
INV ITED
P A P E R

Random Network Coding in
Peer-to-Peer Networks:
From Theory to Practice
The authors of this paper believe that applications such as file sharing and

video streaming that involve peer-to-peer networks may be the most

promising area for using network coding.

By Baochun Li and Di Niu

ABSTRACT | With random network coding, network nodes

between the source and receivers are able to not only relay and

replicate data packets, but also code them using randomly

generated coding coefficients. From a theoretical perspective,

it has been recognized that network coding maximizes the

network flow rates in multicast sessions in directed acyclic

network graphs. To date, random network coding has seen

practical and real-world applications in peer-to-peer (P2P)

networks, in which overlay network topologies are formed

among participating end hosts, called Bpeers.[Due to uncer-

tainties and dynamics involved with peer arrivals and depar-

tures, these network topologies are usually randomly

generated in practice, and are referred to as Brandom mesh[

topologies. Unlike structured topologies such as trees, random

mesh topologies are practical to be implemented, and are

resilient to the level of volatility typically experienced in peer-

to-peer networks. It has been shown, from both theoretical and

practical perspectives, that random network coding leads to

performance benefits in these peer-to-peer networks with

random mesh topologies. This paper presents a survey of

existing results with respect to practical applications of random

network coding in peer-to-peer networks. We focus on bulk

content distribution and media streaming systems, as well as

the computational overhead introduced by random network

coding in modern off-the-shelf servers and mobile devices.

Throughout the paper, we also show theoretical insights on

why random network coding may become beneficial in

practice.

KEYWORDS | Content distribution; media streaming; peer-to-

peer (P2P) networks; random gossip; random network coding;

randomized algorithms

I . INTRODUCTION

Network coding, since its inception in information theory

[1], has attracted a substantial amount of research atten-
tion in the networking community. It has been widely

known that, with network coding, the cut-set bound of

information flow rates in multicast communication ses-

sions can be achieved. The essence of network coding is a

paradigm shift to allow coding at network nodes between

the source and receivers in a communication session.

With the ability to code at intermediate network nodes

in a communication session, we may forward, replicate,
and code incoming packets. This capability is in sharp

contrast to traditional commodity flows, where only for-

warding is allowed. The seminal works by Ahlswede et al.
[1] and Koetter et al. [2] have shown that, in a directed

acyclic network with network coding, a multicast rate is

feasible if and only if it is feasible for a unicast from the

sender to each receiver. Li et al. [3] have further shown

that linear coding suffices to achieve the maximum rate.
One may naturally wonder whether theoretical bene-

fits of network coding may become useful in practical real-

world networking systems. To practically implement

network coding, one needs to address the challenges of

computing coding coefficients to be used by each of the

intermediate nodes in a session, so that coded packets at

the receivers are guaranteed to be decodedVa process

Manuscript received November 17, 2009; revised October 19, 2010; accepted

October 21, 2010. Date of publication January 6, 2011; date of current version

February 18, 2011.

The authors are with the Department of Electrical and Computer Engineering,

University of Toronto, Toronto, ON M55 3G4 Canada (e-mail: bli@eecg.toronto.edu;

dniu@eecg.toronto.edu).

Digital Object Identifier: 10.1109/JPROC.2010.2091930

Vol. 99, No. 3, March 2011 | Proceedings of the IEEE 5130018-9219/$26.00 �2011 IEEE

called code assignment. Although deterministic code assign-
ment algorithms have been proposed and shown to be

polynomial time algorithms (e.g., [4]), they require expen-

sive exchanges of control packets. Ho et al. [5] have pro-

posed the concept of random network coding, where a

network node transmits on each of its outgoing links a

linear combination of incoming packets over a finite field,

with randomly chosen coding coefficients.

With random network coding, Chou et al. [6] have first
conceived that random network coding can be applied in

real-world networks, by dividing a stream of information

into generations, and by performing random linear coding

within each generation. Coding coefficients may be carried

by packets themselves before transmission. It has been

concluded that random network coding is robust to packet

loss, delay, as well as variations in the network topology and

capacity, and that sessions with random network coding
can achieve close to the theoretically optimal performance.

Intuitively, an excellent scenario where network coding

may be applied in practice is peer-to-peer (P2P) networks.

In P2P networks, end hosts (from servers to smartphones),

called Bpeers,[organize themselves in overlay topologies,

in which packet transmission on each of the overlay links is

free of errors, thanks to transport protocols used in the

Internet, such as transmission control protocol (TCP).
Peers are also computing devices that are potentially

capable of coding packets by implementing network coding

in software, without the need of revising existing switches

and routers in the Internet.

P2P bulk content distribution systems, such as

BitTorrent, allow peers to collaborate with one another

so that large files can be distributed from one peer to a

large number of subscribing receivers, without the aid of
dedicated servers. P2P bulk content distribution systems

adopt a simple design philosophy: a file is divided into

blocks, and peers connect with one another in a random

mesh topology, exchanging these blocks with random

Bgossiping.[Just as its name suggests, in gossiping each

peer transmits a subset of the blocks it has obtained to a

subset of its neighbors that are selected using randomized

algorithms. Such random gossiping on random mesh topo-
logies is simple to implement, resilient to the level of

volatility caused by peer arrivals and departures, and has

been shown to achieve good performance from a theore-

tical perspective. For these reasons, real-world P2P media

streaming systems, currently used by millions of users, are

also designed by following such a design philosophy.

It is natural to see a potential link between random

network coding and random gossiping, in random mesh
topologies. Due to their common randomized nature, one

wonders if they can be used in an integrated fashion in P2P

networks. In essence, random gossiping studies the spread

of a single block or multiple blocks across a group of par-

ticipating peers, and random network coding, by mixing

the blocks each peer transmits, is shown to maximize the

information diffusion efficiency given limited bandwidth

in network topologies. In this paper, we start by
introducing random gossiping algorithms in the context

of P2P networks in general, and bulk content distribution

systems in particular. We then explore the potential bene-

fits of using random network coding in both P2P content

distribution and P2P live media streaming systems. In

order to bring random network coding to practical use, we

show the performance of heavily optimized implementa-

tions of network coding on a variety of modern off-the-
shelf computing hardware, including multicore processors,

graphics processing units (GPUs), and mobile phones.

Finally, we show the design of the first real-world deploy-

ment of an on-demand streaming system that uses random

network coding, and is now operational with millions of

Internet users.

II . RANDOM NETWORK CODING IN
P2P CONTENT DISTRIBUTION

P2P network topologies are formed by end hosts who

connect with one another using overlay links, and these

topologies are formed for a particular objective. One of the

objectives is to distribute some bulk content, such as a

large file, from one peer to other subscribing peers in a

topology. More formally, consider a network with n peers
who wish to receive a copy of a large file to be dissemi-

nated. The file is divided into k blocks. For simplicity, let

us also assume a synchronized model in which time is

measured in Brounds.[Each peer uploads to Bneighbors[
that are selected randomly. How many rounds are needed

for all peers to receive a copy of the file?

Conceptually, this objective is similar to the classical

problem of random gossiping, which considers the prob-
lem of n people spreading a rumor initially held by only

one person. How many rounds are needed for everyone to

receive the rumor? Pittel [7] has shown that, if each person

who has already received the rumor communicates it to a

person chosen at random and independently of all other

past and present choices, it takes log2 nþ log nþ Oð1Þ
rounds for the rumor to reach all n persons. Such a random

target selection protocol is also called the Brandom phone
call[model. The difference between P2P content distribu-

tion and the problem of random gossiping is that multiple

blocks need to be distributed, rather than a single rumor.

Sanghavi et al. [8] are among the first to study the time

needed to spread multiple blocks. They extend the

Brandom phone call[model to incorporate multiple

blocks, where in each round, each peer communicates

with another target peer chosen uniformly at random from
the entire network, and each peer can upload at most one

of the blocks it possesses. Within such a model, even if

centralized block scheduling is allowed, at least kþ log2 n
rounds are needed to disseminate all k blocks from a single

source to all n peers [9], [10]. The intuition is that it takes

at least k rounds for the source to issue the last block, and a

further log2 n rounds for that block to reach all n peers.

Li and Niu: Random Network Coding in Peer-to-Peer Networks: From Theory to Practice

514 Proceedings of the IEEE | Vol. 99, No. 3, March 2011

Sanghavi et al. [8] show that with a decentralized block

selection protocol, one can finish distributing k blocks

from a single source to n peers in 9ðkþ log nÞ time, with

high probability for a large number of peers.

A. Using Random Network Coding
We now turn to a natural question that arises when we

consider network coding. Will the use of random network
coding reduce the number of rounds needed to distribute

k blocks with random gossiping?

Gkantsidis et al. [11] was the first to consider random

network coding as a substitute for P2P dissemination based

on exchanges of individual blocks (e.g., BitTorrent) that

can be executed in a decentralized fashion. It was argued

that, if peers can linearly combine all the blocks it has

already received so far using randomly generated coding
coefficients, and then transmit such coded blocks to other

peers, the amount of time required to distribute a large file

to all the peers in the network may be reduced.

A simple example of distributing two blocks is given in

Fig. 1. Suppose that peer B has received blocks B1 and B2,

and peer D has received block B2. Although both peers B
and D can serve peer E at this point, they may end up

transmitting the same block B2 to peer E, since there is no
connection between peers B and D, and their transmission

can hardly be coordinated. In this case, the upload band-

width of peer B is wasted. With the use of network coding,

however, peer B can transmit to peer E a coded block

cE
1 B1 þ cE

2B2, with coefficients cE
1 and cE

2 randomly chosen.

Peer E can solve for B1 using the received blocks B2 and

cE
1 B1 þ cE

2B2.

Similarly, without coding, peer B in Fig. 1 may transmit
to peer F block B1 that is already possessed by peer F, unless

accurate and frequent buffer comparison is performed.

With network coding, peer B can instead transmit to peer F
another randomly encoded block cF

1 B1 þ cF
2B2, which is

always useful to peer F if cF
1 and cF

2 are appropriately chosen.

Intuitively, the use of random network coding has

increased the diversity of blocks being transmitted.

In practice, however, the computational complexity of
network coding escalates with an increasing number of

blocks. To manage such complexity, it has been proposed

[6] that blocks in a file be divided into multiple generations,

and network coding is only performed within the same

generation. To be more specific, the original file with

F bytes is divided into G generations, each of which is

further divided into m blocks, referred to as the generation
size. There are a total of M ¼ G � m original blocks, each
with a size of k ¼ F=M bytes.

When the file is to be distributed, random network

coding is applied across the blocks within a generation, say

generation i, containing m original blocks BðiÞ ¼ ½Bi
1; Bi

2;
. . . ; Bi

m�. On the source, a coded block b from this gene-

ration is a linear combination of these original blocks in the

Galois field GFð2qÞ. Network coding is, of course, not

limited to the source: if a peer (including the source) pos-
sesses l ðl � mÞ coded blocks ½bi

1; bi
2; . . . ; bi

l� of generation i,
when the need arises to serve a new coded block to a

neighbor p, it independently and randomly chooses a set of

coding coefficients ½cp
1 ; c

p
2; . . . ; c

p
l � in the Galois field

GFð2qÞ, and encodes all the blocks of generation i it pos-

sesses to produce one coded block x of k bytes:

x ¼
Pl

j¼1 c
p
j � bi

j.

When random network coding is applied, for the bene-
fit of successful decoding, a coded block x is self-contained,

in that coding coefficients used to encode original blocks to

x are embedded in its header. As soon as a peer has re-

ceived a total of m coded blocks from generation i that are

linearly independent, x ¼ ½xi
1; xi

2; . . . ; xi
m�, it will be able to

recover all original blocks in this generation with Gaussian

elimination, taking advantage of the coding coefficients

embedded in each of the m coded blocks received.

B. Random Gossiping With Network Coding
With the use of random network coding, it is intuitive

to see that coded blocks are equally useful at a receiver, as

the receiver only needs to accumulate a sufficient number

of coded blocks, which is easier than collecting a number of

distinct original blocks from its neighbors. When original

blocks are collected by a receiver, it may occur that a rare
block is harder to run into using random gossiping, which

leads to a longer time to finish collecting all the blocks in a

file. In contrast, with random network coding, the receiver

only needs to Bhold a bucket[until it is Bfull,[which is

only constrained by its available download bandwidth.

Random network coding simplifies the design of block

selection protocols, as it enables the Bblind[transmission

of coded blocks, without the need for any reconciliation of
blocks between a pair of peers.

From a more theoretical perspective, Deb et al. [12] are

the first to analyze the performance of using random net-

work coding with random gossiping. The Brandom phone

call[model has also been considered, where each peer

chooses a random target from the entire network to upload

to, obeying the constraint that only one block can be

Fig. 1. An example of distributing two blocks B1 and B2 with

network coding. S is the source peer.

Li and Niu: Random Network Coding in Peer-to-Peer Networks: From Theory to Practice

Vol. 99, No. 3, March 2011 | Proceedings of the IEEE 515

transmitted in a round. It is assumed that each peer has
one of the k blocks initially.

Deb et al. [12] have shown that, if each peer linearly

combines all the blocks it has already received using

random coefficients and transmits this coded block to its

target, the time for all n peers to receive all k blocks is

ckþ Oð
ffiffiffi
k
p

log k log nÞ rounds, where c is a constant

around 3–6. This essentially shows that by Bblindly[
transmitting coded blocks and selecting communication
partners randomly without any form of reconciliation

between peers, the time to disseminate all k blocks to all

the peers is linear in terms of k.

As each peer chooses random targets from the entire

network to communicate with, it is implicitly assumed in

[12] that the P2P overlay topologyVdefined by the neigh-

boring relationshipsVis a complete graph. Performance

bounds on the time to disseminate all the blocks using
random gossiping with random network coding in arbi-

trary networks, where each peer can only communicate

with its neighbors defined by the graph, have been given by

Mosk-Aoyama et al. [13], Vasudevan et al. [14], and

Borokhovich et al. [15].

C. Optimality From a Trellis Graph Perspective
Random network coding is originally introduced to P2P

content distribution systems in order to reduce the time

required to successfully distribute a file to all participating

peers, yet with a simplified design of the protocol involved.

As a matter of fact, by unfolding the evolution of network

states over a number of rounds to a discrete-time trellis
graph, it has been proved by Yeung [16] that, with the use

of network coding, optimal broadcast times are achieved,

regardless of the network topology and transmission
schedule.

In the spirit of explaining why network coding leads to

the shortest broadcast times possible, we explain the gist of

the proof by showing the trellis graph in the context of an

example involving four peers. As shown in Fig. 2, peer 1 is

the source of the content distribution session in our simple

example. In the trellis graph, the vertex it is used to repre-

sent the state of peer i at time t. If l ðl � mÞ blocks within
the same generation are transmitted from peer i to j
starting at time t and ending at time t0 ðt0 > tÞ, there is a

directed edge in the trellis graph with capacity l from the

vertex it to jt0 . Naturally, all blocks received by peer i at

time t, represented by the vertex it, are still available at

peer i in its buffer at time t0 > t. This fact is represented by

a directed edge with infinite capacity from the vertex it to

itþ1, shown by dashed lines in the trellis graph. Let
maxflowðitÞ denote the maximum flow from the vertex 1t1

to vertex it in the trellis graph. We can see that

maxflowð2t2
Þ ¼ 2þ 2 ¼ 4, shown by the thicker edges.

We can now apply the theorem that network coding

maximizes the multicast flow rate in acyclic graphs [1] to

such a trellis graph. Given a set of participating peers Ut at

time t, if maxflowðUtÞ � m, then all the peers in U are

able to receive m blocks in its buffer at time t with high

probability, when random network coding is applied and

the size of the finite field is sufficiently large. In other

words, the minimum length of time toptðUÞ required for a

set of peers U to receive all m blocks in the same genera-
tion is the minimum t that satisfies maxflowðUtÞ � m, i.e.,

toptðUÞ ¼ inf t : maxflowðUtÞ � mf g:

In our example, the minimum time toptðf2; 3; 4gÞ that

peers 2; 3; and 4 will take to receive all four blocks is five

rounds. Without taking into account the small probability

of linear dependence, this is the best possible performance

one can expect from such a system represented by the

trellis graph, because if at a given time t, maxflowðUtÞ G
m, it is impossible for peers in U to recover all m blocks in

the generation regardless of whether network coding is
used, even if the peers are allowed to exchange informa-

tion among themselves.

D. Practical Limitations of Network Coding
There are, however, limitations to the benefits that

random network coding may bring to the design of P2P

content distribution protocols. Since random network

coding can only be performed on blocks within the same

generation, reconciliation between a pair of neighboring

peers may still be necessary across the boundary of gene-

rations. In other words, rather than collecting fine-grained

Fig. 2. A discrete-time trellis graph representing a simple example

with four peers.

Li and Niu: Random Network Coding in Peer-to-Peer Networks: From Theory to Practice

516 Proceedings of the IEEE | Vol. 99, No. 3, March 2011

blocks, now a receiver only needs to collect all the distinct
coarse-grained generations that constitute the file to be

distributed. It mitigates the problem of locating rare

portions of a file that may be less available in the entire

P2P network. In practice, such a need for reconciliation,

even at the coarser granularity of generations, may nega-

tively affect the advantage of random network coding.

From an analytical perspective, Niu et al. [17] have

analyzed how the generation size m used for network
coding can affect the block diversity in a P2P network with

peer dynamics. They have quantitatively identified an in-

versely proportional correlation between the block diver-

sity and the size of the generation m with the use of

random network coding: the larger the generation size, the

more diverse blocks are in the system, and the faster

downloads can be completed.

Theoretical analysis using the discrete-time trellis
graph model shows that protocols using random network

coding are able to achieve the best possible performance,

but the performance gap between the use of network

coding and a well-designed block selection protocol is not

clear. Such a performance gap may be quite small, as

practical block selection protocols without coding, such as

BitTorrent [18], are usually designed to download the

rarest blocks first (with the aid of frequent exchanges of
buffer states among peers), in the hope of mitigating some

of the adverse effects of locating rare blocks as the file

download approaches completion. In contrast, random

network coding uses additional computational power on

every peer, which may not be well justified if the perfor-

mance advantage of network coding is small in large-scale

P2P networks.

Empirical studies [19] have attempted to show that the
use of random network coding is practical in P2P content

distribution systems, leading to smooth and fast down-

loading sessions, and without much additional computa-

tional overhead. However, it was not clear how distinct

generations should be selected and reconciled between

peers, and there were no comparisons with any of the

operational P2P content distribution systems that do not

use network coding, especially at a large scale.
To date, though random network coding appears pro-

mising in theoretical settings, its benefits in real-world

content distribution systems have not yet been quantita-

tively evaluated with respect to a number of important

performance metrics, such as download completion times

and resilience to peer dynamics. There have not been

practical bulk content distribution systemsVin operation

with real-world usersVthat are designed and implemented
with the use of random network coding.

III . RANDOM NETWORK CODING IN
P2P STREAMING

Unlike bulk content distribution, live and on-demand

streaming systems require the timely delivery and playback

of time-sensitive data streams, typically video streams. The
motivation of using the P2P paradigm is to conserve the

bandwidth consumed at dedicated streaming servers, since

peers are able to contribute their uplink bandwidth to the

system by uploading media streams to one another.

It turns out that, despite the emphasis on the timing

of block delivery, the design philosophy of random

gossiping in practical P2P content distribution systems

is equally useful in P2P streaming systems. In P2P live
streaming systems, where media channels are broadcast

live to participating peers, the only fundamental differ-

ence is that a dynamic sliding window of blocks over time

needs to be distributed in a streaming fashion, rather than

a fixed number of blocks in a static file. The design phi-

losophy is first applied in P2P live streaming systems by

Zhang et al. [20], who first proposed the live Cool-
Streaming system using random gossiping, and evaluated
its performance [21]. Its design organizes peers into a

random mesh topology, requiring them to Bpull[data

blocks from each other, after exchanging block availability

information.

We briefly explain common design elements of P2P live

streaming systems that use random gossiping in random

mesh topologies. As a peer joins the streaming session, it

connects to a list of randomly selected peers as its neigh-
bors, and starts to exchange data blocks in a sliding

window with them. As blocks accumulate in the sliding

window (residing in the main memory), media playback

begins shortly afterwards, as a certain criterion about the

number of blocks accumulated is met, or after a predeter-

mined length of time.

During playback, any block arriving later than the time

it is due for playback will be skipped, causing a pause or
quality degradation in the playback process. In live

streaming systems, blocks will be discarded after playback,

and the sliding window advances itself. The sliding

window has a predetermined size, usually spanning several

minutes during playback. This implies that if the playback

buffer of a peer is about to exceed the size of the sliding

window, no more blocks will be Bpulled[from other peers

until some of the existing blocks are played back.
Since all participating peers are roughly synchronized

with respect to their points of playback, they are able to

periodically exchange the states of their respective buffers

in the sliding window, usually called Bbuffer maps.[Based

on the knowledge of block availability in each other’s

sliding windows, a peer sends requests to its neighbors in

order to Bpull[blocks it has yet to receive.

A. Design Objectives
Since the design philosophy of random gossiping in

random mesh topologies has recently been adopted by a

number of operational P2P streaming systems, such as

PPLive [22], it has performed quite well. Tens of thousands

of video channels have been successfully served to millions

of users in systems of such a kind. It is simple to

Li and Niu: Random Network Coding in Peer-to-Peer Networks: From Theory to Practice

Vol. 99, No. 3, March 2011 | Proceedings of the IEEE 517

implement such a design philosophy, which is robust to
peer arrivals and departures. The important question,

however, is whether random network coding is a suitable

choice to be integrated in such a design philosophy.

Before we explore the feasibility and potential benefits

of using network coding, we would first like to present a

few performance metrics that are important in P2P

streaming systems. First, since the initial buffering delay
must be experienced by a user when it joins a streaming
session, a shorter delay improves the user experience.

Second, since peer upload capacities may not be sufficient

to sustain the entire streaming session for all participating

peers, dedicated streaming servers provide additional

Bsupply[of bandwidth. As the operational costs of these

dedicated servers depend on the bandwidth consumed, it is

critical to minimize server bandwidth costs. Finally, with an

increasing number of peers in a session and a fixed amount
of bandwidth available at dedicated streaming servers, the

saturation point will eventually be reached, where the

aggregate bandwidth supply barely exceeds the demand.

We wish to maintain smooth playback as much as possible

in such challenging situations.

B. Random Network Coding in P2P Live Streaming
We now turn our attention to the potential benefits of

using random network coding in P2P live streaming sys-

tems. Live streaming systems using the random gossiping

philosophy are practical to be implemented, but they do

have an BAchilles’ heel[: communication overhead. Intui-

tively, since the sliding window at a peer advances itself

over time, buffer availability maps need to be exchanged

periodically, which may lead to a substantial amount of

overhead.
As an example, let us consider a streaming system that

uses 600 blocks in its sliding window, each block lasting

one second of playback at a typical streaming bit rate of

45 kB/s. It requires 75 B to represent a buffer availability

map. With a conservative estimate of 60 neighbors, if a

peer sends these buffer maps to all the neighbors every

second, it amounts to an overhead of 4.5 kB/s at each peer,

which is 10% of the overhead as a ratio of the streaming bit
rate. A higher communication overhead leads to less effi-

cient utilization of peer upload bandwidth, and indirectly

results in higher bandwidth costs at dedicated streaming

servers. To mitigate such an overhead, most practical live

streaming systems choose to exchange buffer maps less

frequently. An analytical study [23], however, has attrib-

uted the performance gap between practical systems and

their theoretically optimal performance to the lack of
timely exchanges of buffer availability maps.

Would the use of random network coding be able to

mitigate the problem of communication overhead?

Wang et al. [24] have raised such a question, and presented

a new set of design principles, referred to as R2, that takes

advantage of random network coding to substantially im-

prove the performance of live streaming systems, address-

ing concerns of playback quality, server bandwidth costs,
and initial buffering delays.

R2 stands for random push with random network

coding. Similar to the use of network coding in content

distribution systems, it divides the content of the media

stream in a sliding window into generations, each of which

is further divided into m blocks. With the introduction of

generations in R2, we can afford to design parameter set-

tings so that a block is much smaller than its counterpart in
traditional live streaming systems based on random gossip-

ing. This is due to the fact that buffer availability maps only

need to stay at the granularity of a generation (one bit to

represent each generation), rather than a block. With the

same amount of communication overhead to exchange

buffer availability maps, the size of a single block can be

much smaller in R2.

When a peer serves a generation s to its downstream
target peer p, it linearly encodes all the blocks it has re-

ceived so far from s using random coefficients in GFð28Þ,
and then transmits the coded block to p. Since each peer

buffers coded blocks it has received so far, it is able to

linearly combine them using random coefficients, much

like how random network coding is used in P2P content

distribution systems. Only blocks from the same genera-

tion are allowed to be coded, in order to reduce the
computational complexity of network coding.

In response to unique requirements imposed by live

streaming systems, in particular the timeliness of playback,

R2 proposes a set of design principles that facilitate the use

of generation-based network coding. It advocates the use of

random push instead of Bpull[to transmit data: each peer

randomly selects a small number of downstream peers

based on certain criteria. When serving a chosen down-
stream peer, it then randomly selects a generation to code

within, among those that the downstream peer has not yet

completely received. If generations very closely ahead of

the point of playback have not been completely received,

they are given a higher priority as they are more urgent.

There are a number of clear advantages brought forth

by the design principles in R2. First, it greatly simplifies

protocol design. Since coded blocks within a generation
are useful with high probability during random gossiping,

when serving its downstream peer, a peer only needs to

blindly push coded blocks in a generation, until the down-

stream peer has obtained a sufficient number of coded

blocks to decode and recover this generation. This elimi-

nates the need of sending explicit requests to Bpull[miss-

ing blocks, as well as the communication overhead

associated with these requests.
Second, R2 induces much less overhead involved in

buffer map exchanges, due to a smaller number of gene-

rations in the sliding window. Consider the previous

example of a live streaming system, in which a playback

buffer has 600 blocks representing 600 s of playback,

with each block corresponding to one second of playback

at a 45 kB/s streaming bit rate. With R2, one can divide the

Li and Niu: Random Network Coding in Peer-to-Peer Networks: From Theory to Practice

518 Proceedings of the IEEE | Vol. 99, No. 3, March 2011

sliding window into 60 generations, each with 450 blocks

of 1 kB in size. This requires only 8 B to represent the

sliding window in each buffer availability map. A gener-

ation is played back and removed from the sliding window

every 10 s, and a new generation is completely received

every 10 s in a steady state. This implies that a peer only
needs to send at most two buffer maps to each neighboring

peer every 10 s, on average. With 60 neighbors, it amounts

to a negligible overhead of only 48 B/s.

Finally, R2 makes it possible for an incoming peer to

start its playback with the shortest initial buffering delay.

Illustrated in Fig. 3, as a new peer joins the session, it

establishes a playback point that it intends to start playing

in the future, and its empty sliding window starts from this
playback point. Multiple existing peers are able to collabo-

rate and push fresh coded blocks in the first one or two

generations after the playback point, so that the rate of

accumulating blocks in these generations is only limited by

the new peer’s available downlink bandwidth. Once the

playback point is reached, it is likely that the new peer will

have received at least the first generation, if its download

bandwidth is higher than the playback bit rate of the
stream.

The advantage of such Bperfect collaboration[among

multiple upstream peers when serving coded blocks is not

limited to shorter initial buffering delays. It also allows the

streaming protocol to be more resilient to peer dynamics,

since the downloading process of a particular generation is

not adversely affected by the departure of any of its serving

peers. Without the use of random network coding, a coor-
dination protocol across multiple serving peers is needed

to avoid sending duplicates to the new peer. Such a proto-

col is not scalable to the number of serving peers. It also

incurs communication overhead with the use of state up-

date messages, and leads to longer latencies waiting for

these messages to arrive. This is another example where

network coding simplifies protocol design, and as a result

it not only reduces the amount of overhead due to the
transmission of protocol-related packets, but also becomes

more resilient to packet losses, excessive delays, and peer

departures.

Using both theoretical analysis and simulations,
Feng et al. [25] have shown that the design principles in R2

have led to much better performance than live streaming

protocols without network coding, especially in extreme

scenarios such as Bflash crowd[sessions where a large

number of peers arrive in a short period of time. It has

been analytically shown that the maximum streaming bit

rate that R2 is able to support is within a factor of 1þ � of

the optimal achievable rate, where � is a small constant
that depends upon the number of blocks in a generation, as

well as the ratio of server bandwidth over the total uplink

bandwidth in the system. This positively reflects the ability

of random network coding to support a smooth playback

experience when the Bsupply[of bandwidth has been

saturated by the Bdemand,[which is one of the most

challenging scenarios when P2P live streaming systems

scale up to millions of users.

IV. IMPLEMENTING RANDOM
NETWORK CODING IN
MODERN HARDWARE

Conceptually, random network coding may be beneficial in

both P2P content distribution and live streaming systems.

In practice, however, it pays the price of higher computa-
tional complexity. Will modern off-the-shelf computer

hardware without customizationVincluding dedicated

streaming servers, notebook computers, and mobile

phonesVbe able to perform a software implementation

of random network coding?

A. Network Coding With Multicore Processors
Shojania et al. [26] have presented the first attempt

towards a high-performance implementation of random

network coding. Progressive decoding with Gauss–Jordan

elimination has been implemented on both �86 and

PowerPC processor families, such that coded blocks can be

decoded progressively as they are received. The imple-

mentation features two highlights. First, the implementa-

tion is accelerated with SSE2 and AltiVec SIMD vector

instructions on �86 and PowerPC processors, respec-
tively. Second, a careful threading design is implemented

to take advantage of symmetric multiprocessor (SMP) sys-

tems and multicore processors. The objective of this work is

to explore the computational limits of random network

coding in practice using current-generation off-the-shelf

processors, and to provide a solid reference implementa-

tion to facilitate commercial deployment of network

coding.
It has been shown that, with an Intel Core Duo

processor running at 1.83 GHz (a state-of-the-art dual core

processor for mainstream desktop computers at the time

of the work), SSE2-accelerated and multithreaded net-

work coding can process around 5 MB/s, with 128 blocks

of 4 kB each in a generation. The result was encouraging,

in that a software implementation of network coding on

Fig. 3. P2P live streaming with the use of random network coding:

multiple existing peers are able to collaborate and serve coded blocks

within the same generation to a new peer joining the session,

minimizing its initial buffer delay.

Li and Niu: Random Network Coding in Peer-to-Peer Networks: From Theory to Practice

Vol. 99, No. 3, March 2011 | Proceedings of the IEEE 519

off-the-shelf desktop processors is able to saturate a typical
DSL uplink for home Internet users.

B. Network Coding in Dedicated Servers
But how about dedicated streaming servers? With dual

Gigabit Ethernet interfaces, their uplink capacity can reach

2000 Mb/sVor 250 MB/s. If random network coding is to

be used in a P2P streaming system, it needs to be imple-

mented on all participating peers, including dedicated
servers. In the Nuclei project, Shojania et al. [27] have

presented a first attempt towards the implementation of

random network coding on GPUs. With a single NVIDIA

GeForce 8800 GT, a mainstream GPU at the time of the

work, GPU-accelerated random network coding developed

using the CUDA platform [28] is able to process 66 MB/s,

with 128 blocks of 4 kB each in a generation. This is a

substantial performance improvement over Intel dual-core
CPUs, thanks to the superb ability of the GPU hardware to

launch thousands of parallel computation-bound threads

with zero context switching overhead, as well as the em-

barrassingly parallel nature of random network coding as a

computational task.

Although the performance of network coding with

GPU acceleration has been much higher than that with

multicore CPUs, it is still not able to saturate the uplink
bandwidth of a typical server. Moore’s law, it turns out,

comes to our rescue, combined with even more aggressive

optimization with respect to the GPU implementation of

network coding. In [29], Shojania et al. have pushed the

performance envelope to the extremes, by showing that a

heavily optimized coding implementation on a single

NVIDIA GeForce GTX 280 is able to code at a rate of

294 MB/s, with 128 blocks of 4 kB each in a generation.
This level of coding performance is able to saturate two

Gigabit Ethernet interfaces, so that random network coding

can be performed at line speed on streaming servers,

pushing fresh coded blocks to downstream peers in a

streaming network.

Though the implementation of network coding is still

in software, the NVIDIA GeForce GTX 280, the fastest

GPU in 2008, featured 240 cores and a peak performance
of 360 giga instructions per second (GIPS). When network

coding is executed on the GPU, over 90% of the peak

computational power provided by the GPU hardware is

utilized. The surprising performance of random network

coding can be attributed to the fact that such a level of

computational power can be available as off-the-shelf

commodity hardware, and can be utilized with a software

implementation.

C. Network Coding in Mobile Phones
Finally, recent work has shown that random network

coding may not be out of the question on computing plat-

forms optimized for power efficiency, such as mobile

phones. Shojania et al. [30] have shown the surprising

result that, by optimizing its implementation to the ARM

Cortex-A8 CPU architecture using hand-optimized assem-
bly, an iPhone 3GS with its CPU operated at 600 MHz is

able to achieve 1 MB/s with 128 blocks in a generation.

Such a high coding rate may open up new opportunities to

bring streaming systems with network coding to mobile

smartphones. Decoding a high-quality video stream at a

streaming bit rate of 768 kb/s, for example, will increase

CPU usage by no more than 10%.

V. OPERATIONAL ON-DEMAND
STREAMING WITH RANDOM
NETWORK CODING

With the application of random network coding in P2P

content distribution and live streaming systems that adopt

the random gossiping philosophy in random mesh topo-

logies, one may wonder if it can be similarly applied to P2P
on-demand streaming systems, also called video-on-

demand (VoD) systems. With high-performance imple-

mentations of random network coding in commodity

hardware from dedicated servers to mobile devices, one

may also wonder if network coding can be deployed in

large-scale operational P2P streaming systems.

Annapureddy et al. [31] have been the first to study the

feasibility of applying random network coding in P2P on-
demand streaming systems. A P2P on-demand streaming

system is conceptually more challenging to design and

implement, in that it requires not only smooth sequential

playback, but also the shortest possible Brestarting[
latency, after an interactive random seek request is received

from the user to relocate the playback point. In the work

by Annapureddy et al., similar to live streaming systems,

the on-demand media stream is divided into generations,
which implies that the initial buffering delay is at least the

length of one generation in terms of playback time at the

streaming bit rate. In both a simulation and a small proto-

type, it shows that the throughput achieved with random

network coding is higher, compared to a block selection

algorithm that downloads globally rarest blocks in the

generation first.

Similar to the scenario of bulk content distribution
systems, once again, it was not clear whether benefits of

random network coding in simulations and small proto-

types can easily be carried over to real-world on-demand

streaming systems operating at a large scale. Overall, in

both content distribution and streaming systems, despite

the foundation established by extensive research in the

literature, random network coding has not been reported

to be deployed in real-world operational systems at a large
scale or in a production setting. What are the lingering

challenges that prevent such a deployment?

Liu et al. [32] have applied random network coding in

an operational on-demand streaming system called UUSee,

and have presented the first successful attempt that applies

the theory of random network coding in large-scale real-

world systems. The design objectives were similar to those

Li and Niu: Random Network Coding in Peer-to-Peer Networks: From Theory to Practice

520 Proceedings of the IEEE | Vol. 99, No. 3, March 2011

of live streaming systems, in that random seek latencies
and server bandwidth costs should be minimized, while a

consistent and smooth playback quality should be main-

tained. We now introduce the practical challenges and

their corresponding design choices, learned from the ex-

periences in such an operational system.

A. Practical Challenges
In real-world systems, any benefits are accompanied

with costs or drawbacks. One seemingly naive question

when network coding is to be used in the UUSee on-

demand streaming system is how the size of a block should

be determined. A coded block is the basic transmission unit

used to serve a portion of a generation in the stream. Block-

level granularity accommodates slower serving peers so that

they can serve at least one block in a reasonable amount of

time. It is intuitively preferable to use a smaller block size,
such as 1 kB, such that each block directly corresponds to a

user datagram protocol (UDP) packet in practice.

This seems to be a good choice if there were no over-

head imposed by coding coefficients. Yet with random

linear coding on GFð28Þ, each coefficient occupies a byte,

and such overhead depends on the number of blocks in a

generation. It appears that in order to reduce the overhead

due to coding coefficients, one should consider using a
smaller number of blocks in each generation.

However, we cannot afford to use too few blocks in a

generation, since a smaller number of blocks will lead to a

different type of communication overhead, after a gene-

ration is completely received and decoded on the receiving

peer. Illustrated in Fig. 4, Bbraking[acknowledgment pa-

ckets need to be sent back to each of the serving peers,

respectively, to stop them from sending more coded
blocks. Due to the latency for these braking acknowledg-

ments to be received by serving peers, additional redun-

dant blocks may be received by the receiving peer after the

generation is complete, and will need to be discarded.

Apparently, as the number of blocks in a generation

becomes smaller, the overhead caused by these redundant

blocks will become more pronounced due to frequent

Bbraking.[
In addition, the need for exchanging buffer availability

information between neighboring peers calls for a larger

number of blocks in a generation, since a larger gene-

ration size reduces the number of bits required to repre-

sent buffer availability in an on-demand video stream. The

good news is that, with highly optimized implementations

of network coding on commodity CPUs, the UUSee

system can afford to use a larger number of blocks if it
needs to.

B. Design Choices
The primary design goal is to amplify conceptual and

theoretical benefits of network coding to the maximum

extent possible, and to mitigate its drawbacks in practical

use. The following design choices have been made in the

UUSee on-demand streaming system with network

coding.

1) Overhead: Applying the lesser of two evils principle,

the overhead caused by redundant blocksVreceived after

the generation is completely downloaded by a receiving

peerVis a more important concern. To mitigate such

overhead, a larger number of blocks, 300 to 500, is used in
a generation, with a smaller block size. In the UUSee

system, 1 kB is used as the size of a block, corresponding to

a single UDP packet. With such a design choice, if coding

coefficients are embedded into coded blocks so that they

are self-contained, up to 50% overhead is incurred due to

the small size of each block, and the large number of

blocks in a generation.

Instead of embedding coding coefficients in the coded
blocks, UUSee chooses to embed the PRNG seed that is

used to produce the sequence of random coefficients with

a known pseudorandom number generator (PRNG). This

effectively reduces the overhead to only 4 B, regardless of

the number of blocks, m, in a generation. The only side

effect is that peers are no longer able to serve coded blocks

to others before completely receiving a generation. How-

ever, unlike live streaming, on-demand streaming systems
do not have any requirements on the playback lag between

live events and their corresponding times of playback. As a

result, such a side effect is a nonissue in on-demand

streaming.

2) The Push Protocol for Coordinating Multiple Serving
Peers: Since random linear network coding is used to make

such coordination simple, coded blocks from all serving
peers are equally useful. Upon the explicit request from a

downstream peer p for blocks in a particular generation, a

serving peer starts to push freshly generated coded blocks

consecutively to p as UDP packets (with flow control),

until the Bbraking[acknowledgment packet arrives. The

downstream peer p may send explicit requests to more

than one serving peer, and simply sends one acknowledg-

ment packet (as the Bstop[signal) to each serving peer

Fig. 4. The communication overhead due to ‘‘braking.’’

Li and Niu: Random Network Coding in Peer-to-Peer Networks: From Theory to Practice

Vol. 99, No. 3, March 2011 | Proceedings of the IEEE 521

after it has successfully decoded the generation progres-
sively using Gauss–Jordan elimination.

C. Practical Experiences With Network Coding
Liu et al. [32] have designed and implemented the first

operational on-demand streaming system with random

network coding, and have observed an excellent level of

real-world streaming performance, based on measurement

studies using 200 GB worth of operational traces. It has
become evident that the design objectives in on-demand

streaming systems have been achieved: multiple serving

peers are able to coordinate their actions serving a peer,

leading to minimized buffering delays and bandwidth costs

on servers. The playback quality has been satisfactory for

normal-quality videos. For high-quality videos, the use of

network coding has mitigated negative effects when the

server bandwidth supply becomes tight in meeting the
demand for bandwidth.

VI. CONCLUDING REMARKS

In retrospect, network coding research in the past decade

has remained largely theoretical, with respect to the

advantages of coding over routing in multicast sessions

over directed graphs, as well as the conceptual benefits of
using random network coding in P2P networks. With this

paper, we wish to introduce important milestones towards
bringing theoretical benefits of network coding to practical

implementations.

We point out that P2P networks may be the most

promising application scenario for network coding to be

applied, only because peers are able to afford the increased

computational complexity introduced by network coding.

We note that the benefits of random network coding in

P2P bulk content distribution systems have been exten-
sively evaluated in both simulation and prototype imple-

mentation settings, but have not yet materialized in

real-world systems.

In contrast, the use of network coding in P2P

streaming systems is more realistic, with a recent report

that network coding has been successfully applied in an

operational on-demand streaming system, operated at a

large scale that accommodates millions of Internet users.
Thanks to Moore’s law and optimized implementations of

network coding in software, it is feasible to perform net-

work coding on a wide range of commodity hardware,

including servers, desktops, notebook computers, and

even mobile phones. As long as the additional energy

consumed to perform network coding can be well jus-

tified, we may continue to observe more practical systems

that incorporate the benefits of network coding in the
future. h

REF ERENCE S

[1] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung,
BNetwork information flow,[IEEE Trans.
Inf. Theory, vol. 46, no. 4, pp. 1204–1216,
Jul. 2000.

[2] R. Koetter and M. Medard, BAn algebraic
approach to network coding,[IEEE/ACM
Trans. Netw., vol. 11, no. 5, pp. 782–795,
Oct. 2003.

[3] S. Y. R. Li, R. W. Yeung, and N. Cai,
BLinear network coding,[IEEE Trans.
Inf. Theory, vol. 49, no. 2, pp. 371–381,
Feb. 2003.

[4] P. Sanders, S. Egner, and L. Tolhuizen,
BPolynomial time algorithm for network
information flow,[in Proc. 15th ACM
Symp. Parallelism Algorithms Architectures,
Jun. 2003, pp. 286–294.

[5] T. Ho, R. Koetter, M. Medard, D. Karger, and
M. Effros, BThe benefits of coding over
routing in a randomized setting,[in Proc. Int.
Symp. Inf. Theory, 2003, DOI: 10.1109/ISIT.
2003.1228459.

[6] P. Chou, Y. Wu, and K. Jain, BPractical
network coding,[in Proc. Allerton Conf.
Commun. Control Comput., Oct. 2003.
[Online]. Available: http://sites.google.com/
site/saloot2/practical-network-coding.pdf.

[7] B. Pittel, BOn spreading a rumor,[SIAM J.
Appl. Math., vol. 47, no. 1, pp. 213–223, 1987.

[8] S. Sanghavi, B. Hajek, and L. Massoulie,
BGossiping with multiple messages,[in
Proc. IEEE INFOCOM, Anchorage, AK,
2007, pp. 2135–2143.

[9] A. Bar-Noy and S. Kipnis, BBroadcasting
multiple messages in simultaneous send/
receive systems,[Discrete Appl. Math., vol. 55,
pp. 95–105, 1994.

[10] J. Mundinger, R. Weber, and G. Weiss,
BOptimal scheduling of peer-to-peer file
dissemination,[J. Scheduling, pp. 105–120,
2007.

[11] C. Gkantsidis and P. Rodriguez, BNetwork
coding for large scale content distribution,[in
Proc. IEEE INFOCOM, Mar. 2005, vol. 4,
pp. 2235–2245.

[12] S. Deb, M. Medard, and C. Choute,
BAlgebraic gossip: A network coding
approach to optimal multiple rumor
mongering,[IEEE Trans. Inf. Theory,
vol. 52, no. 6, pp. 2486–2507,
Jun. 2006.

[13] D. Mosk-Aoyama and D. Shah,
BInformation dissemination via network
coding,[in Proc. IEEE Int. Symp. Inf.
Theory, Oct. 2006, pp. 1748–1752.

[14] D. Vasudevan and S. Kudekar. (2009, Jan.).
Algebraic gossip on arbitrary networks.
[Online]. Available: http://arxiv.org/pdf/
0901.1444.

[15] M. Borokhovich, C. Avin, and Z. Lotker,
BTight bounds for algebraic gossip on
graphs,[in Proc. IEEE Int. Symp. Inf.
Theory, 2010, pp. 1758–1762.

[16] R. W. Yeung, BAvalanche: A network
coding analysis,[Commun. Inf. Syst.,
vol. 7, no. 4, pp. 353–358, 2007.

[17] D. Niu and B. Li, BOn the
resilience-complexity tradeoff of network
coding in dynamic P2P networks,[in
Proc. 15th IEEE Int. Workshop Quality
of Service, Evanston, IL, Jun. 2007,
pp. 38–46.

[18] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and
X. Zhang, BMeasurements, analysis, and
modeling of BitTorrent-like systems,[in Proc.

ACM Internet Meas. Conf., Oct. 2005,
pp. 35–48.

[19] C. Gkantsidis, J. Miller, and P. Rodriguez,
BComprehensive view of a live network
coding P2P system,[in Proc. 6th ACM Internet
Meas. Conf., 2006, pp. 177–188.

[20] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum,
BCoolStreaming/DONet: A data-driven
overlay network for efficient live media
streaming,[in Proc. IEEE INFOCOM,
2005, vol. 3, pp. 2102–2111.

[21] B. Li, S. Xie, Y. Qu, G. Y. Keung, C. Lin,
J. Liu, and X. Zhang, BInside the new
coolstreaming: Principles, measurements
and performance implications,[in Proc.
IEEE INFOCOM, 2008, pp. 1031–1039.

[22] Y. Huang, T. Z. Fu, D.-M. Chiu, J. C. Lui,
and C. Huang, BChallenges, design and
analysis of a large-scale P2P-VoD system,[in
Proc. ACM SIGCOMM, 2008, pp. 375–388.

[23] C. Feng, B. Li, and B. Li, BUnderstanding
the performance gap between pull-based
mesh streaming protocols and fundamental
limits,[in Proc. IEEE INFOCOM, Apr. 2009,
pp. 891–899.

[24] M. Wang and B. Li, BR2: Random push
with random network coding in live
peer-to-peer streaming,[IEEE J. Sel. Areas
Commun., vol. 25, no. 9, pp. 1655–1666,
Dec. 2007.

[25] C. Feng and B. Li, BOn large-scale
peer-to-peer streaming systems with
network coding,[in Proc. ACM Multimedia,
Oct. 2008, pp. 269–278.

[26] H. Shojania and B. Li, BParallelized
progressive network coding with hardware
acceleration,[in Proc. 15th Int. Workshop
Quality of Service, 2007, pp. 47–55.

Li and Niu: Random Network Coding in Peer-to-Peer Networks: From Theory to Practice

522 Proceedings of the IEEE | Vol. 99, No. 3, March 2011

[27] H. Shojania, B. Li, and X. Wang, BNuclei:
GPU-accelerated many-core network
coding,[in Proc. IEEE INFOCOM, 2009,
pp. 459–467.

[28] J. Nickolls, I. Buck, M. Garland, and
K. Skadron, BScalable parallel programming
with CUDA,[ACM Queue, vol. 6, no. 2,
pp. 40–53, 2008.

[29] H. Shojania and B. Li, BPushing the envelope:
Extreme network coding on the GPU,[in

Proc. 29th Int. Conf. Distrib. Comput. Syst.,
2009, pp. 490–499.

[30] H. Shojania and B. Li, BTenor: Making
coding practical from servers to
smartphones,[in Proc. ACM Multimedia,
Oct. 2010, pp. 45–54.

[31] S. Annapureddy, S. Guha, C. Gkantsidis,
D. Gunawardena, and P. Rodriguez,
BIs high-quality VoD feasible using P2P

swarming?’’ in Proc. 16th Int. World Wide
Web Conf., 2007, pp. 903–912.

[32] Z. Liu, C. Wu, B. Li, and S. Zhao,
BUUSee: Large-scale operational
on-demand streaming with random
network coding,[in Proc. IEEE
INFOCOM, 2010, DOI: 10.1109/
INFCOM.2010.5462030.

ABOUT T HE AUTHO RS

Baochun Li received the B.Engr. degree from the

Department of Computer Science and Technology,

Tsinghua University, China, in 1995 and the M.S.

and Ph.D. degrees from the Department of

Computer Science, University of Illinois at

Urbana-Champaign, Urbana, in 1997 and 2000,

respectively.

Since 2000, he has been with the Department

of Electrical and Computer Engineering at the

University of Toronto, Toronto, ON, Canada, where

he is currently a Professor. He holds the Nortel Networks Junior Chair in

Network Architecture and Services from October 2003 to June 2005, and

the Bell University Laboratories Endowed Chair in Computer Engineering

since August 2005. His research interests include large-scale multimedia

systems, cloud computing, peer-to-peer networks, applications of

network coding, and wireless networks.

Dr. Li was the recipient of the IEEE Communications Society

Leonard G. Abraham Award in the Field of Communications Systems in

2000. In 2009, he was a recipient of the Multimedia Communications Best

Paper Award from the IEEE Communications Society, and a recipient of

the University of Toronto McLean Award.

Di Niu received the B.Engr. degree from the

Department of Electronics and Communication

Engineering, Sun Yat-sen (Zhongshan) University,

Guangzhou, Guangdong, China, in 2005 and the

M.A.Sc. degree from the Department of Electrical

and Computer Engineering, University of Toronto,

Toronto, ON, Canada, in 2009, where he is

currently working towards the Ph.D. degree at

the Department of Electrical and Computer

Engineering.

His research interests include measurement, data mining and

implementation of large-scale multimedia systems, peer-to-peer net-

works, and applications of network coding.

Li and Niu: Random Network Coding in Peer-to-Peer Networks: From Theory to Practice

Vol. 99, No. 3, March 2011 | Proceedings of the IEEE 523

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

