conditions quickly, converging to efficient link rate allocations al-
lowed by the underlying network. In accordance with the adaptive
link rate control, source video encoding rates are also dynamically
controlled to optimize video quality in arbitrary and unpredictable
underlay network conditions.

The design of Celerity is largely inspired by our new formula-
tion that specifically takes into account arbitrary network capacity
constraints and allows us to explore design space beyond those in
existing solutions. Our formulation is overlay-link based and has a

Notation Definition

L Set of all physical links
V Set of conference participating nodes
E Set of directed overlay links
Cl Capacity of the physical link l

al,e Whether overlay link e passes physical link l

cm Overlay link rates of stream m, cm = [cm,e, e ∈ E]
y Total overlay link traffics, y =

∑M
m=1 cm

D Delay bound
Rm (cm,D) Session m’s rate within the delay bound D

ql(z) Price function of violating link l’s capacity constraint
pl Lagrange multiplier of link l’s capacity constraint
G (c, p) Lagrange function of variables c and p

Note: we use bold symbols to denote vectors, e.g., c = [c1, . . . , cM].

Table 1: Key notations.

number of variables linear in the number of overlay links. This is
a significant reduction as compared to the number of variables ex-
ponential in the number of overlay links in an otherwise tree-based
formulation. We believe our approach is applicable to other P2P
system problems, to allow solution design beyond the common as-
sumption in P2P scenarios that the bandwidth bottlenecks reside
only at the edge of the network.

We have implemented a prototype Celerity system using C++.
By extensive experiments in a local experimental testbed and on
the Internet, we demonstrate the superior performance of Celerity

over state-of-the-art solutions Simulcast and Mutualcast.
Due to space limitation, all proofs and pseudo-codes are in our

technical report [12].

2. PROBLEM FORMULATION AND CELER-

ITY OVERVIEW
One way to design a multi-party conferencing system is to for-

mulate its fundamental design problem, explore powerful theoreti-
cal techniques to solve the problem, and use the obtained insights
to guide practical system designs. In this way, we can also be clear
about potential and limitation of the designs, allowing easy system
tuning and further systematic improvements. Table 1 lists the key
notations used in this paper.

2.1 Settings
Consider a network modeled as a directed graph G = (N ,L),

where N is the set of all physical nodes, including conference par-
ticipating nodes and other intermediate nodes such as routers, and
L is the set of all physical links. Each link l ∈ L has a nonnegative
capacity Cl and a nonnegative propagation delay dl.

Consider a multi-party conferencing system over G. We use V ⊆

N to denote the set of all conference participating nodes. Every
node in V is a source and at the same time a receiver for every other
nodes. Thus there are totally M , |V | sessions of (audio/video)
streams. Each stream is generated at a source node, say v, and needs
to be delivered to all the rest nodes in V−{v}, by using overlay links
between any two nodes in V .

An overlay link (u, v) means u can send data to v by setting up
a TCP/UDP connection, along an underlay path from u to v pre-
assigned by routing protocols. Let E be the set of all directed over-
lay links. For all e ∈ E and l ∈ L, we define

al,e =















1, if overlay link e passes physical link l;

0, otherwise.
(1)



The physical link capacity constraints are then expressed as

a
T
l y =

∑

e∈E

al,e

M
∑

m=1

cm,e ≤ Cl, ∀l ∈ L,

where cm,e denotes the rate allocated to session m on overlay link e

and a
T
l

y describes the total overlay traffic passing through physical
link l.

Remark: In our model, the capacity bottleneck can be anywhere
in the network, not necessarily at the edges. This is in contrast to
a common assumption made in existing P2P works that the access
links of participating nodes are the only capacity bottlenecks.

2.2 Problem Formulation
In a multi-party conferencing system, each session source broad-

casts its stream to all receivers over a complete overlay graph on
which every link e has a rate cm,e and a delay

∑

l∈L al,edl. For smooth
conferencing experience, the total delay of delivering a packet from
the source to any receiver, traversing one or multiple overlay links,
cannot exceed a delay bound D.

A fundamental design problem is to maximize the overall con-
ferencing experience, by properly allocating the overlay link rates
to the streams subject to physical link capacity constraints. We for-
mulate the problem as a network utility maximization problem:

MP : maxc≥0

M
∑

m=1

Um (Rm(cm,D)) (2)

s.t. a
T
l y ≤ Cl, ∀l ∈ L. (3)

The optimization variables are c and the constraints in (3) are the
physical link capacity constraints.

Rm(cm,D) denotes session m’s rate that we obtain by using re-
source cm within the delay bound D, and is a concave function of
cm as we will show in Corollary 1 in the next section.

The objective is to maximize the aggregate system utility. Um(Rm)
is an increasing and strictly concave function that maps the stream
rate to an application-specific utility. For example, a commonly
used video quality measure Peak Signal-to-Noise Ratio (PSNR)
can be modeled by using a logarithmic function as the utility [4]
1. With these settings and observations, Um(Rm) is concave in c and
the problem MP is a concave optimization problem.

Remarks: (i) The formulation of MP is an overlay link based
formulation in which the number of variables per session is |E| and
thus at most |V |2. One can write an equivalent tree-based formula-
tion for MP but the number of variables per session will be expo-

nential in |E| and |V |. (ii) Existing solutions, such as Simulcast and
Mutualcast, can be thought as algorithms solving special cases of
the problem MP. For example, Simulcast can be thought as solving
the problem MP by using only the 1-hop tree to broadcast content
within a session. Mutualcast can be thought as solving a special
case of the problem MP (with the uplinks of participating nodes
being the only capacity bottleneck) by packing certain depth-1 and
depth-2 trees within a session.

2.3 Celerity Overview
Celerity builds upon two main modules to maximize the sys-

tem utility: (1) a delay-bounded video delivery module to distribute
video at high rate given overlay link rates (i.e., how to compute and
achieve Rm(cm,D)); (2) a link rate control module to determine cm.

1Using logarithmic functions also guarantees (weighted) propor-
tional fairness among sessions and thus no session will starve at
the optimal solution [13].

Video delivery under known link constraints: This problem is
similar to the classic multicast problem, and packing spanning (or
Steiner) trees at the multicast source is a popular solution. How-
ever, the unique “delay-bounded” requirement in multi-party con-
ferencing makes the problem more challenging. We introduce a
delay-bounded tree packing algorithm to tackle this problem (de-
tailed in Section 3).

Link rate control: In principle, one can first infer the network
constraints and then solve the problem MP centrally. However,
directly inferring the constraints potentially requires knowing the
entire network topology and is highly challenging. In Celerity, we
resort to design adaptive and iterative algorithms for solving the
problem MP in a distributed manner, without a priori knowledge
of the network conditions (detailed in Section 4).

We high-levelly explain how Celerity works in a 4-party confer-
encing example in Fig. 1. We focus on session A, in which source
A distributes its stream to receivers B, C, and D, by packing delay-
bounded trees over a complete overlay graph shown in the figure.
We focus on source A and one overlay link (B,C), which represents
a UDP connection over an underlay path B to E to F to C. Other
overlay links and other sessions are similar.
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Figure 1: An illustrating example of 4-party (A, B, C, and D) con-
ferencing over a dumbbell underlay topology. E and F are two
routers. Solid lines represent underlay physical links. To make
the graph easy to read, we use one solid line to represent a pair of
directed physical links. Dash lines represent overlay links.

We first describe the control plane operations. For the overlay
link (B,C), the head node B works with the tail node C to peri-

odically adjust the session rate cA,(B,C) according to Celerity’s link
rate control algorithm. Such adjustment utilizes control-plane in-
formation that source A piggybacks with data packets, and loss and
delay statistics experienced by packets traveling from B to C. We
show such local adjustments at every overlay link result in globally
optimal session rates.

The head node B also periodically reports to source A the ses-
sion rate cA,(B,C) and the end-to-end delay from B to C. Based on
these reports from all overlay links, source A periodically packs
delay-bounded trees using Celerity’s tree-packing algorithm, cal-
culates necessary control-plane information, and delivers data and
the control-plane information along the trees.

The data plane operations are simple. Celerity uses delay-bounded
trees to distribute data in a session. Nodes on every tree forward
packets from its upstream parent to its downstream children, fol-
lowing the “next-children” tree-routing information embedded in
the packet header. Celerity’s tree-packing algorithm guarantees that
(i) packets arrive at all receivers within the delay bound, and (ii) the
total rate of a session m passing through an overlay link e does not
exceed the allocated rate cm,e.

In the following two sections, we first present the designs of the
two main modules in Celerity. We then describe how they are im-
plemented in physical peers in Section 5.
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Figure 2: (a) Illustration of the directed acyclic sub-graph over
which we pack delay-bounded 2-hop trees. (b) Critical cut ex-
ample. Source s and its two receivers t1, t2 are connected over a
directed graph. The number associated with a link represents its
capacity.

3. PACKING DELAY-BOUNDED TREES
Given overlay link rate vector cm and delay for every overlay link

e (i.e.,
∑

l∈L al,edl), achieving the maximum broadcast/multicast stream
rate under a delay bound D is a challenging problem. A general
way to explore the broadcast/multicast rate under delay bounds is to
pack delay-bounded Steiner trees. However, such problem is NP-
hard [14]. Moreover, the number of delay-bounded Steiner trees to
consider is in general exponential in the network size.

In this paper, we pack 2-hop delay-bounded trees in an overlay
graph of session m, denoted by Dm, to achieve a good stream rate
under a delay bound. Note by graph theory notations, a 2-hop tree
has a depth at most 2. Packing 2-hop trees is easy to implement.
It also explores all overlay links between source and receiver and
between receivers, thus trying to utilize resource efficiently. In fact,
it is shown in [3, 4] that packing 2-hop multicast trees suffices to
achieve the maximum multicast rate for certain P2P topologies. We
elaborate our tree-packing scheme in the following.

We first define the overlay graph Dm. Graph Dm is a directed
acyclic graph with two layers; one example of such graph is illus-
trated in Fig. 2a. In this example, consider a session with a source
s, three receivers 1, 2, 3. For each receiver i, we draw two nodes,
ri and ti, in the graph Dm; ti models the receiving functionality of
node i and ri models the relaying functionality of node i.

Suppose that the prescribed link bit rates are given by the vector
cm, with the capacity for link (i, j) being cm,(i, j). Then in Dm, the
link from s to ri has capacity cm,(s,i) , the link from ri to t j (with i , j)
has capacity cm,(i, j), and the link from ri to ti has infinite capacity. If
the propagation delay of an edge (i, j) exceeds the delay bound, we
do not include it in the graph. If the propagation delay of a two-hop
path s→ i→ j exceeds the delay bound, we omit the edge from ri

to t j from the graph. As a result, every path from s to any receiver
ti in the graph has a path propagation delay within the delay bound.

Over such 2-layer sub-graph Dm, we pack 2-hop trees connect-
ing the source and every receiver using the greedy algorithm pro-
posed in [15]. Below we simply describe the algorithm and more
details can be found in [15].

Assuming all edges have unit-capacity and allowing multiple
edges for each ordered node pair. The algorithm packs unit-capacity
trees one by one. Each unit-capacity tree is constructed by greed-
ily constructing a tree edge by edge starting from the source and
augmenting towards all receivers. It is similar to the greedy tree-
packing algorithm based on Prim’s algorithm. The distinction lies
in the rule of selecting the edge among all potential edges. The
edge whose removal leads to least reduction in the multicast ca-

pacity of the residual graph is chosen in the greedy algorithm. We
show an example to illustrate how the tree packing algorithm works
in details in our technical report [12, Sec. 3].

The above greedy algorithm is very simple to implement and its
practical implementation details are further discussed in Section 5.
Utilizing the special structure of the graph Dm, we obtain perfor-
mance guarantee of the algorithm as follows.

Theorem 1. The tree-packing algorithm in [15] achieves the

minimum of the min-cuts separating the source and receivers in

Dm and is expressed as

Rm(cm,D) = min
j

∑

i

min{cm,(s,i), cm,(i, j)}. (4)

Furthermore, the algorithm has a running time of O(|V ||E|2).

Hence, our tree-packing algorithm achieves the maximum delay-
bounded multicast rate over the 2-layer subgraphDm. The achieved
rate Rm(cm,D) is a concave function of cm as summarized below.

Corollary 1. The delay-bounded multicast rate Rm(cm,D) ob-

tained by our tree-packing algorithm is a concave function of the

overlay link rates cm.

4. OVERLAY LINK RATE CONTROL

4.1 Considering Both Delay and Loss
We revise original formulation to design our link rate control

algorithm with both queuing delay and loss rate taken into account.
Adapting link rates to both delay and loss allows early detection
and fast response to network dynamics.

Consider the following formulation with a penalty term added
into the objective function of the problem MP:

MP − EQ : max
c≥0

U(c)
∆
=

M
∑

m=1

Um (Rm(cm,D)) −
∑

l∈L

∫

a
T
l

y

0

ql(z) dz,(5)

s.t. a
T
l y ≤ Cl, ∀l ∈ L, (6)

where
∫

a
T
l

y

0
ql(z) dz is the penalty associated with violating the ca-

pacity constraint of physical link l ∈ L, and we choose

ql(z)
∆
=

(z −Cl)+

z
, (7)

where (a)+ = max{a, 0}. If all the constraints are satisfied, then the
second term in (5) vanishes; if instead some constraints are vio-
lated, then we charge some penalty for doing so.

Remark: (i) The problem MP-EQ is equivalent to the original
problem MP. Because any feasible solution c of these two prob-
lems must satisfy a

T
l

y ≤ Cl, and consequently the penalty term
in the problem MP-EQ vanishes. Therefore, any optimal solu-
tion of the original problem MP must be an optimal solution of
the problem MP-EQ and vice versa. (ii) It can be verified that

−
∑

l∈L

∫

a
T
l

y

0
ql(z) dz is a concave function in c; hence, U(c) is a

linear combination of concave functions and is concave. However,
because Rm(cm,D) is the minimum min-cut of the overlay graphDm

with link rates being cm,U(c) is not a differentiable function [16].
We apply Lagrange dual approach to design distributed algo-

rithms for the problem MP-EQ. The advantage of adopting dis-
tributed rate control algorithms in our system is that it allows robust
adaption upon unpredictable network dynamics.



The Lagrange function of the problem is given by:

G (c, p) ,

M
∑

m=1

Um (Rm(cm,D)) −
∑

l∈L

∫

a
T
l

y

0

ql(z) dz −

∑

l∈L

pl

(

a
T
l y −Cl

)

, (8)

where pl ≥ 0 is the Lagrange multiplier associated with the capac-
ity constraint in (6) of physical link l. pl can be interpreted as the
price of using link l. Since the problem MP-EQ is a concave opti-
mization problem with linear constraints, strong duality holds and
there is no duality gap. Any optimal solution of the problem and
one of its corresponding Lagrangian multiplier is a saddle point of
G (c, p) and vice versa. Thus to solve the problem MP-EQ, it suf-
fices to design algorithms to pursue saddle points of G (c, p).

4.2 A Loss-Delay Based Primal-Subgradient-
Dual Algorithm

There are two issues to address in designing algorithms for pur-
suing saddle points of G (c, p). First, the utility function U(c)
(and consequently G (c, p)) is not everywhere differentiable. Sec-
ond, U(c) (and consequently G (c, p)) is not strictly concave in c,
thus distributed algorithms may not converge to the desired saddle
points under multi-party conferencing settings [4].

To address the first concern, we use subgradient in algorithm
design. To address the second concern, we provide a convergence
result for our designed algorithm.

To proceed, we first compute subgradients of U(c). The propo-
sition below presents a useful observation.

Proposition 1. A subgradient of U(c) with respect to cm,e for

any e ∈ E and m = 1, . . .M is given by

U′m (Rm)
∂Rm

∂cm,e

−
∑

l∈L

al,e

(a
T
l

y −Cl)+

a
T
l

y

where ∂Rm

∂cm,e
is a subgradient of Rm(cm,D) with respect to cm,e.

Motivated by the pioneering work of Arrow, Hurwicz, and Uzawa
[17] and the followup works [18] [19], we propose to use the fol-
lowing primal-subgradient-dual algorithm to pursue the saddle point
of G (c, p): ∀eǫM, m = 1, ...M, ∀lǫL,
Primal-Subgradient-Dual Link Rate Control Algorithm:

c(k+1)
m,e = c(k)

m,e + α

[

U′m

(

R(k)
m

) ∂R
(k)
m

∂cm,e

∑

l∈L

al,e

(a
T
l

y
(k) −Cl)+

a
T
l

y(k)
−
∑

l∈L

al,e p
(k)
l

















+

c
(k)
m,e

(9)

p
(k+1)
l

= p
(k)
l
+

1

Cl

[

a
T
l y

(k) −Cl

]+

p
(k)
l

(10)

where α > 0 represents a constant step size for all iterations, and

[b]+a =















max(0, b), a ≤ 0;

b, a > 0.

We have the following observations for the algorithm in (9)-(10):

• It is known that
∑

l∈L al,e

(a
T
l

y−Cl)
+

a
T
l

z
can be interpreted as the

packet loss rate observed at overlay link e [20]. The intuitive
explanation is as follows. The term (a

T
l

y −Cl)+ is the excess

traffic rate offered to physical link l; thus
(a

T
l

y−Cl )
+

a
T
l

y
models the

fraction of traffic that is dropped at l. Assuming the packet

loss rates are additive (which is a reasonable assumption for
low packet loss rates), the total packet loss rates seen by the

overlay link e is given by
∑

l∈L al,e

(a
T
l

y−Cl )
+

a
T
l

y
.

• It is also known that pl updating according to (10) can be in-
terpreted as queuing delay at physical link l [21]. Intuitively,
if the incoming rate a

T
l

y > Cl, then it introduces an additional

queuing delay of
a

T
l

y−Cl

Cl
at link l. If otherwise a

T
l

y ≤ Cl, then

the queueing delay is reduced by an amount of
Cl−a

T
l

y

Cl
unless

hitting zero. The total queuing delay observed by the overlay
link e is simply the sum

∑

l∈L al,e pl.

• It turns out that the utility function, the subgradients, packet
loss rate and queuing delay are sufficient statistics to update
cm,e independently of the updates of other link rates. This
way, we can solve the problem MP-EQ without knowing the
physical network topology and physical link capacities.

The algorithm in (9)-(10) is similar to the standard primal-dual al-
gorithm, but since U(c) is not differentiable everywhere, we use
subgradient instead of gradient in updating the overlay link rates
c. If we fix the dual variables p, then the algorithm in (9) cor-
responds to the standard subgradient method [22]. It maximizes a
non-differentiable function in a way similar to gradient methods for
differentiable functions — in each step, the variables are updated in
the direction of a subgradient. However, such a direction may not
be an ascent direction; instead, the subgradient method relies on
a different property. If the variable takes a sufficiently small step
along the direction of a subgradient, then the new point is closer to
the set of optimal solutions.

Establishing convergence of subgradient algorithms for saddle-
point optimization is in general challenging [18]. We explore con-
vergence properties for our primal-subgradient-dual algorithm in
the following theorem.

Theorem 2. Let (c
∗, p∗) be a saddle point of G (c, p), and Ḡ(k)

be the average function value obtained by the algorithm in (9)-(10)

after k iterations:

Ḡ(k)
,

1

k

k−1
∑

i=0

G
(

c
(k), p(k)

)

.

Suppose
∣

∣

∣U
′

m(Rm(cm))
∣

∣

∣ ≤ Ū, ∀m = 1, . . . ,M, where Ū is a constant,

then we have

−
B1

2αk
−
∆2

2
α ≤ Ḡ(k) − G (c

∗, p∗) ≤
B2

2k
+
∆2

2
max

l∈L
C−1

l ,

where B1 =
∥

∥

∥c
(0) − c

∗
∥

∥

∥

2
and B2 =

[

p
(0) − p

∗
]T

diag (Cl, l ∈ L)
[

p
(0) − p

∗
]

are two positive distances depending on (c
(0), p(0)), and ∆ is a pos-

itive constant depending on Ū and (c
(0), p(0)).

Remarks: (i) The results bound the time-average Lagrange func-
tion value obtained by the algorithm to the optimal in terms of dis-
tances of the initial iterates (c

(0), p(0)) to a saddle point. In particu-
lar, the averaged function values Ḡ(k) converge to the saddle point

value G (c
∗, p∗) within a gap of max

(

α,maxl∈LC−1
l

)

∆2

2 , at a rate of
1/k. (ii) The requirement of the utility function is easy to satisfied;
one example is Um(z) = log(z + ǫ) with ǫ > 0. (iii) Our results
generalize the one in [18] in the sense that the result in [18] only
applies to the case of uniform step size, while we allow different pl

to update with different step size 1
Cl

, which is critical for pl to be
interpreted as queuing delay and thus practically measurable. Our
results also have less stringent requirement on the utility function



than the one in [18]. (iv) Although the results may not warranty
convergence in the strict sense, our experiments over LAN testbed
and on the Internet in Section 6 show the algorithm quickly stabi-
lizes around optimal operating points. Obtaining stronger conver-
gence results that confirm our practical observations are of great
interests and is left for future work.

4.3 Computing Subgradients of Rm(cm,D)

A key to implementing the Primal-Subgradient-Dual algorithm
is to obtain subgradients of Rm(cm,D). We first present some pre-
liminaries on subgradients, as well as concepts for computing sub-
gradients for Rm(cm,D).

Definition 1. Given a convex function f , a vector ξ is said to

be a subgradient of f at x ∈ dom f if

f (x′) ≥ f (x) + ξT (x′ − x), ∀x′ ∈ dom f ,

where dom f = {x ∈ Rn|| f (x)| < ∞} is the domain of f .

For a concave function f , − f is a convex function. A vector ξ is
said to be a subgradient of f at x if −ξ is a subgradient of − f .

Next, we define the notion of a critical cut. For session m, let
its source be sm and receiver set be Vm ⊂ V − {sm}. A partition of
the vertex set, V = Z ∪ Z̄ with sm ∈ Z and t ∈ Z̄ for some t ∈ Vm,
determines an sm-t-cut. Define

δ(Z) ,
{

(i, j) ∈ E|i ∈ Z, j ∈ Z̄
}

be the set of overlay links originating from nodes in set Z and going
into nodes in set Z̄. Define the capacity of cut (Z, Z̄) as the sum
capacity of the links in δ(Z):

ρ(Z) ,
∑

e∈δ(Z)

cm,e.

Definition 2. For session m, a cut (Z, Z̄) is an sm-Vm critical cut

if it separates sm and any of its receivers and ρ(Z) = Rm(cm,D).

We show an example to illustrate the concept of critical cut.
In Fig. 2b, s is a source, and t1, t2 are its two receivers. The
minimum of the min-cuts among the receivers is 2. For the cut
({s, r1, r2, t1}, {t2}), its δ({s, r1, r2, t1}) contains links (r1, t2) and (r2, t2),
each having capacity one. Thus the cut ({s, r1, r2, t1}, {t2}) has a ca-
pacity of 2 and it is an s − (t1, t2) critical cut.

With necessary preliminaries, we turn to compute subgradients
of Rm(cm,D). Since Rm(cm,D) is the minimum min-cut of sm and
its receivers over the overlay graph Dm, it is known that one of its
subgradients can be computed in the following way [16].

• Find an sm-Vm critical cut for session m, denote it as (Z, Z̄).
Note there can be multiple sm-Vm critical cuts in graph Dm,
and it is sufficient to find any one of them.

• A subgradient of Rm(cm,D) with respect to cm,e is given by

∂Rm(cm,D)

∂cm,e

=















1, if e ∈ δ(Z);

0, otherwise.
(11)

5. PRACTICAL IMPLEMENTATION
Using the asynchronous networking paradigm supported by the

asynchronous I/O library (called asio) in the Boost C++ library,
we have implemented a prototype of Celerity with about 17, 000
lines of code in C++.

Celerity consists of three main functional components: link rate
control module, tree-packing and critical cut calculation module,

and data multicast engine. Fig. 3 describes the relationship be-
tween these components and where they physically reside.

In the following, we describe the functionality implemented by
peers, some critical implementations, and operation overhead.

5.1 Peer Functionality
In our implementation, all peers perform the following functions:

• Peers in every broadcast tree forward packets from its up-
stream parent to its downstream children. Sufficient infor-
mation about the children is embedded in the packet header,
for a packet to become “self-routing” from the source to all
leaf nodes in a tree.

• Every 200 ms, each peer calculates the loss rate and queuing
delay of its incoming links and updates the rates of these
links based on the link rate control algorithm. The peer then
sends the updated rates to the corresponding senders to take
effect.

• Every 300 ms, each peer sends the link state (including allo-
cated rate and Round Trip Time) of all its outgoing links for
each session to the session source.

Upon receiving link states from all the links, the source of each ses-
sion uses the received link rates and the delay information to pack
a new set of delay-bounded trees, and starts transmitting session
packets along these trees. We set the delay bound to be 200 ms
when packing delay-bounded trees in our implementation. When a
source packs delay-bounded trees, it also calculates one critical cut
and the derivative of the utility for its session based on the allocated
link rates. The source embeds the information about the critical cut
and the derivative of the utility in the header of outgoing packets.
When these packets are received, a peer learns the derivative of the
utility and whether a link belongs to the critical cut or not; it then
adjusts the link rate accordingly.
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Figure 3: System architecture of Celerity.

5.2 Critical Cut Calculation
The calculation of critical cuts, i.e., the subgradient of Rm(cm,D),

is by the source of each session. It is the key to our implementation
of the primal-subgradient-dual algorithm. There can be multiple
critical cuts in one session, but it is sufficient to find any one of
them. After the source collects the allocated session rates from all
overlay links, it calculates the min-cut from itself to every receiver,
and records the min-cut. Then the source compares the capacities
of these min-cuts; the cut with the smallest capacity is a critical cut.



5.3 Utility Function
With respect to the utility function in our implementation, the

PSNR (peak signal-to-noise ratio) metric is the de facto standard
criterion to provide objective quality evaluation in video process-
ing. The PSNR of a video stream coded at a rate z can be approxi-
mated by a logarithmic function β log(z + δ) [4], in which a higher
β represents videos with a larger amount of motion. δ is a small
positive constant to ensure the function has a bounded derivative
for z ≥ 0. Due to this observation, we use a logarithmic utility
function in our implementation.

5.4 Opportunistic Local Loss Recovery
Providing effective loss recovery in a delay-bounded reliable broad-

cast scenario, such as multi-party conferencing, is known to be
challenging [23]. It is hard for error control coding to work effi-
ciently, since different receivers in a session may experience differ-
ent loss rates and thus choosing proper coding parameters to avoid
unnecessary waste of throughput is non-trivial. If re-broadcasting
the lost-packets is in use, it introduces additional delay and may
cause packets missing deadlines and become useless.

In our implementation, we use network coding [23] [24] to al-
low opportunistic local loss recovery. For each overlay link e, if
the trees of a session m do not exhaust cm,e, the overlay-link rate
dedicated for the session, then we send coded packets (i.e., lin-
ear combination of received packets of corresponding session) over
such link e. As such, receiver of the overlay link e can recover the
packets that are lost on link e locally by using the network coded
packets. This way, Celerity provides certain flexible local loss re-
covery capability without incurring delay due to retransmission.

5.5 Fast Bootstrapping
Similar to TCP’s Slow Start strategy, we implement a method in

Celerity called “quick start” to quickly ramp up the session rates
during conference initialization stage. The purpose is to bootstrap
the system to close-to-optimal operating points when the confer-
ence just starts, during which period peers are joining the confer-
ence and nothing significant is going on. We achieve this by using
large β in the utility functions and large step sizes in link rate adap-
tation during the first 30 seconds. After the initialization stage, we
reset β and the step sizes to proper values and allow our system
converge gradually, avoiding unnecessary performance fluctuation.

5.6 Operation Overhead
There are two types of overhead in Celerity: (i) packet overhead:

each application-layer packet has a 46-byte header, containing crit-
ical cut information, derivative of the utility, packet sequence num-
ber, coding vector, and timestamp. (ii) link-rate control and link-

state report overhead: every 200 ms, each peer adjusts the rates of
its incoming links and sends them to their corresponding upstream
senders. In our implementation, such rate-control overhead is 0.2
kbps per link per session. For the link state report overhead, each
peer sends the link state of all its outgoing links for each session to
the source of the session every 300 ms. In our implementation, for
each peer, such link-state report overhead is 0.158 kbps per link per
session. In Section 6.2, we report an overall operational overhead
of 3.9% in our 4-party Internet experiment.

6. EXPERIMENTS
We evaluate our prototype Celerity system over a LAN testbed

as well as over the Internet. The LAN experiments allow us to
(i) stress-test Celerity under various network conditions; (ii) see
whether Celerity meets the design goal – delivering high delay-
bounded throughput and automatically adapting to dynamics in the

network; (iii) demonstrate the fundamental performance gains over
existing solutions, thus justifying our theory-inspired design.

The Internet experiments allow us to further access Celerity’s
superior performance over existing solutions in the real world.

6.1 LAN Testbed Experiments
We evaluate Celerity over a LAN testbed illustrated in Fig. 4,

where four PC nodes (A, B,C,D) communicate over a LAN dumb-
bell topology. The dumbbell topology represents a popular sce-
nario of multi-party conferencing between branch offices. It is also
a “tough” topology – existing approaches, such as Simulcast and
Mutualcast, fail to efficiently utilize the bottleneck bandwidth and
optimize system performance.
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Figure 4: The “tough” dumbbell topology of the experimental
testbed. Two conference participating nodes A and B are in one
“office” and another twos nodes C and D are in a different “office”.
The two “offices” are connected by directed links between gate-
way nodes E and F, each link has a capacity of 0.48 Mbps. Link
propagation delays are negligible.

In our experiments, all four nodes run Celerity. We run a four-
party conference for 1000 seconds and evaluate the system perfor-
mance. In order to evaluate Celerity’s performance in the pres-
ence of network dynamics, we reduce cross traffic and introduce
link failures during the experiment. In particular, we introduce an
80kpbs cross-traffic from node E to node F between the 300th sec-
ond and the 500th second, reducing the available bandwidth be-
tween E and F from 480 kbps to 400 kbps. Further, starting from
the 700th second, we disconnect the physical link between A and
E; this corresponds to a practical situation where node A suddenly
cannot directly communicate with nodes outside the “office” due to
middleware or configuration errors at the gateway E.

Figs. 6a-6d show the sending rate of each session (one session
originates from one node to all other three nodes). For compari-
son, we also show the maximum achievable rates by Simulcast and
Mutualcast, as well as the optimal sending rate of each session cal-
culated by solving the problem in (2)-(3) using a central solver.
Fig. 6e shows the utility obtained by Celerity and its comparison to
the optimal. Fig. 6f shows the average end-to-end delay and packet
loss rate of session A. Delay and loss performance of other sessions
are similar to those of session A.

In the following, we explain the results according to three differ-
ent experiment stages.

6.1.1 Absence of Network Dynamics

We first look at the first 300 seconds when there is no cross traffic
or link failure. In this time period, the experimental settings are
symmetric for all participating peers; thus the optimal sending rate
for each session is 240 kbps.

As seen in Figs. 6a-6d, Celerity demonstrates fast convergence:
the sending rate of each session quickly ramps up to 95% to the
optimal within 50 seconds. Fig. 6e shows that Celerity quickly
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Figure 5: Session A’s trees used by Celerity (upon convergence),
Mutualcast and Simulcast in the dumbbell topology, in the absence
of network dynamics.

achieves a close-to-optimal utility. These observations indicate any
other solution can at most outperform Celerity by a small margin.

As a comparison, we also plot the theoretical maximum rates
achievable by Simulcast and Mutualcast in Figs. 6a-6d. We ob-
serve that within 20 seconds, our system already outperforms the
maximum rates of Simulcast and Mutualcast.

Upon convergence, Celerity achieves sending rates that nearly
double the maximum rate achievable by Simulcast and Mutualcast.
This significant gain is due to that Celerity can utilize the bottleneck
resource more efficiently, as explained below.

In Fig. 5, we show the trees for session A that are used by Celer-

ity, Mutualcast and Simulcast in the dumbbell topology. As seen,
Simulcast and Mutualcast only explore 2-hop trees satisfying cer-
tain structure, limiting their capability of utilizing network capacity
efficiently. In particular, their trees consumes the bottleneck link
resource twice, thus to deliver one-bit of information it consumes
two-bit of bottleneck link capacity. For instance, the tree used by
Simulcast has two branches A → C and A → D passing through
the bottleneck links between E and F, consuming twice the critical
resource. Consequently, the maximum achievable rates of Simul-
cast and Mutualcast are all 120 kbps. In contrast, Celerity explores
all 2-hop delay-bounded trees, and upon convergence utilizes the
trees that only consume bottleneck link bandwidth once, achieving
rates that are close to the optimal of 240 kbps.

Fig. 6f shows the average end-to-end delay and packet loss rate
of session A. As seen, the loss rate and delay are high initially,
but decrease and stabilize to small values afterwards. The high loss
rate and delay are due to Celerity increasing the rates aggressively
during the initialization stage, in order to bootstrap the conference
and explore network resource limits. Celerity quickly learns and
adapts to the network topology, ending up with using cost-effective
trees to deliver data. After the initialization stage, Celerity adapts
and converges gradually, avoiding unnecessary performance fluc-
tuation that deteriorates user experience. By adapting to both delay
and loss, we achieve low loss rate upon convergence as compared
to the case when only loss is taken into account [25].

6.1.2 Cross Traffic

Between the 300th second and the 500th second, we introduce
an 80kpbs cross-traffic from node E to node F. Consequently, the
available bottleneck bandwidth between E and F decreases from
480 kbps to 400 kbps. We calculate the optimal sending rates dur-
ing this time period to be 200 kbps for sessions A and B, and remain
240 kbps for sessions C and D.

Seen in Figs. 6a-6d, Celerity quickly adapts to the bottleneck
bandwidth reduction. Celerity’s adaptation is expected from its de-
sign, which infers from loss and delay the available resource and
adapt accordingly. From Fig. 6f, we can see a spike in session A’s

packet loss rate around 300th second, at which time the available
bottleneck bandwidth reduces. The link rate control modules in
Celerity senses this increased loss rate, adjusts, and reports the re-
duced (overlay) link rates to node A. Upon receiving the reports, the
tree-packing module in Celerity adjusts the source sending rate ac-
cordingly, adapting the system to a new close-to-optimal operating
point. At 500th second, the cross traffic is removed and the avail-
able bottleneck bandwidth between E and F restores to 480kbps.
Celerity also quickly learns this change and adapts to operate at the
original point, evident in Figs. 6a-6b.

6.1.3 Link Failure

Between the 700th second and the 1000th second, we disconnect
the physical link between A and E. Consequently, node A cannot
use the 2-hop threes with node C (D) being intermediate nodes;
similarly node C (D) cannot use the 2-hop threes with node A be-
ing intermediate nodes. They can, however, still use the trees with
node B as intermediate nodes. We compute the theoretical optimal
sending rates during this time period to be 240 kbps for all sessions.

We observe from Fig. 6a that node A’s sending rate first drops
immediately upon link failure, then quickly adapts to the new oper-
ating point of around 120 kbps, only half of the theoretical optimal.
This is because Celerity only explores 2-hop trees for content de-
livery, while in this case 3-hop trees (e.g., A → B → C → D)
are needed to achieve the optimal. It is of great interest to explore
beyond this 2-hop tree-packing limitation to further improve the
performance without incurring excessive overhead.

In Figs. 6d, we observe session D’s rate first drops and then
climbs back. This is because session D happens to use trees with
node A being an intermediate node right before the link failure. The
failure breaks these trees, and causes session D’s rate to drop dra-
matically. Celerity adapts and switches to use trees with node B as
the intermediate node. Consequently, session D’s rate gradually re-
stores to around the optimal. This observation shows the excellent
adaptability of Celerity to abrupt network condition changes.

As a comparison, we observe that Simulcast’s maximum achiev-
able rates of session A, C, and D all drop to zero upon the link
failure. This is because there is no direct overlay link between A

and C (D) after the link failure. Consequently, Simulcast is not
able to broadcast the source’s content to all the receivers in these
sessions, resulting in zero session rates.

6.2 Internet Experiments
Beside the prototype Celerity system, we also implement two

prototype systems of Simulcast and Mutualcast, respectively. Both
Celerity and Mutualcast use the same log utility functions in their
rate control modules. We evaluate the performance of these sys-
tems in a four-party conferencing scenario over the Internet.

We use four PC nodes that spread two continents and tree coun-
tries to form the conferencing scenario. Two of the PC nodes are
in Hong Kong, one is in Redmond, Washington, US, and the last
one is in Toronto, Canada. This setting represents a common global
multi-party conferencing scenario.

We run multiple 15-minute four-party conferences using the pro-
totype systems, in a one-by-one and interleaving manner. We select
one representative run for each system, and summarize their perfor-
mance in Fig. 7.

Figs. 7a-7d show the rate performance of each session. As seen,
all the session rates in Celerity quickly ramp up to near-stable val-
ues within 50 seconds, and outperforms Simulcast within 10 sec-
onds. Upon stabilization, Celerity achieves the best throughput per-
formance among the three systems and Simulcast is the worst. For
instance, all the session rates in Celerity is 2x of those in Simulcast
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Figure 6: Performance of Celerity over a dumbbell LAN testbed. (a)-(d): Sending rates and receiving rates of individual sessions. (e): Utility
value achieved compared to the optimum. (f): End-to-end delay and loss rate of session A.

and Mutualcast, except in session C where Mutualcast is able to
achieve a higher rate than Celerity.

We further observe Celerity’s superior performance in Fig. 7e,
which shows the aggregate session rates, and in Fig. 7f, which
shows the total achieved utilities. In both statistics, Celerity out-
performs the other two systems by a significant margin. Specifi-
cally, the aggregate session rate achieved by Celerity is 2.5x of that
achieved by Simulcast, and is 1.8x of that achieved by Mutualcast.

These results show that our theory-inspired solution Celerity can
allocate the available network resource to best optimize the system
performance. Mutualcast aims at similar objective but only works
the best in scenarios where bandwidth bottlenecks reside only at
the edge of the network [4].

Figs. 7g-7i show the average end-to-end loss rate and delay from
source to receivers for session A, session C and session D. The re-
sults for session B is very similar to session A and is not included
here. As seen, the average end-to-end delays of all sessions are
within 200 ms, which is our preset delay bound for effective inter-
active conferencing experience. The average end-to-end loss rate
for all sessions are at most 1%-2% upon system stabilization.

The overall operation overhead of Celerity in the 4-party Inter-
net experiment is around 3.9%. In particular, the packet overhead
accounts for 3.4%, and the link-rate control and link-state report
overhead is around 0.5%.

7. CONCLUDING REMARKS
With the proliferation of front-facing cameras on mobile devices,

multi-party video conferencing will soon become an utility that
both businesses and consumers would find useful. With Celerity,

we attempt to bridge the long-standing gap between the bit rate
of a video source and the highest possible delay-bounded broad-
casting rate that can be accommodated by the Internet where the

bandwidth bottlenecks can be anywhere in the network. This paper

reports Celerity solution as a first step in making this vision a real-
ity: by combining a polynomial-time tree packing algorithm on the
source and an adaptive rate control along each overlay link, we are
able to maximize the source rates without any a priori knowledge
of the underlying physical topology in the Internet. Celerity has
been implemented in a prototype system, and extensive experimen-
tal results in a “tough” dumbbell LAN testbed and on the Internet
demonstrate Celerity’s superior performance over the state-of-the-
art solution Simulcast and Mutualcast.

As future work, we plan to explore source rate control mecha-
nisms beyond the 2-hop tree-packing limitation in Celerity to fur-
ther improve its performance without incurring excessive overhead.
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(c) Sending Rate of Node C (Redmond)
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(d) Sending Rate of Node D (Toronto)
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(e) Total sending rate of all sessions
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(f) Total utility of all sessions
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(g) Average end-to-end delay and loss rate from
node A to other nodes
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(h) Average end-to-end delay and loss rate from
node C to other nodes
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(i) Average end-to-end delay and loss rate from
node D to other nodes

Figure 7: Performance of four-party conferences over the Internet, running prototype systems of Celerity, Simulcast, and the scheme in [4].
(a)-(d): Throughput of individual sessions. (e): Total throughput of all sessions. (f): Utility achieved by different systems. (g)-(h): End-to-end
delay and loss rate of session A, C, and D for the Celerity system.
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