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Abstract—Due to the existence of security threats in the cloud,
many mechanisms have been proposed to allow a user to audit
data integrity with the public key of the data owner before
utilizing cloud data. The correctness of choosing the right public
key in previous mechanisms depends on the security of Public
Key Infrastructure (PKI). Although traditional PKI has been
widely used in the construction of public key cryptography, it still
faces many security risks, especially in the aspect of managing
certificates. In this paper, we design a certificateless public
auditing mechanism to eliminate the security risks introduced
by PKI in previous solutions. Specifically, with our mechanism,
a public verifier does not need to manage certificates to choose
the right public key for the auditing. Instead, the auditing can
be operated with the assistance of the data owner’s identity, such
as her name or email address, which can ensure the right public
key is used. Meanwhile, this public verifier is still able to audit
data integrity without retrieving the entire data from the cloud
as previous solutions. To the best of our knowledge, it is the
first certificateless public auditing mechanism for verifying data
integrity in the cloud. Our theoretical analyses prove that our
mechanism is correct and secure, and our experimental results
show that our mechanism is able to audit the integrity of data in
the cloud efficiently.

I. INTRODUCTION

Nowadays, as the cloud offers data storage services with
much lower prices than the cost of maintaining data on personal
devices, people tend to outsource the hosting of their data to
the cloud. By enjoying such storage services in the cloud,
data owners are able to freely access their outsourced data
on different devices and locations, and easily share their data
with others. Although cloud providers have designed a series
of security protections for these data storage services, casting
the image of a more reliable and secure place to store data
than personal devices, the integrity of data stored in the cloud
may still be in doubt due to the existence of hardware/software
failures and human errors [1], [2]. For example, Dropbox, a
well-known cloud-based data storage service with over 100
million users, accidentally allowed anybody to access Dropbox
accounts without passwords for several hours after an unsuc-
cessful code update in June 2011 [3].

To efficiently audit data integrity in an untrusted cloud, many
mechanisms have been proposed [2], [4]–[16]. One of the most
attractive features of these works is allowing not only the data
owner herself but also a public verifier, such as a data user
who would like to utilize cloud data, to verify the integrity
of cloud data without retrieving the entire data from the cloud,
referred to as public auditing. Another common feature of these
previous works is that choosing the correct public key of the
data owner during the verification on cloud data integrity is
based on the security of Public Key Infrastructure (PKI).

In traditional PKI, the assurance of the binding between an
owner’s identity and her public/private key is delivered by the
Certificate Authority (CA) and certificates issued by the CA.
Although PKI has been widely used in the construction of
public key cryptography, it still faces many security risks [17]–
[19]. One of the most fundamental issues is the management
of certificates, including distribution, storage, revocation and
verification. For example, a certificate can only be trusted by
users if the root certificate of this certificate is trustworthy;
however, since the root certificate is self-signed by a CA itself,
to determine the trustworthiness of this root certificate in the
first place is not an easy task, even for a security expert [17].
It is an even harder — and sometimes confusing — process
for the general public, who have no special knowledge of
cryptography and security. All they can do is perhaps to click
the button shows Accept, and install a so-called “trustworthy”
certificate anyway.

Considering these security risks, the certificate of a data
owner that a public verifier (i.e., a data user) obtains may not
be trustworthy, and the public key used for verifying cloud data
integrity may not even belong to the expected data owner. In
this case, even the verification result is positive, the cloud data
that a public verifier intend to utilize may not be actually signed
by the data owner herself. Note that some symmetric key-
based solutions [20], [21] can certainly be leveraged to verify
the correctness of data stored in an untrusted cloud without
involving certificates. However, they are not public verifiable.
Therefore, how to avoid managing certificates at public verifiers
while still designing a public key-based mechanism to securely
and efficiently audit data integrity in the cloud is a necessary
task.

To avoid managing certificates in a public auditing mecha-
nism, utilizing Identity-Based Signatures (IBS) [22], [23] seems
to be an option in the first place. Unfortunately, IBS has an in-
herent drawback — the key escrow problem [19]. By leveraging
the existing technique of certificateless signatures (CLS) [19],
a public verifier should be able to audit data integrity without
managing certificates or suffering the key escrow problem.
In particular, a public verifier should be able to leverage the
owner’s identity, such as her name or email address, to ensure
the right public key of this owner is used during the auditing of
cloud data integrity. However, the main challenge of building
a certificateless public auditing mechanism in the cloud is
that, traditional certificateless signature schemes [19], [24]–
[26] cannot satisfy one of the most significant features that
a public auditing mechanism should be capable of — verifying
the integrity without downloading the entire data, which is



referred to as blockless verifiability.

In this paper, we first design a homomorphic authenticable
certificateless signature scheme with blockless verifiability,
which traditional certificateless signature schemes do not sup-
port. We then build the entire certificateless public auditing
mechanism for verifying data integrity in an untrusted cloud
based on our proposed certificateless signature scheme. As
a result, our public auditing mechanism does not require
a public verifier to manage certificates, which successfully
eliminates the security risks introduced by PKI in previous
works. Meanwhile, this public verifier is still able to efficiently
audit the correctness of data in the cloud without retrieving
the entire data. To the best of our knowledge, our mechanism
represents the first solution of certificateless public auditing on
data integrity in the cloud.

The remainder of this paper is organized as follows. In
Sec. II, we present the system and threat model. In Sec. III,
we briefly introduce cryptographic primitives used in our
mechanism. The detailed design and security analysis of our
mechanism are presented in Sec. IV and Sec. V. Sec. VI eval-
uates the performance of our mechanism. Finally, we discuss
related work in Sec. VII, and conclude this paper in Sec. VIII.

II. PROBLEM STATEMENT

As presented in Fig. 1, the system model in this paper
includes four entities: the cloud, the data owner, data users
and the Key Generation Center (KGC). The cloud provides
data services to the data owner and data users. The data owner
outsources her data to the cloud and save her storage on local
devices. In general, in order to be modified efficiently, the
outsourced data is further divided into a number of blocks.
A data user is able to utilize cloud data outsourced by the data
owner via the services in the cloud. For instance, a data user
can perform search or computation on cloud data for particular
purposes. The KGC is a trusted party required in the framework
of certificateless schemes [19], [24]–[26]. It is able to generate
a partial private key of an entity (e.g., the data owner) based
on the corresponding identity (e.g., name or email address).
The remaining part of the entire private key is generated by
the entity itself.

The data stored in the cloud may be polluted from two possi-
ble causes. First, an external adversary may try to pollute data,
and prevent the owner and users from using the data correctly.
Second, cloud service providers may accidentally corrupt data
integrity due to hardware/software failures or human errors, and
lie about data corruption to save the reputation of their services.
As a result, the data owner and data users do not fully trust the
cloud with the integrity of data.

To protect data integrity, each block is attached with a
signature, which is computed by the owner’s entire private key.
A data user needs to check cloud data integrity before any
utilization (e.g., search, computation, data mining). Specifically,
a data user first sends an auditing challenge to the cloud. Then,
the cloud generates a proof of possession of the owner’s data
as an auditing response to this data user. Finally, this data
user verifies data integrity based on the auditing response with
the public key of the data owner and the owner’s identity.

Essentially, the process of public auditing is a challenge-and-
response protocol between a data user and the cloud. Note
that the data owner herself can also be a verifier to check the
integrity of data, which she on longer physically possesses, by
following the same protocol.
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Fig. 1. The cloud, the data owner, data users and the KGC.

The design of our public auditing mechanism should achieve
three objectives: (1) Correctness: A public verifier (i.e., a data
user) is able to verify the integrity of data in the cloud correctly.
(2) Public Auditing: A public verifier is able to audit the
correctness of data without retrieving the entire data from the
cloud. (3) Certificateless: The correctness of public auditing
does not require a public verifier to manager certificates.

III. PRELIMINARIES

A. Bilinear Maps

Let G1 and G2 be two multiplicative cyclic groups of prime
order p, P be a generator of G1. Bilinear map e is a map G1×
G1 → G2 with the following properties: (1) Computability:
there exists an efficient algorithm for computing map e. (2)
Bilinearity: e(Ua, V b) = e(U, V )ab, for all U, V ∈ G1, and
a, b ∈ Zp. (3) Non-degeneracy: e(P, P ) $= 1.

B. Complexity Assumptions

Definition 1: Computational Diffie-Hellman (CDH) As-
sumption. Let a, b ∈ Z∗

p, given P, P a, P b ∈ G1 as input,
for any probabilistic polynomial time adversary ACDH, it is
computational infeasible to output P ab, which is defined as

Pr[ACDH(P, P a, P b) =< P ab >: a, b
R
← Z

∗
p] ≤ ε,

where ε is negligible.
Definition 2: Discrete Logarithm (DL) Assumption. Let

a ∈ Z∗
p, given P, P a ∈ G1 as input, for any probabilistic

polynomial time adversary ADL, it is computational infeasible
for it to output a, which is defined as

Pr[ADL(P, P
a) =< a >: a

R
← Z

∗
p] ≤ ε,

where ε is negligible.

C. Homomorphic Authenticable Signatures

Homomorphic authenticable signatures, also referred to as
homomorphic verifiable tags or homomorphic authenticators,
are fundamental building blocks in the construction of public
auditing mechanisms [2], [4]–[15]. One of the most important



Setup. Given security parameter δ, the KGC outputs (P,G1,G2, e),
where P is a generator of G1, G1 and G2 are two cyclic multiplica-
tive groups of prime order p and e : G1 × G1 → G2 is a bilinear
map.

The KGC chooses a random λ ∈ Z
∗
p as the master key and

sets PT = Pλ. The KGC also chooses a random P1 ∈ G1,
and two cryptographic hash functions H1 : {0, 1}∗ → G1 and
H2 : {0, 1}∗ → G1. The system parameters are (G1, G2, e, P ,
PT , P1, H1, H2), which are public. The KGC keeps the master
key private.

Partial-Private-Key-Extract. Given signer S’s identifier IDs ∈
{0, 1}∗, the KGC generates the partial private key for signer S
with its master key λ:

1) Compute Qs = H1(IDs) ∈ G1.
2) Output the partial private key Ds = Qλ

s ∈ G1.

KeyGen. Given system parameters (G1, G2, e, P , PT , P1, H1,
H2), signer S chooses a random xs ∈ Z

∗
p as her secret key, and

also computes Ps = P xs ∈ G1 as her public key. The entire private
key of signer S includes partial private key Ds and secret key xs.

Sign. Given block m ∈ Zp and block identifier id ∈ {0, 1}∗, signer
S computes a signature using partial private key Ds and secret key
xs as follows:

1) Compute V = H2(IDs||Ps||id) · P
m
1 ∈ G1.

2) Output a signature σ on block m and block identifier id as
σ = V xs ·Ds ∈ G1.

Verify. Given system parameters (G1, G2, e, P , PT , P1, H1, H2),
public key Ps, signer identifier IDs, block m, block identifier id
and signature σ, a verifier checks the integrity of this block as:

1) Compute Qs = H1(IDs).
2) Compute V = H2(IDs||Ps||id) · P

m
1 .

3) Verify the following equation

e(σ, P )
?
= e(Qs, PT ) · e(V, Ps). (1)

If the equation holds, output valid. Otherwise, output invalid.

Fig. 2. Details of HA-CLS.

features of homomorphic authenticable signatures is blockless
verifiability.

With blockless verifiability, a verifier is able to check the
integrity of data stored in the cloud by retrieving a single
block (which is a combination of all the blocks in data)
instead of downloading the entire data. Because the size of
data in the cloud is normally very large, this advanced property
saves a verifier amount of bandwidth and offers it an efficient
and secure solution of verifying the correctness of cloud data
outsourced by the data owner. Another important properties of
homomorphic authenticable signatures is non-malleable [14].
Non-malleable indicates that an untrusted cloud is not able to
generate valid signatures on combined blocks by combining
existing signatures.

D. Certificateless Signatures

Certificateless signatures (CLS), first proposed by Al-Riyami
and Paterson [19], are able to avoid asking entities to manage
certificates in the construction of public key cryptography. In
addition, certificateless signatures do not have the key escrow
problem, which is an inherent drawback in Identity-Based
Signatures (IBS) [23].

More specifically, in IBS, the entire private key of an entity
is independently generated by the KGC, then the KGC has the
ability of computing any entity’s signatures, which is referred
to as the key escrow problem. While in certificateless signature
schemes, the KGC is only responsible for generating a partial
private key to an entity, and the remaining part of the entire
private key is generated by the entity itself. Therefore, the KGC
in certificateless signature schemes cannot compute a signature
of any entity, because it does not have the knowledge of the
entire private key.

IV. HOMOMORPHIC AUTHENTICABLE CLS

A. Overview

As we mentioned in the introduction, the key idea of this
paper is to avoid asking verifiers to manage certificates in the
design of a public auditing mechanism by leveraging certificate-
less signatures. Unfortunately, an important challenge of de-
signing the entire public auditing mechanism without managing

certificates is that traditional certificateless signature schemes
[19], [24]–[26] are not blockless verifiable. That means if we
directly apply these traditional certificateless signature schemes
to the public auditing mechanism, a verifier has to download
the entire data from the cloud to check the integrity, which is
not efficient.

Therefore, we first propose a novel homomorphic authenti-
cable certificateless signature scheme (named HA-CLS), which
is blockless verifiable and non-malleable. Then, based on the
design of this proposed certificateless signature scheme, we
will build the entire certificateless public auditing mechanism
for cloud users in the next section.

B. Design of HA-CLS

Our proposed homomorphic authenticable certificateless sig-
nature scheme (HA-CLS) includes five algorithms: Setup,
Partial-Private-Key-Extract, KeyGen, Sign and Verify.

In Setup, the KGC generates a master key and system
parameters. The KGC is able to generate partial private keys for
signers in Partial-Private-Key-Extract. In KeyGen, a signer
is able to compute a secret key and a public key for herself. In
Sign, a signer is able to compute signatures on blocks with her
entire private key, which includes her partial private key and
secret key. In Verify, a verifier can check the correctness of a
signature by using the public key of the signer and the identity
of this signer. Details of each algorithm are presented as Fig.
2.

The correctness of Equation 1 in Verify can be proved by
using the properties of bilinear maps. More specifically, we
have

e(Qs, PT ) · e(V, Ps) = e(Qs, P
λ) · e(V, P xs)

= e(Qλ
s , P ) · e(V xs , P )

= e(Ds · V
xs , P )

= e(σ, P ).

Note that we have both signer identifiers and block identifiers
in the design of our certificateless signature scheme. Generally,
a signer identifier is the name or email address of this signer,
and a block identifier is able to distinguish this block from



other blocks in the entire data. To distinguish these two types
of identifiers from each other, in this paper, signer identifiers
are all described with uppercase (e.g. ID) and block identifiers
are all presented with lowercase (e.g. id).

C. Security Analysis of HA-CLS

We now discuss the security properties of our homomor-
phic authenticable certificateless signature scheme, including
unforgeability, blockless verifiability, and non-malleability.

Theorem 1: It is computationally infeasible to generate a
forgery of a signature with HA-CLS.

Proof: As defined in [19], [24], two types of adversaries
should be considered with the standard security model of a
certificateless signature scheme. These two types of adversaries,
denoted as Type-I Adversary and Type-II Adversary respec-
tively, have different attack capabilities. Detailed definitions of
these two types of adversaries are presented as follows:

• Type-I Adversary: This type of adversaries AI does
not have access to the master key of the KGC, but AI

has the ability to replace the public key of any entity
with a value of its choice (the reason that AI has this
ability is because there is no certificates involved in the
certificateless signature scheme).

• Type-II Adversary: This type of adversaries AII has
access to the master key of the KGC, but it cannot replace
the public key of any entity (the success of AII will
indicate the existence of the key escrow problem in the
certificateless signature scheme).

We will prove that if Type-I Adversary AI or Type-II
Adversary AII is able to generate a forgery of a signature with
HA-CLS, then there exists an algorithm F that is able to solve
the CDH problem in G1 (given P , P a and P b, output P ab),
which will contradict to the assumption that the CDH problem
is computationally infeasible in G1. Let us first consider about
the case of Type-I Adversary.
Type-I Adversary: Based on the construction of HA-CLS, to
generate a forgery of a signature in a security game simulated
by algorithm F , AI needs to request five different types of
queries to algorithm F , including setup query, hash-I query,
partial-private-key-extract query, hash-II query, and signing
query. Meanwhile, AI is able to perform public key replace-
ment in the game. In this game, hash-I (i.e. H1 : {0, 1}∗ → G1)
is treated as a random oracle. Given P , P a and P b, algorithm
F simulates the game as follows:

Setup Query: AI requests the setup of the system. F sets
PT = P a, outputs and returns the entire system parameters
(G1, G2, e, P , PT , P1, H1, H2) to AI .

Hash-I Query: AI requests the result of the hash-I query on
signer identifier IDs. F chooses a random r ∈ Zp, and tosses a
coin. The coin shows 1 with a probability of pc and 0 otherwise.
If the result of the coin toss is 1, F sets H1(IDs) = P r ∈ G1;
if the result of the coin toss is 0, F sets H1(IDs) = (P b)r ∈
G1. Finally, F returns the result of H1(IDs) to AI .

Since G1 is a cyclic group, r is a random element of Zp,
P and P b are both elements of G1, P r and (P b)r have the
identical distribution in G1, then AI cannot distinguish the
result of the coin toss based on the result of H1(IDs) returned
by F .

Partial-Private-Key-Extract Query: AI requests a partial
private key on signer identifier IDs. If the result of the
corresponding coin toss in the previous hash-I query was 1,
F outputs the partial private key as Ds = (P a)r because
Ds = H1(IDs)a = (P r)a = (P a)r, where r was randomly
picked in the corresponding hash-I query. Otherwise, F outputs
⊥.

Public Key Replacement: According to the assumption of
Type-I Adversary, AI is able to replace the public key of any
entity. More specifically, AI first generates a random xs ∈ Z∗

p ,
and sets the public key of signer S as Ps = P xs . Then, AI

submits (IDs, xs, Ps) to F . F will record this key replacement,
which will be used later.

Hash-II Query: AI requests the result of the hash-II query
on signer identifier IDs, this signer’s public key Ps, block m
and block identifier id. F outputs V = H2(IDs||Ps||id) ·Pm

1 ,
and returns the result of V to AI .

Signing Query: AI requests a signature of signer S on block
m and block identifier id by submitting the result of V , which
was returned from the previous hash-II query. If the result of
the corresponding coin toss in the previous hash-I query was 1,
then F outputs the signature as σ = V xs(P a)r, where r was
randomly picked in the corresponding hash-I query. Otherwise,
F outputs ⊥.

Eventually, AI outputs a forgery σ on (IDs,m, id). Then,
F learns that the result of the corresponding hash-I query of
this forgery was H1(IDs) = (P b)r, and the forgery is σ =
V xs(P ab)r. Clearly, F can output P ab by computing

P ab = (σ/V xs)r
−1

,

because F knows the values of (σ, V xs , r) based on the results
of queries in the game. It means if AI successfully generates a
forgery of a signature, then F is able to solve the CDH problem
in G1 (given P , P a and P b, output P ab).
Type-II Adversary: Now, let us consider about the case of
Type-II Adversary AII . To generate a forgery of a signature in
a security game simulated by algorithm F , AII also needs to
request five different types of queries, including setup query,
hash-I query, partial-private-key-extract query, hash-II query,
and signing query. Different from the game with a Type-I
Adversary, F should return the master key to AII , however,
AII cannot perform public key replacement. In this game, hash-
II (i.e. H2 : {0, 1}∗ → G1) is treated as a random oracle. Given
P , P a and P b, algorithm F simulates the game as follows:

Setup Query: AII requests the setup of the system. F
generates a random λ ∈ Z∗

p as the master-key and system
parameters (G1, G2, e, P , PT , P1, H1, H2). Then, F returns
the master key and system parameters to AII .

Hash-I Query: AII requests the result of the hash-I query
on signer identifier IDs. F computes Qs = H1(IDs) ∈ Zp

and returns the result of Qs to AII .
Partial-Private-Key-Extract Query: AII requests the partial

private key on signer identifier IDs. F computes the partial
private key as Ds = Qλ

s and returns it to AII .
As the definition of Type-II Adversary, AII cannot perform

public key replacement. F sets P a as the public key of signer
S .



Hash-II Query: AII requests the result of the hash-II query
on signer identifier IDs, this signer’s public key Ps, block m
and block identifier id. F generates a random r ∈ Zp, and
tosses a coin. The coin shows 1 with a probability of pc and
0 otherwise. If the result of the coin toss shows 1, F sets
H2(IDs||Ps||id) ·Pm

1 = P r; if the result of the coin toss is 0,
F sets H2(IDs||Ps||id) · Pm

1 = (P b)r. Finally, F returns the
result of H2(IDs||Ps||id) · Pm

1 to AII .

Since G1 is a cyclic group, r is a random element of Zp,
P and P b are both elements of G1, P r and (P b)r have the
identical distribution in G1, then AII cannot distinguish the
result of the coin toss based on the result of the hash-II query
returned by F .

Signing Query: AII requests a signature of signer S on
block m and block identifier id. If the result of the cor-
responding coin toss in the previous hash-II query was 1,
then F outputs the signature as σ = (P a)rDs, because
σ = [H2(IDs||Ps||id) · Pm

1 ]aDs = (P r)aDs = (P a)rDs,
where r was randomly picked in the corresponding hash-II
query. Otherwise, F outputs ⊥.

Eventually, AII outputs a forgery σ on (IDs,m, id). Then,
F learns that the result of the corresponding hash-II query
of this forgery was H2(IDs||Ps||id) · Pm

1 = (P b)r, and the
forgery is σ = (P ab)rDs. Clearly, F can output P ab by
computing

P ab = (σ/Ds)
r−1

,

because F knows the values of (σ, Ds, r) based on the records
of queries in the game. It means if AII successfully generates a
forgery of a signature, then F is able to solve the CDH problem
in G1 (given P , P a and P b, output P ab).

As discussed above, if AI or AII is able to successfully
generate a forgery of a signature, then F is able to solve
the CDH problem in G1, which contradicts to the assumption
that the CDH problem is computationally infeasible in G1.
Therefore, it is computationally infeasible to generate a forgery
of a signature with HA-CLS.

Theorem 2: HA-CLS is a homomorphic authenticable cer-
tificateless signature scheme.

Proof: According to the properties we introduced in Sec-
tion III, to prove HA-CLS is homomorphic authenticable, we
need to show that it is not only blockless verifiable but also
non-malleable.

To prove the blockless verifiability of HA-CLS, we need
to show that a verifier can check the integrity of n blocks
by checking the correctness of one combined block. Specifi-
cally, given n block identifier (id1, ..., idn), n corresponding
signatures (σ1, ...,σn) signed by IDs, and n random numbers
(y1, ..., yn), where yi ∈ Zp, a verifier is able to check the
correctness of a combined block m′, where m′ =

∑n
i=1

yimi,
by verifying:

e(
n
∏

i=1

σyi

i , P )
?
= e(

n
∏

i=1

Qyi
s , PT ) · e(

n
∏

i=1

W yi

i · Pm′

1 , Ps), (3)

where Qs = H1(IDs) and Wi = H2(IDs||Ps||idi). Based on
the properties of bilinear maps and the correctness of Equation

1, the correctness of Equation 3 can be proved as follows:

e(
n
∏

i=1

Qyi
s , PT ) · e(

n
∏

i=1

W yi

i · Pm′

1 , Ps)

= e(
n
∏

i=1

Qyi
s , Pλ) · e(

n
∏

i=1

W yi

i · P
∑n

i=1
yimi

1 , P xs)

= e(
n
∏

i=1

(Qλ
s )

yi , P ) · e(
n
∏

i=1

W yi

i ·
n
∏

i=1

(Pmi
1 )yi , P xs)

= e(
n
∏

i=1

Dyi
s , P ) · e(

n
∏

i=1

(V xs

i )yi , P )

= e(
n
∏

i=1

(V xs

i Ds)
yi , P ) = e(

n
∏

i=1

σyi

i , P ).

The correctness of this combined block m′ is based on the
correctness of all the n blocks (m1, ...,mn). Therefore, we
are able to check the integrity of n blocks by verifying the
integrity of one combined block, which indicates that HA-CLS
is blockless verifiable.

Meanwhile, we can also prove that an adversary, who does
not have a private key, cannot generate a valid signature σ′

on the combined block m′ by combining existing signatures,
which indicates the non-malleability of HA-CLS. The hardness
of this problem lies in the fact that the cryptographic hash
function H2 must be a one-way function (it is easy to compute
every input; however, given the image of a random input, it
is hard to invert). More specifically, for the hash function H2,
given a hash value h ∈ G1, it should be difficult to find any
string Ω ∈ {0, 1}∗ such that h = H2(Ω).

To prove HA-CLS is non-malleable, we first assume the
adversary is able to successfully generate a valid signature
by combining existing signatures. More concretely, given two
pairs of block and block identifier (m1, id1) and (m2, id2),
two corresponding signatures σ1 and σ2, a combined block
m′ = m2 + m2, this combined block’s identifier id′ and
signature σ′, then according to our assumption, we have







σ′ = σ1σ2

σ′ = V ′xsDs

σ1σ2 = (V1V2)xsD2
s .

Based on the above equations, we can further have

(
H2(IDs||Ps||id′)

H2(IDs||Ps||id1) ·H2(IDs||Ps||id2)
)xs = Ds.

Similarly, for another pair of blocks m3 and m4, and another
combined block m′′ = m3 +m4, we can also have







σ′′ = σ3σ4

σ′′ = V ′′xsDs

σ3σ4 = (V3V4)xsD2
s ,

and

(
H2(IDs||Ps||id′′)

H2(IDs||Ps||id3) ·H2(IDs||Ps||id4)
)xs = Ds.

Finally, we can learn that

H2(IDs||Ps||id
′) =

H2(IDs||Ps||id′′) ·W1 ·W2

W3 ·W4

,



Setup. Given security parameter δ, the KGC outputs (P,G1,G2, e),
where P is a generator of G1, G1 and G2 are two cyclic multiplica-
tive groups of prime order p and e : G1 × G1 → G2 is a bilinear
map. The KGC chooses a random λ ∈ Z

∗
p as the master key and

sets PT = Pλ.
The KGC also chooses k random elements (P1, ..., Pk) ∈ G

k
1 as

the public aggregated key, and two cryptographic hash functions
H1 : {0, 1}∗ → G1 and H2 : {0, 1}∗ → G1. The system
parameters are (G1, G2, e, P , PT , P1, ..., Pk, H1, H2), which
are public. The KGC keeps the master key private.

Data owner O’s data M , which will be stored in the cloud,
is divided into n blocks, and each block contains k elements of
Zp. Then, data M can be presented as M = (mmm1, ...,mmmn), where
mmmi = (mi,1, ...,mi,k) ∈ Z

k
p .

Partial-Private-Key-Extract. Given data owner O’s identifier
IDo ∈ {0, 1}∗, the KGC generates the partial private key for data
owner O with the master key λ:

1) Compute Qo = H1(IDo) ∈ G1.
2) Output the partial private key Do = Qλ

o ∈ G1.

KeyGen. Given system parameters (G1, G2, e, P , PT , P1, ..., Pk,
H1, H2), data owner O chooses a random xo ∈ Z

∗
p as her secret

key, and computes Po = P xo ∈ G1 as her public key.

Sign. Given block mmmi = (mi,1, ...,mi,k) ∈ Z
k
p and block identifier

idi, data owner O computes a signature using her partial private
key Do, secret key xo and the public aggregated key (P1, ..., Pk)
as follows:

1) Compute Vi = H2(IDo||Po||idi) ·
∏k

l=1
P

mi,l

l ∈ G1.
2) Output the signature σi on block mmmi and block identifier idi

as σi = V xo
i ·Do ∈ G1.

After computing all the signatures (σ1, ...,σn) on data M , data
owner O outsources data M and all the signatures to the cloud.

ProofGen. To audit the integrity of data M stored in the cloud, a
public verifier first generates an auditing challenge as follows:

1) Randomly pick a c-element set J to locate the c selected
blocks that will be checked in this auditing challenge, where
J is a subset of set [1, n] and n is the total number of blocks
in data M .

2) Generate a random value yj ∈ Zq , for j ∈ J , where q is a
much smaller prime than p.

3) Output and send an auditing challenge {(j, yj)}j∈J to the
cloud.

After receiving auditing challenge {(j, yj)}j∈J , the cloud outputs
a proof of possession of data M with the signatures on data M .
Specifically,

1) Compute µl =
∑

j∈J
yjmj,l ∈ Zp, where l ∈ [1, k].

2) Aggregate signatures on the c selected blocks as σ∗ =∏
j∈J

σ
yj
j ∈ G1.

3) Return an auditing response {σ∗,µµµ, {idj}j∈J } to the public
verifier, where µµµ = (µ1, .., µk).

ProofVerify. Given auditing response {σ∗,µµµ, {idj}j∈J }, auditing
challenge {(j, yj)}j∈J , data owner O’s identifier IDo, public key
Po, and system parameters (G1, G2, e, P , PT , P1, ..., Pk, H1, H2),
the public verifier checks the correctness of this auditing response
as follows:

1) Compute Qo = H1(IDo) ∈ G1.
2) Compute Wj = H2(IDo||Po||idj) ∈ G1, where j ∈ J .
3) Verify the following equation

e(σ∗, P )
?
= e(

∏

j∈J

Q
yj
o , PT ) · e(

∏

j∈J

W
yj
j ·

k∏

l=1

P
µl
l , Po).

(2)
If the above equation holds, then this public verifier believes
the integrity of data M is correct; otherwise, it does not.

Fig. 3. Details of Certificateless Public Auditing.

where Wi = H2(IDs||Ps||idi). Then, given the hash value h,
which is computed as H2(IDs||Ps||id′′) ·W1 ·W2/W3 ·W4,
it is easy to find a string Ω, such that h = H2(Ω), where
Ω = IDs||Ps||id′. Clearly, it contradicts to the assumption
that H2 is a one-way hash function. Therefore, HA-CLS is
non-malleable.

V. CERTIFICATELESS PUBLIC AUDITING IN THE CLOUD

A. Overview

In this section, we build the entire certificateless public
auditing mechanism in the cloud based on our homomorphic
authenticable certificateless signature scheme. With our mech-
anism, a public verifier is able to audit the correctness of
cloud data outsourced by the data owner without managing
certificates.

Signature Size. Another practical problem we need to
consider during the design of our certificateless public auditing
mechanism is the signature size. As we presented in HA-CLS,
a signature of a block is an element of G1, which is the same
size of a block. It means that the data owner needs to spend the
same size of storage on signatures as the size of storage on data.
Because the size of data in the cloud is generally very large
and service providers apply the pay-as-you-go pricing model
in the cloud, storing data with the same size of signatures will
certainly double the charges incurred to the data owner.

Therefore, it is better if we can reduce the overhead of
signatures, so that the data owner does not have to incur a

large amount of costs to store signatures. By leveraging an
aggregated method from previous work [4], we can reduce the
size of the signature to 1/k of the size of a block, where k is
the number of elements in each block.

More specifically, with the aggregated method, a block is
described as mmmi = (mi,1, ...,mi,k) ∈ Zk

p instead of mi ∈ Zp,

and Vi is computed as Vi = H2(IDo||Po||idi) ·
∏k

l=1
P

mi,l

l ,
where (P1, ..., Pk) ∈ Gk

1 is called a public aggregated key,
IDo is the signer identifier of the data owner O and Po is
her public key. Because signature σi of this block is still an
element of G1, the size of a signature σi is only 1/k of the
size of block mmmi. As a necessary tradeoff, the computation and
communication cost during public auditing will be higher, with
an increase in the value of k.

B. Design of Certificateless Public Auditing

Our certificateless public auditing mechanism includes six al-
gorithms, Setup, Partial-Private-Key-Extract, KeyGen, Sign,
ProofGen and ProofVerify. Similar as HA-CLS, by running
Setup, Partial-Private-Key-Extract, KeyGen and Sign, the
data owner is able to obtain her partial private key, secret
key and public key, and compute signatures on blocks. In
ProofGen, the cloud is able to generate a proof of possession
of data. In ProofVerify, a public verifier is able to check the
correctness of the proof before utilizing cloud data. Details of
these algorithms are described in Fig. 3.



Discussion. To protect data privacy at the same time, some
certificateless public key encryption mechanisms (such as [27])
on cloud data can be used. Further details can be found in [27].
The main objective of this paper is to design a certificateless
public auditing mechanism to maintain data integrity.

C. Security Analysis of Certificateless Public Auditing

Now, we analyze the security of our certificateless public
auditing mechanism, including correctness and unforgeability.

Theorem 3: Given an auditing response {σ∗,µµµ, {idj}j∈J },
data owner O’s identifier IDo, public key Po, and system
parameters (G1, G2, e, P , PT , P1, ..., Pk H1, H2), a public
verifier is able to correctly check the integrity of data M .

Proof: Based on the correctness of Equation (1) and (3),
the correctness of Equation (2) can be provesd as follows:

e(
∏

j∈J

Qyj
o , PT ) · e(

∏

j∈J

W
yj

j ·
k
∏

l=1

Pµl

l , Po)

= e(
∏

j∈J

Qyi
o , Pλ) · e(

∏

j∈J

W
yj

j ·
k
∏

l=1

P
∑

j∈J
yjmj,l

l , P xo)

= e(
∏

j∈J

(Qλ
o )

yi , P ) · e(
∏

j∈J

W
yj

j ·
k
∏

l=1

∏

j∈J

P
yjmj,l

l , P xo)

= e(
∏

j∈J

Dyi
o , P ) · e(

∏

j∈J

W
yj

j ·
∏

j∈J

(
k
∏

l=1

P
mj,l

l )yj , P xo)

= e(
∏

j∈J

Dyi
o , P ) · e(

∏

j∈J

(Wj ·
k
∏

l=1

P
mj,l

l )yj , P xo)

= e(
∏

j∈J

Dyi
o , P ) · e(

∏

j∈J

(V xo

j )yj , P )

= e(
∏

j∈J

σ
yj

j , P ) = e(σ∗, P ).

Therefore, a public verifier is able to correctly audit data
integrity.

Theorem 4: For an untrusted cloud, it is computationally
infeasible to generate a forgery of an auditing response with
our mechanism.

Proof: To generate a forgery of an auditing response, an
untrusted cloud can operate in the two following ways.

First, it generates a forgery of a signature on each block,
then it computes a forgery of an auditing response based on
the forgeries of the signatures on all the blocks. However, as
we proved in Theorem 1, for an entity, who does not have the
private key of data owner O, it is computationally infeasible
to generate a forgery of a signature because solving the CDH
problem in G1 is hard.

Second, without generating any forgery of a signature, the
untrusted cloud directly generates a forgery of an auditing
response on corrupted data M ′ by winning a game, which is
denoted as Game 1. Following the security model in [4], we
define the game as follows:

Game 1: A public verifier sends an auditing response
{(j, yj)}j∈J to the cloud, the auditing response on the cor-
rect data M should be {σ∗,µµµ, {idj}j∈J }. Instead of gener-

ating the correct auditing response, the untrusted cloud gen-
erates a forgery of an auditing response on corrupted data
M ′ as {σ∗,µµµ′, {idj}j∈J }, where µµµ′ = (µ′

1, ..., µ
′
k), µ′

l =
∑

j∈J yjm′
j,l, for 1 ≤ l ≤ k, and m′

j,l ∈ M ′. Define
∆µ = µ′

l − µl, for 1 ≤ l ≤ k, and at least one element
of {∆µl}1≤l≤k is nonzero since M $= M ′. If this forgery
on corrupted data M ′ can successfully pass the verification
performed by the public verifier, then the untrusted cloud wins
the game. Otherwise, it loses.

Now, we assume that the untrusted cloud could win the game
above, which means {σ∗,µµµ′, {idj}j∈J } successfully passes the
verification, then we have

e(σ∗, P ) = e(
∏

j∈J

Qyj
o , PT ) · e(

∏

j∈J

W
yj

j ·
k
∏

l=1

P
µ′
l

l , Po).

According to the correct auditing response {σ∗,µµµ, {idj}j∈J }
on correct data M , we also have

e(σ∗, P ) = e(
∏

j∈J

Qyj
o , PT ) · e(

∏

j∈J

W
yj

j ·
k
∏

l=1

Pµl

l , Po).

Clearly, we can learn that

k
∏

l=1

Pµl

l =
k
∏

l=1

P
µ′
l

l ,
k
∏

l=1

P∆µl

l = 1.

Because G1 is a cyclic group, for two random elements A,
B ∈ G1, there exists x ∈ Zp so that A = Bx. Without loss of
generality, given A, B, each Pl can be randomly generated as
Pl = AξlBγl , where ξl and γl are random values of Zp. Then,
we learn that

1 =
k
∏

l=1

P∆µl

l =
k
∏

l=1

(AξlBγl)∆µl = A
∑k

l=1
ξl∆µl ·B

∑k
l=1

γl∆µl .

Clearly, we can find a solution of the Discrete Logarithm
problem with a probability of 1−1/p. More specifically, given
B, A = Bx ∈ G1, we can output

A = B
−

∑k
l=1

γl∆µl
∑k

l=1
ξl∆µl , x = −

∑k
l=1

γl∆µl
∑k

l=1
ξl∆µl

.

unless the denominator
∑k

l=1
ξl∆µl is zero.

However, as we defined in Game 1, at least one element of
{∆µl}1≤l≤k is nonzero, and ξl is a random element of Zp,
therefore, the denominator is nonzero with probability of 1 −
1/p. It means, if the untrusted cloud could win the game, then
we can find a solution of the Discrete Logarithm problem with a
probability of 1−1/p, which contradicts to the assumption that
the Discrete Logarithm problem is hard in G1. Therefore, it is
computationally infeasible to generate a forgery of an auditing
response with our certificateless public auditing mechanism.

VI. PERFORMANCE

In this section, we first analyze the computation and commu-
nication cost of our certificateless public auditing mechanism,
and then evaluate the performance of our mechanism.



TABLE I
COMPARISON OF COMPUTATION COST IN SIGN, PROOFGEN AND PROOFVERIFY

Certificate-based Mechanism [4] Our Certificateless Mechanism
Sign (k + 1)ExpG1

+ kMulG1
+ HashG1

(k + 1)ExpG1
+ (k + 1)MulG1

+ HashG1

ProofGen cExpG1
+ cMulG1

cExpG1
+ cMulG1

ProofVerify 2Pair+ (c+ k)ExpG1
+ (c+ k)MulG1

+ cHashG1
3Pair+ (2c+ k)ExpG1

+ (2c+ k)MulG1
+ MulG2

+ cHashG1

A. Computation Cost

According to algorithm Sign in Section V, the computation
cost of calculating a signature is about (k + 1)ExpG1

+
(k + 1)MulG1

+ HashG1
, where ExpG1

denotes the cost of
computing one exponentiation in G1, MulG1

denotes the cost
of computing one multiplication in G1, and HashG1

denotes
the cost of computing one hashing operation in G1.

As described in algorithm ProofGen and ProofVerify, the
computation cost of generating an auditing response is about
cExpG1

+ cMulG1
, and the computation cost of verifying an

auditing response is about 3Pair + (2c + k)ExpG1
+ (2c +

k)MulG1
+MulG2

+cHashG1
, where Pair denotes the cost of

computing one pairing operation on G1×G1 → G2 and MulG2

denotes the cost of computing one multiplication in G2.
Compared to a certificate-based public auditing mechanism

[4], which is the state of the art and also built based on bilinear
maps, our certificateless public auditing mechanism has the
same computation cost in Sign and ProofGen, but requires
more computation cost in ProofVerify, which is the extra
cost introduced by avoiding managing certificates in a public
auditing mechanism. A detailed comparison of computation
cost between this certificate-based mechanism [4] and our
mechanism is illustrated in Table I.

B. Communication Cost

To check the integrity of data in the cloud, a public verifier
first needs to send an auditing challenge {(j, yj)}j∈J to the
cloud, and then the cloud needs to send an auditing response
{S∗,µµµ, {idj}j∈J } back to the public verifier. The communi-
cation cost of an auditing challenge is c(|q|+ |n|) bits, and the
communication cost of an auditing response is (k+1)|p|+c|id|
bits, where |q| is the length of an element of Zq , |p| is the
length of an element of Zp, n is the total number of blocks
in data and |id| is the length of a block identifier. Compared
to the communication cost in the certificate-based mechanism
[4], our mechanism requires the same communication cost.

C. Experimental Results

We now evaluate the computation and communication cost
experimentally. In the following experiments, we leverage
the Pairing Based Cryptography (PBC) library to implement
cryptographic operations. All the experiments are tested using
a Mac OS X system with a 1.83 GHz Intel Core Duo processor
and 2 GB 667 MHz DDR2 memory.

We assume the total number of blocks in data is n =
1, 000, 000, |p| = 160 bits and k = 100, then the size of entire
data is 2 GB. In addition, we set |q| = 80 bits, |n| = 20 bits
and |id| = 80 bits as in our recent work [12], and choose an
MNT curve with a base field size of 159 bits. According to
previous work [2], when 1% of all the blocks are polluted, a
public verifier can keep the detection probability greater than
99% by choosing c = 460 random blocks. If a smaller number

of random blocks is selected, then a public verifier can finish
the auditing in a shorter period of time; however, as a tradeoff,
the detection probability will decrease. For instance, if c = 300,
the detection probability is only greater than 95%.

TABLE II
COMPARISON OF AUDITING PERFORMANCE

Certificate-based [4] Our Mechanism
Selected Blocks 460 300 460 300

Auditing Time (ms) 391.07 280.36 569.31 403.23
Commun. Cost (KB) 12.37 8.77 12.37 8.77

Based on our analysis of computation and communica-
tion cost, we compare the auditing performance between the
certificate-based mechanism [4] and our mechanism in Table II.
We find that, both mechanisms are able to allow a public verifier
to check the integrity of data without retrieving the entire data
from the cloud. Compared to the certificate-based solution, our
mechanism requires more auditing time to finish the verification
on the same auditing response. More specifically, if c = 460,
our mechanism requires about 569.31 milliseconds to verify the
correctness of data while the certificate-based mechanism only
needs about 391.07 milliseconds. However, since our mecha-
nism is able to avoid asking verifiers to manage certificates, it
can successfully eliminate the security risks introduced in the
certificate-based mechanism.

(a) Impact of k on auditing time (ms) (b) Impact of k on comm. cost (KB)

Fig. 4. Impact of k on the auditing performance.

In Fig. 4(a), we can see that the auditing times with different
numbers of selected blocks are both linearly increasing with the
number of elements in each block. It is because an increase
in the value of k will linearly introduce more exponentiations
and multiplications in G1 during the verification of an auditing
response. In addition, as shown in Fig. 4(b), the increase in the
value of k will also increase the communication cost.

VII. RELATED WORK

Public Auditing. Ateniese et al. [2] proposed provable data
possession (PDP), which enables a user to verify the integrity
of data stored in an untrusted server without downloading the
entire data. This mechanism is the first one that supports public
auditing. Shacham and Waters [4] designed an improved public
auditing mechanism based on BLS signatures. Juels and Kaliski
[21] defined another similar model named proof of retrievability
(POR), which is also able to verify the integrity of data in
an untrusted server. In this mechanism, the user verifies the



integrity of data by asking the server to return the values of
sentinels, which are special blocks and randomly added in the
original file by the user.

To support dynamic data, Wang et al. [6] utilized the Merkle
Hash Tree during the design of a public auditing mechanism.
Rank-based authenticated dictionary [7] and index hash tables
[10] can also be used to support dynamic data. In addition, how
to audit the integrity of data without downloading the entire
data, where data is encoded with erasure codes [5], network
coding [9] and LT codes [11], are also studied in previous
works. Wang et al. [8] considered data privacy under public
auditing. With the usage of random maskings, a public verifier
in their mechanism is able to check the integrity of cloud data
but cannot obtain any private data. Our recent works [12], [15],
[16], [28] focus on preserving identity privacy from a public
verifier for a group of users when auditing the integrity of
shared data in the cloud. In addition, we also designed a public
auditing mechanism [14] to support efficient user revocation on
cloud shared data by taking advantage of proxy re-signatures.
Certificateless Signatures. Al-Riyami and Paterson first pro-
posed Certificateless Public Key Cryptography [19], which does
not need certificates as in PKI and avoids the inherent key es-
crow problem in Identity-based Public Key Cryptography [22].
The following works focus on different constructions based on
bilinear maps [25] and improving the security of certificateless
signatures [24]. More recently, Zhang et al. [26] proposed a cer-
tificateless aggregate signature scheme, which allows different
signatures on different messages being compressed into one,
however, those corresponding messages cannot be compressed.
Therefore, none of them can be directly utilized into a public
auditing mechanism for efficiently verifying data integrity in
the cloud.

VIII. CONCLUSION

In this paper, we propose the first certificateless public
auditing mechanism for verifying data integrity in an untrusted
cloud. With our mechanism, a public verifier is not only able to
audit data integrity in the cloud but also able to eliminate pos-
sible security risks introduced by PKI in previous solutions. We
proved that the security of our proposed mechanism is based on
the CDH assumption and DL assumption. Experimental results
show that our mechanism is efficient.
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