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Abstract—
The shared-medium multi-hop nature of wireless ad hoc net-

works poses fundamental challenges to the design of an effective re-
source allocation algorithm to maximize spatial reuse of spectrum,
while maintaining basic fairness among multiple flows. Whenprevi-
ously proposed scheduling algorithms have been shown to perform
well in providing fair shares of bandwidth among single-hop wire-
less flows, they do not considermulti-hop flows with an end-to-end
perspective when maximizing spatial reuse of spectrum. Instead,
previous work attempts to break each multi-hop end-to-end flow
into multiple single-hop flows for scheduling purposes. While this
may be sufficient for maintaining basic fairness propertiesamong
single-hop subflows with respect to bandwidth, we show that,due to
the intra-flow correlation between upstream and downstreamhops,
it may not be appropriate for maximizing spatial reuse of band-
width. In this paper, we analyze the issue of increasing suchspa-
tial reuse of bandwidth from an end-to-end perspective of multi-
hop flows. Through analysis and simulation results, we show that
our proposed algorithm is able to appropriately distribute resources
among multi-hop flows, so that end-to-end throughput may be maxi-
mized in wireless ad hoc networks, while still maintaining basic fair-
ness across the multi-hop flows.

I. I NTRODUCTION

A wireless ad hoc network consists of a collection of wireless
nodes without a fixed infrastructure. Each network node serves as
a router that forwards packets for other nodes. Each flow fromthe
source to the destination traverses multiple hops of wireless links.
Compared with wireline networks where flows contend only at
the packet router with other simultaneous flows through the same
router (contention in the time domain), the unique characteristics
of medium access control protocols in wireless networks show
that, flows also compete for shared channel bandwidth if they
are within the transmission ranges of each other (contention in
the spatial domain). This presents the problem of designingan
appropriate topology-aware resource allocation algorithm such
that contending flows fairly share the scarce channel capacity,
while increasing spatial reuse of spectrum as much as possible to
improve channel utilization.

With intuitive examples, previous work [1] has pointed out that
such a topology-aware resource allocation algorithm needsto
carefully arbitrate the trade-off between the two extremes: main-
taining strict fairness among backlogged flows may lead to waste
of bandwidth, while solely maximizing the spatial reuse of spec-
trum violates fairness among flows (e.g. a subset of flows may be
starved). Towards the goal of reaching a balanced trade-off, Luo
et al. [1], [2], [3] has presented several centralized or distributed
scheduling algorithms in wireless ad hoc networks. These algo-
rithms attempt to discuss the problem from both a theoretical and

Baochun Li is affiliated with Department of Electrical and Computer Engineer-
ing, University of Toronto. His email address isbli@eecg.toronto.edu.

a practical point of view, making various degrees of trade-offs
between the conflicting goals of maximizing bandwidth spatial
reuse and maintaining fairness among flows. While the contri-
butions are original and noteworthy, their definition of aflow is
limited tosingle-hop flows, with one direct wireless link between
the source and the destination. In contrast, in actual multi-hop
wireless ad hoc networks, flows withmultiple hopsare common-
place, while single-hop flows are only exceptions.

With existing solutions targeting single-hop flows, a natural
extension to address identical arbitration goals in the context of
multi-hop flows may be to consider them as multiple indepen-
dentsingle-hop flows(referred to assubflowshenceforth). How-
ever, after breaking a multi-hop flow into multiple independent
subflows, the inherent correlation between upstream and down-
stream subflows are lost. One of the possible consequences is
the increased probability of dropping packets due to bufferover-
flow in the downstream, since maximizing subflow throughput
may lead to a higher bandwidth allocation in the upstream than
downstream subflows (in the same multi-hop flow), which leads
to potential buffer overflow in the downstream routers.
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Fig. 1. Fair bandwidth allocation among multi-hop flows: theproblem

To illustrate this problem, consider the example topology in
Fig. 1(a), where there are two multi-hop flows:F1 from nodeA
to C andF2 from D to F . If we break both multi-hop flows into
subflows, and assume that two subflows contend spatially if their
sources or destinations are within range, then Fig. 1(b) shows the
flow contention relationships between the subflows, whereFi.j

denotes thejth subflow of a multi-hop flowFi, counting from the
source. As shown,F1.1 contends with its immediate downstream
subflowF1.2 andF1.2 contends with bothF2.1 andF2.2. For
convenience, we assign equal weights of1 to all subflows.

The basic idea from previous work (e.g., [1]) is to first guar-
antee a basic share ofB/4 to all four subflows, whereB denotes
the effective channel capacity for data transmissions1, and then
select maximum independent sets of subflows that may transmit
packets concurrently. The subflows in such a set may increase

1For example, in a IEEE 802.11-based wireless channel of2 Mbps, the effec-
tive capacity available for data transmissions is approximately1.7 Mbps [4].
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their shares to maximize spatial bandwidth reuse. SinceF2.1

andF2.2 do not compete withF1.1, it may be easily shown that
spatial reuse of bandwidth is maximized if we guaranteeB/4
to F1.2, and assign3B/8 to F2.1 andF2.2, and finally3B/4 to
F1.1. However, if we consider multi-hop flowF1, sinceF1.2 is
the bottleneck, packets coming from subflowF1.1 will accumu-
late at nodeB, buffer overflow may eventually occur at nodeB.
If a reliable transport protocol is used, the end-to-end through-
put ofF1 stabilizes toB/4 over time (for both subflowsF1.1 and
F1.2), with a total effective throughput of5B/4 for all subflows.
However, if we allocateB/2 to bothF1.1 andF1.2, andB/4 to
bothF2.1 andF2.2, the total effective throughput for all subflows
increases to3B/2, while still guarantees the basic fair shares of
B/4 across the subflows2.

In this paper, we study the problems illustrated by this intuitive
example, based on strict definitions oftotal effective throughput
(that characterizes the extent of spectrum spatial reuse) and fair-
nessamongmulti-hop flowsfrom an end-to-end perspective. The
novelty of our analysis and algorithms comes from the funda-
mental differences between the problems presented bysingle-hop
andmulti-hopflows, when optimality is sought given strict def-
initions of constraints in both problem domains. Our insights
shown in this work start from clear and appropriate definitions of
our objective (maximizing spatial reuse of bandwidth) and fair-
ness constraints. Based on these definitions, we show that pre-
vious approaches that consider single-hop flows may not achieve
the same optimal results when multi-hop flows are considered.
In order to evaluate any proposed algorithms against an upper
bound in ideal situations, we proceed to propose an estimation
algorithm (Sec. III) to estimate the optimal allocation strategies
based on the defined notion of fairness in multi-hop flows. More
realistically, we first propose a centralized algorithm to achieve
our objectives, followed by a distributed algorithm (that only
relies on local state information) to approximate its centralized
counterpart. Finally, a distributed backoff-based scheduling algo-
rithm is developed to achieve calculated shares of the subflows.
We argue that, while studying single-hop flows may lead to theo-
retical insights, examining multi-hop flows leads to more general
results and applicable algorithms in realistic wireless adhoc net-
works.

The remainder of the paper is organized as follows. We moti-
vate the work and present clear definitions of the objectivesand
constraints in this work in Sec. II. We present our idealizedes-
timation algorithm in Sec. III, and the proposed schedulingal-
gorithms in Sec. IV. Sec. V evaluates the performance of our
algorithms. Sec. VI and VII discuss related work and conclude
the paper.

II. OBJECTIVE AND CONSTRAINTS

Conceptually, the objective of our work is tomaximize spatial
reuse of spectrum, while satisfying the constraint ofmaintaining
basic fairness among contending flows. Obviously, the prerequi-
sites of a solution include the definition of a metric that evaluates
the extent of spatial reuse of spectrum, and the definition ofbasic
fairnessamong multi-hop flows. We present clear and appropri-
ate definitions of both our objective and our constraints.

2Detailed discussions of this example are postponed to Sec. III.

A. Preliminaries

Two active (backlogged) subflows arecontending subflowsif
either the source or destination of one subflow is within the trans-
mission range of the source or destination of the other. Two
multi-hop flows arecontending flowsif any of their subflows are
contending subflows. If multi-hop flowsFi andFj are contend-
ing flows, we claim thatFi andFj are in the samecontending
flow group, i.e., G(Fi) = G(Fj) = {Fi, Fj}. We note that
if G(Fi) = G(Fj) and G(Fj) = G(Fk), it may be possible
that Fi andFk are not contending flows. In this case, we still
claim thatFi, Fj andFk are in the same contending flow group
{Fi, Fj , Fk}. As such, all multi-hop flows in the network are es-
sentially partitioned into several disjoint contending flow groups.

A subflow contention graphrepresents the spatial contention
relationship among contending subflows, where vertices corre-
spond to subflows and connected vertices correspond to contend-
ing subflows. Fig. 1(b) show examples of subflow contention
graphs. Naturally, partitioned subgraphs in a subflow contention
graph corresponds to contending flow groups.

We assume a preassigned weightwi for each multi-hop flow
Fi. We further assignwi.j = wi, wherewi.j represents the
weight for the subflowFi.j .

B. Objective: Maximizing Spatial Reuse of Spectrum

When discussing single-hop flows, the objective of maximiz-
ing spatial reuse of bandwidth may naturally be translated to
maximizing the aggregate channel utilization [1], or thetotal ef-
fective single-hop throughputin the network; i.e., maximizing
∑

i ui, for all active (backlogged) single-hop flowsFi in the net-
work, whereui denotes the throughput of the single-hop flowFi.
For the case of multi-hop flows, if we revisit the previous exam-
ple (Fig. 1), the problem hinges on an appropriate definitionof
the objective. If we reuse the objective defined in the single-hop
case, the total effective single-hop throughput is7B/4 (that is su-
perior than3B/2 of our proposed alternative solution). However,
sinceF1.2 is the bottleneck inF1, the actualend-to-end through-
put achieved inF1 (assuming an effective reliable transport pro-
tocol) isB/4, leading to a total effective single-hop throughput
of 5B/4 (which is inferior to the alternative). It decreases since
we have taken the end-to-end effect into consideration. Details
of transport protocols aside, the end-to-end throughput ofmulti-
hop flows is determined by the minimum throughput of its sub-
flows, i.e.,ui = min(uij), j = 1, . . . , li, whereuij denotes the
throughput of thejth subflow andli is the length of the flowFi.

We define thetotal effective throughputas the totalend-to-end
throughput of all multi-hop flows, i.e.,

∑

i ui, for all active (back-
logged) multi-hop flowsFi in the network, whereui is given
previously. When we target on maximizing the spatial reuse of
spectrum, our objective is then to maximize the total effective
throughput. It is subtly different from the objective in thesingle-
hop case. We argue that considering end-to-end flow through-
put is a more appropriate metric to measure the effectiveness of
bandwidth spatial reuse, since packets delivered in a single hop
and then dropped in downstream hops constitute a waste of band-
width, rather than the contrary.
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C. Fairness: the case of multi-hop flows

If we revisit wireline networks, the fairness constraint may be
locally defined among backlogged flows contending for a single
bottleneck link. To be more specific, for any two backlogged
flowsFi andFj contending for a bottleneck link during a specific
period[t1, t2], the aggregate services they receive over this link
satisfy:

∣

∣

∣

∣

∣

∫ t2

t1
ri(t)dt/(t2 − t1)

wi

−

∫ t2

t1
rj(t)dt/(t2 − t1)

wj

∣

∣

∣

∣

∣

< ǫ (1)

whereri(t) is the instantaneous link capacity allocated toFi at
time t. For the case where capacity allocation forFi is constant
and equalsri,

∫ t2

t1
ri(t)dt = (t2−t1)ri. If we only consider long-

lived flows (Fi) with a constant (or stable) source bit rate (ρi), we
may simplify the definition to the objective of achievingweighted
max-min fairnessacross all flows contending for the same bot-
tleneck link; i.e., an allocation strategy(r1, . . . , rn) is weighted
max-min fair, if (1) both

∑n

k=1 rk ≤ B andri ≤ ρi, i = 1, . . . , n
hold for alln contending flows; and (2) for each flowFi, any in-
crease inri would cause a decrease in the allocationrj for some
flow Fj satisfyingrj/wj < ri/wi.

In multi-hop wireless networks, since flows contend for chan-
nel allocation in both time and spatial domains, fairness ises-
sentially a topology-aware global property. However, if weonly
consider single-hop flowsFi (as in previous work) within the
same local neighborhood with effective channel capacityB, if
the set of contending flows are known, we may start by using the
previous definition of weighted max-min fairness for local chan-
nel allocation. For the purpose of this paper, however, we make
one additional simplifying assumption3 that the sources are al-
ways greedy, i.e.,ri < ρi for all contending flowsFi. There-
fore, ui = ri. Under such an assumption, for the local effec-
tive channel capacityB, we may determine that the allocation
strategy(r1, . . . , rn) is fair for n single-hop contending flows
(F1, . . . , Fn), if

∑n

k=1 rk ≤ B and|ri/wi−rj/wj | < ǫ over any
time period[t1, t2]. In the example shown in Fig. 2(a), ifw1 = 2
andw2 = 1, a fair allocation strategy(r1, r2) = (2B/3, B/3).

Within the local channel, we proceed to extend such a defi-
nition to the case of multi-hop flows. A straightforward exten-
sion is as follows. The allocation strategy(r1, . . . , rn) is fair for
multi-hop contending flows(F1, . . . , Fn), if

∑n

k=1 rk ≤ B and
|ri/wi−rj/wj | < ǫ over any time period[t1, t2]. In the example
shown in Fig. 2(b), we show that such a strategy is unfair to flows
with longer paths. WhenF2 is a three-hop flow, the strategy al-
locatesr2 = B/3. Since the allocation is shared by the three
subflows ofF2, the end-to-end throughputu2 = B/9. In this
case,u2/u1 = 1/6, which is inconsistent withw2/w1 = 1/2.
F2 is penalized for its longer path.

Since our focus is on the end-to-end throughput of flows, the
desired fairness constraint is|ui/wi − uj/wj | < ǫ over any
time period[t1, t2]. For example, in Fig. 2(c), a more appropri-
ate allocation strategy may be(r1, r2) = (2B/5, 3B/5), so that
(u1, u2) = (2B/5, B/5), which is fair toF2. Generally, ifri.j

3This assumption usually holds due to the scarce capacity in awireless channel.
When it does not hold, the results in this work may easily be extended to the more
generic case of weighted max-min fair allocations.
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Fig. 2. Fairness: the single-hop and multi-hop case

is allocated to the subflowFi.j , we haveuij = ri.j , thusui =
min(ri.j). If we equalize channel allocations for all subflows be-
longing to the same flow, i.e., if̂ri ≡ ri.1 = ri.2 = . . . = ri.li

for an li-hop flowFi, we haveui = ri.j = r̂i. As such, from the
viewpoint of channel allocation, we define the fairness constraint
as|r̂i/wi−r̂j/wj | < ǫ. For the example in Fig. 2(c),r2 = 3B/5,
while r̂2 = r2.j = B/5, j = 1, 2, 3.

Finally, we extend our definition from the local channel to the
global topology. In the strictest sense of fairness, we require that
|r̂i/wi − r̂j/wj | < ǫ is satisfied for all flows in the network.
However, such a constraint limits spatial bandwidth reuse for the
flows that are not in the area of intense contention. For the in-
terests of spatial reuse of bandwidth, we only define the fairness
constraint among contending flows, rather than consideringall
flows in the network.Fairnessamong multi-hop flows in a wire-
less multi-hop network is defined as follows.

Definition: In a multi-hop wireless network, the allocation
strategy(r̂1, . . . , r̂n) is fair for contending flows(F1, . . . , Fn)
in the same contending flow group, if (1) within any local neigh-
borhood (that flows contend for the same channel capacityB),
∑n

k=1 mk r̂k ≤ B, with mi being the number of contending sub-
flows ofFi in this local neighborhood; and (2)|r̂i/wi−r̂j/wj | <
ǫ over any time period[t1, t2].

Henceforth, we only consider the case of a single contending
flow group, since multiple contending flow groups may transmit
concurrently without contention. Further, we assumen multi-
hop flows,F1, . . . , Fn, exist in such a contending flow group,
and each flowFi consists ofli subflowsFi.1, . . . , Fi.li .

D. Basic Fairness

We now turn to illustrate the differences between the single-
hop and multi-hop cases, and to derive the definition of the
basic shareof a flow. With respect to end-to-end throughput
of a flow, the previously definedfairnessconstraint guarantees
|ui/wi − uj/wj | < ǫ. The allocation strategies that satisfy such
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a fairness constraint are, in fact, not unique, and result indiffer-
ent total effective throughput. For example, we may begin by
considering contending subflows of a multi-hop flow indepen-
dently. By breaking multi-hop flows into subflows, we may use
the allocation strategy(r̂1, . . . , r̂n) that satisfies the following:

n
∑

i=1

li
∑

j=1

ri.j =

n
∑

i=1

r̂ili = B (2)

In order to satisfy the constraint of fairness, it may be easily
derived thatui = r̂i = wiB/

∑n

j=1 wj lj. The total effective

throughput is
∑n

i=1 ui =
(
P

n
i=1

wi)B
P

n
j=1

wj lj
. The general idea of this

allocation strategy is to allocateB to all subflows in the same
contending flow group, regardless of whether they actually con-
tend in the same local neighborhood. A special case is the exam-
ple in Fig. 2(c).

We show that, if the correlation between subflows in the
same flow is considered, we may achieve a better total effec-
tive throughput. For this purpose, we first consider a multi-hop
flow shown in Fig. 3(a), where nodesNi andNj(j > i + 1) are
in range. Such a flow is referred to as a flowwith a shortcut.
Fig. 3(b) shows the same flow without such a shortcut. In our
analysis, we assume that all flows are without shortcuts. This is
a realistic assumption, since most ad hoc routing protocols(e.g.
Dynamic Source Routing) finds shortest paths.

F1.1 F1.2 F1.3 F1.4 F1.5 F1.6

(c) a multi-hop flow with 6 subflows, without shortcuts

Ni-1 Ni Ni+1

Ni+2 Nj

Nj+1

(a) multi-hop flow with a shortcut

Ni-1 Ni Nj Nj+1

(b) same flow without shortcuts

F1.5

F1.2 F1.4 F1.6

F1.3
F1.1

(d) the corresponding subflow contention graph of (c)

in range

Fig. 3. Examples of multi-hop flows

Given this assumption, it may be derived that, for a flow
Fi, each subflowFi.k only contends with its immediate up-
stream flowFi.k−1 and immediate downstream flowFi.k+1. If
li ≥ 3, we may classify the subflows into three independent
sets, where subflows in each set may transmit concurrently:
{Fi.j , j = 3k + 1, k ≥ 0}, {Fi.j , j = 3k + 2, k ≥ 0}, and
{Fi.j , j = 3k + 3, k ≥ 0}. This is, in fact, a graph coloring exer-
cise in the subflow contention graph ofFi. For example, we con-
sider a multi-hop flow with 6 subflows (but without shortcuts),
illustrated in Fig. 3(c), whose subflow contention graph is shown
in Fig. 3(d). We use the minimum number of colors (3) to par-
tition the subflows into three non-contending sets:{F1.1, F1.4},
{F1.2, F1.5}, {F1.3, F1.6}.

Given the same channel capacity, a flow with more than3 hops
is entitled to the same end-to-end throughput as a flow that has
exactly3 hops. We define thevirtual lengthof a flow Fi, vi, as
follows:

vi =

{

3 li ≥ 3
li li < 3

Subject to the fairness constraint and
∑n

i=1 ri = B, we may
obtain the allocation strategy(r̂1, . . . , r̂n), such that̂ri = ui =

wiB
P

n
j=1

wjvj
. The total effective throughput under such a strategy

is
∑n

i=1 ui =
(
P

n
i=1

wi)B
P

n
j=1

wjvj
. Sincevi ≤ li for anyFi, we observe

that the end-to-end throughput and the total effective throughput
achieved in the case of multi-hop flows isno lower thanthose
in the case of single-hop flows. Nevertheless, such an allocation
strategy still satisfies the fairness constraint. The possibly higher
share of allocation to each flow is made possible by considering
the intra-flow spatial reuse of spectrum. Hereafter, the allocation
r̂i = wiB

P

n
j=1

wjvj
is referred to as thebasic shareof Fi, and the

resulting throughputui as thebasic throughput. When all flows
receive the basic share, the total effective throughput is at least
(
Pn

i=1
wi)B

P

n
j=1

wjvj
. We claim that an allocation strategy satisfies the

constraint ofbasic fairness, if the allocation of any flow is equal
to or higher than its basic share.

Naturally, the fairness constraint is stronger, while it isadvan-
tageous to achieve a higher total effective throughput if only ba-
sic fairnessis required. Our objective is to maximize the total ef-
fective throughput, while supplying the basic fairness property.

III. O PTIMAL ALLOCATION STRATEGIES

For the purpose of evaluating the effectiveness of any proposed
algorithms against solutions in the ideal case, we develop an es-
timation algorithm to calculate the optimal allocation strategies
that achieve our objective of maximizing spatial bandwidthreuse,
while satisfying (1) the fairness constraint; and (2) the basic fair-
ness constraint.

A. Satisfying the Fairness Constraint

We first present optimal allocation strategies to satisfy the fair-
ness constraint. Since optimality is achieved by maximizing to-
tal effective throughput, we estimate the theoretical upper bound
of total effective throughput with a weighted subflow contention
graph, where each node in a subflow contention graph is labeled
with the weight of the corresponding subflow. Fig. 4 shows an
example of the weighted flow contention graph.

In the weighted subflow contention graph, a complete sub-
graph is referred to as aclique, while a clique not contained in
another clique is referred to as themaximum clique, which rep-
resents a set of subflows that mutually contend with each other.
Assume that there areJ maximum cliques in the weighted sub-
flow contention graph. The sum of weights on all vertices in a
clique is referred to as theweighted clique size, ωΩk

, of the cor-
responding cliqueΩk, k = 1, . . . , J . The maximum of weighted
clique sizes of all maximum cliques is referred to as theweighted
clique number, ωΩ = max ωΩk

, k = 1, . . . , J . In addition, as-
sume that for each flowFi, there areni,k subflows in the clique
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Fig. 4. Weighted subflow contention graph

Ωk (ni,k ≥ 0). Since all subflows in the same clique contends
for the channel capacityB, for contending flows(F1, . . . , Fn) in
the same contending flow group, we have

n
∑

i=1

(ni,k r̂i) ≤ B, k = 1, . . . , J (3)

Under the fairness constraint, we haveui/uj = r̂i/r̂j =
wi/wj . With respect to the channel allocation per unit weight
(denoted byr̂0), we haver̂i = wir̂0. We thus obtain

n
∑

i=1

(ni,kwi)r̂0 = ωΩk
r̂0 ≤ B, k = 1, . . . , J (4)

which leads to

ωΩr̂0 ≤ B (5)

Hence, channel allocation per unit weight is upper bounded by
B/ωΩ. Thus, the theoretical upper bound of bothr̂i and end-to-
end throughputui of a flowFi iswiB/ωΩ, while the upper bound
of total effective throughput is

∑n

i=1 ui =
∑n

i=1 wiB/ωΩ.
Proposition 1: Under the fairness constraint, the upper bound

of total effective throughput is
∑n

i=1 wiB/ωΩ, whereωΩ denotes
the weighted clique number.

Proposition 1 sets thetheoretical upper bound of the total
effective throughput under fairness constraint. It is consistent
with the calculated basic share of a flow, since in the maximum
clique, there are at mostvi subflows for each flowFi, we have
ωΩ ≤

∑n

i=1 wivi. The equality occurs when alln flows havevi

subflows in the maximum clique. However, we note that in some
cases, the upper bound is not achievable. For example, Fig. 5
shows a pentagon-shaped weighted flow contention graph. Ob-
viously, ωΩ = 2. From Proposition 1, the upper bound of total
effective throughput is5B/2, with each flow achieving an end-
to-end throughput ofB/2. However, this is, in fact, impossible
to achieve.

F
1.1(1)

F
2.1(1) F

3.1(1)

F
4.1(1)

F
5.1(1)

Fig. 5. weighted subflow contention graph with unachievableupper bound of
total effective throughput: thepentagonexample

B. Satisfying the Basic Fairness Constraint

In order to supply the basic fairness property, the optimal allo-
cation strategy(r̂1, . . . , r̂n) needs to satisfy the basic share con-
straintsr̂i ≥ wiB

P

n
j=1

wjvj
, 1 ≤ i ≤ n. Further, when all flows

contend for the channel capacityB in the same clique, Eq. (3)
needs to be satisfied. Under such constraints, our objectiveis
to maximize the total effective throughput

∑n

i=1 ui =
∑n

i=1 r̂i.
We formulate this optimization problem as the following linear
programming problem:

maximize
∑n

i=1 r̂i

subject to

n
∑

i=1

ni,k r̂i ≤ B, 1 ≤ k ≤ J (6)

r̂i ≥
wiB

∑n

j=1 wjvj

, 1 ≤ i ≤ n (7)

Eq. (6) is identical to Eq. (3), while Eq. (7) guarantees the
basic share of each flow, and supplies the basic fairness property.
We proceed to show that there exists basic feasible solutions to
the above optimization problem. Letxi = r̂i −

wiB
P

n
j=1

wjvj
, 1 ≤

i ≤ n. xi represents the additional shares that a flow may be
allocated after the basic fairness constraint is satisfied.It can be
straightforwardly derived that the above problem is equivalent to
the following linear programming problem in a canonical form:

maximize
∑n

i=1 xi

subject to

n
∑

i=1

ni,kxi ≤ B − B
ωΩk

∑n

j=1 wjvj

, 1 ≤ k ≤ J (8)

xi ≥ 0, 1 ≤ i ≤ n (9)

Obviously,{xi = 0, i = 1, . . . , n} is a basic feasible solution.

With this solution, the total effective throughput is
P

n
i=1

wiB
P

n
j=1

wjvj
,

which is achieved when all flows enjoy their basic throughputin
the network.

Proposition 2: The solution to the above linear programming
problem constitutes the optimal allocation strategy(r̂1, . . . , r̂n),
while supplying the basic fairness property. Such an allocation
strategy maximizes the total effective throughput.

The process of constructing the linear programming problem
essentially proves the correctness of the proposition. It is known
that there exist polynomial-time algorithms to solve such alinear
programming problem; however, in most cases, it is sufficient to
solve the problem with the Simplex algorithm.

Mostly, there exist feasible schedules to achieve the optimal
allocation strategy(r̂1, . . . , r̂n) and to allocate the calculated
shares of bandwidth. However, there are still exceptional cases,
where there is no feasible schedules to achieve the derived op-
timal allocation strategy. In thepentagonexample, shown in
Fig. 5, the optimal allocation strategy isB/2 for each flow, where
there exist no feasible schedules to achieve such a strategy. In this
case, we use the calculated optimal allocation strategy as anew
set ofweight factorsto drive our algorithm proposed in the next
section. Such weights are referred to as theallocated share, to
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distinguish from the original weights (wi) of the flows. Theal-
located sharesincorporate the original weight information, since
the basic fair share is guaranteed during the derivation, and ob-
tained based on the original weight. Further, they reflect the situ-
ation of contention. Therefore, although in exceptional situations
the optimal allocation strategy is not feasible, it shows the appro-
priate weight ratio among the flows that may lead to the best total
effective throughput.

We revisit the example shown in Fig. 1, with the objective
of maximizing spatial reuse of spectrum (i.e., the total effective
throughput). If we are to satisfy the fairness constraint, accord-
ing to our analysis, the allocation strategy(r̂1, r̂2) = (u1, u2) =
(B/3, B/3) for (F1, F2), which leads to a total effective through-
put of2B/3. In comparison, if we are to satisfy the basic fairness
constraint, the solution of the linear programming problem:

maximize r̂1 + r̂2

subject to

2r̂1 ≤ B

r̂1 + 2r̂2 ≤ B

r̂1 ≥ B/4

r̂2 ≥ B/4

leading to the optimal allocation strategy(r̂1, r̂2) =
(u1, u2) = (B/2, B/4) for (F1, F2), which amounts to a total
effective throughput of3B/4, and this optimal allocation strat-
egy has a feasible scheduling associated with it.

We compare the above allocation strategies with results from
previous work [1], where the objective is to maximize to-
tal throughput of all single-hop flows, while guaranteeing ba-
sic fairness among single-hop flows. In the same example
topology, such a different objective that focuses on single-
hop flows yields an allocation strategy(r1.1, r1.2, r2.1, r2.2) =
(3B/4, B/4, 3B/8, 3B/8). With respect to end-to-end through-
put of multi-hop flows (F1, F2), we have (u1, u2) =
(B/4, 3B/8). The total effective throughput is thus5B/8,
which is inferior to the optimal solution obtained in our analy-
sis (3B/4). However, the total single-hop throughput obtained
in previous work (7B/4) exceeds that achieved by our allocation
strategy (3B/2). This comparative study shows the importance
of considering end-to-end throughput of multi-hop flows, and the
effectiveness of our solutions.

IV. A CHIEVING ALLOCATION STRATEGIES: ALGORITHMS

Building on insights derived from our theoretical analysis,
we propose a two-phase algorithm to achieve and implement
near-optimal allocation strategies that maximize total effective
throughput for multi-hop flows, while still supplying the ba-
sic fairness property. The first phase determines the allocation
strategy for subflows at each of the nodes, i.e.,(r̂1, . . . , r̂n) for
(F1, . . . , Fn). We propose both centralized and distributed alter-
natives of the algorithm. In particular, the distributed form only
depends on local information to approximate the achieved opti-
mality of the centralized form, while still guaranteeing the basic
fair share of each flow. The second phase of the algorithm is
fully distributed, and seeks to implement the calculated alloca-
tion strategy for each of the subflows.

A. First Phase: The Centralized Form

To implement the centralized algorithm in the first phase, we
need to assume a centralized node that processes per-flow infor-
mation and constructs the weighted subflow contention graph.
Though such a centralized node may not be achievable in ad hoc
networks, it is feasible when considering a hybrid network that
includes both ad hoc and infrastructure modes (e.g. base stations
in cellular modes). In the latter case, we implement the central-
ized algorithm in the base station.

To assist centralized processing, each node collects informa-
tion about outgoing subflows originating from itself, whichis
delivered to the centralized node. If a node is the source of a
multi-hop flow Fi, it is able to calculate the virtual length,vi,
of Fi, from information derived from routing protocols (such as
Dynamic Source Routing), or by a combination of (1) overhear-
ing the existence of subflows from neighboring nodes; and (2)
local information exchanges with neighboring nodes. Sinceend-
to-end paths longer than3 has a virtual length of3, no further
information beyond a two-hop neighborhood is required for de-
terminingvi. Further, we assume that the source of a flowFi pos-
sesses its weightwi. After relevant information is collected and
delivered, the centralized node may then construct the weighted
subflow contention graph. By solving the linear programming
problem presented previously (e.g. with the Simplex algorithm),
the allocation strategy for each subflow may then be finalized.
Finally, the centralized node broadcasts the allocation strategy to
all nodes in the network.

B. First Phase: The Distributed Form

Obviously, a centralized algorithm is not suitable in wireless
ad hoc networks. We propose an alternative, fully distributed
algorithm. The algorithm depends on local flow information ob-
tained by information exchange between neighboring nodes,and
between neighboring upstream and downstream nodes in multi-
hop flows. The overhead of such a scheme is minimal, since
such information may be piggybacked with data packets or hand-
shake control packets among the nodes on the path of flows. Each
node determines the allocation strategies for local flows, based on
the principles of optimizing the total effective throughput for all
flows in the local neighborhood, while guaranteeing basic shares
for these flows. We will show that such local optimization may
generate a slightly higher basic share for flows, and the total ef-
fective throughput for the entire network is slightly lowerthan
the centralized form of the algorithm.

For a particular node, thelocal optimizationproblem is to
maximize the total effective throughput of multi-hop flows that
may be overheard by the node itself (including information
learned from neighboring nodes), while satisfying constraints
with respect to local basic fairness (local counterpart of Eq. (7))
and local channel capacityB (Eq. (6)). The proposed distributed
algorithm consists of the following steps.

Construction of local cliques:Each node is able to construct
local cliquesby (1) overhearing the existence of subflows within
its transmission range (by overhearing both control packets such
as RTS and CTS, or data packets); and (2) exchange overheard
information with immediate neighbors. Previous work [5] has
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shown that, by exchanging subflow information with immedi-
ate neighbors, cliques involving only local subflows may be con-
structed. For space limitations, details of proving such feasibility
are omitted in this paper.

Intra-flow exchange of constraints:Once local cliques have
been identified, with available virtual lengthsvi of flows (ob-
tained as in the centralized form), the local channel capacity con-
straint (Eq. (6)) and the local basic fairness constraint (Eq. (7))
are thus known locally. Since we require that subflows from the
same multi-hop flow obtain equal allocations of the channel,a
node needs to propagate locally obtained constraints to allof its
upstream and downstream nodes along the same multi-hop flow.
Such propagation of constraints may take the form of an array
of coefficients and flow identifiers —(ni,k, i) — of a particular
flow Fi. As such, each node along an end-to-end path may even-
tually possess all the constraints that include the corresponding
flow. We observe that the constraints that a node constructs are
a subset ofglobal constraints, which may only be constructed
given the complete subflow contention graph. This is realized in
the centralized form of the algorithm, but impossible to achieve
in the distributed form.

Achieving locally optimal allocation strategies:Each node
(with local outgoing flows) uses information obtained from pre-
vious steps to construct a linear programming problem, the so-
lution of which amounts to allocation strategies that are optimal
locally.
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Fig. 6. First phase: the centralized and distributed form

We use an example topology shown in Fig. 6 to illustrate the
details of the first phase of our proposed algorithm. The objec-
tive is to achieve optimal allocation strategies, using either the
centralized or distributed alternatives of the algorithm.In its cen-
tralized form, the algorithm uses a centralized node to collect
information from all nodes in the network, and achieves global
optimality by solving the following problem:

maximize r̂1 + r̂2 + r̂3 + r̂4 + r̂5

subject to

3r̂1 ≤ B

2r̂1 + r̂2 ≤ B

r̂2 + r̂3 ≤ B

r̂3 + r̂4 ≤ B

2r̂4 + r̂5 ≤ B

r̂1 ≥ B/8

r̂2 ≥ B/8

r̂3 ≥ B/8

r̂4 ≥ B/8

r̂5 ≥ B/8

The achieved optimal allocation strategy is thus
(r̂1, r̂2, r̂3, r̂4, r̂5) = (B/3, B/3, 2B/3, B/8, 3B/4).

In its distributed form, the algorithm, executed on each node,
only has a partial view of the flow contention group, hence the
constraints from locally constructed cliques are only a subset of
those from the centralized algorithm. For example, nodeA is
only aware of cliquesΩ1, Ω2 andΩ3, hence there are only two
constraints associated with nodeA (Ω1 andΩ2 lead to the same
constraint). Ω3 is propagated from nodeD to other nodes on
flow F1. In addition, the basic share for each flow involved is
higher than that in the centralized algorithm, since only part of
the multi-hop flows are overheard by a node and included in the
process of maximizing total effective throughput. Table I shows
the local cliques on each node, and presents the local optimiza-
tion problem as well as its solution.

C. Second Phase: Scheduling

So far, an optimal or near-optimal allocation strategy has
been calculated. A scheduling algorithm is required to im-
plement such a strategy by allocating the calculated sharesto
each flow. We note that the allocation strategy for the sub-
flows has already attempted to maximizing spatial reuse of
spectrum. It reflects the degree of contention among flows,
so that flows with less contention in its neighborhood may
enjoy a higher allocation of bandwidth. During scheduling,
we propose to use the calculated allocation strategy (allocated
share) as the new weights for the subflows. In the exam-
ple topology shown in Fig. 4, the original subflow weights
are (F1.1, F2.1, F2.2, F3.1, F4.1) = (1, 2, 2, 3, 2). However, to
maximize total effective throughput with basic fairness guaran-
tees, a better allocation strategy is(r1.1, r2.1, r2.2, r3.1, r4.1) =
(3B/10, B/5, B/5, 3B/10, 7B/10), which may be obtained by
the centralized first-phase algorithm solving the following prob-
lem:

maximize r̂1 + r̂2 + r̂3 + r̂4

subject to

r̂1 + 2r̂2 + r̂3 ≤ B

r̂3 + r̂4 ≤ B

r̂1 ≥ B/10

r̂2 ≥ B/5

r̂3 ≥ 3B/10

r̂4 ≥ B/5
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TABLE I
LOCAL OPTIMIZATION IN THE DISTRIBUTED ALGORITHM

Nodes Local cliques Constraints r̂1 r̂2 r̂3 r̂4 r̂5

A, B, C, D(F1) Ω1, Ω2, Ω3 maximizer̂1 + r̂2 B/3 B/3
subject to
3r̂1 ≤ B
2r̂1 + r̂2 ≤ B
r̂1 ≥ B/3
r̂2 ≥ B/3

F (F2) Ω3, Ω4 maximizer̂1 + r̂2 + r̂3 2B/5 B/5 4B/5
subject to
2r̂1 + r̂2 ≤ B
r̂2 + r̂3 ≤ B
r̂1 ≥ B/5
r̂2 ≥ B/5
r̂3 ≥ B/5

H(F3) Ω4, Ω5 maximizer̂2 + r̂3 + r̂4 3B/4 B/4 3B/4
subject to
r̂2 + r̂3 ≤ B
r̂3 + r̂4 ≤ B
r̂2 ≥ B/4
r̂3 ≥ B/4
r̂4 ≥ B/4

J, K, M(F4, F5) Ω5, Ω6 maximizer̂3 + r̂4 + r̂5 3B/4 B/4 B/2
subject to
r̂3 + r̂4 ≤ B
2r̂4 + r̂5 ≤ B
r̂3 ≥ B/4
r̂4 ≥ B/4
r̂5 ≥ B/4

The allocated share of subflows may then become
(3B/10, B/5, B/5, 3B/10, 7B/10).

Due to lack of centralized coordination, scheduling packets for
subflows from different nodes requires the following tasks to be
implemented:

Intra-node coordinations:Packets from different subflows are
queued separately; yet the scheduling algorithm needs to select
the next packet to transmit from the head of the queues, obeying
the allocated share. For example, at node A in Fig. 4, two queues
exist forF1.1 andF2.1, respectively. The packet selection process
needs to guarantee that the ratio of transmissions forF1.1 and
F2.1 should be3/10 : 1/5.

Inter-node coordinations:The scheduling algorithm on each
node needs to determine the backoff timer for its ready-to-send
packets, in order to coordinate with other nodes. If we thinkof
all the subflows on one node as one virtual flow, while the aggre-
gated allocated share of the subflows as the virtual flow share(or,
node share), each node will try to determine an appropriate back-
off timer that is inversely proportional to the virtual flow share on
the node. In other words, nodes need to collectively adjust their
contention window to be proportional to their own node share.
In the example of Fig. 4, nodeA needs to adjust its contention
windows to properly estimate its node share (F1.1+F2.1 = B/2)
compared to other neighboring nodes such asB (its node share
beingF2.2 + F3.1 = B/2).

We present the details of our scheduling algorithm as follows,
and evaluate its performance in Sec. V. The transmission of data
packets follows the standard RTS-CTS-DATA-ACK handshaking
protocol as in IEEE 802.11 [6], [7] to acquire the floor. Each
node,i, is required to maintain a virtual clock,vi(t), as well as

a local table to keep track of the service tags of all its one-hop
neighbor subflows. In order to maintain the local table, the RTS,
CTS and ACK packets are used to piggyback the new service
tag of the currently transmitting data packet. Any neighbors on
hearing the tag will update its own local table.

Assume that a nodei hasJ subflows with their corresponding
queues denoted by queue(i, j), and the allocated shares for each
subflow at nodei denoted bycj

i , j = 1, 2, . . . , J . In addition,
the node share is denoted byci =

∑J

j=1 cj
i , i.e., it is the sum of

allocated shares of subflows that originate from this node.
In this setting, our scheduling algorithm is outlined as follows:

(1) When a packet arrives at nodei, it enqueues in its own
subflow queue;

(2) When a packetP j,k
i (the kth packet for subflowj) with

sizeLj,k
i reaches the head of its queue, three tags are assigned:

– Start tag:Sj,k
i = vi(t

j,k
i ), tj,ki being the real time when the

packetk of subflowj reaches the head of its queue;
– Internal finish tag:Ij,k

i = Sj,k
i + Lj,k

i /cj
i . This tag is used

to determine the next-to-send packet;
– External finish tag:Ej,k

i = Sj,k
i + Lj,k

i /ci. This tag is used
to determine the contention backoff timer. Note that we use
the node share (not the allocated share for each subflow) in
the tag calculation.

(3) The senderi will estimate an approximate backoff valueQ
for P j,k

i in its local table which is defined asQ =
∑

m∈T (Sj,k
i −

rm) ·α for its subflows, whereT includes all the subflows stored
in the local table,rm is the start tag of subflow from nodem in the
local table, andα is a tunable parameter to decide the strictness
of short-term fairness. On the other hand, the receiver of the



9

data packet also estimates a backoff value,R, in its table and
carry this information in the ACK packet to the sender for future
packet scheduling. We defineR =

∑

m∈T, m 6=i(ri − rm) · α.

The actual backoff timer to be set forP j,k
i at nodei is uniformly

distributed in[0, CWmin + max(Q, R, 0)], where CWmin is the
minimum contention window.

(4) When a packet is successfully sent, senderi will update its
virtual clock as the external finish tag of the previous packet. The
scheduling algorithm then selects the packet from all the head-of-
line packets of the queues that have the smallest internal finish
tag. The backoff timer is then reset.

In the algorithm, we use the internal finish tag to determine the
packet to send locally, which is calculated based on the allocated
share of the subflow. We then use the external finish tag to deter-
mine the backoff interval using the node share. The probability of
buffer overflow is low for a multi-hop flow using our algorithm,
since subflows from the same flow will receive approximately the
same channel share.

V. PERFORMANCEEVALUATION

We have implemented our two-phase algorithm (referred to as
2PA in this section) within the ns-2 2.1b8a network simulator,
and have performed simulations to evaluate the effectiveness of
our proposed algorithm. We present simulation results in two
network scenarios: (1) a simpler topology shown in Fig. 1; and
(2) a more elaborate topology shown in Fig. 6. With respect to
these two example scenarios, we compare the performance of
2PA with (1) standard IEEE 802.11 MAC [7]; and (2) thetwo-
tier fair scheduling algorithm(abbreviated astwo-tier) in previ-
ous work [1], which guarantees basic fairness among single-hop
flows and maximizes single-hop total effective throughput.

We adopt the ns-2 standard physical layer implementation with
a channel capacity of 2Mbps with Two Ray Ground Reflection as
the propagation model. Each node is assigned a maximum trans-
mission range and an interference range of250 meters. We use
Dynamic Source Routing (DSR) as the routing protocol. Data
at source nodes are generated at a constant bit rate (CBR) of
200 packets per second with a packet size of512 bytes. In or-
der to perform side-by-side comparisons of our proposed algo-
rithm (2PA) with IEEE 802.11 MAC and two-tier, we use iden-
tical weights of1 for each flow (both multi-hop flows and its
subflows) for both simulation scenarios. The length of each sim-
ulation session isT = 1000 seconds. We are interested in evalu-
ating the following parameters: (1) During the entire simulation
session, the number of packets successfully delivered for each of
the flows (including subflows). This is to evaluate the allocated
share to each of the flows and subflows (i.e., r̂i · T andri,j · T ).
(2) The total number of successfully delivered packets during the
entire simulation session. This is to evaluate the extent ofspatial
spectrum reuse,i.e., the total effective throughput

∑n

i=1 r̂i · T .
(3) the total number of packets lost, as well as the packet loss
ratio. This is to evaluate the unevenness among subflows belong-
ing to the same multi-hop flow. Packets delivered in upstream
subflows and then dropped in downstream subflows represents
an allocation strategy that is not optimal or adequate.

CWmin andα are set to31 and0.0001 respectively.

A. Scenario 1

We use the network topology in Fig. 1 in this scenario. The
simulation results are shown in Table II.

TABLE II
SIMULATION RESULTS, TOPOLOGY AS INFIG. 1

Parameters 802.11 two-tier 2PA
r1.1 T 16079 66658 111773
r1.2 T (r̂1T ) 952 60992 111084
r2.1 T 156517 65507 56404
r2.2 T (r̂2T ) 151533 65507 56404
P

2

i=1
r̂i · T 152485 126499 167488

lost packets 20111 5666 689
loss ratio 0.132 0.045 0.004

We may observe that, the throughput ratio among the subflows
of 2PA approximates the allocated share calculated in the first
phase, i.e.,r1.1 : r1.2 : r2.1 : r2.2 ≈ 1/2 : 1/2 : 1/4 : 1/4. In
addition, 2PA achieves a higher total effective throughput, sur-
passing both IEEE 802.11 and two-tier in this scenario. Since
IEEE 802.11 MAC protocol does not consider the fair alloca-
tion of bandwidth among subflows, a higher packet loss ratio oc-
curs in betweenF1.1 andF1.2 due to the fact that the contending
subflowsF2.1 andF2.2 always occupy the channel. Two-tier at-
tempts to schedule single-hop subflows so that channel is shared
fairly, and to take advantage of the spatial bandwidth reusewhen
the subflow receiving the least service has started to transmit.
However, since such a scheduling decision allocates more shares
for F1.1 thanF1.2, buffer overflow occurs on nodeB. This leads
to the fact that while 2PA has lost only689 packets, two-tier has
lost ten times more. These results demonstrate that considering
spatial spectrum reuse from an end-to-end perspective is not only
beneficial, but also essential.

B. Scenario 2

The second scenario shown in Fig. 6 is more complex with
longer multi-hop flows, and local nodes may not have com-
plete flow contention information about all the multi-hop flows
in its flow contention group. The calculated allocated share
(r̂1, r̂2, r̂3, r̂4, r̂5) in the centralized form (2PA-C) and distributed
form (2PA-D) of the first phase are(1/3, 1/3, 2/3, 1/8, 3/4) and
(1/3, 1/5, 1/4, 1/4, 1/2), respectively, with the assumption that
all flows have the same weight1. The channel allocation in cen-
tralized and distributed forms are quite different due to the fact
that the local optimization problem contains only part of the con-
straints that are in global optimization. For example, nodeF is
only aware of cliquesΩ3 andΩ4 that includeF2 (as shown in
Table I). Other flows involved in the local optimization suchas
F1, F3 may be subject to other constraints that are not aware of
by nodeF . As a result, the channel allocation forF2 (1/5) in
the distributed form is lower than that from a global optimization
perspective (1/3). Similar arguments apply toF3 andF5 as well.

Table III shows the results using both the centralized and dis-
tributed first-phase algorithms. The effectiveness of the second
phase scheduling algorithm in 2PA ensures that the throughput
of each flow under 2PA is proportional to their allocated shares.
Since the centralized form uses global optimization, it generally
has a higher total effective throughput than that obtained with the
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TABLE III
SIMULATION RESULTS, TOPOLOGY AS INFIG. 6

Parameters 802.11 two-tier 2PA-C 2PA-D
r1.1 T 72150 49551 53992 67381
r1.2 T 53590 41731 53745 67189
r1.3 T 53127 39574 52955 67189
r1.4 T (r̂1T ) 53127 39574 52955 67189
r2.1 T (r̂2T ) 8345 14802 54694 42457
r3.1 T (r̂3T ) 197911 163809 112520 57321
r4.1 T 49966 18865 29365 62036
r4.2 T (r̂4T ) 24495 18053 28022 60855
r5.1 T (r̂5T ) 159326 157887 173971 124520
P

5

i=1
r̂i · T 443204 394125 422162 352341

lost packets 44494 10789 2380 1374
loss ratio 0.100 0.027 0.006 0.004

distributed form. Unlike 802.11,F2.1 under 2PA is able to obtain
a fair share of the channel since 2PA restrictsF3.1 so that it does
not utilize the channel too aggressively. With respect to the total
effective throughput, though 2PA-C surpasses two-tier, wenote
that due to the lack of constraints in the local optimization, the
allocation strategy forF2, F3 andF5 in 2PA-D is not as optimal.
Since the topology is particularly tuned to show the differences
between 2PA-C and 2PA-D, the results are expected. Further,we
note that, with respect to throughput, the results of 2PA-D is not
comparablewith that of two-tier, since the latter is a centralized
algorithm, and the former is a fully distributed algorithm.Fi-
nally, we observe that the packet loss ratio under 2PA is minimal
compared with that under 802.11 and two-tier.

VI. RELATED WORK

Huanget al. [5] focuses on providing max-min fair schedul-
ing. Rather than assigning weights in advance to flows, it at-
tempts to compute the appropriate bandwidth share for each flow
based on its surroundings. Though the approach is similar to
ours, there exist two major differences: (1) as in other previ-
ous work, [5] only considers single-hop independent flows, while
we consider multi-hop flows from an end-to-end perspective;(2)
there are no pre-assigned weights for flows in [5], while our
work takes pre-assigned weights for each flow into considera-
tion. Huanget al. implicitly acknowledges that contending flows
have the same weight, and depending on the contention situation,
each flow will receive its appropriate share without any flow star-
vation. In our case, by using the preassigned weights as a guide-
line for the scheduling policy, we allocate basic fair shares for
each flow, and attempt to maximize the total effective through-
put at the same time. Similar to [5], Tassiulaset al. [8] also
concentrates on providing max-min fair scheduling in wireless
networks. However, the single-hop contention constraint are dif-
ferent from ours in that it assumes that any two single-hop flows
not sharing a node can transmit packets simultaneously, whereas
in our model, any two single-hop flows within two hops are con-
tending with each other.

Nandagopalet al. [9] designs a general analytical framework
and mechanism for arbitrarily specified fairness model via autil-
ity function, and concentrates on achieving such a given fair-
ness model by an appropriate MAC layer design. Vaidyaet al.
[10] provides a distributed fair scheduling algorithm for wireless

LANs, and proposes several mapping techniques for better de-
termination of backoff timers. Our second-phase algorithmalso
attempts to improve fairness by tuning the backoff timers. The
work by Kanodiaet al. [11] may be the most similar to our ap-
proach. It proposes a scheduling scheme referred to asmulti-
hop coordinated schedulingto provide better QoS guarantees re-
garding end-to-end delays of multi-hop flows. Similarly, wealso
treat each multi-hop flows from an end-to-end perspective and
emphasize the coordination between upstream and downstream
subflows. However, we do not discuss end-to-end delays or pro-
pose algorithms to address these issues, our objective is different
in that we focus on allocating spatially reused bandwidth among
multi-hop flows from an end-to-end perspective, thus improving
the overall channel bandwidth utilization in the network.

VII. C ONCLUSIONS

In this paper, we have extensively studied the issue of end-to-
end fairness in wireless ad hoc networks. Unlike previous works
that break a multi-hop flow into multiple single-hop flows, we
analyze the issue of increasing the spatial reuse of bandwidth
from an end-to-end prospective, and propose estimation algo-
rithms that satisfy the fairness constraint and the basic fairness
constraint. A two-phase algorithm is presented to approximate
the optimal allocation strategies, building upon results of theo-
retical analysis. Results of performance evaluation in ns-2 have
demonstrated the effectiveness of our algorithm compared to the
two-tier fair scheduling algorithm and the IEEE 802.11 MAC
protocol, To the best of our knowledge, there exists no previous
work that examines similar problemsfrom an end-to-end per-
spectiveof multi-hop flows.
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