
IEEE TRANSACTIONS ON XXXXXX, VOL. X, NO. X, XXXX 201X 1

Panda: Public Auditing for Shared Data with
Efficient User Revocation in the Cloud

Boyang Wang, Baochun Li, Member, IEEE, and Hui Li, Member, IEEE

Abstract—With data storage and sharing services in the cloud, users can easily modify and share data as a group. To ensure shared
data integrity can be verified publicly, users in the group need to compute signatures on all the blocks in shared data. Different blocks in
shared data are generally signed by different users due to data modifications performed by different users. For security reasons, once
a user is revoked from the group, the blocks which were previously signed by this revoked user must be re-signed by an existing user.
The straightforward method, which allows an existing user to download the corresponding part of shared data and re-sign it during user
revocation, is inefficient due to the large size of shared data in the cloud. In this paper, we propose a novel public auditing mechanism
for the integrity of shared data with efficient user revocation in mind. By utilizing the idea of proxy re-signatures, we allow the cloud to
re-sign blocks on behalf of existing users during user revocation, so that existing users do not need to download and re-sign blocks by
themselves. In addition, a public verifier is always able to audit the integrity of shared data without retrieving the entire data from the
cloud, even if some part of shared data has been re-signed by the cloud. Moreover, our mechanism is able to support batch auditing by
verifying multiple auditing tasks simultaneously. Experimental results show that our mechanism can significantly improve the efficiency
of user revocation.

Index Terms—Public auditing, shared data, user revocation, cloud computing.

✦

1 INTRODUCTION

W ITH data storage and sharing services (such as
Dropbox and Google Drive) provided by the

cloud, people can easily work together as a group by
sharing data with each other. More specifically, once a
user creates shared data in the cloud, every user in the
group is able to not only access and modify shared data,
but also share the latest version of the shared data with
the rest of the group. Although cloud providers promise
a more secure and reliable environment to the users, the
integrity of data in the cloud may still be compromised,
due to the existence of hardware/software failures and
human errors [2], [3].

To protect the integrity of data in the cloud, a number
of mechanisms [3]–[15] have been proposed. In these
mechanisms, a signature is attached to each block in
data, and the integrity of data relies on the correctness
of all the signatures. One of the most significant and
common features of these mechanisms is to allow a
public verifier to efficiently check data integrity in the
cloud without downloading the entire data, referred to
as public auditing (or denoted as Provable Data Pos-
session [3]). This public verifier could be a client who

• Boyang Wang and Hui Li are with the State Key Laboratory of Integrated
Service Networks, Xidian University, Xi’an, Shaanxi, 710071, China. E-
mail: bywang@mail.xidian.edu.cn; lihui@mail.xidian.edu.cn.

• Baochun Li is with the Department of Electrical and Computer Engi-
neering, University of Toronto, Toronto, ON, M5S 3G4, Canada. E-mail:
bli@eecg.toronto.edu.

• This work is supported by the NSF of China (No. 61272457 and
61170251), Fundamental Research Funds for the Central Universities (No.
K50511010001), National 111 Program (No. B08038), Doctoral Founda-
tion of Ministry of Education of China (No. 20100203110002), Program
for Changjiang Scholars and Innovative Research Team in University
(PCSIRT 1078).

• Most part of this work was done at University of Toronto. A preliminary
version [1] of this paper is in Proceedings of the 32nd IEEE International
Conference on Computer Communications (IEEE INFOCOM 2013).

would like to utilize cloud data for particular purposes
(e.g., search, computation, data mining, etc.) or a third-
party auditor (TPA) who is able to provide verification
services on data integrity to users. Most of the previous
works [3]–[13] focus on auditing the integrity of personal
data. Different from these works, several recent works
[14], [15] focus on how to preserve identity privacy from
public verifiers when auditing the integrity of shared
data. Unfortunately, none of the above mechanisms,
considers the efficiency of user revocation when auditing
the correctness of shared data in the cloud.

With shared data, once a user modifies a block, she
also needs to compute a new signature for the modified
block. Due to the modifications from different users, dif-
ferent blocks are signed by different users. For security
reasons, when a user leaves the group or misbehaves,
this user must be revoked from the group. As a result,
this revoked user should no longer be able to access
and modify shared data, and the signatures generated
by this revoked user are no longer valid to the group
[16]. Therefore, although the content of shared data is
not changed during user revocation, the blocks, which
were previously signed by the revoked user, still need
to be re-signed by an existing user in the group. As a
result, the integrity of the entire data can still be verified
with the public keys of existing users only.

Since shared data is outsourced to the cloud and users
no longer store it on local devices, a straightforward
method to re-compute these signatures during user revo-
cation (as shown in Fig. 1) is to ask an existing user (i.e.,
Alice) to first download the blocks previously signed
by the revoked user (i.e., Bob), verify the correctness
of these blocks, then re-sign these blocks, and finally
upload the new signatures to the cloud. However, this
straightforward method may cost the existing user a
huge amount of communication and computation re-
sources by downloading and verifying blocks, and by

2 IEEE TRANSACTIONS ON XXXXXX, VOL. X, NO. X, XXXX 201X

re-computing and uploading signatures, especially when
the number of re-signed blocks is quite large or the mem-
bership of the group is frequently changing. To make this
matter even worse, existing users may access their data
sharing services provided by the cloud with resource-
limited devices, such as mobile phones, which further
prevents existing users from maintaining the correctness
of shared data efficiently during user revocation.

A block signed by Alice A block signed by Bob

Before Bob is revoked

After Bob is revoked

Cloud

Cloud

Alice

1. Download blocks

4. Upload signatures

3. Re-compute signatures{ 2. Verify blocks

A A A A A B A B B B

A A A A A A A A A A

A B

Fig. 1. Alice and Bob share data in the cloud. When Bob
is revoked, Alice re-signs the blocks that were previously
signed by Bob with her private key.

Clearly, if the cloud could possess each user’s private
key, it can easily finish the re-signing task for existing
users without asking them to download and re-sign
blocks. However, since the cloud is not in the same
trusted domain with each user in the group, outsourcing
every user’s private key to the cloud would introduce
significant security issues. Another important problem
we need to consider is that the re-computation of any
signature during user revocation should not affect the
most attractive property of public auditing — audit-
ing data integrity publicly without retrieving the entire
data. Therefore, how to efficiently reduce the significant
burden to existing users introduced by user revocation,
and still allow a public verifier to check the integrity of
shared data without downloading the entire data from
the cloud, is a challenging task.

In this paper, we propose Panda, a novel public au-
diting mechanism for the integrity of shared data with
efficient user revocation in the cloud. In our mechanism,
by utilizing the idea of proxy re-signatures [17], once a
user in the group is revoked, the cloud is able to re-
sign the blocks, which were signed by the revoked user,
with a re-signing key (as presented in Fig. 2). As a result,
the efficiency of user revocation can be significantly im-
proved, and computation and communication resources
of existing users can be easily saved. Meanwhile, the
cloud, who is not in the same trusted domain with each
user, is only able to convert a signature of the revoked
user into a signature of an existing user on the same
block, but it cannot sign arbitrary blocks on behalf of
either the revoked user or an existing user. By designing
a new proxy re-signature scheme with nice properties
(described in Section 4), which traditional proxy re-
signatures do no have, our mechanism is always able
to check the integrity of shared data without retrieving
the entire data from the cloud.

Moreover, our proposed mechanism is scalable, which

Cloud

A A A A A A A A A A

Cloud re-signs blocks with
a re-signing key

Cloud

A A A A A B A B B B Before Bob is revoked

After Bob is revoked

A block signed by Alice A block signed by BobA B

Fig. 2. When Bob is revoked, the cloud re-signs the
blocks that were previously signed by Bob with a re-
signing key.

indicates it is not only able to efficiently support a large
number of users to share data and but also able to han-
dle multiple auditing tasks simultaneously with batch
auditing. In addition, by taking advantages of Shamir
Secret Sharing [18], we can also extend our mechanism
into the multi-proxy model to minimize the chance of
the misuse on re-signing keys in the cloud and improve
the reliability of the entire mechanism.

The remainder of this paper is organized as follows: In
Section 2, we present the system model, security model
and design goals. Then, we introduce several preliminar-
ies in Section 3. Detailed design and security analysis of
our mechanism are presented in Section 4 and Section
5. We discuss the extension of our mechanism in Section
6, and evaluate the performance of our mechanism in
Section 7 and Section 8. Finally, we briefly discuss related
work in Section 9, and conclude this paper in Section 10.

2 PROBLEM STATEMENT

In this section, we describe the system and security
model, and illustrate the design objectives of our pro-
posed mechanism.

2.1 System and Security Model

As illustrated in Fig. 3, the system model in this paper
includes three entities: the cloud, the public verifier, and
users (who share data as a group). The cloud offers data
storage and sharing services to the group. The public
verifier, such as a client who would like to utilize cloud
data for particular purposes (e.g., search, computation,
data mining, etc.) or a third-party auditor (TPA) who can
provide verification services on data integrity, aims to
check the integrity of shared data via a challenge-and-
response protocol with the cloud. In the group, there
is one original user and a number of group users. The
original user is the original owner of data. This original
user creates and shares data with other users in the
group through the cloud. Both the original user and
group users are able to access, download and modify
shared data. Shared data is divided into a number of
blocks. A user in the group can modify a block in shared
data by performing an insert, delete or update operation
on the block.

In this paper, we assume the cloud itself is semi-trusted,
which means it follows protocols and does not pollute
data integrity actively as a malicious adversary, but it

WANG et al.: PANDA: PUBLIC AUDITING FOR SHARED DATA WITH EFFICIENT USER REVOCATION IN THE CLOUD 3

Cloud

1. Challenge2. Response
Data M

......

σ1σ2 σn

mnm1 m2

Signatures

Public Verifier

Users

Shared Data Flow

Fig. 3. The system model includes the cloud, the public
verifier, and users.

may lie to verifiers about the incorrectness of shared data
in order to save the reputation of its data services and
avoid losing money on its data services. In addition, we
also assume there is no collusion between the cloud and
any user during the design of our mechanism. Generally,
the incorrectness of share data under the above semi-
trusted model can be introduced by hardware/software
failures or human errors happened in the cloud. Con-
sidering these factors, users do not fully trust the cloud
with the integrity of shared data.

To protect the integrity of shared data, each block in
shared data is attached with a signature, which is com-
puted by one of the users in the group. Specifically, when
shared data is initially created by the original user in the
cloud, all the signatures on shared data are computed
by the original user. After that, once a user modifies a
block, this user also needs to sign the modified block
with his/her own private key. By sharing data among
a group of users, different blocks may be signed by
different users due to modifications from different users.

When a user in the group leaves or misbehaves, the
group needs to revoke this user. Generally, as the creator
of shared data, the original user acts as the group
manager and is able to revoke users on behalf of the
group. Once a user is revoked, the signatures computed
by this revoked user become invalid to the group, and
the blocks that were previously signed by this revoked
user should be re-signed by an existing user’s private
key, so that the correctness of the entire data can still be
verified with the public keys of existing users only.

Alternative Approach. Allowing every user in the
group to share a common group private key and sign
each block with it, is also a possible way to protect the
integrity of shared data [19], [20]. However, when a user
is revoked, a new group private key needs to be securely
distributed to every existing user and all the blocks in the
shared data have to be re-signed with the new private
key, which increases the complexity of key management
and decreases the efficiency of user revocation.

2.2 Design Objectives

Our proposed mechanism should achieve the follow-
ing properties: (1) Correctness: The public verifier is
able to correctly check the integrity of shared data. (2)
Efficient and Secure User Revocation: On one hand, once
a user is revoked from the group, the blocks signed by
the revoked user can be efficiently re-signed. On the
other hand, only existing users in the group can generate

valid signatures on shared data, and the revoked user
can no longer compute valid signatures on shared data.
(3) Public Auditing: The public verifier can audit the
integrity of shared data without retrieving the entire data
from the cloud, even if some blocks in shared data have
been re-signed by the cloud. (4) Scalability: Cloud data
can be efficiently shared among a large number of users,
and the public verifier is able to handle a large number
of auditing tasks simultaneously and efficiently.

3 PRELIMINARIES

In this section, we briefly introduce some prelimi-
naries, including bilinear maps, security assumptions,
homomorphic authenticators and proxy re-signatures.

3.1 Bilinear Maps

Let G1 and G2 be two multiplicative cyclic groups of
prime order p, g be a generator of G1. Bilinear map e is
a map e: G1 × G1 → G2 with the following properties:
1) Computability: there exists an efficient algorithm for
computing map e. 2) Bilinearity: for all u, v ∈ G1 and
a, b ∈ Zp, e(ua, vb) = e(u, v)ab. 3) Non-degeneracy:
e(g, g) 6= 1.

3.2 Security Assumptions

The security of our mechanism is based on the follow-
ing security assumptions.

Computational Diffie-Hellman (CDH) Problem. Let
a, b ∈ Z

∗
p, given g, ga, gb ∈ G1 as input, output gab ∈ G1.

Definition 1: Computational Diffie-Hellman (CDH)
Assumption. For any probabilistic polynomial time adver-
sary ACDH, the advantage of adversary ACDH on solving
the CDH problem in G1 is negligible, which is defined
as

Pr[ACDH(g, ga, gb) = (gab) : a, b
R
← Z

∗
p] ≤ ǫ.

For the ease of understanding, we can also say comput-
ing the CDH problem in G1 is computationally infeasible
or hard under the CDH assumption.

Discrete Logarithm (DL) Problem. Let a ∈ Z
∗
p, given

g, ga ∈ G1 as input, output a.
Definition 2: Discrete Logarithm (DL) Assumption.

For any probabilistic polynomial time adversary ADL, the
advantage of adversary ADL on solving the DL problem
in G1 is negligible, which is defined as

Pr[ADL(g, g
a) = (a) : a

R
← Z

∗
p] ≤ ǫ.

Similarly, we can also say computing the DL problem in
G1 is computationally infeasible or hard under the DL
assumption.

3.3 Homomorphic Authenticators

Homomorphic authenticators [3], also called homo-
morphic verifiable tags, allow a public verifier to check
the integrity of data stored in the cloud without down-
loading the entire data. They have been widely used as
building blocks in the previous public auditing mech-
anisms [3]–[15], [19], [20]. Besides unforgeability (only a

4 IEEE TRANSACTIONS ON XXXXXX, VOL. X, NO. X, XXXX 201X

user with a private key can generate valid signatures),
a homomorphic authenticable signature scheme, which de-
notes a homomorphic authenticator scheme based on
signatures, should also satisfy the following properties:

Let (pk, sk) denote the signer’s public/private key
pair, σ1 denote the signature on block m1 ∈ Zp, and σ2

denote the signature on block m2 ∈ Zp.

• Blockless verifiability: Given σ1 and σ2, two ran-
dom values α1, α2 in Zp and a block m′ =
α1m1 + α2m2 ∈ Zp, a verifier is able to check the
correctness of block m′ without knowing m1 and
m2.

• Non-malleability: Given m1 and m2, σ1 and σ2,
two random values α1, α2 in Zp and a block
m′ = α1m1 + α2m2 ∈ Zp, a user, who does not
have private key sk, is not able to generate a valid
signature σ′ on block m′ by combining σ1 and σ2.

Blockless verifiability enables a verifier to audit the
correctness of data in the cloud with only a linear com-
bination of all the blocks via a challenge-and-response
protocol, while the entire data does not need to be down-
loaded to the verifier. Non-malleability indicates that
other parties, who do not possess proper private keys,
cannot generate valid signatures on combined blocks by
combining existing signatures.

3.4 Proxy Re-signatures

Proxy re-signatures, first proposed by Blaze et al. [17],
allow a semi-trusted proxy to act as a translator of
signatures between two users, for example, Alice and
Bob. More specifically, the proxy is able to convert a
signature of Alice into a signature of Bob on the same
block. Meanwhile, the proxy is not able to learn any
private keys of the two users, which means it cannot
sign any block on behalf of either Alice or Bob. In this
paper, to improve the efficiency of user revocation, we
propose to let the cloud to act as the proxy and convert
signatures for users during user revocation.

3.5 Shamir Secret Sharing

An (s, t)-Shamir Secret Sharing scheme [18] (s ≥
2t− 1), first proposed by Shamir, is able to divide a secret
π into s pieces in such a way that this secret π can be
easily recovered from any t pieces, while the knowledge
of any t − 1 pieces reveals absolutely no information
about this secret π.

The essential idea of an (s, t)-Shamir Secret Sharing
scheme is that, a number of t points uniquely defines a
t−1 degree polynomial. Suppose we have the following
t− 1 degree polynomial

f(x) = at−1x
t−1 + · · ·+ a1x+ a0,

where at−1, ..., a1
R
←∈ Z

∗
p. Then, the secret is π = a0, and

each piece of this secret is actually a point of polynomial
f(x), i.e. (xi, f(xi)), for 1 ≤ i ≤ s. The secret π can be
recovered by any t points of this t−1 degree polynomial
f(x) with Lagrange polynomial interpolation. Shamir Se-
cret Sharing is widely used in key management schemes
[18] and secure multi-party computation [21].

4 A NEW PROXY RE-SIGNATURE SCHEME

In this section, we first present a new proxy re-
signature scheme, which satisfies the property of block-
less verifiability and non-malleability. Then, we will de-
scribe how to construct our public auditing mechanism
for shared data based on this proxy re-signature scheme
in the next section.

4.1 Construction of HAPS

Because traditional proxy re-signature schemes [17],
[22] are not blockless verifiable, if we directly apply these
proxy re-signature schemes in the public auditing mech-
anism, then a verifier has to download the entire data
to check the integrity, which will significantly reduce
the efficiency of auditing. Therefore, we first propose a
homomorphic authenticable proxy re-signature (HAPS)
scheme, which is able to satisfy blockless verifiability
and non-malleability.

Our proxy re-signature scheme includes five algo-
rithms: KeyGen, ReKey, Sign, ReSign and Verify. De-
tails of each algorithm are described in Fig. 4. Similar as
the assumption in traditional proxy re-signature schemes
[17], [22], we assume that private channels (e.g., SSL)
exist between each pair of entities in Rekey, and there
is no collusion between the proxy and any user. Based
on the properties of bilinear maps, the correctness of the
verification in Verify can be presented as

e(σ, g) = e((H(id)wm)a, g) = e(H(id)wm, pkA).

4.2 Security Analysis of HAPS

Theorem 1: It is computationally infeasible to generate
a forgery of a signature in HAPS as long as the CDH
assumption holds.

Proof: Following the standard security model de-
fined in the previous proxy re-signature scheme [22], the
security of HAPS includes two aspects: external security
and internal security. External security means an exter-
nal adversary cannot generate a forgery of a signature;
internal security means that the proxy cannot use its re-
signature keys to sign on behalf of honest users.

External Security: We show that if a (t′, ǫ′)-algorithm
A, operated by an external adversary, can generate a
forgery of a signature under HAPS with the time of
t′ and advantage of ǫ′ after making at most qH hash
queries, qS signing queries, qR re-signing queries, and
requesting at most qK public keys, then there exists a
(t, ǫ)-algorithm B that can solve the CDH problem in G1

with
t ≤ t′ + qHcG1

+ qScG1
+ 2qRcP ,

ǫ ≥ ǫ′/qHqK ,

where one exponentiation on G1 takes time cG1
and one

pairing operation takes time cP . Specifically, on input
(g, ga, gb), the CDH algorithm B simulates a proxy re-
signature security game for algorithm A as follows:

Public Keys: As A requests the creation of system
users, B guesses which one A will attempt a forgery
against. Without loss of generality, we assume the target
public key as pkv and set it as pkv = ga. For all other

WANG et al.: PANDA: PUBLIC AUDITING FOR SHARED DATA WITH EFFICIENT USER REVOCATION IN THE CLOUD 5

Scheme Details: Let G1 and G2 be two groups of order p,
g be a generator of G1, e : G1 × G1 → G2 be a bilinear
map, w be another generator of G1. The global parameters
are (e, p,G1,G2, g, w,H), where H is a hash function with
H : {0, 1}∗ → G1.

KeyGen. Given global parameters (e, p,G1,G2, g, w,H), a
user uA selects a random a ∈ Z

∗
p, and outputs public key

pkA = ga and private key skA = a.

ReKey. The proxy generates a re-signing key rkA→B as
follows: (1) the proxy generates a random r ∈ Z

∗
p and

sends it to user uA; (2) user uA computes and sends r/a
to user uB , where skA = a; (3) user uB calculates and sends
rb/a to the proxy, where skB = b; (4) the proxy recovers
rkA→B = b/a ∈ Z

∗
p.

Sign. Given private key skA = a, block m ∈ Zp and block
identifier id, user uA outputs the signature on block m as:

σ = (H(id)wm)a ∈ G1.

ReSign. Given re-signing key rkA→B , public key pkA, signa-
ture σ, block m ∈ Zp and block identifier id, the proxy checks

that Verify(pkA,m, id, σ)
?
= 1. If the verification result is 0,

the proxy outputs ⊥; otherwise, it outputs

σ′ = σrkA→B = (H(id)wm)a·b/a = (H(id)wm)b.

Verify. Given public key pkA, block m, block identifier id,
and signature σ, a verifier outputs 1 if

e(σ, g) = e(H(id)wm, pkA),
and 0 otherwise.

Fig. 4. Details of HAPS.

public keys, we set pki = gxi for a random xi ∈ Z
∗
p. The

total number of public keys requested is qK .

Oracle Queries: There are three types of oracle queries
that B must answer: hash query Qhash, signing query
Qsign and re-signing query Qresign.

For each hash query Qhash on input (idi,mi), check
if there is an entry in table TH . If so, output the cor-
responding value; otherwise guess if (idi,mi) is the
identifier id∗ and block m∗ that A will attempt to
use in a forgery. If idi = id∗ and mi = m∗, output
H(idi)w

mi = gb; otherwise, select a random yi ∈ Z
∗
p and

output H(idi)w
mi = gyi . Record (idi,mi, yi) in the table

TH for each idi 6= id∗ or mi 6= m∗.

For each signing query Qsign on input (pkj , idi,mi), if
j 6= v, output the signature as σ = (H(idi)w

mi)xj (via
calling hash query). If j = v and idi 6= id∗, or j = v and
mi 6= m∗, return the signature as σ = (gyi)a = (ga)yi ;
otherwise, abort.

For each re-signing query Qresign on input
(pki, pkj , idk,mk, σ), if Verify(pki,mk, idk, σ) 6=1, output
⊥. Otherwise, output Qsign(pkj , idk,mk) (via calling
signing query).

Forgery: Eventually A outputs a forgery (pkj , id,m, σ).
If v 6= j, then B guessed the wrong target user and
must abort. If Verify(pkj ,m, id, σ) 6=1 or (id,m, σ) is the
result of anyQsign orQresign, B also aborts. Otherwise, B
outputs σ = (H(id)wm)a = (gb)a = gab as the proposed
CDH problem.

The probability that B will guess the target user
correctly is 1/qK , and the probability that B will guess
the forged block identifier id∗ and forged block m∗ is
1/qH . Therefore, if A generates a forgery of a signature
with probability ǫ′, then B solves the CDH problem with
probability ǫ′/qHqK . Algorithm B requires one exponen-
tiation on G1 for each hash query, one extra exponentia-
tion on G1 for each signing query and two extra pairing
operations for each re-signing query, so its running time
is A’s running time plus qHcG1

+ qScG1
+ 2qRcP .

Internal Security: We now prove that, if a (t′, ǫ′)-
algorithm A, operated by the proxy, can generate a
forgery of a signature with the time of t′ and advantage
of ǫ′ after making at most qH hash queries and qS signing
queries, then there exists a (t, ǫ)-algorithm B that can

solve the CDH problem in G1 with

t ≤ t′ + qHcG1
+ qScG1

,
ǫ ≥ ǫ′/qHqK .

On input (g, ga, gb), the CDH algorithm B simulates a
proxy re-signature security game for algorithm A as
follows:

Public Keys: Without loss of generality, we set the
target key as pkv = ga. For each key i 6= v, choose a
random xi ∈ Z

∗
p, and set pki = (ga)xi . The total number

of public keys requested is qK .
Oracle Queries: There are three types of queries that

B must answer: hash query Qhash, signing query Qsign

and rekey query Qrekey.
For each hash query Qhash on input (idi,mi), check

if there is an entry in table TH . If so, output the cor-
responding value; otherwise guess if (idi,mi) is the
identifier id∗ and block m∗ that A will attempt to
use in a forgery. If idi = id∗ and mi = m∗, output
H(idi)w

mi = gb; otherwise, select a random yi ∈ Z
∗
p and

output H(idi)w
mi = gyi . Record (idi,mi, yi) in the table

TH for each idi 6= id∗ or mi 6= m∗.
For each signing query Qsign on input (pkj , idi,mi), if

idi 6= id∗ or mi 6= m∗, return the signature as σ = (pkj)
yi

(via calling hash query); else abort.
For each rekey queryQrekey on input (pki, pkj), if i = v

or j = v, abort; else return rki→j = (xj/xi).
Forgery: Eventually A outputs a forgery (pkj , id,m, σ).

If v 6= j, then B guessed the wrong target user and
must abort. If Verify(pkj ,m, id, σ) 6=1 or (id,m, σ) is the
result of any Qsign, B also aborts. Otherwise, B outputs
σ = (H(id)wm)a = (gb)a = gab as the proposed CDH
problem.

Similarly as external security, the probability that B
will guess the target user correctly is 1/qK , and the prob-
ability that B will guess the forged block identifier id∗

and forged block m∗ is 1/qH . Therefore, if A generates a
forgery of a signature with probability ǫ′, then B solves
the CDH problem with probability ǫ′/qHqK . Algorithm
B requires one exponentiation on G1 for each hash query,
one extra exponentiation on G1 for each signing query, so
its running time is A’s running time plus qHcG1

+ qScG1
.

According to what we analyzed above, if the ad-
vantage of an adversary for generating a forgery of a
signature under the external or internal security game is

6 IEEE TRANSACTIONS ON XXXXXX, VOL. X, NO. X, XXXX 201X

non-negligible, then we can find an algorithm to solve
the CDH problem in G1 with a non-negligible probabil-
ity, which contradicts to the assumption that the CDH
problem is computationally infeasible in G1. Therefore,
it is computationally infeasible to generate a forgery of
a signature in HAPS under the CDH assumption.

Theorem 2: HAPS is a homomorphic authenticable proxy
re-signature scheme.

Proof: As we introduced in Section 3, to prove HAPS
is homomorphic authenticable, we need to show HAPS
is not only blockless verifiable but also non-malleable.
Moreover, we also need to prove that the re-signing per-
formed by the proxy does not affect these two properties.

Blockless Verifiability. Given user ua’s public key
pkA, two random numbers y1, y2 ∈ Z

∗
p, two identifiers

id1 and id2, and two signatures σ1 and σ2 signed by user
ua, a verifier is able to check the correctness of a block
m′ = y1m1 + y2m2 by verifying

e(σy1

1 · σ
y2

2 , g)
?
= e(H(id1)

y1H(id2)
y2wm′

, pkA), (1)

without knowing block m1 and block m2. Based on the
properties of bilinear maps, the correctness of the above
equation can be proved as:

e(σy1

1 · σ
y2

2 , g) = e(H(id1)
y1wy1m1H(id2)

y2wy2m2 , ga)

= e(H(id1)
y1H(id2)

y2wm′

, pkA).

It is clear that HAPS can support blockless verifiability.
Non-malleability. Meanwhile, an adversary, who does

not have private key skA = a, cannot generate a valid
signature σ′ for a combined block m′ = y1m1 + y2m2 by
combining σ1 and σ2 with y1 and y2. The hardness of
this problem lies in the fact that H must be a one-way
hash function (given every input, it is easy to compute;
however, given the image of a random input, it is hard
to invert).

More specifically, if we assume this adversary can
generate a valid signature σ′ for the combined block m′

by combining σ1 and σ2, we have

σ′ = σy1

1 · σ
y2

2

σy1

1 · σ
y2

2 = (H(id1)
y1H(id2)

y2wm′

)a

σ′ = (H(id′)wm′

)a

and we can further learn that H(id′) = H(id1)
y1H(id2)

y2 .
Then, that means, given a value of h = H(id1)

y1H(id2)
y2 ,

we can easily find a block identifier id′ so that H(id′) =
h, which contradicts to the assumption that H is a one-
way hash function.

Because the construction and verification of the sig-
natures re-signed by the proxy are as the same as the
signatures computed by users, we can also prove that the
signatures re-signed by the proxy are blockless verifiable
and non-malleable in the same way illustrated above.
Therefore, HAPS is a homomorphic authenticable proxy
re-signature scheme.

5 PANDA

5.1 Overview

Based on the new proxy re-signature scheme and its
properties in the previous section, we now present Panda

— a public auditing mechanism for shared data with
efficient user revocation. In our mechanism, the original
user acts as the group manager, who is able to revoke
users from the group when it is necessary. Meanwhile,
we allow the cloud to perform as the semi-trusted proxy
and translate signatures for users in the group with re-
signing keys. As emphasized in recent work [23], for
security reasons, it is necessary for the cloud service
providers to storage data and keys separately on dif-
ferent servers inside the cloud in practice. Therefore, in
our mechanism, we assume the cloud has a server to
store shared data, and has another server to manage re-
signing keys. To ensure the privacy of cloud shared data
at the same time, additional mechanisms, such as [24],
can be utilized. The details of preserving data privacy
are out of scope of this paper. The main focus of this
paper is to audit the integrity of cloud shared data.

5.2 Support Dynamic Data

To build the entire mechanism, another issue we need
to consider is how to support dynamic data during
public auditing. Because the computation of a signature
includes the block identifier, conventional methods —
which use the index of a block as the block identifier
(i.e., block mj is indexed with j) — are not efficient
for supporting dynamic data [8], [14]. Specifically, if a
single block is inserted or deleted, the indices of blocks
that after this modified block are all changed, and the
change of those indices requires the user to re-compute
signatures on those blocks, even though the content of
those blocks are not changed.

mi σi idi si

Block Signature Block Identifier Signer Identifier

Fig. 6. Each block is attached with a signature, a block
identifier and a signer identifier.

By leveraging index hash tables [8], [14], we allow a
user to modify a single block efficiently without chang-
ing block identifiers of other blocks. The details of index
hash tables are explained in Appendix A. Besides a block
identifier and a signature, each block is also attached
with a signer identifier (as shown in Fig. 6). A verifier
can use a signer identifier to distinguish which key is
required during verification, and the cloud can utilize it
to determine which re-signing key is needed during user
revocation.

5.3 Construction of Panda

Panda includes six algorithms: KeyGen, ReKey, Sign,
ReSign, ProofGen, ProofVerify. Details of Panda are
presented in Fig. 5.

In KeyGen, every user in the group generates his/her
public key and private key. In ReKey, the cloud com-
putes a re-signing key for each pair of users in the
group. As argued in previous section, we still assume
that private channels exist between each pair of entities

WANG et al.: PANDA: PUBLIC AUDITING FOR SHARED DATA WITH EFFICIENT USER REVOCATION IN THE CLOUD 7

Scheme Details: Let G1 and G2 be two groups of order p,
g be a generator of G1, e : G1 × G1 → G2 be a bilinear
map, w be another generator of G1. The global parameters
are (e, p,G1,G2, g, w,H), where H is a hash function with
H : {0, 1}∗ → G1. The total number of blocks in shared data
is n, and shared data is described as M = (m1, ...,mn). The
total number of users in the group is d.

KeyGen. User ui generates a random πi ∈ Z
∗
p, and outputs

public key pki = gπi and private key ski = πi. Without loss
of generality, we assume user u1 is the original user, who is
the creator of shared data. The original user also creates a
user list (UL), which contains ids of all the users in the group.
The user list is public and signed by the original user.

ReKey. The cloud generates a re-signing key rki→j as fol-
lows: (1) the cloud generates a random r ∈ Zp and sends it
to user ui; (2) user ui sends r/πi to user uj , where ski = πi;
(3) user uj sends rπj/πi to the cloud, where skj = πj ; (4)
the cloud recovers rki→j = πj/πi ∈ Z

∗
p.

Sign. Given private key ski = πi, block mk ∈ Zp and its
block identifier idk, where k ∈ [1, n], user ui outputs the
signature on block mk as:

σk = (H(idk)w
mk)πi ∈ G1.

ReSign. Given re-signing key rki→j , public key pki, signa-
ture σk, block mk and block identifier idk, the cloud first

checks that e(σk, g)
?
= e(H(idk)w

mk , pki). If the verification
result is 0, the cloud outputs ⊥; otherwise, it outputs

σ′
k = σ

rki→j

k = (H(idk)w
mk)πi·πj/πi = (H(idk)w

mk)πj .

After the re-signing, the original user removes user ui’s id
from UL and signs the new UL.

ProofGen. A public verifier generates an auditing message
as follows:

1) Randomly picks a c-element subset L of set [1, n]
to locate the c selected random blocks that will be
checked in this auditing task.

2) Generates a random ηl ∈ Z
∗
q , for l ∈ L and q is a much

smaller prime than p.
3) Outputs an auditing message {(l, ηl)}l∈L, and sends it

to the cloud.

After receiving an auditing message, the cloud generates a
proof of possession of shared data M . More concretely,

1) According to the signer identifier of each selected
block, the cloud divides set L into d subset L1, ..., Ld,
where Li is the subset of selected blocks signed by user
ui. The number of elements in subset Li is ci. Clearly,
we have c =

∑d
i=1 ci, L = L1∪...∪Ld and Li∩Lj = ∅,

for i 6= j.
2) For each subset Li, the cloud computes αi =∑

l∈Li
ηlml ∈ Zp and βi =

∏
l∈Li

σηl
l ∈ G1.

3) The cloud outputs an auditing proof {ααα,βββ, {idl, sl}l∈L},
and sends it to the verifier, where ααα = (α1, ..., αd) and
βββ = (β1, ..., βd).

ProofVerify. Given an auditing message {(l, ηl)}l∈L, an au-
diting proof {ααα,βββ, {idl, sl}l∈L}, and all the existing users’
public keys (pk1, ..., pkd), the public verifier checks the cor-
rectness of this auditing proof as

e(

d∏

i=1

βi, g)
?
=

d∏

i=1

e(
∏

l∈Li

H(idl)
ηl · wαi , pki). (2)

If the result is 1, the verifier believes that the integrity of all
the blocks in shared data M is correct. Otherwise, the public
verifier outputs 0.

Fig. 5. Details of Panda.

during the generation of re-signing keys, and there is no
collusion. When the original user creates shared data in
the cloud, he/she computes a signature on each block
as in Sign. After that, if a user in the group modifies a
block in shared data, the signature on the modified block
is also computed as in Sign. In ReSign, a user is revoked
from the group, and the cloud re-signs the blocks, which
were previously signed by this revoked user, with a re-
signing key. The verification on data integrity is per-
formed via a challenge-and-response protocol between
the cloud and a public verifier. More specifically, the
cloud is able to generate a proof of possession of shared
data in ProofGen under the challenge of a public verifier.
In ProofVerify, a public verifier is able to check the
correctness of a proof responded by the cloud.

In ReSign, without loss of generality, we assume that
the cloud always converts signatures of a revoked user
into signatures of the original user. The reason is that
the original user acts as the group manager, and we
assume he/she is secure in our mechanism. Another way
to decide which re-signing key should be used when a
user is revoked from the group, is to ask the original user
to create a priority list (PL). Every existing user’s id is
in the PL and listed in the order of re-signing priority.
When the cloud needs to decide which existing user the
signatures should be converted into, the first user shown
in the PL is selected. To ensure the correctness of the PL,
it should be signed with the private key of the original
user (i.e., the group manager).

Based on the properties of bilinear maps, the correct-
ness of our mechanism in ProofVerify can be explained
as follows.

e(
d
∏

i=1

βi, g) =
d
∏

i=1

e(
∏

l∈Li

σηl

l , g)

=

d
∏

i=1

e(
∏

l∈Li

(H(idl)w
ml)πiηl , g)

=

d
∏

i=1

e(
∏

l∈Li

H(idl)
ηl ·

∏

l∈Li

wmlηl , gπi)

=

d
∏

i=1

e(
∏

l∈Li

H(idl)
ηl · wαi , pki).

5.4 Security Analysis of Panda

Theorem 3: For the cloud, it is computationally infeasible
to generate a forgery of an auditing proof in Panda as long as
the DL assumption holds.

Proof: Following the security game defined in [4],
[14], we can prove that, if the cloud could win a security
game, named Game 1, by forging an auditing proof on
incorrect shared data, then we can find a solution to the
DL problem in G1 with a probability of 1 − 1/p, which
contradicts to the DL assumption (the advantage of solv-
ing DL problem G1 should be negligible). Specifically, we
define Game 1 as follows:

8 IEEE TRANSACTIONS ON XXXXXX, VOL. X, NO. X, XXXX 201X

Game 1: The public verifier sends an auditing mes-
sage {(l, ηl)}l∈L to the cloud, the auditing proof on
correct shared data M should be {ααα,βββ, {idl}l∈L}, which
should pass the verification with Equation (2). How-
ever, the cloud generates a proof on incorrect shared
data M ′ as {ααα′,βββ, {idl}l∈L}, where ααα′ = (α1, ..., αd),
α′
i =

∑

l∈Li
ηlm

′
l, for i ∈ [1, d], and M 6= M ′. Define

∆αi = α′
i − αi for 1 ≤ i ≤ d, and at least one element

of {∆αi}1≤i≤d is nonzero. If this proof still pass the
verification performed by the public verifier, then the
cloud wins this game. Otherwise, it fails.

We first assume that the cloud wins the game. Then,
according to Equation (2), we have

e(

d
∏

i=1

βi, g) =

d
∏

i=1

e(
∏

l∈Li

H(idl)
ηl · wα′

i , pki).

Because {ααα,βββ, {idl}l∈L} is a correct auditing proof, we
have

e(

d
∏

i=1

βi, g) =

d
∏

i=1

e(
∏

l∈Li

H(idl)
ηl · wαi , pki).

Based on the properties of bilinear maps, we learn that

d
∏

i=1

wαiπi =

d
∏

i=1

wα′
iπi ,

d
∏

i=1

wπi∆αi = 1.

Because G1 is a cyclic group, then for two elements
u, v ∈ G1, there exists x ∈ Zp that v = ux. Without loss
of generality, given u, v, each wπi can generated as wπi =
uξivγi ∈ G1, where ξi and γi are random values of Zp.
Then, we have

1 =
d
∏

i=1

(uξivγi)∆αi = u
∑d

i=1
ξi∆αi · v

∑d
i=1

γi∆αi .

Clearly, we can find a solution to the DL problem. Given
u, v = ux ∈ G1, we can output

v = u
−

∑d
i=1

ξi∆αi
∑d

i=1
γi∆αi , x = −

∑d
i=1 ξi∆αi

∑d
i=1 γi∆αi

,

unless the denominator is zero. However, as we defined
in Game 1, at least one of element in {∆αi}1≤i≤d is
nonzero, and γi is a random element of Zp, therefore,
the denominator is zero with a probability of 1/p, which
is negligible because p is a large prime. Then, we can
find a solution to the DL problem with a non-negligible
probability of 1 − 1/p, which contradicts to the DL
assumption in G1.

5.5 Efficient and Secure User Revocation

We argue that our mechanism is efficient and secure
during user revocation. It is efficient because when a
user is revoked from the group, the cloud can re-sign
blocks that were previously signed by the revoked user
with a re-signing key, while an existing user does not
have to download those blocks, re-compute signatures
on those blocks and upload new signatures to the cloud.
The re-signing preformed by the cloud improves the

efficiency of user revocation and saves communication
and computation resources for existing users.

The user revocation is secure because only existing
users are able to sign the blocks in shared data. As
analyzed in Theorem 1, even with a re-signing key, the
cloud cannot generate a valid signature for an arbitrary
block on behalf of an existing user. In addition, after
being revoked from the group, a revoked user is no
longer in the user list, and can no longer generate valid
signatures on shared data.

5.6 Limitations and Future Work

Remind that in Section 2, we assume there is no
collusion between the cloud and any user in the design
of our mechanism as the same as the assumption in some
traditional proxy re-signatures [17], [22]. The reason is
that, in our current design, if a revoked user (e.g., Bob
with private key skb) is able to collude with the cloud,
who possesses a re-signing key (e.g., rka→b = ska/skb,
then the cloud and Bob together are able to easily reveal
the private key of an existing user (e.g., Alice’s private
key ska).

To overcome the above limitation, some proxy re-
signature schemes with collusion resistance in [22],
which can generate a re-signing key with a revoked
user’s public key and an existing user’s private key,
would be a possible solution. Specifically, a resigning key
is computed as rka→b = pk

ska

b by Alice, then even the
cloud (with rka→b) and Bob (with pkb) collude together,
they cannot compute the private key of Alice (i.e., ska)
due to the hardness of computing the DL problem in G1.

Unfortunately, how to design such type of collusion-
resistant proxy re-signature schemes while also sup-
porting public auditing (i.e., blockless verifiability and
non-malleability) remains to be seen. Essentially, since
collusion-resistant proxy re-signature schemes generally
have two levels of signatures (i.e., the first level is signed
by a user and the second level is re-signed by the proxy),
where the two levels of signatures are in different forms
and need to be verified differently, achieving blockless
verifiability on both of the two levels of signatures and
verifying them together in a public auditing mechanism
is challenging. We will leave this problem for our future
work.

6 EXTENSION OF PANDA

In this section, we will utilize several different meth-
ods to extend our mechanism in terms of detection
probability, scalability and reliability.

6.1 Detection Probability of Panda

As presented in our mechanism, a verifier selects a
number of random blocks instead of choosing all the
blocks in shared data, which can improve the efficiency
of auditing. Previous work [3] has already proved that
a verifier is able to detect the polluted blocks with a
high probability by selecting a small number of random
blocks, referred to as sample strategies [3]. More specif-
ically, when shared data contains n = 1, 000, 000 blocks,

WANG et al.: PANDA: PUBLIC AUDITING FOR SHARED DATA WITH EFFICIENT USER REVOCATION IN THE CLOUD 9

if 1% of all the blocks are corrupted, a verifier can detect
these polluted blocks with a probability greater than 99%
or 95%, where the number of selected blocks c is 460 or
300, respectively. Further discussions and analyses about
sample strategies can be found in [3].

To further reduce the number of the undetected pol-
luted blocks in shared data and improve the detection
probability, besides increasing the number of random
selected blocks in one auditing task mentioned in the
last paragraph, a verifier can also perform multiple
auditing tasks on the same shared data. If the detection
probability in a single auditing task is PS , then the total
detection probability for a number of t multiple auditing
tasks is

PM = 1− (1− PS)
t.

For instance, if the detection probability in a single
auditing task is PS = 95%, then the total detection
probability with two different auditing tasks on the same
shared data is PM = 99.75%. Note that to achieve a
higher detection probability, both of the two methods
require a verifier to spend more communication and
computation cost during auditing.

6.2 Scalability of Panda

Now we discuss how to improve the scalability of our
proposed mechanism by reducing the total number of re-
signing keys in the cloud and enabling batch auditing for
verifying multiple auditing tasks simultaneously.

Reduce the Number of Re-signing Keys. As de-
scribed in Panda, the cloud needs to establish and main-
tain a re-signing key for each pair of two users in the
group. Since the number of users in the group is denoted
as d, the total number of re-signing keys for the group
is d(d − 1)/2. Clearly, if the cloud data is shared by a
very large number of users, e.g. d = 200, then the total
number of re-signing keys that the cloud has to securely
store and manage is 19, 900, which significantly increases
the complexity of key management in cloud.

To reduce the total number of re-signing keys required
in the cloud and improve the scalability of our mech-
anism, the original user, who performs as the group
manager, can keep a short priority list (PL) with only a
small subset of users instead of the entire PL with all the
users in the group. More specifically, if the total number
of users in the group is still d = 200 and the size of a
short PL is d′ = 5, which means the cloud is able to
convert signatures of a revoked user only into one of
these five users shown in the short PL, then the total
number of re-signing keys required with the short PL of
5 users is 990. It is only 5% of the number of re-signing
keys with the entire PL of all the 200 users.

Batch Auditing for Multiple Auditing Tasks. In
many cases, the public verifier may need to handle
multiple auditing tasks in a very short time period.
Clearly, asking the public verifier to perform these au-
diting requests independently (one by one) may not
be efficient. Therefore, to improve the scalability of our
public auditing mechanism in such cases, we can further
extend Panda to support batch auditing [7] by utilizing

the properties of bilinear maps. With batch auditing,
a public verifier can perform multiple auditing tasks
simultaneously. Compared to the batch auditing in [7],
where the verification metadata (i.e, signatures) in each
auditing task are generated by a single user, our batch
auditing method needs to perform on multiple auditing
tasks where the verification metadata in each auditing
task are generated by a group of users. Clearly, designing
batch auditing for our mechanism is more complicated
and challenging than the one in [7].

More concretely, if the total number of auditing tasks
received in a short time is t, then the size of the group
for each task is dj , for j ∈ [1, t], each auditing message
is represented as {(l, ηj|l)}l∈Lj

, for j ∈ [1, t], each au-
diting proof is described as {αααj ,βββj , {idj|l}l∈Lj

}, where
αααj = (αj|1, ..., αj|dj

) and βββj = (βj|1, ..., βj|dj
), for j ∈ [1, t],

and all the existing users’ public keys for each group
are denoted as (pkj|1, ..., pkj|dj

), for j ∈ [1, t]. Based on
the properties of bilinear maps, the public verifier can
perform batch auditing as below

e(

t
∏

j=1

dj
∏

i=1

β
θj
j|i, g)

?
=

t
∏

j=1

dj
∏

i=1

e(
∏

l∈Lj|i

H(idj|l)
ηj|l ·wαj|i , pkj|i)

θj ,

(3)
where θj ∈ Z

∗
p, for j ∈ [1, t], is a random chosen by the

public verifier. The correctness of the above equation is
based on all the t auditing proofs are correct. The left
hand side (LHS) of this equation can be expended as

LHS =
t
∏

j=1

e(

dj
∏

i=1

βj|i, g)
θj

=
t
∏

j=1

dj
∏

i=1

e(
∏

l∈Lj|i

H(idj|l)
ηj|lwαj|i , pkj|i)

θj .

According to the security analysis of batch verification
in [25], the probability that the public verifier accepts
an invalid auditing proof with batch auditing is 1/p
(since randoms (θ1, ..., θt) are elements of Zp), which is
negligible. Therefore, if the above equation holds, then
the public verifier believes all the t auditing proofs are
correct.

One of the most important advantages of batch au-
diting is that it is able to reduce the total number of
pairing operations, which are the most time consuming
operations during verification. According to Equation
(3), batch auditing can reduce the total number of pairing
operations for t auditing tasks to td+ 1, while verifying
these t auditing tasks independently requires td + t
pairing operations. Moreover, if all the t auditing tasks
are all from the same group, where the size of the group
is d and all the existing users’ public keys for the group
are (pk1, ..., pkd), then batch auditing on t auditing tasks
can be further optimized as follows

e(
t
∏

j=1

d
∏

i=1

β
θj
j|i, g)

?
=

d
∏

i=1

e(
t
∏

j=1

(
∏

l∈Lj|i

H(idj|l)
ηj|l ·wαj|i)θj , pki).

In this case, the total number of pairing operations
during batch auditing can be significantly reduced to

10 IEEE TRANSACTIONS ON XXXXXX, VOL. X, NO. X, XXXX 201X

ReKey∗. Given private key skj = πj , user uj generates a
random t− 1 degree polynomial fj(x) as

fj(x) = aj,t−1x
t−1 + aj,t−2x

t−2 + · · ·+ aj,1x+ aj,0,

where (aj,t−1, ..., aj,1)
R
← Z

∗
p and aj,0 = πj . Then, user uj

computes s points (x1, yj,1), ..., (xs, yj,s) based on polyno-
mial fj(x), where yj,l = fj(xl), for l ∈ [1, s], is a piece of
user uj ’s private key and (x1, ..., xs) are public.
Proxy Pl generates a piece of a re-signing key as follows: (1)
proxy Pl generates a random r ∈ Z

∗
p and sends it to user

ui; (2) user ui computes and sends r/πi to user uj , where
ski = πi; (3) user uj computes and sends ryj,l/πi to server
Sl, where yj,l = fj(xl) is a piece of private key skj = πj ; (4)
proxy Pl recovers rki→j,l = yj,l/πi ∈ Zp, where rki→j,l is a
piece of re-signing key rki→j .

ReSign∗. Given public key pki, signature σk, block mk and
block identifier idk, the cloud first checks

e(σk, g)
?
= e(H(idk)w

mk , pki).

If the equation does not hold, the cloud outputs ⊥; other-
wise, each proxy converts this signature σk with its own

piece of the corresponding re-signing key. Specifically, proxy
Pl converts its part of signature σk as

σ′
k,l = σ

rki→j,l

k = (H(idk)w
mk)yj,l .

Finally, as long as t or more proxies are able to convert their
parts correctly, the cloud is able to recover signature σ′

k based
on the t parts (σ′

k,1, ..., σ
′
k,t) as

σ′
k =

t∏

l=1

σ′
k,l

Fj,l(0), (4)

where σ′
k,l is computed by proxies Pl, and Fj,l(x) is a

Lagrange basis polynomial of polynomial fj(x) and can be
pre-computed as

Fj,l(x) =
∏

0<h≤t,h 6=l

x− xh

xl − xh
, 1 ≤ l ≤ t.

Similar as in Algorithm ReSign in single proxy model, after
the re-signing process in the cloud, the original user removes
user ui’s id from the user list (UL) and signs the new UL.

Fig. 7. Details of ReKey∗ and ReSign∗.

only d + 1, which can further improve the efficiency of
batch auditing. The correctness of the above equation
can be proved as

LHS =
t
∏

j=1

e(
d
∏

i=1

βj|i, g)
θj

=
t
∏

j=1

d
∏

i=1

e(
∏

l∈Lj|i

H(idj|l)
ηj|lwαj|i , pki)

θj

=

d
∏

i=1

e(

t
∏

j=1

(
∏

l∈Lj|i

H(idj|l)
ηj|l · wαj|i)θj , pki).

6.3 Reliability of Panda

In our mechanism, it is very important for the cloud
to securely store and manage the re-signing keys of the
group, so that the cloud can correctly and successfully
convert signatures from a revoked user to an existing
user when it is necessary. However, due to the existence
of internal attacks, simply storing these re-signing keys
in the cloud with a single re-signing proxy may some-
times allow inside attackers to disclose these re-signing
keys and arbitrarily convert signatures on shared data,
even no user is revoking from the group. Obviously, the
arbitrary misuse of re-signing keys will change the own-
ership of corresponding blocks in shared data without
users’ permission, and affect the integrity of shared data
in the cloud. To prevent the arbitrary use of re-signing
keys and enhance the reliability of our mechanism, we
propose an extended version of our mechanism, denoted
as Panda∗, in the multi-proxy model.

By leveraging an (s, t)-Shamir Secret Sharing (s ≥
2t− 1) [18] and s multiple proxies, each re-signing key
is divided into s pieces and each piece is distributed to
one proxy. These multiple proxies belong to the same
cloud, but store and manage each piece of a re-signing
key independently (as described in Fig. 8). Since the
cloud needs to store keys and data separately [23], the

2. Blocks

1. Re-signing Requests

Proxy P1

Proxy Ps

.

.

.

Data Server

3. Re-signed Signatures

User

Cloud

Fig. 8. Multiple re-signing proxies in the cloud.

cloud also has another server to store shared data and
corresponding signatures. In Panda∗, each proxy is able
to convert signatures with its own piece, and as long
as t or more proxies (the majority) are able to correctly
convert signatures when user revocation happens, the
cloud can successfully convert signatures from a revoked
user to an existing user. Similar multi-proxy model was
also recently used in the cloud to secure the privacy of
data with re-encryption techniques [26].

According to the security properties of an (s, t)-Shamir
Secret Sharing, even up to t−1 proxies are compromised
by an inside attacker, it is still not able to reveal a re-
signing key or arbitrarily transform signatures on shared
data. For Panda∗, most of algorithms are as the same
as in Panda, except the two algorithms for generating
re-signing keys and re-signing signatures, denoted as
ReKey∗ and ReSign∗ respectively. We use ∗ to distin-
guish them from the corresponding algorithms in the
single proxy model. Details of Algorithm ReKey∗ and
ReSign∗ are described in Fig. 7.

According to polynomial interpolation, we have
fj(x) =

∑t
l=1 yj,l ·Fj,l(x). The correctness of the recovery

and transformation of signature σ′
k (i.e., Equation 4) can

be explained as

t
∏

l=1

σ′
k,l

Fj,l(0) =

t
∏

l=1

(H(idk)w
mk)yj,lFj,l(0)

= (H(idk)w
mk)

∑t
l=1

yj,lFj,l(0)

= (H(idk)w
mk)fj(0)

= (H(idk)w
mk)πj = σ′

k.

WANG et al.: PANDA: PUBLIC AUDITING FOR SHARED DATA WITH EFFICIENT USER REVOCATION IN THE CLOUD 11

7 OVERHEAD ANALYSIS

Communication Overhead. According to the descrip-
tion in Section 5, during user revocation, our mechanism
does not introduce communication overhead to existing
users. The size of an auditing message {(l, yl)}l∈L is
c·(|n|+|q|) bits, where c is the number of selected blocks,
|n| is the size of an element of set [1, n] and |q| is the
size of an element of Zq . The size of an auditing proof
{ααα,βββ, {idl, sl}l∈L} is 2d · |p| + c · (|id|) bits, where d is
the number of existing users in the group, |p| is the size
of an element of G1 or Zp, |id| is the size of a block
identifier. Therefore, the total communication overhead
of an auditing task is 2d · |p|+ c · (|id|+ |n|+ |q|) bits.

Computation Overhead. As shown in ReSign of our
mechanism, the cloud first verifies the correctness of
the original signature on a block, and then computes
a new signature on the same block with a re-signing
key. The computation cost of re-signing a block in the
cloud is 2Exp

G1
+ MulG1

+ 2Pair+ HashG1
, where Exp

G1

denotes one exponentiation in G1, MulG1
denotes one

multiplication in G1, Pair denotes one pairing opera-
tion on e : G1 × G1 → G2, and HashG1

denotes one
hashing operation in G1. Moreover, the cloud can further
reduce the computation cost of the re-signing on a block
to Exp

G1
by directly re-signing it without verification,

because the public auditing performed on shared data
ensures that the re-signed blocks are correct. Based on
Equation (2), the computation cost of an auditing task
in our mechanism is (c+ d)Exp

G1
+ (c+ 2d)MulG1

+ (d+
1)Pair+ dMulG2

+ cHashG1
.

8 PERFORMANCE EVALUATION

In this section, we evaluate the performance of our
mechanism in experiments. We utilize Pairing Based
Cryptography (PBC) Library [27] to implement crypto-
graphic operations in our mechanism. All the experi-
ments are tested under Ubuntu with an Intel Core i5
2.5 GHz Processor and 4 GB Memory over 1, 000 times.
In the following experiments, we assume the size of an
element of G1 or Zp is |p| = 160 bits, the size of an
element of Zq is |q| = 80 bits, the size of a block identifier
is |id| = 80 bits, and the total number of blocks in shared
data is n = 1, 000, 000. By utilizing aggregation methods
from [4], [14], the size of each block can be set as 2 KB,
then the total size of shared data is 2 GB.

As introduced in Section 1, the main purpose of Panda
is to improve the efficiency of user revocation. With
our mechanism, the cloud is able to re-sign blocks for
existing users during user revocation, so that an existing
user does not need to download blocks and re-compute
signatures by himself/herself. In contrast, to revoke
a user in the group with the straightforward method
extended from previous solutions, an existing user needs
to download the blocks were previously signed by the
revoked user, verify the correctness of these blocks, re-
compute signatures on these blocks and upload the new
signatures. In the following experiments, the perfor-
mance of the straightforward solution is evaluated based
on [4] (denoted as SW in this paper), because it is also a

public auditing mechanism designed based on bilinear
maps.

8.1 Performance of User Revocation

Comparison with the Same Computation Ability. In
this experiment, we assume the cloud and an existing
user have the same computation ability (Intel Core i5
2.5 GHz Processor and 4 GB Memory) to perform user
revocation. We also assume the download speed and
upload speed for the data storage and sharing services
is 1Mbps and 500Kbps, respectively. Let k denote the
number of re-signed blocks during user revocation.

0 100 200 300 400 500
k: the number of re-signed blocks

0

5

10

15

20

25

30

R
e
v
o
ca

ti
o
n
 t
im

e
 (
s) Straight.(SW)

Panda

Fig. 9. Impact of k on
revocation time (s).

0 2 4 6 8 10 12 14 16
Download speed (Mbps)

10

12

14

16

18

20

22

24

R
e
v
o
ca
ti
o
n
 t
im

e
 (
s) Straight.(SW)

Panda

Fig. 10. Impact of the
download speed (Mbps)
on revocation time (s).

The performance comparison between Panda and the
straightforward method during user revocation is pre-
sented in Fig. 9. With our mechanism, the cloud is able to
not only efficiently re-sign blocks but also save existing
users’ computation and communication resources. As
shown in Fig. 9, when the number of re-signed blocks is
500, which is only 0.05% of the total number of blocks,
the cloud in Panda can re-sign these blocks within 15
seconds. In contrast, without our mechanism, an existing
user needs about 22 seconds to re-sign the same number
of blocks by herself. Both of the two revocation time are
linearly increasing with an increase of k—the number
of re-signed blocks. Since we assume the cloud and an
existing user have the same level of computation ability
in this experiment, it is easy to see that the gap in terms
of revocation time between the two lines in Fig. 9 is
mainly introduced by downloading the re-signed blocks.

It is clear that if an existing user could have a faster
download speed, the gap in terms of revocation time be-
tween our mechanism and the straightforward method
can be significantly reduced. We can observe from Fig. 10
that, if we assume the number of re-signed blocks is fixed
(k = 500), the revocation time performed independently
by an existing user is approaching to the revocation time
of our mechanism when the download speed of data
storage and sharing services is increasing. Unfortunately,
it is generally impractical for a normal user to maintain
or reserve a very high download speed for only a
single service on his/her computer. Even if it is possible,
with the straightforward method, this user still has to
download those 500 re-signed blocks first, which costs
him/her additional bandwidth during user revocation
compared to our mechanism.

As we analyzed before, the cloud can even directly
re-sign data without verification, which can further im-
prove the efficiency of re-signing about 100 times ac-
cording to our experiments. More specifically, the re-
signing time on one block with verification is 28.19

12 IEEE TRANSACTIONS ON XXXXXX, VOL. X, NO. X, XXXX 201X

milliseconds while the one without verification is only
0.28 milliseconds. Note that due to the existence of
transmission errors in networks, it is not a good idea
to allow an existing user to re-sign the blocks without
verifying them in the straightforward solution. Even
if an existing user directly re-signs the blocks without
verification, compared to Panda, this user still needs
to spend some extra time to download the blocks. As
illustrated in Fig. 11, when the number of re-signed
blocks is still 500, the cloud in Panda can re-sign these
blocks in about 0.14 seconds; while an existing user
needs about 8.43 seconds by himself/herself with the
straightforward solution.

Similarly, as presented in Fig. 12, the revocation time
of Panda is independent with the download speed while
an existing user with the straightforward method is able
to re-sign the blocks sooner if the download speed is
faster. With the comparison between Fig. 9 and Fig. 11,
we can see that the verification on original signatures
before re-signing is one of the main factors that can slow
down the entire user revocation process. As shown in
Fig. 9 and Fig. 11, the key advantage of Panda is that we
can improve the efficiency of user revocation and release
existing users from the communication and computation
burden introduced by user revocation.

0 100 200 300 400 500
k: the number of re-signed blocks

0

2

4

6

8

10

R
e
v
o
ca

ti
o
n
 t
im

e
 (
s) Straight.(SW)

Panda

Fig. 11. Impact of k on re-
vocation time (s) without
verification.

0 2 4 6 8 10 12 14 16
Download speed (Mbps)

0

2

4

6

8

10

R
e
v
o
ca
ti
o
n
 t
im

e
 (
s) Straight.(SW)

Panda

Fig. 12. Impact of of the
download speed (Mbps)
on revocation time (s)
without verification.

Comparison with Different Computation Abilities.
In the previous experiment, we assume an existing user
and the cloud have the same level of computation ability.
Unfortunately, in practical cases, it is common that an
existing user may use devices with limited computation
resources, such as mobile phones, to access his/her
shared data in the cloud. Thus, the computation abilities
between the cloud and an existing user are not symmetric
in data sharing services. In these cases, Panda can save
even more revocation time for an existing user than
asking this user to re-signing blocks by himself/herself
with the straightforward method. To demonstrate the
performance advantage of our mechanism in those cases,
we use the same parameters as in the previous ex-
periment, except that we assume the existing user is
using a resource limited device (e.g., a mobile phone),
which has a weaker computation ability than the cloud.
Specifically, by leveraging jPBC library [28], we evaluate
the performance of the straightforward method on a
mobile phone (Motorola MB860, OS: Android 2.3; CPU:
Dual-core 1 GHz).

As we can see from Fig. 13 and Fig. 14, the revoca-
tion time with the straightforward solution on a mobile
phone is dramatically and linearly increasing with the

number of re-signed blocks. Specifically, when the num-
ber of revoked blocks is 500, the revocation time with the
straightforward method on a mobile phone is over 350
seconds, while the revocation time with our mechanism
is only less than 4% of it. If both of the cloud and an
existing user directly re-sign blocks without verification,
our mechanism is also able to save amount of time for
an existing user when user revocation happens.

0 100 200 300 400 500
k: the number of re-signed blocks

0
50

100
150
200
250
300
350
400

R
e
v
o
ca

ti
o
n
 t
im

e
 (
s) Straight.(SW)

Panda

Fig. 13. Impact of k on
revocation time (s) on mo-
bile.

0 100 200 300 400 500
k: the number of re-signed blocks

0

20

40

60

80

100

R
e
v
o
ca

ti
o
n
 t
im

e
 (
s) Straight.(SW)

Panda

Fig. 14. Impact of k on re-
vocation time (s) without
verification on mobile.

Comparison with the Multi-Proxy Model. In Section
6, we proposed to utilize an (s, t)-Shamir Secret Sharing
and a number of s multiple proxies to improve the
reliability of our mechanism. With Panda∗ in the multi-
proxy model, even if t − 1 proxies are compromised by
adversaries, our mechanism is still able to successfully
to convert signatures during user revocation and prevent
the arbitrary use of re-signing keys. Clearly, the increase
of t will increase the reliability of our mechanism. As
a necessary trade-off, the increase of t will inevitably
decrease the performance of our mechanism in terms
of revocation time. As show in Fig. 15 and Fig. 16,
the revocation time of our mechanism in multi-proxy
model is linearly increasing with an increase of k and an
increase of t. However, these efficiency losses introduced
by the multi-proxy model is still acceptable.

0 100 200 300 400 500
k: the number of re-signed blocks

0
2
4
6
8

10
12
14
16
18

R
e
v
o
ca

ti
o
n
 t
im

e
 (
s) Panda

Panda*, t=10

Panda*, t=20

Fig. 15. Impact of k on re-
vocation time (s) in multi-
proxy model.

2 3 4 5 6 7 8 9 10
t: the number of uncompromised proxies

14.0

14.5

15.0

15.5

16.0

R
e
v
o
ca

ti
o
n
 t
im

e
 (
s) Panda

Panda*

Fig. 16. Impact of t on re-
vocation time (s) in multi-
proxy model (k = 500).

8.2 Performance of Auditing

Independent Auditing. We can see from Fig. 17 and
Fig. 18 that, in order to maintain a higher detection
probability for a single independent auditing, a verifier
needs more time and communication overhead to finish
the auditing task on shared data. Although the auditing
time (the time that a public verifier needs to verify the
correctness of an auditing proof based on Equation (5))
and communication cost are linearly increasing with the
number of existing users in the group, our mechanism is
still quite efficient for supporting large groups. Specifi-
cally, as we can observed from Fig. 17 and Fig. 18, when
the number of existing users is d = 50, our mechanism

WANG et al.: PANDA: PUBLIC AUDITING FOR SHARED DATA WITH EFFICIENT USER REVOCATION IN THE CLOUD 13

can finish an auditing task with only 14 KB and 860
milliseconds by choosing c = 460.

In order to further reduce such kind of increases on
computation and communication overhead introduced
by a larger number of users, some recent work [29]
motivated by our mechanism can be utilized. Particu-
larly, by performing aggregation on signatures generated
by different users, the computation and communication
overhead in [29] is independent with regard to the
number of users in the group. Further details about this
aggregation can be found in [29].

0 10 20 30 40 50
d: the number of existing users

0
100
200
300
400
500
600
700
800
900

A
u
d
it
in
g
 t
im

e
 (
m
s)

c=460

c=300

Fig. 17. Impact of d on
auditing time (ms).

0 10 20 30 40 50
d: the number of existing users

0

2

4

6

8

10

12

14
C
o
m
m
u
n
ic
a
ti
o
n
 c
o
st
 (
K
B
)

c=460

c=300

Fig. 18. Impact of d on
communication cost (KB).

Batch Auditing. As introduced in Section 6, when a
public verifier receives amount of auditing requests in
a very short time, our mechanism allows this verifier
to perform batch auditing to improve the performance
on multiple auditing tasks. We can see from Fig. 19 and
Fig. 20 that, with batch auditing, the average auditing
time spent on each auditing task can be efficiently re-
duced. Specifically, according to Fig. 19, if there are 20
auditing tasks, the average auditing time per auditing
task with batch auditing is around 270 milliseconds
while the average auditing time per task with indepen-
dent auditing is 295 milliseconds. Moreover, as shown
in Fig. 20, if those multiple tasks are all from the same
group, then the performance of batch auditing can be
significantly improved due to the dramatic decrease on
the number of pairing operations, which we discussed
in Section 6.

0 5 10 15 20 25 30 35 40
t: the total number of auditing tasks

250

260

270

280

290

300

A
v
e
ra
g
e
 a
u
d
it
in
g
 t
im

e
 (
m
s)

Independent

Batch-D

Fig. 19. Impact of t on av-
erage auditing time (ms)
per task where d = 10.

0 5 10 15 20 25 30 35 40
t: the total number of auditing tasks

160
180
200
220
240
260
280
300

A
v
e
ra
g
e
 a
u
d
it
in
g
 t
im
e
 (
m
s)

Independent

Batch-D

Batch-S

Fig. 20. Impact of t on av-
erage auditing time (ms)
per task where d = 10.

9 RELATED WORK

Provable Data Possession (PDP), first proposed by
Ateniese et al. [3], allows a public verifier to check the
correctness of a client’s data stored at an untrusted
server. By utilizing RSA-based homomorphic authenti-
cators and sampling strategies, the verifier is able to
publicly audit the integrity of data without retrieving
the entire data, which is referred to as public verifiability
or public auditing. Shacham and Waters [4] designed

an improved PDP scheme based on BLS (Boneh-Lynn-
Shacham) signatures [30].

To support dynamic operations on data during audit-
ing, Ateniese et al. [31] presented another PDP mech-
anism based on symmetric keys. However, it is not
publicly verifiable and only provides a user with a
limited number of verification requests. Wang et al. [6]
utilized the Merkle Hash Tree to support fully dynamic
operations in a public auditing mechanism. Erway et
al. [32] introduced Dynamic Provable Data Possession
by using authenticated dictionaries, which are based on
rank information. Zhu et al. [8] exploited the fragment
structure to reduce the storage of signatures in their
public auditing mechanism. In addition, they also used
index hash tables to provide dynamic operations for
users.

Wang et al. [5] leveraged homomorphic tokens to
ensure the correctness of erasure code-based data dis-
tributed on multiple servers. To minimize the commu-
nication overhead in the phase of data repair, Chen
et al. [33] introduced a mechanism for auditing the
correctness of data with the multi-server scenario, where
these data are encoded with network coding. More
recently, Cao et al. [11] constructed an LT code-based
secure cloud storage mechanism. Compared to previous
mechanisms [5], [33], this mechanism can avoid high
decoding computation costs for data users and save com-
putation resources for online data owners during data
repair. Recently, Wang et al. [34] proposed a certificateless
public auditing mechanism to reduce security risks in
certificate management compared to previous certificate-
based solutions.

When a third-party auditor (TPA) is introduced into
a public auditing mechanism in the cloud, both the
content of data and the identities of signers are private
information to users, and should be preserved from the
TPA. The public mechanism proposed by Wang et al. [7]
is able to preserve users’ confidential data from the
TPA by using random maskings. In addition, to operate
multiple auditing tasks from different users efficiently,
they also extended their mechanism to support batch
auditing. Our recent work [14] first proposed a mecha-
nism for public auditing shared data in the cloud for a
group of users. With ring signature-based homomorphic
authenticators, the TPA can verify the integrity of shared
data but is not able to reveal the identity of the signer on
each block. The auditing mechanism in [16] is designed
to preserve identity privacy for a large number of users.
However, it fails to support public auditing.

Proofs of Retrievability (POR) [35] is another direction
to check the correctness of data stored in a semi-trusted
server. Unfortunately, POR and its subsequent work [36]
do not support public verification, which fails to satisfy
the design objectives in our paper.

10 CONCLUSIONS

In this paper, we proposed a new public auditing
mechanism for shared data with efficient user revocation
in the cloud. When a user in the group is revoked, we
allow the semi-trusted cloud to re-sign blocks that were

14 IEEE TRANSACTIONS ON XXXXXX, VOL. X, NO. X, XXXX 201X

signed by the revoked user with proxy re-signatures.
Experimental results show that the cloud can improve
the efficiency of user revocation, and existing users in
the group can save a significant amount of computation
and communication resources during user revocation.

REFERENCES

[1] B. Wang, B. Li, and H. Li, “Public Auditing for Shared Data with
Efficient User Revoation in the Cloud,” in the Proceedings of IEEE
INFOCOM 2013, 2013, pp. 2904–2912.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia, “A View of Cloud Computing,” Communications of the
ACM, vol. 53, no. 4, pp. 50–58, Apirl 2010.

[3] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peter-
son, and D. Song, “Provable Data Possession at Untrusted Stores,”
in the Proceedings of ACM CCS 2007, 2007, pp. 598–610.

[4] H. Shacham and B. Waters, “Compact Proofs of Retrievability,”
in the Proceedings of ASIACRYPT 2008. Springer-Verlag, 2008, pp.
90–107.

[5] C. Wang, Q. Wang, K. Ren, and W. Lou, “Ensuring Data Storage
Security in Cloud Computing,” in the Proceedings of ACM/IEEE
IWQoS 2009, 2009, pp. 1–9.

[6] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling Public
Verifiability and Data Dynamic for Storage Security in Cloud
Computing,” in the Proceedings of ESORICS 2009. Springer-Verlag,
2009, pp. 355–370.

[7] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-Preserving
Public Auditing for Data Storage Security in Cloud Computing,”
in the Proceedings of IEEE INFOCOM 2010, 2010, pp. 525–533.

[8] Y. Zhu, H. Wang, Z. Hu, G.-J. Ahn, H. Hu, and S. S. Yau, “Dynamic
Audit Services for Integrity Verification of Outsourced Storage in
Clouds,” in the Proceedings of ACM SAC 2011, 2011, pp. 1550–1557.

[9] C. Wang, Q. Wang, K. Ren, and W. Lou, “Towards Secure and
Dependable Storage Services in Cloud Computing,” IEEE Trans-
actions on Services Computing, vol. 5, no. 2, pp. 220–232, 2011.

[10] Y. Zhu, G.-J. Ahn, H. Hu, S. S. Yau, H. G. An, and S. Chen,
“Dynamic Audit Services for Outsourced Storage in Clouds,”
IEEE Transactions on Services Computing, accepted.

[11] N. Cao, S. Yu, Z. Yang, W. Lou, and Y. T. Hou, “LT Codes-based
Secure and Reliable Cloud Storage Service,” in the Proceedings of
IEEE INFOCOM 2012, 2012, pp. 693–701.

[12] J. Yuan and S. Yu, “Proofs of Retrievability with Public Verifiabil-
ity and Constant Communication Cost in Cloud,” in Proceedings
of ACM ASIACCS-SCC’13, 2013.

[13] H. Wang, “Proxy Provable Data Possession in Public Clouds,”
IEEE Transactions on Services Computing, accepted.

[14] B. Wang, B. Li, and H. Li, “Oruta: Privacy-Preserving Public
Auditing for Shared Data in the Cloud,” in the Proceedings of IEEE
Cloud 2012, 2012, pp. 295–302.

[15] S. R. Tate, R. Vishwanathan, and L. Everhart, “Multi-user Dy-
namic Proofs of Data Possession Using Trusted Hardware,” in
Proceedings of ACM CODASPY’13, 2013, pp. 353–364.

[16] B. Wang, B. Li, and H. Li, “Knox: Privacy-Preserving Auditing for
Shared Data with Large Groups in the Cloud,” in the Proceedings
of ACNS 2012, June 2012, pp. 507–525.

[17] M. Blaze, G. Bleumer, and M. Strauss, “Divertible Protocols and
Atomic Proxy Cryptography,” in the Proceedings of EUROCRYPT
98. Springer-Verlag, 1998, pp. 127–144.

[18] A. Shamir, “How to share a secret,” in Communication of ACM,
vol. 22, no. 11, 1979, pp. 612–613.

[19] B. Wang, H. Li, and M. Li, “Privacy-Preserving Public Auditing
for Shared Cloud Data Supporting Group Dynamics,” in the
Proceedings of IEEE ICC 2013, 2013.

[20] B. Wang, S. S. Chow, M. Li, and H. Li, “Storing Shared Data on
the Cloud via Security-Mediator,” in Proceedings of IEEE ICDCS
2013, 2013.

[21] M. Li, N. Cao, S. Yu, and W. Lou, “FindU: Private-Preserving Per-
sonal Profile Matching in Mobile Social Networks,” in Proceedings
of IEEE INFOCOM, 2011, pp. 2435 – 2443.

[22] G. Ateniese and S. Hohenberger, “Proxy Re-signatures: New
Definitions, Algorithms and Applications,” in the Proceedings of
ACM CCS 2005, 2005, pp. 310–319.

[23] M. van Dijk, A. Juels, A. Oprea, R. L. Rivest, E. Stefanov, and
N. Triandopoulos, “Hourglass schemes: how to prove that cloud
files are encrypted,” in the Proceedings of ACM CCS 2012, 2012, pp.
265–280.

[24] X. Liu, Y. Zhang, B. Wang, and J. Yan, “Mona: Secure Multi-
Owner Data Sharing for Dynamic Groups in the Cloud,” IEEE
Transactions on Parallel and Distributed Systems (TPDS), vol. 24,
no. 6, pp. 1182–1191, 2013.

[25] A. L. Ferrara, M. Green, S. Hohenberger, and M. Ø. Pedersen,
“Practical Short Signature Batch Verification,” in Proc. CT-RSA.
Springer-Verlag, 2009, pp. 309–324.

[26] L. Xu, X. Wu, and X. Zhang, “CL-PRE: a Certificateless Proxy Re-
Encryption Scheme for Secure Data Sharing with Public Cloud,”
in the Proceedings of ACM ASIACCS 2012, 2012.

[27] Pairing Based Cryptography (PBC) Library. [Online]. Available:
http://crypto.stanford.edu/pbc/

[28] The Java Pairing Based Cryptography (jPBC) Library
Benchmark. [Online]. Available: http://gas.dia.unisa.it/projects/
jpbc/benchmark.html

[29] J. Yuan and S. Yu. Efficient Public Integrity Checking for Cloud
Data Sharing with Multi-User Modification. [Online]. Available:
http://eprint.iacr.org/2013/484

[30] D. Boneh, B. Lynn, and H. Shacham, “Short Signature from the
Weil Pairing,” in the Proceedings of ASIACRYPT 2001. Springer-
Verlag, 2001, pp. 514–532.

[31] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik, “Scalable
and Efficient Provable Data Possession,” in the Proceedings of ICST
SecureComm 2008, 2008.

[32] C. Erway, A. Kupcu, C. Papamanthou, and R. Tamassia, “Dynamic
Provable Data Possession,” in the Proceedings of ACM CCS 2009,
2009, pp. 213–222.

[33] B. Chen, R. Curtmola, G. Ateniese, and R. Burns, “Remote Data
Checking for Network Coding-based Distributed Stroage Sys-
tems,” in the Proceedings of ACM CCSW 2010, 2010, pp. 31–42.

[34] B. Wang, B. Li, and H. Li, “Certificateless Public Auditing for Data
Integrity in the Cloud,” in Proceedings of IEEE CNS 2013, 2013, pp.
276–284.

[35] A. Juels and B. S. Kaliski, “PORs: Proofs pf Retrievability for Large
Files,” in Proceedings of ACM CCS’07, 2007, pp. 584–597.

[36] D. Cash, A. Kupcu, and D. Wichs, “Dynamic Proofs of Retriev-
ability via Oblivious RAM,” in Proceedings of EUROCRYPT 2013,
2013, pp. 279–295.

Boyang Wang is a Ph.D. student from the
School of Telecommunications Engineering, Xi-
dian University, Xi’an, China. He was a visit-
ing Ph.D. student at the Department of Elec-
trical and Computer Engineering, University of
Toronto, from Sep. 2010 to Aug. 2012. He ob-
tained his B.S. in information security from Xi-
dian University in 2007. His current research
interests focus on security and privacy issues in
cloud computing, big data, and applied cryptog-
raphy. He is a student member of IEEE.

Baochun Li is a Professor at the Department of
Electrical and Computer Engineering at the Uni-
versity of Toronto, and holds the Bell University
Laboratories Endowed Chair in Computer En-
gineering. His research interests include large-
scale multimedia systems, cloud computing,
peer-to-peer networks, applications of network
coding, and wireless networks. He is a member
of ACM and a senior member of IEEE.

Hui Li is a Professor at the School of
Telecommunications Engineering, Xidian Uni-
versity, Xi’an, China. He received B.Sc. degree
from Fudan University in 1990, M.Sc. and Ph.D.
degrees from Xidian University in 1993 and
1998. In 2009, he was with Department of ECE,
University of Waterloo as a visiting scholar. His
research interests are in the areas of cryptog-
raphy, security of cloud computing, wireless net-
work security, information theory. He is the co-
author of two books. He served as TPC co-chair

of ISPEC 2009 and IAS 2009, general co-chair of E-Forensic 2010,
ProvSec 2011 and ISC 2011.

