
IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. X, NO. X, XXXX 201X 1

Oruta: Privacy-Preserving Public Auditing
for Shared Data in the Cloud

Boyang Wang, Baochun Li, Senior Member, IEEE, and Hui Li, Member, IEEE

Abstract—With cloud data services, it is commonplace for data to be not only stored in the cloud, but also shared across multiple
users. Unfortunately, the integrity of cloud data is subject to skepticism due to the existence of hardware/software failures and human
errors. Several mechanisms have been designed to allow both data owners and public verifiers to efficiently audit cloud data integrity
without retrieving the entire data from the cloud server. However, public auditing on the integrity of shared data with these existing
mechanisms will inevitably reveal confidential information — identity privacy — to public verifiers. In this paper, we propose a novel
privacy-preserving mechanism that supports public auditing on shared data stored in the cloud. In particular, we exploit ring signatures
to compute verification metadata needed to audit the correctness of shared data. With our mechanism, the identity of the signer on
each block in shared data is kept private from public verifiers, who are able to efficiently verify shared data integrity without retrieving
the entire file. In addition, our mechanism is able to perform multiple auditing tasks simultaneously instead of verifying them one by
one. Our experimental results demonstrate the effectiveness and efficiency of our mechanism when auditing shared data integrity.

Index Terms—Public auditing, privacy-preserving, shared data, cloud computing.

✦

1 INTRODUCTION

C LOUD service providers offer users efficient and
scalable data storage services with a much lower

marginal cost than traditional approaches [2]. It is rou-
tine for users to leverage cloud storage services to share
data with others in a group, as data sharing becomes a
standard feature in most cloud storage offerings, includ-
ing Dropbox, iCloud and Google Drive.

The integrity of data in cloud storage, however, is
subject to skepticism and scrutiny, as data stored in the
cloud can easily be lost or corrupted due to the inevitable
hardware/software failures and human errors [3], [4]. To
make this matter even worse, cloud service providers
may be reluctant to inform users about these data errors
in order to maintain the reputation of their services and
avoid losing profits [5]. Therefore, the integrity of cloud
data should be verified before any data utilization, such
as search or computation over cloud data [6].

The traditional approach for checking data correctness
is to retrieve the entire data from the cloud, and then
verify data integrity by checking the correctness of sig-
natures (e.g., RSA [7]) or hash values (e.g., MD5 [8])
of the entire data. Certainly, this conventional approach
is able to successfully check the correctness of cloud
data. However, the efficiency of using this traditional
approach on cloud data is in doubt [9].

• Boyang Wang and Hui Li are with the State Key Laboratory of Integrated
Service Networks, Xidian University, Xi’an, 710071, China.
E-mail: {bywang,lihui}@mail.xidian.edu.cn

• Baochun Li is with the Department of Electrical and Computer Engineer-
ing, University of Toronto, Toronto, ON, M5S 3G4, Canada.
E-mail: bli@eecg.toronto.edu

• This work is supported by NSFC 61272457, National Project
2012ZX03002003-002, 863 Project 2012AA013102, 111 Project B08038,
IRT1078, FRF K50511010001 and NSFC 61170251.

• Most part of this work was done at University of Toronto. A short version
[1] of this paper is in Proceedings of the 5th IEEE International Conference
on Cloud Computing (IEEE Cloud 2012).

The main reason is that the size of cloud data is large
in general. Downloading the entire cloud data to verify
data integrity will cost or even waste users amounts of
computation and communication resources, especially
when data have been corrupted in the cloud. Besides,
many uses of cloud data (e.g., data mining and machine
learning) do not necessarily need users to download the
entire cloud data to local devices [2]. It is because cloud
providers, such as Amazon, can offer users computation
services directly on large-scale data that already existed
in the cloud.

Recently, many mechanisms [9]–[17] have been pro-
posed to allow not only a data owner itself but also
a public verifier to efficiently perform integrity checking
without downloading the entire data from the cloud,
which is referred to as public auditing [5]. In these mech-
anisms, data is divided into many small blocks, where
each block is independently signed by the owner; and
a random combination of all the blocks instead of the
whole data is retrieved during integrity checking [9].
A public verifier could be a data user (e.g. researcher)
who would like to utilize the owner’s data via the cloud
or a third-party auditor (TPA) who can provide expert
integrity checking services [18]. Moving a step forward,
Wang et al. designed an advanced auditing mechanism
[5] (named as WWRL in this paper), so that during
public auditing on cloud data, the content of private
data belonging to a personal user is not disclosed to any
public verifiers. Unfortunately, current public auditing
solutions mentioned above only focus on personal data
in the cloud [1].

We believe that sharing data among multiple users is
perhaps one of the most engaging features that motivates
cloud storage. Therefore, it is also necessary to ensure the
integrity of shared data in the cloud is correct. Existing
public auditing mechanisms can actually be extended to
verify shared data integrity [1], [5], [19], [20]. However,
a new significant privacy issue introduced in the case of

2 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. X, NO. X, XXXX 201X

A block signed by Alice A block signed by Bob

A A A A A A B A B B

A

A A A A A A A B B B

A A A A B A A A B B

!"#$%&'()*+,(-

!"#$%&'()*+,(.

!"#$%&'()*+,(/

Public Verifier

8th

8th

8th

B

Fig. 1. Alice and Bob share a data file in the cloud, and
a public verifier audits shared data integrity with existing
mechanisms.

shared data with the use of existing mechanisms is the
leakage of identity privacy to public verifiers [1].

For instance, Alice and Bob work together as a group
and share a file in the cloud (as presented in Fig. 1).
The shared file is divided into a number of small blocks,
where each block is independently signed by one of the
two users with existing public auditing solutions (e.g.,
[5]). Once a block in this shared file is modified by a
user, this user needs to sign the new block using his/her
private key. Eventually, different blocks are signed by
different users due to the modification introduced by
these two different users. Then, in order to correctly
audit the integrity of the entire data, a public verifier
needs to choose the appropriate public key for each
block (e.g., a block signed by Alice can only be correctly
verified by Alice’s public key). As a result, this public
verifier will inevitably learn the identity of the signer
on each block due to the unique binding between an
identity and a public key via digital certificates under
Public Key Infrastructure (PKI).

Failing to preserve identity privacy on shared data
during public auditing will reveal significant confiden-
tial information (e.g., which particular user in the group
or special block in shared data is a more valuable target)
to public verifiers. Specifically, as shown in Fig. 1, after
performing several auditing tasks, this public verifier
can first learn that Alice may be a more important role
in the group because most of the blocks in the shared
file are always signed by Alice; on the other hand, this
public verifier can also easily deduce that the 8-th block
may contain data of a higher value (e.g., a final bid in
an auction), because this block is frequently modified
by the two different users. In order to protect these
confidential information, it is essential and critical to
preserve identity privacy from public verifiers during
public auditing.

In this paper, to solve the above privacy issue on
shared data, we propose Oruta1, a novel privacy-
preserving public auditing mechanism. More specifically,
we utilize ring signatures [21] to construct homomorphic
authenticators [10] in Oruta, so that a public verifier is
able to verify the integrity of shared data without retriev-
ing the entire data — while the identity of the signer on
each block in shared data is kept private from the public

1. Oruta stands for “One Ring to Rule Them All.”

TABLE 1
Comparison among Different Mechanisms

PDP [9] WWRL [5] Oruta
Public Auditing

√ √ √
Data Privacy × √ √
Identity Privacy × × √

verifier. In addition, we further extend our mechanism
to support batch auditing, which can perform multiple
auditing tasks simultaneously and improve the efficiency
of verification for multiple auditing tasks. Meanwhile,
Oruta is compatible with random masking [5], which has
been utilized in WWRL and can preserve data privacy
from public verifiers. Moreover, we also leverage index
hash tables from a previous public auditing solution
[15] to support dynamic data. A high-level comparison
among Oruta and existing mechanisms is presented in
Table 1.

The remainder of this paper is organized as follows.
In Section 2, we present the system model, threat model
and design objectives. In Section 3, we introduce cryp-
tographic primitives used in Oruta. The detailed design
and security analysis of Oruta are presented in Section 4
and Section 5. In Section 6, we evaluate the performance
of Oruta. Finally, we briefly discuss related work in
Section 7, and conclude this paper in Section 8.

2 PROBLEM STATEMENT

2.1 System Model

As illustrated in Fig. 2, the system model in this
paper involves three parties: the cloud server, a group
of users and a public verifier. There are two types of
users in a group: the original user and a number of
group users. The original user initially creates shared
data in the cloud, and shares it with group users. Both
the original user and group users are members of the
group. Every member of the group is allowed to access
and modify shared data. Shared data and its verification
metadata (i.e. signatures) are both stored in the cloud
server. A public verifier, such as a third-party auditor
(TPA) providing expert data auditing services or a data
user outside the group intending to utilize shared data, is
able to publicly verify the integrity of shared data stored
in the cloud server.

When a public verifier wishes to check the integrity
of shared data, it first sends an auditing challenge to
the cloud server. After receiving the auditing challenge,
the cloud server responds to the public verifier with an
auditing proof of the possession of shared data. Then,
this public verifier checks the correctness of the entire
data by verifying the correctness of the auditing proof.
Essentially, the process of public auditing is a challenge-
and-response protocol between a public verifier and the
cloud server [9].

2.2 Threat Model

Integrity Threats. Two kinds of threats related to the
integrity of shared data are possible. First, an adversary
may try to corrupt the integrity of shared data. Second,

WANG et al.: ORUTA: PRIVACY-PRESERVING PUBLIC AUDITING FOR SHARED DATA IN THE CLOUD 3

Users

Cloud Server

Public Verifier

Shared Data Flow

1. Auditing Challenge
2. Auditing Proof

Fig. 2. Our system model includes the cloud server, a
group of users and a public verifier.

the cloud service provider may inadvertently corrupt
(or even remove) data in its storage due to hardware
failures and human errors. Making matters worse, the
cloud service provider is economically motivated, which
means it may be reluctant to inform users about such
corruption of data in order to save its reputation and
avoid losing profits of its services.

Privacy Threats. The identity of the signer on each
block in shared data is private and confidential to the
group. During the process of auditing, a public verifier,
who is only allowed to verify the correctness of shared
data integrity, may try to reveal the identity of the
signer on each block in shared data based on verification
metadata. Once the public verifier reveals the identity of
the signer on each block, it can easily distinguish a high-
value target (a particular user in the group or a special
block in shared data) from others.

2.3 Design Objectives

Our mechanism, Oruta, should be designed to achieve
following properties: (1) Public Auditing: A public veri-
fier is able to publicly verify the integrity of shared data
without retrieving the entire data from the cloud. (2)
Correctness: A public verifier is able to correctly verify
shared data integrity. (3) Unforgeability: Only a user in
the group can generate valid verification metadata (i.e.,
signatures) on shared data. (4) Identity Privacy: A public
verifier cannot distinguish the identity of the signer on
each block in shared data during the process of auditing.

2.4 Possible Alternative Approaches

To preserve the identity of the signer on each block
during public auditing, one possible alternative ap-
proach is to ask all the users of the group to share
a global private key [22], [23]. Then, every user is able
to sign blocks with this global private key. However,
once one user of the group is compromised or leaving
the group, a new global private key must be generated
and securely shared among the rest of the group, which
clearly introduces huge overhead to users in terms of key
management and key distribution. While in our solution,
each user in the rest of the group can still utilize its own
private key for computing verification metadata without
generating or sharing any new secret keys.

Another possible approach to achieve identity privacy,
is to add a trusted proxy between a group of users and
the cloud in the system model. More concretely, each
member’s data is collected, signed, and uploaded to the
cloud by this trusted proxy, then a public verifier can
only verify and learn that it is the proxy signs the data,
but cannot learn the identities of group members. Yet,
the security of this method is threatened by the single
point failure of the proxy. Besides, sometimes, not all
the group members would like to trust the same proxy
for generating signatures and uploading data on their
behalf. Utilizing group signatures [24] is also an alterna-
tive option to preserve identity privacy. Unfortunately, as
shown in our recent work [25], how to design an efficient
public auditing mechanism based on group signatures
remains open2.

Trusted Computing offers another possible alternative
approach to achieve the design objectives of our mecha-
nism. Specifically, by utilizing Direct Anonymous Attes-
tation [26], which is adopted by the Trusted Computing
Group as the anonymous method for remote authen-
tication in Trusted Platform Module, users are able to
preserve their identity privacy on shared data from a
public verifier. The main problem with this approach is
that it requires all the users using designed hardware,
and needs the cloud provider to move all the existing
cloud services to the trusted computing environment,
which would be costly and impractical.

3 PRELIMINARIES

In this section, we briefly introduce cryptographic
primitives and their corresponding properties that we
implement in Oruta.

3.1 Bilinear Maps

Let G1, G2 and GT be three multiplicative cyclic
groups of prime order p, g1 be a generator of G1, and
g2 be a generator of G2. A bilinear map e is a map e:
G1 ×G2 → GT with the following properties:

• Computability: there exists an efficiently com-
putable algorithm for computing map e.

• Bilinearity: for all u ∈ G1, v ∈ G2 and a, b ∈ Zp,
e(ua, vb) = e(u, v)ab.

• Non-degeneracy: e(g1, g2) 6= 1.

Bilinear maps can be generally constructed from certain
elliptic curves [27]. Readers do not need to learn the
technical details about how to build bilinear maps from
certain elliptic curves. Understanding the properties of
bilinear maps described above is sufficient enough for
readers to access the design of our mechanism.

3.2 Security Assumptions

The security of our proposed mechanism is based on
the two following assumptions.

2. The direct leverage of group signatures in an public auditing
mechanism makes the size of verification metadata extremely huge,
which is much larger than the size of data itself. See [25] for details.

4 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. X, NO. X, XXXX 201X

Computational Co-Diffie-Hellman (Co-CDH) Prob-
lem. Let a ∈ Z

∗
p, given g2, g

a
2 ∈ G2 and h ∈ G1 as input,

output ha ∈ G1.
Definition 1: Computational Co-Diffie-Hellman (Co-

CDH) Assumption. The advantage of a probabilistic
polynomial time algorithm A in solving the Co-CDH
problem on (G1,G2) is defined as

AdvCoCDHA = Pr[A(g2, g
a
2 , h) = ha : a

R
← Z

∗
p, h

R
← G1],

where the probability is over the choice of a and h, and
the coin tosses of A. The Co-CDH assumption means,
for any probabilistic polynomial time algorithm A, the
advantage of it in solving the Co-CDH problem on
(G1,G2) is negligible.

For the ease of understanding, we can also say solving
the Co-CDH problem on (G1,G2) is or computationally
infeasible or hard under the Co-CDH assumption.

Discrete Logarithm (DL) Problem. Let a ∈ Z
∗
p, given

g, ga ∈ G1 as input, output a.
Definition 2: Discrete Logarithm (DL) Assumption.

The advantage of a probabilistic polynomial time algo-
rithm A in solving the DL problem in G1 is defined as

AdvDLA = Pr[A(g, ga) = a : a
R
← Z

∗
p],

where the probability is over the choice of a, and the coin
tosses of A. The DL Assumption means, for any prob-
abilistic polynomial time algorithm A, the advantage of
it in solving the DL problem in G1 is negligible.

3.3 Ring Signatures

The concept of ring signatures was first proposed by
Rivest et al. [28] in 2001. With ring signatures, a verifier
is convinced that a signature is computed using one
of group members’ private keys, but the verifier is not
able to determine which one. More concretely, given a
ring signature and a group of d users, a verifier cannot
distinguish the signer’s identity with a probability more
than 1/d. This property can be used to preserve the
identity of the signer from a verifier.

The ring signature scheme introduced by Boneh et
al. [21] (referred to as BGLS in this paper) is constructed
on bilinear maps. We will extend this ring signature
scheme to construct our public auditing mechanism.

3.4 Homomorphic Authenticators

Homomorphic authenticators (also called homomor-
phic verifiable tags) are basic tools to construct public
auditing mechanisms [1], [5], [9], [10], [12], [15]. Besides
unforgeability (i.e., only a user with a private key can
generate valid signatures), a homomorphic authentica-
ble signature scheme, which denotes a homomorphic
authenticator based on signatures, should also satisfy the
following properties:

Let (pk, sk) denote the signer’s public/private key
pair, σ1 denote a signature on block m1 ∈ Zp, σ2 denote
a signature on block m2 ∈ Zp.

• Blockless verifiability: Given σ1 and σ2, two ran-
dom values α1, α2 ∈ Zp and a block m′ =

α1m1 + α2m2 ∈ Zp, a verifier is able to check the
correctness of block m′ without knowing block m1

and m2.
• Non-malleability Given σ1 and σ2, two random

values α1, α2 ∈ Zp and a block m′ = α1m1 + α2m2 ∈
Zp, a user, who does not have private key sk, is not
able to generate a valid signature σ′ on block m′ by
linearly combining signature σ1 and σ2.

Blockless verifiability allows a verifier to audit the
correctness of data stored in the cloud server with a
special block, which is a linear combination of all the
blocks in data. If the integrity of the combined block is
correct, then the verifier believes that the integrity of the
entire data is correct. In this way, the verifier does not
need to download all the blocks to check the integrity
of data. Non-malleability indicates that an adversary
cannot generate valid signatures on arbitrary blocks by
linearly combining existing signatures.

4 NEW RING SIGNATURE SCHEME

4.1 Overview

As we introduced in previous sections, we intend to
utilize ring signatures to hide the identity of the signer
on each block, so that private and sensitive information
of the group is not disclosed to public verifiers. However,
traditional ring signatures [21], [28] cannot be directly
used into public auditing mechanisms, because these
ring signature schemes do not support blockless verifia-
bility. Without blockless verifiability, a public verifier has
to download the whole data file to verify the correctness
of shared data, which consumes excessive bandwidth
and takes very long verification times.

Therefore, we design a new homomorphic authentica-
ble ring signature (HARS) scheme, which is extended
from a classic ring signature scheme [21]. The ring
signatures generated by HARS are not only able to pre-
serve identity privacy but also able to support blockless
verifiability. We will show how to build the privacy-
preserving public auditing mechanism for shared data
in the cloud based on this new ring signature scheme in
the next section.

4.2 Construction of HARS

HARS contains three algorithms: KeyGen, RingSign
and RingVerify. In KeyGen, each user in the group gen-
erates his/her public key and private key. In RingSign,
a user in the group is able to generate a signature on a
block and its block identifier with his/her private key
and all the group members’ public keys. A block iden-
tifier is a string that can distinguish the corresponding
block from others. A verifier is able to check whether a
given block is signed by a group member in RingVerify.
Details of this scheme are described in Fig. 3.

4.3 Security Analysis of HARS

Now, we discuss security properties of HARS, in-
cluding correctness, unforgeability, blockless verifiability,
non-malleability and identity privacy.

WANG et al.: ORUTA: PRIVACY-PRESERVING PUBLIC AUDITING FOR SHARED DATA IN THE CLOUD 5

Let G1, G2 and GT be multiplicative cyclic groups of order
p, g1 and g2 be generators of G1 and G2 respectively. Let
e : G1 ×G2 → GT be a bilinear map, and ψ : G2 → G1 be a
computable isomorphism with ψ(g2) = g1. There is a public
map-to-point hash function H1: {0, 1}∗ → G1, which can
map a string {0, 1}∗ into an element of G1 (i.e., an point on
an elliptic curve). The total number of users in the group is d.
The global parameters are (e, ψ, p,G1,G2,GT , g1, g2, H1, d).

KeyGen. For a user ui, he/she randomly picks xi
R
← Zp

and computes wi = gxi
2 ∈ G2. Then, user ui’s public key is

pki = wi and his/her private key is ski = xi.

RingSign. Given all the d users’ public keys (pk1, ...,pkd) =
(w1, ..., wd), a block m ∈ Zp, the identifier of this block id and
the private key sks for some s, user us randomly chooses
ai ∈ Zp for all i 6= s, where i ∈ [1, d], and let σi = gai

1 . Then,
he/she computes

β = H1(id)g
m
1 ∈ G1, (1)

and sets

σs =

(

β

ψ(
∏

i 6=s w
ai
i)

)1/xs

∈ G1. (2)

The ring signature of block m is σσσ = (σ1, ..., σd) ∈ G
d
1 .

RingVerify. Given all the d users’ public keys
(pk1, ...,pkd) = (w1, ..., wd), a block m, an identifier id and
a ring signature σσσ = (σ1, ..., σd), a verifier first computes
β = H1(id)g

m
1 ∈ G1, and then checks

e(β, g2)
?
=

d
∏

i=1

e(σi, wi). (3)

If the above equation holds, then the given block m is signed
by one of these d users in the group. Otherwise, it is not.

Fig. 3. Details of HARS.

Theorem 1: Given any block m, its block identifier id,
and its ring signature σσσ = (σ1, ..., σd), a verifier is able to
correctly check the integrity of this block under HARS.

Proof: Based on properties of bilinear maps, the
correctness of this scheme can be proved as follows:

d
∏

i=1

e(σi, wi) = e(σs, ws) ·
∏

i6=s

e(σi, wi)

= e(

(

β

ψ(
∏

i6=s w
ai

i)

)
1

xs

, gxs

2) ·
∏

i6=s

e(gai

1 , g
xi

2)

= e(
β

ψ(
∏

i6=s g
xiai

2)
, g2) ·

∏

i6=s

e(gaixi

1 , g2)

= e(
β

∏

i6=s g1
aixi

, g2) · e(
∏

i6=s

gaixi

1 , g2)

= e(
β

∏

i6=s g1
aixi
·
∏

i6=s

g1
aixi , g2)

= e(β, g2).

where β is computed as β = H1(id)g
m
1 .

Theorem 2: For any adversary A, it is computationally
infeasible to forge a ring signature under HARS, as long as
the Co-CDH assumption on (G1,G2) holds.

Proof: We follow the security game defined in tradi-
tional ring signature schemes [21]. In the game, an adver-
sary A is given all the d users’ public key (pk1, ...,pkd) =
(w1, ..., wd), and is given access to the hash oracle and
the ring signing oracle. The goal of adversary A is to
output a valid ring signature on a pair of block/identifier
(m, id), where this pair of block/identifier (m, id) has
never been presented to the ring signing oracle. If ad-
versary A achieves this goal, then it wins the game. And
we can prove that if adversary A could win the game,
then we can find an algorithm B to solve the Co-CDH
problem on (G1,G2) with a non-negligible advantage,
which contradicts to the Co-CDH assumption we intro-
duced in Section 3. So, we first assume adversary A is
able to generate a forgery by the following security game
simulated by algorithm B.

Initially, given gab1 ∈ G1, ga2 ∈ G2, algorithm B
randomly picks x2, ..., xn from Zp and sets x1 = 1. Then,
it sets pki = wi = (ga2)

xi . Adversary A is given the
public keys (pk1, ...,pkd) = (w1, ..., wd). Without loss
of generality, we assume A can submit distinct queries,
which means for every ring signing query on a block
m and its identifier id, A has previously issued a hash
query on block m and identifier id.

Hash Query. On a hash query issued by A, B flips
a coin that shows 0 with probability pc, and shows 1
otherwise. Then B randomly picks r ∈ Zp, if the coin
shows 0, B returns (gab1)r to A, otherwise it returns
ψ(ga2)

r. Since r is randomly selected from Zp, and gab1 and
ψ(ga2) are both elements of cyclic group G1, therefore,
the distribution of (gab1)r is identical to the distribution
of ψ(ga2)

r, which means A cannot distinguish the result
of flipped coin from the result of the hash query.

Ring Signing Query. Suppose A issues a ring signing
query on a block m and its identifier id. By the assump-
tion of the game, a hash query has been issued by B on
this pair of block/identifier (m, id). If the coin B flipped
for this hash query showed 0, then B fails and exits.
Otherwise B has returned H(id)gm1 = ψ(ga2)

r for some r,
which was randomly selected in the corresponding hash
query. In this case, B chooses random a2, ..., ad ∈ Zp,
computes a = r − (a2x2 + ... + adxd), and returns the
signature σσσ = (ga1 , g

a2

1 , ..., gad

1).

Eventually A outputs a forgery σσσ = (σ1, ..., σd)
on block m and identifier id. Again by the assump-
tion, a hash query has been issued on this pair of
block/identifier (m, id). If the coin flipped by B for this
hash query did not show 0 then B fails. Otherwise,
H(id)gm1 = gabr1 for some r, which was randomly chosen
by B in corresponding hash query, and B can output gb1
by computing (

∏d
i=1 σ

xi

i)1/r.

Clearly, given gab1 ∈ G1, ga2 ∈ G2, algorithm B is able
to output gb1 ∈ G1 via the above security game with an
advantage of ǫpqsc (1−pc), ifA is able to generate a forgery
with an advantage of ǫ. This advantage of algorithm B is
maximized as ǫ/(e·(1+qs)) when pc = qs/(qs+1), where
e = limqs→∞(1 + 1/qs)

qs .

6 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. X, NO. X, XXXX 201X

According to [21], the Co-CDH problem can be solved
by running two random instances of algorithm B. There-
fore, if adversary A is able to generate a forgery of a
ring signature with an advantage of ǫ, then running
two instances of algorithm B is able to solve Co-CDH
problem with an advantage of (ǫ/(e + eqs))

2. Clearly, if
the advantage of adversary A of generating a forgery
is non-negligible, then the advantage of solving the Co-
CDH problem by running two instances of algorithm B
is also non-negligible, which contradicts to the Co-CDH
assumption on (G1,G2). Therefore, it is computationally
infeasible for adversary A to generate a forgery.

Theorem 3: HARS is a homomorphic authenticable ring
signature scheme.

Proof: To prove HARS is a homomorphic authenti-
cable ring signature scheme, we first prove that HARS is
able to support blockless verifiability, which we defined
in Section 3. Then we show HARS is also non-malleable.

Blockless Verifiability. Given all the d users’ public
keys (pk1, ...,pkd) = (w1, ..., wd), two identifiers id1
and id2, two ring signatures σσσ1 = (σ1,1, ..., σ1,d) and
σσσ2 = (σ2,1, ..., σ2,d), and two random values y1, y2 ∈ Zp,
a verifier is able to check the correctness of a combined
block m′ = y1m1 + y2m2 ∈ Zp without knowing block
m1 and m2 by verifying:

e(H1(id1)
y1H1(id2)

y2gm
′

1 , g2)
?
=

d
∏

i=1

e(σy1

1,i · σ
y2

2,i, wi).

Based on Theorem 1, the correctness of the above
equation can be proved as:

e(H1(id1)
y1H1(id2)

y2gm
′

1 , g2)

= e(H1(id1)
y1gy1m1

1 , g2) · e(H1(id2)
y2gy2m2

1 , g2)

= e(β1, g2)
y1 · e(β2, g2)

y2

=
d
∏

i=1

e(σ1,i, wi)
y1 ·

d
∏

i=1

e(σ2,i, wi)
y2

=

d
∏

i=1

e(σy1

1,i · σ
y2

2,i, wi).

If the combined block m′ is correct, the verifier also be-
lieves that block m1 and m2 are both correct. Therefore,
HARS is able to support blockless verifiability.

Non-Malleability. Meanwhile, an adversary, who does
not have any user’s private key, cannot generate a valid
ring signature σσσ′ on the combined block m′ = y1m1 +
y2m2 by combining σσσ1 and σσσ2 with y1 and y2. Because
if an element σ′

i in σσσ′ is computed as σ′
i = σy1

1,i · σ
y2

2,i,
the whole ring signature σσσ′ = (σ′

1, ..., σ
′
d) cannot pass

Equation 3 in RingVerify. The hardness of this problem
lies in the fact that H1 must be a one-way hash function
(given every input, it is easy to compute; however, given
the image of a random input, it is hard to invert).

Specifically, if block m1 and m2 are signed by the same
user, for example, user us, then σ′

s can be computed as

σ′
s = σy1

1,s · σ
y2

2,s =

(

βy1

1 β
y2

2
∏

i6=s w
y1a1,i

1,i ·w
y2a2,i

2,i

)1/xs

.

For all i 6= s, σ′
i = σy1

1,i · σ
y2

2,i = g
(y1a1,i+y2a2,i)
1 , where

a1,i and a2,i are random values. When this invalid ring
signature σσσ′ = (σ′

1, ..., σ
′
d) and the combined block m′ are

verified together with Equation 3, we have

d
∏

i=1

e(σ′
i, wi) = e(βy1

1 β
y2

2 , g2) 6= e(β′, g2),

which means it fails to pass the verification. The reason
is that if βy1

1 β
y2

2 = H(id1)
y1H(id2)

y2gm
′

1 is equal to
β′ = H(id′)gm

′

1 , we can have H(id′) = H(id1)
y1H(id2)

y2 .
Then, given a random value of h = H(id1)

y1H(id2)
y2

(due to y1, y2 are randoms), we can easily find an input
id′ so that H(id′) = h, which contradicts to the assump-
tion that H1 is a one-way hash function.

If block m1 and m2 are signed by different users, for
example, user us and user ut, then σ′

s and σ′
t can be

presented as

σ′
s =

(

βy1

1
∏

i6=s w
y1a1,i

i

)1/xs

· g
y2a2,s

1 ,

σ′
t = g

y1a1,t

1 ·

(

βy2

2
∏

i6=t w
y2a2,i

i

)1/xt

.

For all i 6= s and i 6= t, σ′
i = σy1

1,i · σ
y2

2,i = g
(y1a1,i+y2a2,i)
1 ,

where a1,i and a2,i are random values. When this invalid
ring signature σσσ′ = (σ′

1, ..., σ
′
d) and the combined block

m′ are verified together with Equation 3, we have

d
∏

i=1

e(σ′
i, wi) = e(βy1

1 β
y2

2 , g2) 6= e(β′, g2),

which means it fails to pass the verification, due to the
same reason explained in the previous case that H1 is a
one-way hash function. Therefore, an adversary cannot
output valid ring signatures on combined blocks by com-
bining existing signatures, which indicates that HARS is
non-malleable. Since HARS is blockless verifiable and
non-malleable, it is a homomorphic authenticable signa-
ture scheme.

Theorem 4: For any algorithm A, any group U with d
users, and a random user us ∈ U , the probability Pr[A(σσσ) =
us] is at most 1/d under HARS, where σσσ is a ring signature
generated with user us’s private key sks.

Proof: For any h ∈ G1, and any s, 1 ≤ s ≤ d, the

distribution {ga1

1 , ..., gad

1 : ai
R
← Zp for i 6= s, as chosen

such that
∏d

i=1 g
ai

1 = h} is identical to the distribution

{ga1

1 , ..., gad

1 :
∏d

i=1 g
ai

1 = h}. Therefore, given σσσ =
(σ1, ..., σd), the probability algorithm A distinguishes σs,
which indicates the identity of the signer, is at most 1/d.
Further explanations of this proof about identity privacy
can be found in [21].

5 PUBLIC AUDITING MECHANISM

5.1 Overview

Using HARS and its properties we established in the
previous section, we now construct Oruta, a privacy-
preserving public auditing mechanism for shared data

WANG et al.: ORUTA: PRIVACY-PRESERVING PUBLIC AUDITING FOR SHARED DATA IN THE CLOUD 7

in the cloud. With Oruta, the public verifier can verify
the integrity of shared data without retrieving the entire
data. Meanwhile, the identity of the signer on each block
in shared data is kept private from the public verifier
during the auditing.

5.2 Reduce Signature Storage

Another important issue we should consider in the
construction of Oruta is the size of storage used for
ring signatures. According to the generation of ring
signatures in HARS, a block m is an element of Zp and
its ring signature contains d elements of G1, where G1

is a cyclic group with order p. It means a |p|-bit block
requires a d×|p|-bit ring signature, which forces users to
spend a huge amount of space on storing ring signatures.
It will be very frustrating for users, because cloud service
providers, such as Amazon, will charge users based on
the storage space they use.

To reduce the storage of ring signatures on shared data
and still allow the public verifier to audit shared data
efficiently, we exploit an aggregated approach from [10]
to expand the size of each block in shared data into k×
|p| bits. Specifically, a block in shared data is denoted
as mmmj = (mj,1, ...,mj,k) ∈ Z

k
p , for 1 ≤ j ≤ n and n is

the total number of blocks. To generate a ring signature
on block mmmj with HARS, a user aggregates block mmmj =

(mj,1, ...,mj,k) as
∏k

l=1 η
mj,l

l instead of computing gm1 in
Equation 1, where η1, ..., ηk are random values of G1.
With the aggregation of a block, the length of a ring
signature is only d/k of the length of a block. Similar
methods to reduce the storage space of signatures can
also be found in [15]. Generally, to obtain a smaller size
of a ring signature than the size of a block, we choose k >
d. As a trade-off, the communication cost of an auditing
task will be increasing with an increase of k (analyzed
in later section).

5.3 Support Dynamic Operations

To enable each user in the group to easily modify data
in the cloud, Oruta should also support dynamic op-
erations on shared data. A dynamic operation includes
an insert, delete or update operation on a single block
[9]. However, since the computation of a ring signature
includes an identifier of a block (as presented in HARS),
traditional methods, which only use the index of a block
as its identifier (i.e., the index of block mmmj is j), are not
suitable for supporting dynamic operations on shared
data efficiently.

The reason is that, when a user modifies a single
block in shared data by performing an insert or delete
operation, the indices of blocks that after the modified
block are all changed (as shown in Fig. 4), and the
changes of these indices require users, who are sharing
the data, to re-compute the signatures of these blocks,
even though the content of these blocks are not modified.

By utilizing an index hash table [15], which is a data
structure indexing each block based on its hash value,
our mechanism can allow a user to efficiently perform a

Index Block

1 mmm1

2 mmm2

3 mmm3

.

.

.
.
.
.

n mmmn

Insert

Index Block

1 mmm1

2 mmm
′

2

3 mmm2

4 mmm3

.

.

.
.
.
.

n+ 1 mmmn

(a) After inserting block mmm′
2, all

the identifiers after block mmm′
2 are

changed

Index Block

1 mmm1

2 mmm2

3 mmm3

4 mmm4

.

.

.
.
.
.

n mmmn

Delete

Index Block

1 mmm1

2 mmm3

3 mmm4

.

.

.
.
.
.

n− 1 mmmn

(b) After deleting block mmm2, all
the identifiers after block mmm1 are
changed

Fig. 4. Using indices as identifiers

dynamic operation on a single block, and avoid this type
of re-computation on other blocks. Different from [15], in
our mechanism, an identifier from the index hash table
is described as idj = {vj , rj}, where vj is denoted as the
virtual index of block mmmj , and rj is a random generated
by a collision-resistant hash function H2 : {0, 1}∗ → Zq

with rj = H2(mmmj ||vj). Here, q is a much smaller prime
than p (e.g., |q| = 80 bits and |p| = 160 bits). Examples
of different dynamic operations on shared data with our
index hash tables are described in Fig. 5 and Fig. 6.

Insert

Index Block V R
1 mmm1 δ r1
2 mmm′

2
⌊3δ/2⌋ r′

2

3 mmm2 2δ r2
4 mmm3 3δ r3
.
.
.

.

.

.
.
.
.

.

.

.

n+ 1 mmmn nδ rn

Index Block V R
1 mmm1 δ r1
2 mmm2 2δ r2
3 mmm3 3δ r3
.
.
.

.

.

.
.
.
.

.

.

.

n mmmn nδ rn

Fig. 5. Insert block mmm′
2 into shared data using an index

hash table as identifiers.

Update
Index Block V R
1 mmm′

1
δ r′

1

2 mmm2 2δ r2
3 mmm4 4δ r4
4 mmm5 5δ r5
...

...
...

...

n− 1 mmmn nδ rn

Index Block V R
1 mmm1 δ r1
2 mmm2 2δ r2
3 mmm3 3δ r3
4 mmm4 4δ r4
5 mmm5 5δ r5
...

...
...

...

n mmmn nδ rn

Delete

Fig. 6. Update block mmm1 and delete block mmm3 in shared
data using an index hash table as identifiers.

Specifically, the value of r generated by H2 ensures
that each block has a unique identifier (i.e., the prob-
ability that two blocks have the same value of r is
negligible). The virtual indices are able to ensure that
all the blocks in shared data are in the right order. For
example, if vi < vj , then blockmmmi is ahead of blockmmmj in
shared data. When shared data is created by the original
user, the initial virtual index of block mmmj is computed
as vj = j · δ, where δ is a system parameter decided
by the original user. If a new block mmm′

j is inserted, the
virtual index of this new blockmmm′

j is v′j = ⌊(vj−1+vj)/2⌋.
Clearly, if block mmmj and block mmmj+1 are both originally
created by the original user, the maximum number of
inserted blocks that is allowed between block mmmj and
block mmmj+1 is δ. In this paper, we assume the value of δ
is always large enough to support a sufficient number of
insertions between two blocks for the group, so that any
two virtual indexes in the table will not be the same.

8 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. X, NO. X, XXXX 201X

Let G1, G2 and GT be multiplicative cyclic groups of order
p, g1 and g2 be generators of groups G1, G2, respectively.
Let e : G1 × G2 → GT be a bilinear map, and ψ : G2 → G1

be a computable isomorphism with ψ(g2) = g1. There are
three hash functions H1: {0, 1}∗ → G1, H2 : {0, 1}∗ → Zq

and h : G1 → Zp. The total number of users in the
group is d. Shared data M is divided into n blocks as
M = (mmm1, ...,mmmn), and each block mmmj = (mj,1, ...,mj,k) is
further divided into k elements of Zp. The global parameters
are (e, ψ, p, q,G1,G2,GT , g1, g2, H1, H2, h, d, n, k).

KeyGen. For user ui, he/she randomly picks xi ∈ Zp and
computes wi = gxi

2 . User ui’s public key is pki = wi and
his/her private key is ski = xi. The original user also ran-
domly generates a public aggregate key pak = (η1, ..., ηk),
where ηl are random elements of G1.

SigGen. Given all the d group members’ public keys
(pk1, ...,pkd) = (w1, ..., wd), a blockmmmj = (mj,1, ...,mj,k), its
identifier idj , a private key sks for some s, user us computes
a ring signature of this block as follows:

1) Aggregates block mmmj with the public aggregate key
pak, and computes

βj = H1(idj)
k
∏

l=1

η
mj,l

l ∈ G1. (4)

2) Randomly chooses aj,i ∈ Zp and sets σj,i = g
aj,i

1 , for
all i 6= s. Then, calculates

σj,s =

(

βj

ψ(
∏

i 6=s w
aj,i

i)

)1/xs

∈ G1. (5)

The ring signature of block mmmj is σσσj = (σj,1, ..., σj,d).
Modify. A user in the group modifies the j-th block in shared
data by performing one of the following three operations:

• Insert. This user inserts a new block mmm′
j into shared

data. He/She computes the new identifier of the in-
serted block mmm′

j as id′j = {v′j , r
′
j}, where virtual index

v′j = ⌊(vj−1 + vj)/2⌋, and r′j = H2(mmm
′
j ||v

′
j). This user

outputs the new ring signature σσσ′
j of the inserted block

mmm′
j with SigGen, and uploads {mmm′

j , id
′
j ,σσσ

′
j} to the cloud

server. For the rest of blocks, the identifiers of these
blocks are not changed. The total number of blocks in
shared data increases to n+ 1.

• Delete. This user deletes block mmmj , its identifier idj and
ring signature σσσj from the cloud server. The identifiers

and content of other blocks in shared data are remain
the same. The total number of blocks in shared data
decreases to n− 1.

• Update. This user updates the j-th block in shared
data with a new block mmm′

j . The virtual index of this
block is remain the same, and r′j is computed as
r′j = H2(mmm

′
j ||vj). The new identifier of this updated

block is id′j = {vj , r
′
j}. The identifiers of other blocks

in shared data are not changed. This user outputs the
new ring signature σσσ′

j of this new block with SigGen,
and uploads {mmm′

j , id
′
j ,σσσ

′
j} to the cloud server. The total

number of blocks in shared data is still n.

ProofGen. To audit the integrity of shared data, a public
verifier:

1) Randomly picks a c-element subset J of set [1, n] to
locate the c selected blocks that will be checked, where
n is total number of blocks in shared data.

2) Generates a random value yj ∈ Zq , for j ∈ J .
3) Sends an auditing challenge {(j, yj)}j∈J to the cloud

server.

After receiving an auditing challenge {(j, yj)}j∈J , the cloud
server generates a proof of possession of selected blocks.
More specifically, the cloud server:

1) Chooses a random element τl ∈ Zq , and calculates
λl = ητll ∈ G1, for l ∈ [1, k].

2) Computes µl =
∑

j∈J yjmj,l + τlh(λl) ∈ Zp, for
l ∈ [1, k].

3) Aggregates signatures as φi =
∏

j∈J σ
yj
j,i, for i ∈ [1, d].

4) Returns an auditing proof {λλλ,µµµ,φφφ, {idj}j∈J } to the
public verifier, where λλλ = (λ1, ..., λk), µµµ = (µ1, ..., µk)
and φφφ = (φ1, ..., φd).

ProofVerify. With an auditing proof {λλλ,µµµ,φφφ, {idj}j∈J },
an auditing challenge {(j, yj)}j∈J , public aggregate key
pak = (η1, ..., ηk), and all the group members’ public keys
(pk1, ...,pkd) = (w1, ..., wd), the public verifier checks the
correctness of this proof by checking the following equation:

e(
∏

j∈J

H1(idj)
yj

k
∏

l=1

ηµl
l , g2)

?
=

(

d
∏

i=1

e(φi, wi)

)

·e(
k
∏

l=1

λ
h(λl)
l , g2).

(6)
If the above equation holds, then the public verifier believes
that the blocks in shared data are all correct. Otherwise, the
integrity of shared data is incorrect.

Fig. 7. Details of Oruta.

To support dynamic data without the above assump-
tion, the combination of coding techniques and Oblivi-
ous RAM can be utilized as introduced in recent work
[29]. Unfortunately, this proposed solution in [29] re-
quires much more computation and communication
overhead. Moreover, the property of public verifiability
is inevitably sacrificed in [29].

5.4 Construction of Oruta

Now, we present the details of our public audit-
ing mechanism. It includes five algorithms: KeyGen,
SigGen, Modify, ProofGen and ProofVerify. In Key-
Gen, users generate their own public/private key pairs.
In SigGen, a user (either the original user or a group
user) is able to compute ring signatures on blocks in
shared data by using its own private key and all the
group members’ public keys. Each user in the group is
able to perform an insert, delete or update operation

on a block, and compute the new ring signature on
this new block in Modify. ProofGen is operated by a
public verifier and the cloud server together to interac-
tively generate a proof of possession of shared data. In
ProofVerify, the public verifier audits the integrity of
shared data by verifying the proof.

Note that for the ease of understanding, we first
assume the group is static, which means the group is pre-
defined before shared data is created in the cloud and
the membership of the group is not changed during data
sharing. Specifically, before the original user outsources
shared data to the cloud, he/she decides all the group
members. We will discuss the case of dynamic groups
later.

Discussion. In the construction of Oruta, we support
data privacy by leveraging random masking (i.e., τlh(λl)
in ProofGen), which is also used in previous work [5] to
protect data privacy for personal users. If a user wants to

WANG et al.: ORUTA: PRIVACY-PRESERVING PUBLIC AUDITING FOR SHARED DATA IN THE CLOUD 9

protect the content of private data in the cloud, this user
can also encrypt data before outsourcing it into the cloud
server with encryption techniques [30], [31], such as the
combination of symmetric key encryption and attribute-
based encryption (ABE) [30].

With the sampling strategy [9], which is widely used
in most of the public auditing mechanisms, a public ver-
ifier can detect any corrupted block in shared data with
a high probability by only choosing a subset of all blocks
(i.e., choosing c-element subset J from set [1, n]) in each
auditing task. Previous work [9] has already proved that,
given a total number of blocks n = 1, 000, 000, if 1%
of all the blocks are lost or removed, a public verifier
can detect these corrupted blocks with a probability
greater than 99% by choosing only 460 random blocks.
Of course, this public verifier can always spend more
communication overhead, and verify the integrity of
data by choosing all the n blocks in shared data. Even if
all the n blocks in shared data are selected (i.e., without
using sampling strategy), the communication overhead
during public auditing is still much more smaller than
retrieving the entire data from the cloud [9].

Besides choosing a larger number of random blocks,
another possible approach to improve the detection
probability is to perform multiple auditing tasks on the
same shared data by using different randoms (i.e., yj is
different for block mmmj in each different task). Specifically,
if the current detection probability is Px and a number
of t auditing tasks is performed, then the detection
probability is computed as 1− (1− Px)

t.

Dynamic Groups. We now discuss the scenario of
dynamic groups under our proposed mechanism. If a
new user can be added in the group or an existing
user can be revoked from the group, then this group
is denoted as a dynamic group. To support dynamic
groups while still allowing the public verifier to perform
public auditing, all the ring signatures on shared data
need to be re-computed with the signer’s private key and
all the current users’ public keys when the membership
of the group is changed.

For example, if the current size of the group is d and
a new user ud+1 is added into the group, then a ring
signature on each block in shared data needs to be re-
computed with the signer’s private key and all the d +
1 public keys (pk1, ...,pkd+1). If the current size of the
group is d and an existing user ud is revoked from the
group, then a ring signature on each block in shared data
needs to be re-computed with the signer’s private key
and all the d− 1 public keys (pk1, ...,pkd−1).

The main reason of this type of re-computation on
signatures introduced by dynamic groups, is because
the generation of a ring signature under our mechanism
requires the signer’s private key and all the current
members’ public keys. An interesting problem for our
future work will be how to avoid this type of re-
computation introduced by dynamic groups while still
preserving identity privacy from the public verifier dur-
ing the process of public auditing on shared data.

5.5 Security Analysis of Oruta

Now, we discuss security properties of Oruta, includ-
ing its correctness, unforgeability, identity privacy and
data privacy.

Theorem 5: A public verifier is able to correctly audit the
integrity of shared data under Oruta.

Proof: According to the description of ProofVerify,
a public verifier believes the integrity of shared data is
correct if Equation 6 holds. So, the correctness of our
scheme can be proved by verifying the correctness of
Equation 6. Based on properties of bilinear maps and
Theorem 1, the right-hand side (RHS) of Equation 6 can
be expanded as follows:

RHS =

d
∏

i=1

e(
∏

j∈J

σ
yj

j,i, wi)

 · e(

k
∏

l=1

λ
h(λl)
l , g2)

=

∏

j∈J

(

d
∏

i=1

e(σj,i, wi)
yj)

 · e(

k
∏

l=1

η
τlh(λl)
l , g2)

=

∏

j∈J

e(βj , g2)
yj

 · e(
k
∏

l=1

η
τlh(λl)
l , g2)

= e(
∏

j∈J

(H1(idj)

k
∏

l=1

η
mj,l

l)yj , g2) · e(

k
∏

l=1

η
τlh(λl)
l , g2)

= e(
∏

j∈J

H1(idj)
yj ·

k
∏

l=1

η
∑

j∈J
mj,lyj

l ·

k
∏

l=1

η
τlh(λl)
l , g2)

= e(
∏

j∈J

H1(idj)
yj ·

k
∏

l=1

ηµl

l , g2).

Theorem 6: For an untrusted cloud, it is computationally
infeasible to generate a forgery of an auditing proof under
Oruta as long as the DL assumption holds.

Proof: As proved in Theorem 2, for an untrusted
cloud, if the Co-CDH problem on (G1,G2) is hard, it
is computationally infeasible to generate a forgery of a
ring signature under HARS. In Oruta, besides trying to
compute a forgery of a ring signature on each block to
generate a forgery of an auditing proof, if the untrusted
cloud could win the following security game, denoted
as Game 1, it can generate a forgery of an auditing proof
for corrupted shared data. Following the security game
in [10], we describe this security game as follows:

Game 1: A public verifier sends an auditing challenge
{(j, yj)}j∈J to the cloud server, the auditing proof gen-
erated based on the correct shared data M should be
{λλλ,µµµ,φφφ, {idj}j∈J }, which is able to pass the verifica-
tion with Equation 6. The untrusted cloud generates a
forgery of the proof as {λλλ,µµµ′,φφφ, {idj}j∈J } based on the
corrupted shared data M ′, where µµµ′ = (µ′

1, ..., µ
′
k) and

µ′
l =

∑

j∈J yjm
′
j,l + τlh(λl). Define ∆µl = µ′

l − µl for
1 ≤ l ≤ k, and at least one element of {∆µl}1≤l≤k is
nonzero since M 6= M ′. If this invalid proof based on
the corrupted shared data M ′ can successfully pass the

10 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. X, NO. X, XXXX 201X

verification, then the untrusted cloud wins. Otherwise,
it fails.

Now, we prove that, if the untrusted cloud could
win Game 1, we can find a solution of solving the DL
problem in G1, which contradicts to the DL assumption
that the DL problem in G1 is computationally infeasible.
We first assume the untrusted cloud can win Game 1.
Then, according to Equation 6, we have

e(
∏

j∈J

H1(idj)
yj ·

k
∏

l=1

η
µ′

l

l , g2) = (

d
∏

i=1

e(φi, wi))e(

k
∏

l=1

λ
h(λl)
l , g2).

Because {λλλ,µµµ,φφφ, {idj}j∈J } is a correct auditing proof, we
also have

e(
∏

j∈J

H1(idj)
yj ·

k
∏

l=1

ηµl

l , g2) = (

d
∏

i=1

e(φi, wi))e(

k
∏

l=1

λ
h(λl)
l , g2).

Then, we can learn that

k
∏

l=1

η
µ′

l

l =
k
∏

l=1

ηµl

l ,
k
∏

l=1

η∆µl

l = 1.

For two random elements g, h ∈ G1, there exists x ∈ Zp

that h = gx because G1 is a cyclic group. Without loss of
generality, given g, h ∈ G1, each ηl is able to randomly
and correctly generated by computing ηl = gξlhγl ∈ G1,
where ξl and γl are random values of Zp. Then, we have

1 =

k
∏

l=1

η∆µl

l =

k
∏

l=1

(gξlhγl)∆µl = g
∑k

l=1
ξl∆µl ·h

∑k
l=1

γl∆µl .

Clearly, we can find a solution to the DL problem. More
specifically, given g, hx ∈ G1, we can compute

h = g

∑k
l=1

ξl∆µl
∑k

l=1
γl∆µl = gx, x =

∑k
l=1 ξl∆µl

∑k
l=1 γl∆µl

.

unless the denominator
∑k

l=1 γl∆µl is zero. However,
as we defined in Game 1, at least one element of
{∆µl}1≤l≤k is nonzero, and γl is random element of Zp,
therefore, the denominator is zero with probability of
1/p. It means, if the untrusted cloud wins Game 1, we
can find a solution to the DL problem with a probability
of 1 − 1/p, which is non-negligible. It contradicts the
assumption that the DL problem is hard in G1. Therefore,
for an untrusted cloud, it is computationally infeasible
to generate a forgery of an auditing proof.

Now, we show that the identity of the signer on each
block in share data is not disclosed to a public verifier.

Theorem 7: During public auditing, the probability for a
public verifier to distinguish the identities of all the signers
on the c selected blocks in shared data is at most 1/dc.

Proof: According to Theorem 4, for any algorithm A,
the probability to reveal the signer on one block is 1/d.
Because the c selected blocks are signed independently,
where c ∈ [1, n], the total probability that the public
verifier can distinguish all the signers’ identities on the
c selected blocks in shared data is at most 1/dc.

Let us reconsider the example we described in Sec. 1.
With our proposed mechanism, the public verifier knows

A block signed by a user in the group

G G G G G G G G G G
Public Verifier

!"#$%&'()*+,(-

!"#$%&'()*+,(.

!"#$%&'()*+,(/

8th

8th

8th

G G G G G G G G G G

G G G G G G G G G G

G

Fig. 8. Alice and Bob share a file in the cloud, and a public
verifier audits the integrity of shared data with Oruta.

each block in shared data is either signed by Alice or
Bob, because it needs both users’ public keys to verify
the correctness of the entire shared data. However, it
cannot distinguish who is the signer on each particular
block (as shown in Fig. 8). Therefore, the public verifier
cannot have additional advantages on revealing private
information, such as who always signs the largest num-
ber of blocks in shared data or which particular block is
frequently modified by different group members.

Following the similar theorem in [5], we show that our
scheme is also able to support data privacy.

Theorem 8: Given an auditing proof = {λλλ,µµµ,φφφ, {idj}j∈J

}, it is computationally infeasible for a public verifier to reveal
any private data in shared data under Oruta as long as the
DL assumption holds.

Proof: If the combined element
∑

j∈J yjmj,l, which
is a linear combination of all the elements in block mmmj , is
directly sent to a public verifier, the public verifier could
learn the content of data by solving linear equations
after collecting a sufficient number of linear combina-
tions. To preserve private data, the combined element is
computed with random masking as µl =

∑

j∈J yjmj,l +
τlh(λl). In order to still solve linear equations, the public
verifier must know the value of τl ∈ Zp. However, given
ηl ∈ G1 λl = ητll ∈ G1, computing τl is as hard as
solving the DL problem in G1, which is computationally
infeasible. Therefore, give λλλ and µµµ, the public verifier
cannot directly obtain any linear combination of all
the elements in a block, and cannot further reveal any
private data in shared data M .

5.6 Batch Auditing

Sometimes, a public verifier may need to verify the
correctness of multiple auditing tasks in a very short
time. Directly verifying these multiple auditing tasks
separately would be inefficient. By leveraging the prop-
erties of bilinear maps, we can further extend Oruta to
support batch auditing, which can verify the correctness
of multiple auditing tasks simultaneously and improve
the efficiency of public auditing. Details of batch audit-
ing are presented in Fig. 9.

Based on the correctness of Equation 6, the correctness

WANG et al.: ORUTA: PRIVACY-PRESERVING PUBLIC AUDITING FOR SHARED DATA IN THE CLOUD 11

Assume the integrity of B auditing tasks need to be veri-
fied, where the B corresponding shared data are denoted
as M1, ...,MB , the number of users sharing data Mb is
described as db, where 1 ≤ b ≤ B.

BatchProofGen. A public verifier first generates an audit-
ing challenge {(j, yj)}j∈J as in ProofGen. After receiving
the auditing challenge, the cloud server generates and
returns an auditing proof {λλλb,µµµb,φφφb, {idb,j}j∈J } for each
shared data Mb as in ProofGen, where 1 ≤ b ≤ B,
1 ≤ l ≤ k, 1 ≤ i ≤ db and

λb,l = η
τb,l
b,l

µb,l =
∑

j∈J yjmb,j,l + τb,lh(λb,l)

φb,i =
∑

j∈J σ
yj
b,j,i

Here idb,j is described as idb,j = {fb, vb,j , rb,j}, where fb
is the data identifier (e.g., file name) of shared data Mb.

BatchProofVerify. After receiving all the B auditing
proofs, the public verifier checks the correctness of these B
proofs simultaneously by checking the following equation
with all the

∑B
b=1 db users’ public keys:

e(

B
∏

b=1

(

∏

j∈J

H(idb,j)
yj ·

k
∏

l=1

η
µb,l

b,l

)

, g2)

?
=

(

B
∏

b=1

db
∏

i=1

e(φb,i, wb,i)

)

· e(

B
∏

b=1

k
∏

l=1

λ
h(λb,l)

b,l , g2), (7)

where pkb,i = wb,i = gxb,i and skb,i = xb,i. If the
above verification equation holds, then the public verifier
believes that the integrity of all the B shared data is
correct. Otherwise, there is at least one shared data is
corrupted.

Fig. 9. Details of Batch Auditing.

of batch auditing in Equation 7 can be presented as:
(

B
∏

b=1

db
∏

i=1

e(φb,i, wb,i)

)

· e(
B
∏

b=1

k
∏

l=1

λ
h(λb,l)
b,l , g2)

=

B
∏

b=1

(

(

db
∏

i=1

e(φb,i, wb,i)) · e(

k
∏

l=1

λ
h(λb,l)
b,l , g2)

)

=

B
∏

b=1

e(
∏

j∈J

H(idb,j)
yj ·

k
∏

l=1

η
µb,l

b,l , g2)

= e(
B
∏

b=1

∏

j∈J

H(idb,j)
yj ·

k
∏

l=1

η
µb,l

b,l

 , g2).

If all the B shared data are from the same group, the
public verifier can further improve the efficiency of batch
auditing by verifying

e(
B
∏

b=1

∏

j∈J

H(idb,j)
yj ·

k
∏

l=1

η
µb,l

b,l

 , g2)

?
=

(

d
∏

i=1

e(

B
∏

b=1

φb,i, wi)

)

· e(

B
∏

b=1

k
∏

l=1

λ
h(λb,l)
b,l , g2), (8)

which can save the public verifier about (d−1)B pairing
operations in total compared to Equation 7.

Note that batch auditing will fail if at least one incor-
rect auditing proof exists in all the B auditing proofs. To

allow most of auditing proofs to still pass the verification
when there exists only a small number of incorrect
auditing proofs, we can utilize binary search [5] during
batch auditing.

More specifically, once the batch auditing of the B
auditing proofs fails, the public verifier divides the set
of all the B auditing proofs into two subsets, where
each subset contains a number of B/2 auditing proofs.
Then the public verifier re-checks the correctness of
auditing proofs in each subset using batch auditing. If
the verification result of one subset is correct, then all the
auditing proofs in this subset are all correct. Otherwise,
this subset is further divided into two sub-subsets, and
the public verifier re-checks the correctness of auditing
proofs in each sub-subset with batch auditing until all
the incorrect auditing proofs are found. Clearly, when
the number of incorrect auditing proofs increases, the
public verifier needs more time to distinguish all the
incorrect auditing proofs, and the efficiency of batch
auditing will be reduced. Experimental results in Section
6 shows that, when less than 12% of all the B auditing
proofs are incorrect, batching auditing is still more ef-
ficient than verifying all the B auditing proofs one by
one.

6 PERFORMANCE

In this section, we first analyze the computation and
communication costs of Oruta, and then evaluate the
performance of Oruta in experiments.

6.1 Computation Cost

During an auditing task, the public verifier first gen-
erates some random values to construct an auditing
challenge, which only introduces a small cost in com-
putation. Then, after receiving the auditing challenge,
the cloud server needs to compute an auditing proof
{λλλ,µµµ,φφφ, {idj}j∈J }. Based on the description in Section 5,
the computation cost of calculating an auditing proof is
about (k+dc)ExpG1

+dcMulG1
+ckMulZp

+kHashZp
, where

ExpG1
denotes the cost of computing one exponentiation

in G1, MulG1
denotes the cost of computing one multipli-

cation in G1, MulZp
and HashZp

respectively denote the
cost of computing one multiplication and one hashing
operation in Zp. To check the correctness of an auditing
proof {λλλ,µµµ,φφφ, {idj}j∈J }, a public verifier audits it with
Equation 6. The total cost of verifying this auditing proof
is about (2k + c)ExpG1

+ (2k + c)MulG1
+ dMulGT

+
cHashG1

+ (d+ 2)Pair. We use Pair to denote the cost of
computing one pairing operation on e : G1 ×G2 → GT .

6.2 Communication Cost

The communication cost of Oruta is mainly introduced
by two aspects: the auditing challenge and auditing
proof. For each auditing challenge {j, yj}j∈J , the com-
munication cost is c(|q|+ |n|) bits, where |q| is the length
of an element of Zq and |n| is the length of an index.
Each auditing proof {λλλ,µµµ,φφφ, {idj}j∈J } contains (k + d)

12 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. X, NO. X, XXXX 201X

elements of G1, k elements of Zp and c elements of Zq ,
therefore the communication cost of one auditing proof
is (2k + d)|p|+ c|q| bits.

6.3 Experimental Results

We now evaluate the efficiency of Oruta in experi-
ments. In our experiments, we utilize the GNU Mul-
tiple Precision Arithmetic (GMP) library and Pairing
Based Cryptography (PBC) library. All the following
experiments are based on C and tested on a 2.26 GHz
Linux system over 1, 000 times. Because Oruta needs
more exponentiations than pairing operations during
the process of auditing, the elliptic curve we choose
in our experiments is an MNT curve with a base field
size of 159 bits, which has a better performance than
other curves on computing exponentiations. We choose
|p| = 160 bits and |q| = 80 bits. We assume the total
number of blocks in shared data is n = 1, 000, 000 and
|n| = 20 bits. The size of shared data is 2 GB. To keep the
detection probability greater than 99%, we set the num-
ber of selected blocks in an auditing task as c = 460 [9]. If
only 300 blocks are selected, the detection probability is
greater than 95%. We also assume the size of the group
d ∈ [2, 20] in the following experiments. Certainly, if a
larger group size is used, the total computation cost will
increase due to the increasing number of exponentiations
and pairing operations.

0 5 10 15 20
d: the size of the group

0

20

40

60

80

100

G
e
n
e
ra

ti
o
n
 t

im
e
 (

m
s)

k=100

k=200

(a) Impact of d on signature gen-
eration time (ms).

0 50 100 150 200
k: the number of elements per block

0
10
20
30
40
50
60
70
80

G
e
n
e
ra

ti
o
n
 t

im
e
 (

m
s)

d=10

d=20

(b) Impact of k on signature gen-
eration time (ms).

Fig. 10. Performance of Signature Generation

Performance of Signature Generation. According to
Section 5, the generation time of a ring signature on
a block is determined by the number of users in the
group and the number of elements in each block. As
illustrated in Fig. 10(a) and Fig. 10(b), when k is fixed, the
generation time of a ring signature is linearly increasing
with the size of the group; when d is fixed, the generation
time of a ring signature is linearly increasing with the
number of elements in each block. Specifically, when
d = 10 and k = 100, a user in the group requires about
37 milliseconds to compute a ring signature on a block
in shared data.

Performance of Auditing. Based on our proceeding
analyses, the auditing performance of Oruta under dif-
ferent detection probabilities is illustrated in Fig. 11(a)–
12(b), and Table 2. As shown in Fig. 11(a), the auditing
time is linearly increasing with the size of the group.
When c = 300, if there are two users sharing data in
the cloud, the auditing time is only about 0.5 seconds;
when the number of group member increases to 20,
it takes about 2.5 seconds to finish the same auditing

0 5 10 15 20
d: the size of the group

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

A
u
d
it

in
g
 t

im
e
 (

s) c=460

c=300

(a) Impact of d on auditing time
(second), where k = 100.

0 50 100 150 200
k: the number of elements per block

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
u
d
it

in
g
 t

im
e
 (

s) c=460

c=300

(b) Impact of k on auditing time
(second), where d = 10.

Fig. 11. Performance of Auditing Time

0 5 10 15 20
d: the size of the group

0
2
4
6
8

10
12
14

C
o
m

m
u
n
ic

a
ti

o
n
 c

o
st

 (
K

B
)

c=460

c=300

(a) Impact of d on communication
cost (KB), where k = 100.

0 20 40 60 80 100
k: the number of elements per block

0
2
4
6
8

10
12
14

C
o
m

m
u
n
ic

a
ti

o
n
 c

o
st

 (
K

B
)

c=460

c=300

(b) Impact of k on communica-
tion cost (KB), where d = 10.

Fig. 12. Performance of Communication Cost

task. The communication cost of an auditing task un-
der different parameters is presented in Fig. 12(a) and
Fig. 12(b). Compared to the size of entire shared data,
the communication cost that a public verifier consumes
in an auditing task is very small. It is clear in Table 2
that when maintaining a higher detection probability,
a public verifier needs to consume more computation
and communication overhead to finish the auditing task.
Specifically, when c = 300, it takes a public verifier 1.32
seconds to audit the correctness of shared data, where
the size of shared data is 2 GB; when c = 460, a public
verifier needs 1.94 seconds to verify the integrity of the
same shared data.

TABLE 2
Performance of Auditing

System Parameters k = 100, d = 10,
Storage Usage 2GB + 200MB (data + signatures)
Selected Blocks c 460 300
Communication Cost 14.55KB 10.95KB
Auditing Time 1.94s 1.32s

As we discussed in the previous section, the privacy
performance of our mechanism depends on the number
of members in the group. Given a block in shared data,
the probability that a public verifier fails to reveal the
identity of the signer is 1 − 1/d, where d ≥ 2. Clearly,
when the number of group members is larger, our
mechanism has a better performance in terms of privacy.
As we can see from Fig. 13(a), this privacy performance
increases with an increase of the size of the group.

Performance of Batch Auditing. As we discussed in
Section 5, when there are multiple auditing proofs, the
public verifier can improve the efficiency of verification
by performing batch auditing. In the following exper-
iments, we choose c = 300, k = 100 and d = 10.
Compared to verifying a number of B auditing proofs
one by one, if these B auditing proofs are for different
groups, batching auditing can save 2.1% of the auditing
time per auditing proof on average (as shown in Fig.
14(a)). If these B auditing tasks are for the same group,

WANG et al.: ORUTA: PRIVACY-PRESERVING PUBLIC AUDITING FOR SHARED DATA IN THE CLOUD 13

2 4 6 8 10 12 14 16 18 20
d: the size of the group

0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
iv

ac
y

Pe
rf

or
m

an
ce

Privacy Performance

(a) Impact of d on privacy perfor-
mance.

0 20 40 60 80 100
B: the number of audting tasks

1150

1175

1200

1225

1250

1275

1300

1325

A
v
e
ra

g
e
 a

u
d
it

in
g
 t

im
e
 (

m
s)

Seperate Auditing

Batch Auditing-D

Batch Auditing-S

(b) Impact of B on the efficiency
of batch auditing, where k = 100

and d = 10.

Fig. 13. Performance of Privacy and Batch Auditing

0 2 4 6 8 10 12 14 16
A: the number of incorrect proofs

1290

1295

1300

1305

1310

1315

1320

1325

A
v
e
ra

g
e
 a

u
d
it

in
g
 t

im
e
 (

m
s)

Seperate Auditing

Batch Auditing-D

(a) Impact of A on the efficiency
of batch auditing, where B = 128.

0 2 4 6 8 10 12 14 16
A: the number of incorrect proofs

1150

1175

1200

1225

1250

1275

1300

1325

A
v
e
ra

g
e
 a

u
d
it

in
g
 t

im
e
 (

m
s)

Seperate Auditing

Batch Auditing-S

(b) Impact of A on the efficiency
of batch auditing, where B = 128.

Fig. 14. Efficiency of Batch Auditing with Incorrect Proofs

batching auditing can save 12.6% of the average auditing
time per auditing proof (as shown in Fig. 14(b)).

Now we evaluate the performance of batch auditing
when incorrect auditing proofs exist among the B audit-
ing proofs. As we mentioned in Section 5, we can use bi-
nary search in batch auditing, so that we can distinguish
the incorrect ones from the B auditing proofs. However,
the increasing number of incorrect auditing proofs will
reduce the efficiency of batch auditing. It is important for
us to find out the maximal number of incorrect auditing
proofs exist in the B auditing proofs, where the batch
auditing is still more efficient than separate auditing.

In this experiment, we assume the total number of
auditing proofs in the batch auditing is B = 128 (because
we leverage binary search, it is better to set B as a
power of 2), the number of elements in each block is
k = 100 and the number of users in the group is d = 10.
Let A denote the number of incorrect auditing proofs.
In addition, we also assume that it always requires
the worst-case algorithm to detect the incorrect auditing
proofs in the experiment. According to Equation 7 and
8, the extra computation cost in binary search is mainly
introduced by extra pairing operations. As shown in
Fig. 14(a), if all the 128 auditing proofs are for different
groups, when the number of incorrect auditing proofs is
less than 16 (12% of all the auditing proofs), batching
auditing is still more efficient than separate auditing.
Similarly, in Fig. 14(b), if all the auditing proofs are for
the same group, when the number of incorrect auditing
proofs is more than 16, batching auditing is less efficient
than verifying these auditing proofs separately.

7 RELATED WORK

Provable Data Possession (PDP), proposed by Ateniese
et al. [9], allows a verifier to check the correctness of a
client’s data stored at an untrusted server. By utilizing
RSA-based homomorphic authenticators and sampling

strategies, the verifier is able to publicly audit the in-
tegrity of data without retrieving the entire data, which
is referred to as public auditing. Unfortunately, their
mechanism is only suitable for auditing the integrity of
personal data. Juels and Kaliski [32] defined another sim-
ilar model called Proofs of Retrievability (POR), which is
also able to check the correctness of data on an untrusted
server. The original file is added with a set of randomly-
valued check blocks called sentinels. The verifier chal-
lenges the untrusted server by specifying the positions of
a collection of sentinels and asking the untrusted server
to return the associated sentinel values. Shacham and
Waters [10] designed two improved schemes. The first
scheme is built from BLS signatures [27], and the second
one is based on pseudo-random functions.

To support dynamic data, Ateniese et al. [33] pre-
sented an efficient PDP mechanism based on symmetric
keys. This mechanism can support update and delete
operations on data, however, insert operations are not
available in this mechanism. Because it exploits sym-
metric keys to verify the integrity of data, it is not
public verifiable and only provides a user with a limited
number of verification requests. Wang et al. [12] utilized
Merkle Hash Tree and BLS signatures [27] to support
dynamic data in a public auditing mechanism. Erway
et al. [11] introduced dynamic provable data possession
(DPDP) by using authenticated dictionaries, which are
based on rank information. Zhu et al. [15] exploited the
fragment structure to reduce the storage of signatures in
their public auditing mechanism. In addition, they also
used index hash tables to provide dynamic operations
on data. The public mechanism proposed by Wang et
al. [5] and its journal version [18] are able to preserve
users’ confidential data from a public verifier by using
random maskings. In addition, to operate multiple audit-
ing tasks from different users efficiently, they extended
their mechanism to enable batch auditing by leveraging
aggregate signatures [21].

Wang et al. [13] leveraged homomorphic tokens to
ensure the correctness of erasure codes-based data dis-
tributed on multiple servers. This mechanism is able not
only to support dynamic data, but also to identify misbe-
haved servers. To minimize communication overhead in
the phase of data repair, Chen et al. [14] also introduced
a mechanism for auditing the correctness of data under
the multi-server scenario, where these data are encoded
by network coding instead of using erasure codes. More
recently, Cao et al. [16] constructed an LT codes-based
secure and reliable cloud storage mechanism. Compare
to previous work [13], [14], this mechanism can avoid
high decoding computation cost for data users and save
computation resource for online data owners during
data repair.

8 CONCLUSION AND FUTURE WORK

In this paper, we propose Oruta, a privacy-preserving
public auditing mechanism for shared data in the cloud.
We utilize ring signatures to construct homomorphic
authenticators, so that a public verifier is able to audit

14 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. X, NO. X, XXXX 201X

shared data integrity without retrieving the entire data,
yet it cannot distinguish who is the signer on each block.
To improve the efficiency of verifying multiple auditing
tasks, we further extend our mechanism to support batch
auditing.

There are two interesting problems we will continue
to study for our future work. One of them is traceability,
which means the ability for the group manager (i.e., the
original user) to reveal the identity of the signer based
on verification metadata in some special situations. Since
Oruta is based on ring signatures, where the identity of
the signer is unconditionally protected [21], the current
design of ours does not support traceability. To the best
of our knowledge, designing an efficient public auditing
mechanism with the capabilities of preserving identity
privacy and supporting traceability is still open. Another
problem for our future work is how to prove data
freshness (prove the cloud possesses the latest version
of shared data) while still preserving identity privacy.

REFERENCES

[1] B. Wang, B. Li, and H. Li, “Oruta: Privacy-Preserving Public
Auditing for Shared Data in the Cloud,” in Proceedings of IEEE
Cloud 2012, 2012, pp. 295–302.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia, “A View of Cloud Computing,” Communications of the
ACM, vol. 53, no. 4, pp. 50–58, April 2010.

[3] K. Ren, C. Wang, and Q. Wang, “Security Challenges for the
Public Cloud,” IEEE Internet Computing, vol. 16, no. 1, pp. 69–73,
2012.

[4] D. Song, E. Shi, I. Fischer, and U. Shankar, “Cloud Data Protection
for the Masses,” IEEE Computer, vol. 45, no. 1, pp. 39–45, 2012.

[5] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-Preserving
Public Auditing for Data Storage Security in Cloud Computing,”
in Proceedings of IEEE INFOCOM 2010, 2010, pp. 525–533.

[6] B. Wang, M. Li, S. S. Chow, and H. Li, “Computing Encrypted
Cloud Data Efficiently under Multiple Keys,” in Proc. of CNS-
SPCC’13, 2013, pp. pp.90–99.

[7] R. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining
Digital Signatures and Public Key Cryptosystems,” Communica-
tions of the ACM, vol. 21, no. 2, pp. 120–126, 1978.

[8] The MD5 Message-Digest Algorithm (RFC1321). [Online].
Available: https://tools.ietf.org/html/rfc1321

[9] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peter-
son, and D. Song, “Provable Data Possession at Untrusted Stores,”
in Proceedings of ACM CCS’07, 2007, pp. 598–610.

[10] H. Shacham and B. Waters, “Compact Proofs of Retrievability,” in
Proceedings of ASIACRYPT’08. Springer-Verlag, 2008, pp. 90–107.

[11] C. Erway, A. Kupcu, C. Papamanthou, and R. Tamassia, “Dynamic
Provable Data Possession,” in Proceedings of ACM CCS’09, 2009,
pp. 213–222.

[12] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling Public
Verifiability and Data Dynamic for Storage Security in Cloud
Computing,” in Proceedings of ESORICS 2009. Springer-Verlag,
2009, pp. 355–370.

[13] C. Wang, Q. Wang, K. Ren, and W. Lou, “Ensuring Data Stor-
age Security in Cloud Computing,” in Proceedings of ACM/IEEE
IWQoS’09, 2009, pp. 1–9.

[14] B. Chen, R. Curtmola, G. Ateniese, and R. Burns, “Remote Data
Checking for Network Coding-based Distributed Stroage Sys-
tems,” in Proceedings of ACM CCSW 2010, 2010, pp. 31–42.

[15] Y. Zhu, H. Wang, Z. Hu, G.-J. Ahn, H. Hu, and S. S.Yau, “Dynamic
Audit Services for Integrity Verification of Outsourced Storage in
Clouds,” in Proceedings of ACM SAC 2011, 2011, pp. 1550–1557.

[16] N. Cao, S. Yu, Z. Yang, W. Lou, and Y. T. Hou, “LT Codes-based
Secure and Reliable Cloud Storage Service,” in Proceedings of IEEE
INFOCOM 2012, 2012.

[17] B. Wang, B. Li, and H. Li, “Certificateless Public Auditing for Data
Integrity in the Cloud,” in Proceedings of IEEE CNS 2013, 2013, pp.
276–284.

[18] C. Wang, S. S. Chow, Q. Wang, K. Ren, and W. Lou, “Privacy-
Preserving Public Auditing for Secure Cloud Storage,” IEEE
Transactions on Computers, vol. 62, no. 2, pp. 362–375, 2013.

[19] B. Wang, B. Li, and H. Li, “Public Auditing for Shared Data with
Efficient User Revoation in the Cloud,” in the Proceedings of IEEE
INFOCOM 2013, 2013, pp. 2904–2912.

[20] ——, “Panda: Public Auditing for Shared Data with Efficient User
Revocation in the Cloud,” IEEE Transactions on Services Computing,
2014, accepted.

[21] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate
and Verifiably Encrypted Signatures from Bilinear Maps,” in
Proceedings of EUROCRYPT 2003. Springer-Verlag, 2003, pp. 416–
432.

[22] B. Wang, H. Li, and M. Li, “Privacy-Preserving Public Auditing
for Shared Cloud Data Supporting Group Dynamics,” in the
Proceedings of IEEE ICC 2013, 2013, pp. 539–543.

[23] B. Wang, S. S. Chow, M. Li, and H. Li, “Storing Shared Data on the
Cloud via Security-Mediator,” in the Proceedings of ICDCS 2013,
2013, pp. 124–133.

[24] D. Boneh, X. Boyen, and H. Shacham, “Short Group Signatures,”
in Proceedings of CRYPTO 2004. Springer-Verlag, 2004, pp. 41–55.

[25] B. Wang, B. Li, and H. Li, “Knox: Privacy-Preserving Auditing for
Shared Data with Large Groups in the Cloud,” in Proceedings of
ACNS 2012, June 2012, pp. 507–525.

[26] E. Brickell, J. Camenisch, and L. Chen, “Direct Anonymous At-
testation,” in Proceedings of ACM CCS’04, 2004, pp. 132–145.

[27] D. Boneh, B. Lynn, and H. Shacham, “Short Signatures from the
Weil Pairing,” in Proceedings of ASIACRYPT 2001. Springer-
Verlag, 2001, pp. 514–532.

[28] R. L. Rivest, A. Shamir, and Y. Tauman, “How to Leak a Secret,”
in Proceedings of ASIACRYPT 2001. Springer-Verlag, 2001, pp.
552–565.

[29] D. Cash, A. Kupcu, and D. Wichs, “Dynamic Proofs of Retrievabil-
ity via Oblivious RAM,” in Proc. EUROCRYPT, 2013, pp. 279–295.

[30] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving Secure, Scalable,
and Fine-grained Data Access Control in Cloud Computing,” in
Proceedings of IEEE INFOCOM 2010, 2010, pp. 534–542.

[31] X. Liu, Y. Zhang, B. Wang, and J. Yan, “Mona: Secure Multi-
Owner Data Sharing for Dynamic Groups in the Cloud,” IEEE
Transactions on Parallel and Distributed Systems (TPDS), vol. 24,
no. 6, pp. 1182–1191, 2013.

[32] A. Juels and B. S. Kaliski, “PORs: Proofs of Retrievability for Large
Files,” in Proceedings of ACM CCS’07, 2007, pp. 584–597.

[33] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik, “Scal-
able and Efficient Provable Data Possession,” in Proceedings of
SecureComm 2008, 2008.

Boyang Wang is a Ph.D. student from the
School of Telecommunications Engineering, Xid-
ian University, Xi’an, China. He obtained his B.S.
in information security from Xidian University in
2007. His current research interests focus on se-
curity and privacy issues in cloud computing, big
data, and applied cryptography. He is a student
member of IEEE.

Baochun Li is a Professor at the Department of
Electrical and Computer Engineering at the Uni-
versity of Toronto, and holds the Bell University
Laboratories Endowed Chair in Computer En-
gineering. His research interests include large-
scale multimedia systems, cloud computing,
peer-to-peer networks, applications of network
coding, and wireless networks. He is a member
of ACM and a senior member of IEEE.

Hui Li is a Professor at the School of
Telecommunications Engineering, Xidian Uni-
versity, Xi’an, China. He received B.Sc. degree
from Fudan University in 1990, M.Sc. and Ph.D.
degrees from Xidian University in 1993 and
1998. In 2009, he was with Department of ECE,
University of Waterloo as a visiting scholar. His
research interests are in the areas of cryptog-
raphy, security of cloud computing, wireless net-
work security, information theory.

