
IEEEIACM TKANSACTIONS ON NETWORKING, VOL. 4, NO. 3, JUNE 1996 315

Efficient Fair Queuing Using Deficit Round-Robin
M. Shreedhar and George Varghese, Member, IEEE

Abstract- Fair queuing is a technique that allows each flow
passing through a network device to have a fair share of net-
work resources. Previous schemes for fair queuing that achieved
nearly perfect fairness were expensive to implement; specifically,
the work required to process a packet in these schemes was
0 (log(71)), where 71. is the number of active flows. This is expen-
sive at high speeds. On the other hand, cheaper approximations of
fair queuing reported in the literature exhibit unfair behavior. In
this paper, we describe a new approximation of fair queuing, that
we call deficit round-robin. Our scheme achieves nearly perfect
fairness in terms of throughput, requires only O(1) work to
process a packet, and is simple enough to implement in hard-
ware. Deficit round-robin is also applicable to other scheduling
problems where servicing cannot be broken up into smaller units
(such as load balancing) and to distributed queues.

I. INTRODUCTION

HEN THERE is contention for resources, it is impor- W tant for resources to be allocated or scheduled fairly.
We need firewalls between contending users, so that the fair
allocation is followed strictly. For example, in an operating
system, CPU scheduling of user processes controls the use
of CPU resources by processes, and insulates well-behaved
users from ill-behaved users. Unfortunately, in most computer
networks, there are no such firewalls; most networks are
susceptible to sources that behave badly. A rogue source that
sends at an uncontrolled rate can seize a large fraction of the
buffers at an intermediate router; this can result in dropped
packets for other sources sending at more moderate rates. A
solution to this problem is needed to isolate the effects of bad
behavior to users that are behaving badly.

An isolation mechanism called fair queuing (FQ) [3] has
been proposed, and has been proven [SI to have nearly
perfect isolation and fairness. Unfortunately, FQ appears to be
expensive to implement. Specifically, FQ requires O(log(n))
work per packet, where n is the number of packet streams that
are concurrently active at the gateway or router. With a large
number of active packet streams, FQ is hard to implement
at high speeds.’ Some attempts have been made to improve
the efficiency of FQ, however, such attempts either do not
avoid the O(log(rt)) bottleneck or are unfair. We will use the
capitalized “Fair Queuing” (FQ) to refer to the implementation

Manuscript received August 9, 1995; revised November 11, 1995; approved
by IEEE/ACM TRANSACTIONS ON NETWORKING Editor J. Crowcroft. This work
was supported by the National Science Foundation under Grant NCR-940997.

M. Shreedhar was with Washington University, St. Louis, MO 63130 1JSA.
He is now with Microsoft Corporation, Redmond, WA, 98052 USA (e-mail:
shrecm @microsoft.com).

G. Varghesc is with thc Department of Computer Science, Washington
University, St. Louis, MO 63 130 USA (e-mail: varghese@askew.wustl.edu).

Publisher Itcm Identifier S 1063-6692(96)04215-X.
’ Alternately, while hardware architectures could be devised to implement

FQ, this will probably drive up the cost of the router.

in [3], and the uncapitalized “fair queuing” to refer to the
generic idea.

In this paper, we shall define an isolation mechanism that
achieves nearly perfect fairness (in terms of throughput), and
takes O(1) processing work per packet. Our scheme is simple
(and, therefore, inexpensive) to implement at high speeds at a
router or gateway. Furthermore, we provide analytical results
that do not depend on assumptions about traffic distributions.

Flows: Our intent is to provide firewalls between different
packet streams. We formalize the intuitive notion of a packet
stream using the more precise notion of a j o w [18]. A flow
has two properties:

A flow is a stream of packets that traverses the same route
from the source to the destination and requires the same
grade of service at each router or gateway in the path.
In addition, every packet can be uniquely assigned to a
flow using prespecified fields in the packet header.

The notion of a flow is quite general and applies to datagram
networks (e.g., IP, OSI) and virtual circuit networks (e.g.,
X.25, ATM). For example, in a virtual circuit network, a flow
could be identified by a virtual circuit identifier (VCI). On the
other hand, in a datagram network, a flow could be identified
by packets with the same source-destination addresses.2 While
source and destination addresses are used for routing, we
could discriminate flows at a finer granularity by also using
port numbers (which identify the transport layer session) to
determine the flow of a packet. For example, this level of
discrimination allows a file transfer connection between source
A and destination B to receive a larger share of the bandwidth
than a virtual terminal connection between A and B.

As in all fair queuing variants, our solution can be used to
provide fair service to the various flows that thread a router,
regardless of the way a flow is defined.

Organization: The rest of the paper is organized as follows.
In the next section, we review the relevant previous work.
A new technique for avoiding the unfairness of round-robin
scheduling called deficit round-robin is described in Section
111. Round-robin scheduling [13] can be unfair if different
flows use different packet sizes; our scheme avoids this
problem by keeping state, per Bow, that measures the deficit
or past unfairness. We analyze the behavior of our scheme
using both analysis and simulation in Sections IV and V. Basic
deficit round-robin provides throughput in terms of fairness but
provides no latency bounds. In Section VI, we describe how
to augment our scheme to provide latency bounds.

2Note that a flow might not always traverse the same path in datagram
networks, since the routing tables can change during the lifetime of a
connection. Since the probability of such an event is low, we shall assume
that it traverses the same path during a session.

1063-6692/96$05.00 0 1996 IEEE

376 IEEEIACM TRANSACTIONS ON NETWORKING, VOL. 4, NO. 3, JUNE 1996

Fig. 1. The parking lot problem

11. PREVIOUS WORK
Existing Routers: Most routers use first-come first-serve

(FCFS) service on output links. In FCFS, the order of arrival
completely determines the allocation of packets to output
buffers. The presumption is that congestion control is imple-
mented by the source. In feedback schemes for congestion
control, connections are supposed to reduce their sending rate
when they sense congestion. However, a rogue flow can keep
increasing its share of the bandwidth and cause other (well-
behaved) flows to reduce their share. With FCFS queuing, if
a rogue connection sends packets at a high rate, it can capture
an arbitrary fraction of the outgoing bandwidth. This is what
we want to prevent by building firewalls between flows.

Typically, routers try to enforce some amount of fairness
by giving fair access to traffic coming on different input links.
However, this crude form of resource allocation can produce
exponentially bad fairness properties as shown below.

In Fig. 1 for example, assume that all four flows F1-F4
wish to flow through link L to the right of node D, and that all
flows always have data to send. If node D does not discriminate
flows, node D can only provide fair treatment by alternately
serving traffic arriving on its input links. Thus, flow F4 gets
half the bandwidth of link L and all other flows combined get
the remaining half. A similar analysis at C shows that F3 gets
half the bandwidth on the link from C to D. Thus, without
discriminating flows, F4 gets 1/2 the bandwidth of link L,
F3 gets 114 of the bandwidth, F2 gets 118 of the bandwidth,
and F1 gets 118 of the bandwidth. In other words, the portion
allocated to a flow can drop exponentially with the number
of hops that the flow must traverse. This is sometimes called
the parking lot problem because of its similarity to a crowded
parking lot with one exit.

Nagle’s solution: In Fig. 1, the problem arose because the
router allocated bandwidth based on input links. Thus, at router
D, F4 is offered the same bandwidth as flows Fl , F2, and F3
combined. It is unfair to allocate bandwidth based on topology.
A better idea is to distinguish flows at a router and treat them
separately.

Nagle [13] proposed an approximate solution to this prob-
lem for datagram networks by having routers discriminate
flows and then providing round-robin service to flows for every
output link. Nagle proposed identifying flows using source-
destination addresses and using separate output queues for
each flow; the queues are serviced in round-robin fashion. This
prevents a source from arbitrarily increasing its share of the
bandwidth. When a source sends packets too quickly, it merely
increases the length of its own queue. An ill-behaved source’s
packets will get dropped repeatedly.

Despite its merits, there is a flaw in this scheme. It ignores
packet lengths. The hope is that the average packet size over

the duration of a flow is the same for all flows; in this case,
each flow gets an equal share of the output link bandwidth.
However, in the worst case, a flow can get “ d i n times the
bandwidth of another flow, where max is the maximum packet
size and min is the minimum packet size.

Fair Queuing: Demers et al. devised an ideal algorithm
called bit-by-bit round-robin (BR) that solves the flaw in
Nagle’s solution. In the BR scheme, each flow sends one
bit at a time in round-robin fashion. Since it is impossible
to implement such a system, they suggest approximately
simulating BR. To do so, they calculate the time when a packet
would have left the router using the BR algorithm. The packet
is then inserted into a queue of packets sorted on departure
times. Unfortunately, it is expensive to insert into a sorted
queue. The best known algorithms for inserting into a sorted
queue require O(log(n)) time, where n. is the number of flows.
While the BR guarantees faimess [8], the packet processing
cost makes it hard to implement cheaply at high speeds.

A naive FQ server would require O(log(m)), where m is the
number of packets in the router. However, Keshav [111 shows
that only one entry per Bow need be inserted into a sorted
queue. This still results in O(log(n)) overhead. Keshav’s other
implementation ideas [ll] take at least O(log(n)) time in the
worst case.

Stochastic Fair Queuing (SFQ): SFQ was proposed by
McKenney [12] to address the inefficiencies of Nagle’s al-
gorithm. McKenney uses hashing to map packets to cor-
responding queues. Normally, one would use hashing with
chaining to map the flow ID in a packet to the corresponding
queue. One would also require one queue for every possible
flow through the router. McKenney, however, suggests that
the number of queues be considerably less than the number
of possible flows. All flows that happen to hash into the
same bucket are treated equivalently. This simplifies the hash
computation [hash computation is now guaranteed to take O(1)
time], and allows the use of a smaller number of queues. The
disadvantage is that flows that collide with other flows will
be treated unfairly. The fairness guarantees are probabilistic,
hence, the name stochastic fair queuing. However, if the size
of the hash index is sufficiently larger than the number of
active flows through the router, the probability of unfairness
will be small. Notice that the number of queues need only be
a small multiple of the number of activeflows (as opposed to
the number of possible flows, as required by Nagle’s scheme).

Queues are serviced in round-robin fashion, without con-
sidering packet lengths. When there are no free buffers to
store a packet, the packet at the end of the longest queue
is dropped. McKenney shows how to implement this buffer-
stealing scheme in O(1) time using bucket sorting techniques.
Notice that buffer stealing allows better buffer utilization
as buffers are essentially shared by all flows. The major
contributions of McKenney’s scheme are the buffer stealing
algorithm, and the idea of using hashing and ignoring colli-
sions. However, this scheme does nothing about the inherent
unfairness of Nagle’s round-robin scheme.

Other Relevant Work: Golestani introduced [9] a fair queu-
ing scheme, called self-clocked fair queuing. This scheme uses
a virtual time function that makes computation of the departure

SHREEDHAR AND VARGHESE: EFFICIENT FAIR QUEUING USING DEFICIT ROUND-ROBIN 371

times simpler than in ordinary Fair Queuing. However, this
approach retains the O(log(n)) sorting bottleneck.

Together with weighted fair queuing, a pioneering approach
to queue management is the virtual clock approach of Zhang
[18]. Delay bounds based on this queuing discipline have
recently been discovered [181. However, the approach still has
the computational cost associated with sorting.

V. Jacobson and S. Floyd have proposed a resource al-
location scheme called class-based queuing that has been
implemented. In the context of that scheme, and independent
of our work, S. Floyd has proposed a queuing algorithm
[5]-[7] that is similar to our deficit round-robin scheme
described below. Her work does not have our theorems about
throughput properties of various flows, however, it does have
interesting results on delay bounds and also considers the moire
general case of multiple priority classes.

A recent paper [151 has (independently) proposed a similar
idea to our scheme: in the context of a specific local area
network (LAN) protocol (DQDB) they propose keeping track
of remainders across rounds. Their algorithm is, howevea,
mixed in with a number of other features needed for DQDIB.
We believe that we have cleanly abstracted the problem, thus,
our results are simpler and applicable to a variety of contexts.

A paper by Parekh and Gallagher [14] showed that Fair
Queuing could be used together with a leaky bucket admission
policy to provide delay guarantees. This showed that FQ
provides more than isolation; it also provides end-to-end
latency bounds. While it increased the attractiveness of FQ,
it provided no solution for the high overhead of FQ.

111. DEFICIT ROUND-ROBIN
Ordinary round-robin servicing of queues can be done in

constant time. The major problem, however, is the unfairness
caused by possibly different packet sizes used by different
flows. We now show how this flaw can be removed, while slill
requiring only constant time. Since our scheme is a simple
modification of round-robin servicing, we call our scheme
deficit round-robin.

We use stochastic fair queuing to assign flows to queues.
To service the queues, we use round-robin servicing with a
quantum of service assigned to each queue; the only difference
from traditional round-robin is that if a queue was not able to
send a packet in the previous round because its packet siize
was too large, the remainder from the previous quantum is
added to the quantum for the next round. Thus, deficits are
kept track off; queues that were shortchanged in a round are
compensated in the next round.

In the next few sections, we will describe and precisely
prove the properties of deficit round-robin schemes. We start
by defining the figures of merit used to evaluate differlent
schemes,

Figures ofMerit: Currently, there is no uniform figure of
merit defined for fair queuing algorithms. We define two
measures: F M (that measures the fairness of the queuing
discipline) and work (that measures the time complexity of
the queuing algorithm). Similar fairness measures have been
defined before, but no definition of work has been proposed.

It is important to have measures that are not specific to deficit
round-robin so that they can be applied to other forms of fair
queuing.

To define the work measure, we assume the following model
of a router. We assume that packets sent by flows arrive to
an enqueue process that queues a packet to an output link
for a router. We assume there is a dequeue process at each
output link that is active whenever there are packets queued for
the output link; whenever a packet is transmitted, this process
picks the next packet (if any) and begins to transmit it. Thus,
the work to process a packet involves two parts: enqueuing
and dequeuing .

Dejinition 1: Work is defined as the maximum of the time
complexities to enqueue or dequeue a packet.

For example, if a fair queuing algorithm takes O(log(n))
time to enqueue a packet and O(1) time to dequeue a packet,
we say that the work of the algorithm is O(log(n)).

We will use a throughput fairness measure F M due to
Golestani [9], which measures the worst case difference be-
tween the normalized service received by different flows that
are backlogged during any time interval. Clearly, it makes no
sense to compare a flow that is not backlogged with one that is,
because the former does not receive any service when it is not
backlogged. If the fairness measure is very small, this amounts
to saying that the the service discipline closely emulates a bit-
by-bit round-robin server [3] , which is considered an ideal fair
queueing system. Note that if the service discipline is idealized
in a fluid-flow model to offer arbitarily small increments of
service, then F M becomes zero.

Definition 2: A flow is backlogged during an interval I of
an execution if the queue for flow i is never empty during
interval 1.

We assume there is some quantity f z , settable by a manager,
that expresses the ideal share to be obtained by flow i . Let
sent;(tl,ta) be the total number of bytes sent on the output
line by flow i in the interval (tl , t2). Fix an execution of the
DRR scheme. We can now express the fairness measure of
an interval (t l , t 2) as follows. We define it to be the worst
case [across all pairs of flows i and j that are backlogged
during (t l , tz)], of the difference in the normalized bytes sent
for flows a and j during (t l , t2) .

Dejinition 3: Let PM(t1 , t 2) be the maximum, over all
pairs of flows i , j that are backlogged in the interval (tl , t 2) ,

of (senti(tl,tZ)/fi - sentj(t l , t ;?)/fj) . Define F M to be the
maximum value of F M (t l , t 2) over all possible executions of
the fair queueing scheme and all possible intervals (t l , t 2) in
an execution.

Finally, we can define a service discipline to be fair if F M is
a small constant. In particular, FM(t1 , t 2) should not depend
on the size of the interval [9].

Algorithm: We propose an algorithm for servicing queues
in a router called deficit round-robin (Figs. 2-3). We will
assume that the quantities f i , which indicate the share given
to flow i, are specified as f01lows.~ We assume that each
flow i is allocated Qi worth of bits in each round. Define

More precisely, this is the share given to queue z and to all flows that hash
into this queue. However, we will ignore this distinction until we incorporate
the effects of hashing.

~

378 IEEEIACM TRANSACTIONS ON NETWORKING, VOL. 4, NO. 3, JUNE 1996

Round Robin \ Pointer

#1

#2

#3

4

Round Robin
Pointer

Packet Queues

i 5 0 0 1

Deficit
Count er

Quantum Size

Fig. 2. Deficit round-robin: At the start, all the DC variables are initialized
to zero. The round-robin pointer points to the top of the active list. When the
first queue is serviced, the Q value of 500 is added to the DC value. The
remainder after servicing the queue is left in the DC variable.

Q = Min;(Q;). The share f ; allocated to flow i is simply
Q; f Q. Finally, since the algorithm works in rounds, we can
measure time in terms of rounds. A round is one round-robin
iteration over the queues that are backlogged.

Packets coming in on different flows are stored in different
queues. Let the number of bytes sent out for queue i in round
k be bytes,(k). Each queue i is allowed to send out packets in
the first round subject to the restriction that bytesi(l) 5 Qz.
If there are no more packets in queue i after the queue has
been serviced, a state variable called DC; is reset to zero.
Otherwise, the remaining amount (Q ; - bytesi(k)) is stored
in the state variable DC;. In subsequent rounds, the amount
of bandwidth usable by this flow is the sum of DC; of the
previous round added to QZ. Pseudo-code for this algorithm
is shown in Fig. 4.

To avoid examining empty queues, we keep an auxiliary
list ActiveList that is a list of indices of queues that contain
at least one packet. Whenever a packet arrives to a previously
empty queue i , i is added to the end of ActiveList. Whenever
index i is at the head of ActiveList, the algorithm services up
to Q; + DC; worth of bytes from queue i ; if at the end of
this service opportunity, queue i still has packets to send, the
index i is moved to the end of ActiveList; otherwise, DC, is
set to zero and index i is removed from ActiveList.

In the simplest case Q; = Qj for all flows i , j . Exactly
as in weighted fair queuing [3], however, each flow i can
ask for a larger relative bandwidth allocation and the system
manager can convert it into an equivalent value of Q;. Clearly,
if Q; = 2Qj, the manager intends that flow i get twice the
bandwidth of flow j when both i and j are active.

Comparing DRR with BR: The reader may be tempted to
believe that DRR is just a crude approximation of BR. For
instance, the reader may suspect that when the quantum size is
one, the two schemes are identical. This plausible conjecture
is incorrect.

Consider an example. Suppose n - 1 flows have large
packets of size Max and the nth flow is empty. Even with
a quantum size of one bit, the deficit counter will eventually

Packet Queues
Deficit \ counter

. ~~

Quantum Size

4 5 0 7 0 0
__

Fig. 3. Deficit round-robin (2): After sending out a packet of size 200, the
queue had 300 bytes of its quantum left. It could not use it the current round,
since the next packet in the queue is 750 bytes. Therefore, the amount 300
will carry over to the next round when it can send packets of size totaling
300 (deficit from previous round) + 500 (quantum).

count up to Max - 1 (after Max - 1 scans of the n - 1 queues).
Now assume that a small one-bit packet arrives to the nth
flow queue. On the next scan, DRR will allow all other flows
to send a maximum sized packet before sending the one-bit
packet of the nth flow. Thus, even with one bit quanta, the
maximum delay suffered by a one-bit packet (once it comes to
the head of the queue) can be as bad as (n - 1) c Max, while
in bit-by-bit, it can never be worse than n - 1 bit delays. Thus,
DRR is off by a multiplicative factor in delays and the two
schemes are not identical.

IV. ANALYTICAL RESULTS
We begin with an invariant that is true for all executions

of the DRR algorithm (not just for the backlogged intervals
that are used to evaluate fairness). Recall that an invariant is
meant to be true after every program action; it is not required
to be true in the middle of a program action.

Lemma 1: For all i, the following invariant holds for every
execution of the DRR algorithm: 0 5 DC; < Max.

Prooj Initially, DC, = 0 + DC; < Q;. Notice that
DC, only changes value when queue i is serviced. During
a round, when the servicing of queue i completes, there are
two possibilities:

If a packet is left in the queue for flow i , then it must
be of size strictly greater than DCi. Also, by definition,
the size of any packet is no more than Max, thus, DC,
is strictly less than Max. Also, the code guarantees that
DC; 2 0.
If no packets are left in the queue, the algorithm resets

0
The router services the queues in a round-robin manner

according to the DRR algorithm defined earlier. A round is
one round-robin iteration over the queues that are backlogged.

We first show that during any period in which a flow i is
backlogged, the number of bytes sent on behalf of flow i is

DC, to zero.

SHREEDHAR AND VARGHESE: EFFICIENT FAIR QUEUING USING DEFICIT ROUl \ID-ROBIN 379

roughly equal to m.Q;, where m is the number of round-robin
service opportunities received by floi ’ during this interval.

Lemma 2: Consider any execution the DRR scheme and
any interval (t l , t z) of any executi I such that flow i is
backlogged during (t l , t z) . Let m be the number of round-
robin service opportunities received by flow i during the
interval (t l , t 2) . Then

m . Q; - Max 5 senti (tl t ~) 5 m Q; + Max.

Pro08 We start with some definitions. Let us use the
term round to denote service opportunities received by flow i
within the interval (tl I t 2)) . Number these rounds sequentiallly
starting from one and ending with round m. For notational
convenience, we regard t l , the start of the interval, as the erid
of a hypothetical round zero.

Let DCi(k) be the value of DC, for flow i at the end of
round k . Let bytesi(k) be the bytes sent by flow i in round ,IC.
Let senti (k) be the bytes sent by flow i in rounds one through
k . Thus, senti(m) = C& bytesi(k).

The main observation (which follows immediately from the
protocol) is: bytesi(k) + DC;(k) = Q; + DCi(k - 1). We use
the assumption that flow p i always has a backlog in the above
equation. Thus, in round k , the total allocation to flow i is
Qi + DC,(k - 1). Thus, if flow i sends bytes,(k), then the
remainder will be stored in DCi(k) , because queue i nev’er
empties during the interval (t l ; t z) . This equation reduces to

bytesi(k) = Qi + DCi(k - I) - DC;(k).

Summing the last equation over m rounds of servicing
of flow i, we get a telescoping series. Since sent;(m) =
C;i.=, bytes,(k) we get

senti(m) = m . Qi + DC;(O) - DCL(m).

The lemma follows because the value of DCi is alwTys

The following theorem establishes the fact that the fairness

Theorem 3: For an interval (tl t 2) in any execution of the

non-negative and 5 Max (using Lemma 1).

measure for any interval is bounded by a small constant.

DRR service discipline

0

F M (t l , t2) 5 2Max + Q, where Q = Min;(Q;).

Prooj? Consider any interval (tl , t 2) in any execution of
DRR and any two flows i and j that are backlogged in this
interval.

A basic invariant of the DRR algorithm (Fig. 4) is thiat
during any interval in which two flows i and j are backlogged,
between any two round-robin opportunities given to flow i ,
flow j must have had a round-robin opportunity. This is easy
to see because at the end of a flow i opportunity, the index i is
put at the rear of the active queue, Since flow j is backlogge:ll,
index j is in the active queue and, thus, flow j will be served
before flow i is served again. Thus, if we let m be the numk .
of round-robin opportunities given to flow i in interval (tl ti)
and if we let m’ be the number of round-robin opportunities
given to flow j in the same interval, then Im - m’I 5 1.

Thus, from Lemma 2, we get

senti(t1, t 2) 5 m . &i + Max.

Consider any output link for a given router.
Queue; is the ith queue, which stores packets
with flow id i. Queues are numbered 0 to (n - l) ,
n is the maximum number of output link queues.

Enqueue() , Dequeue() a.re standard Queue operators.
We use a list of active flows, ActiveList, with
standard opesations like InsertActiveList, which adds
a flow index to the end of the active list.
FreeBu f f e r () frees a buffer from the flow with the
longest queue using using McKenney’s buffer stealing.
Qi is the quantum allocated t o Queue;.
DCi contains the bytes that Queue; did not
use in the previous round.

Initialization:

DC; = 0;
For (i = O ; i < n ; i = i + l)

Enqueuing module: on arrival of packet p
i = ExtractFlow(p)
If (Exis ts lnAct iweList(i) == F A L S E) then

InsertAct iveLis t (i) ; (*add i to active list’)
DC, = 0;

If no free buffers left then
FreeBu f f er () ; (* using buffer stealing *)

Enqueue(i ,p) ; (* enqueue packet p to queue i*)

Dequeuing module:
While(TRUE) do

If ActiveList is not empty then
Remove head of ActiveList, say flow i

while ((Dc > 0) and
DCi = Q; + DC’;

(Queue; not empty)) do
PacketSize = Size(Head(Queue;));
If (PacketSize 5 DC;) then

Send(Dequeue(Queue;));
DC% = DC,

- PacketSize;
Else break; (*skip while loop *)

DC; = 0;
If (Empty(Queue;)) then

Else InsertAct iveLis t (i) ;

Fig. 4. Code for deficit round-robin.

Thus

sent,(tl, t z) 5 (m - 1) . QZ + &, + Max.

From the definition, fi, the share given to any flow 2, is
equal to Qz/&. Thus, we can calculate the normalized service
received by i as

sent,(t1,t2)/ft 5 (m - 1) . Q + Q + Max/f,

since Q L = fiQ. Recall that Q is the smallest value of Qz
over all flows 2. Similarly, we can show for flow j (using

3x0

Algorithm Fairness Measure
Round Robin ([Nag87]) 00

Fair Queuing ([DKSSS]) Max
Self-clocked Fair Queuing 2 Max
Deficit Round Robin 3Max

IEEEIACM TRANSACTIONS ON NETWORKING, VOL. 4, NO. 3, JUNE 1996

Work Complexity
O(1) expected

0 (log(4)
O(log(n))

O(1) expected

Lemma 2) that

sent, (t l . t 2) 2 m’ Qi. - Max

and so

sent,(tl.t2)/f, 2 m’.Q-Max/f , .

Subtracting the equations for the normalized service for
flows i and , j , and using the fact that m/ 2 m - 1, we get

The theorem follows because both f i and f, are 2 1 for
DRR. 0

Having dealt with the fairness properties of DRR, we
analyze the worst-case packet processing work. It is easy to
see that the size of the various Q variables in the algorithm
determines the number of packets that can be serviced from a
queue in a round. This means that the latency for a packet (at
low loads) and the throughput of the router (at high loads) is
dependent on the value of the Q variables.

Theorem 4: The work for deficit round-robin is 0(1), if for
all i , Q , 2 Max.

Proofi Enqueuing a packet requires finding the queue
used by the flow [0(1) time complexity using hashing since
we ignore collisions], appending the packet to the tail of the
queue, and possibly stealing a buffer (O(1) time using the
technique in [121). Dequeuing a packet requires determining
the next queue to service by examining the head of ActiveList,
and then doing a constant number of operations (per packet
sent from the queue) in order to update the deficit counter and
ActiveList. If Q 2 Max, we are guaranteed to send at least one
packet every time we visit a queue and, thus, the worst-case

Note that if we use hashing and we do not ignore collisions,
then Work for DRR becomes O(1) expected [as opposed to 0
(1) worst case] because of possible collisions.

time complexity i s O(1). 0

A. Comparison to Other Fair Queuing Schemes

Golestani [9] states the following result for the fairness
measure of self-clocked Fair Queueing (for any time interval
(tl , t 2))

senti(tl,t2)/fi ~ sent,i(tl,t2)/fj 5 Maxlf, + Max/f7.

On the other hand, (1) shows that for DRR

senti(t1, &)Ifz ~ sentj(t1, t z) / . f j

- < (2 + Max,?/fj + Mazi / . f i .

Thus, the only difference in the fairness measure is the
additive term of Q caused by DRR. Since we need Q 2 Marc
to make the work complexity O(1), this translates into an
additive term of Max, assuming Q = Max.

Let us call the Demers-Keshav-Shenker scheme [3] DKS
Fair Queuing. In summary: DKS Fair Queuing has a maxi-
mum value of F M of Max; self-clocked Fair Queuing has
a maximum value of F M of 2Maz, and DRR fair queuing
has a maximum value of F M of 3Marc. In all three cases,
the fairness measure is a small constant that does not depend

on the interval size, and becomes negligible for large inter-
vals. Thus, the small extra discrepancy caused by DRR in
throughput fairness seems insignificant.

We compare the F M and Work of the major fair queuing
algorithms that have been proposed, until now, in Table I. For
this comparison only, assume that DRR does hashing but does
not incorporate collisions. This is the only reasonable way
to compare the algorithms because the trick of using hashing
and ignoring collisions (as pioneered by [12]) can be applied
to all fair queueing algorithms. At the same time, DRR can
easily be modified to treat each flow separately (as opposed to
treating all flows that hash into the same bucket equivalently).
We will analyze the effect of ignoring collisions in the next
subsection. We have also taken the fairness measure for round-
robin schemes as infinity. This is because if we consider two
flows, one that uses large packets only, and a second that uses
small packets only, then over any infinitely large interval, the
first flow will get infinitely more service that the second. We
have also taken the Work of round-robin to be 0(1) expected,
because even in ordinary round-robin schemes, we need to
look up the state for a flow, using say hashing.

From the table, deficit round-robin is the only algorithm that
provides a fairness measure equal to a small constant and a
Work of expected O(1).

B. Incorporating Hushing
In the previous analysis, we showed that if we did not

lump together Bows that hashed into the same bucket, then
DRR achieves an F M equal to 3Mnz and a work = O(1),
expected. This is a reasonable way to compare DRR to other
schemes (except Stochastic Fair Queueing) that do the same
thing.

On the other hand, we have argued that implementations
are likely to profit from the use of McKenney’s idea of
using hashing and ignoring collisions. The consequence of this
implementation idea is that there is now some probability that
two or more flows will collide; the colliding flows will then
share the bandwidth allocated to that bucket.

The average number of other flows that collide with a flow
can be shown [2] to be n/&, where n is the number of flows
and Q is the number of queues. For example, if we have
1000 concurrent flows and 10000 queues (a factor of ten,
which is achievable with modest amounts of memory) the
average number of collisions is 0.1. If B is the bandwidth
allocated to a flow, the effective bandwidth in such a situation
becomes B/l + (n/Q). For instance, with 10000 queues and
1000 concurrent flows, this means that two backlogged flows
with identical quanta can differ in terms of throughput by
10% on the avarage, in addition to the additive difference of
3Maz guaranteed by the fairness measure. Thus, assuming a

SHREEDHAR AND VARGHESE: EFFlClENT FAIR QUEUING USING DEFICIT ROUND-ROBIN

2100.0
c

E Y
c

3 a
L UI

._ - c
$ 1600.0
E

~

381

~

-

Host #I

* I I
Router

Host #n
m

Fig. 5. Single router configuration

reasonably large number of queues, the unfairness caused by
ignoring collisions should be small.

V. SIMULATION RESULTS

We wish to answer the following questions about tlhe

We would like to confirm experimentally that DRR pro-
vides isolation superior to FCFS as the theory indicates,
especially in the backlogged case.
The theoretical analysis of DRR is for a single router (Le.,
one hop). How are the results affected in a multiple hop
network?
We want to confirm that the fairness provided by DRR is
still good when the flows arrive at different (not neces-
sarily backlogged) rates and with different distributions.
Is the fairness sensitive to packet size distributions and
arrival distributions?

Since we have multiple effects, we have devised experi-
ments to isolate each of these effects. However, there are other
parameters (such as number of packet buffers and flow index
size) that also impact performance. We first did parametric
experiments to determine these values before investigating
our main questions. For lack of space, we only present a few
experiments and refer the reader to [16] for more details.

performance of DRR:

A. Default Simulalion Settings

Unless otherwise specified, the default for all the lxter
experiments is as specified here. We measure the throughput
in terms of delivered bits in a simulation interval, typically
2000

In the single router case (see Fig. S), there are one or more
hosts. Each host has twenty flows, each of which generates
packets at a Poisson average rate of 10 packets/s. The packet
sizes are randomly selected between zero and Max (which
is 4500 b). Ill-behaved flows send packets at three times the
rate at which the other flows send packets (i.e., 30 packet&).
Each host in such an experiment is configured to have one
ill-behaved flow.

In Fig. 6, we show the typical settings in a multiple hop
topology. There are hosts connected at each hop (a routler)
and each host behaves as as described in the previous section.
In multiple hop routes, where there are more than twenty flows

4Throughput is typically measured in b/s. However, it is easy to convert
our results into b/r by dividing by the simulation time.

Host #1 Router A Router B Router C Router D - ~~

Fig. 6. Multiple router configuration.

2600.0 I

i 1100.0

~ Bandwidth used by

Ill-Behaved flow

+-*---.-7-i-----

} S * , . a * * ,* * \ /

600.0 L. I- L - -U -~
5.0 10 0 15 0 20.0

Flows (in serial order)
0.0

- DRR queueing - FCFS queueing

Fig 7 This i s d plot of the bandwidth offered to flows using FCFS queuing
and DRR In FCFS, the ill behaved flow (flow 10) obtains an arbitrary share
of the bandwidth. The isolation property of DRR is clearly illustrated

through a router, we use large buffer sizes (around 500 packet
buffers) to factor out any effects due to lack of buffers. In
multiple hop topologies, all outgoing links are set at 1 Mb/s.

B. Comparison of DRR and FCFS
To show how DRR performs with respect to FCFS, we

performed the following two experiments. In Fig. 7, we use
a single router configuration and one host with twenty flows
sending packets at the default rate through the router. The
only exception is that flow 10 is a misbehaving flow. We use
Poisson packet arrivals and random packet sizes (uniformly
distributed between 0 and 4500 b). All parameters used are
the default settings. The figures show the bandwidth offered to
different flows using the FCFS and DRR queuing disciplines.
We find that in FCFS the ill-behaved flow grabs an arbitrary
share of bandwidth, while in DRR, there is nearly perfect
fairness.

We further contrast FCFS scheduling with DRR scheduling
by examining the throughput offered to each flow at different

182

_ _ 25.00 i

13 00

10.00 - -1 A
0.0 200.0 4000 600.0 8000 10

Flow Ids
.O

- DRR
* - - + F C F S

Fig. 8.
and DRR to schedule the departure of packets.

The bandwidth allocated to different flows at router D usins FCFS

stages in a multiple hop topology. The experimental setup is
the default multiple hop topology described in Section V-A.
The throughput offered is measured at router D (see Fig. 8).
This time we have a number of misbehaving flows. The figure
shows that DRR behaves well in multihop topologies.

C. Independence with Respect to Packet Sizes
We investigate the effect of different packet size on the

fairness properties. The packet sizes in a train of packets can
be modeled as random, constant or bimodal. We use a single
router configuration with one host that has 20 flows. In the first
experiment, we use random (uniformly distributed between 0
and 4500) packet sizes. In the next two experiments, instead of
using the random packet sizes, we first use a constant packet
size of 100 b, and then a bimodal size that is either 100 or
4500 b.

Figure 9 shows the lack of any particular pattem in response
to the usage of different packet sizes in the packet traffic into
the router. The difference in bandwidth offered to a flow while
using the three different packet size distributions is negligible.
The maximum deviation from this figure while using constant,
random and bimodal cases tumed out to be 0.3%, 0.4699%,
and 0.32%, respectively. Thus, DRR seems fairly insensitive
to packet size distributions.

This property becomes clearer when the DRR algorithm
is contrasted with the performance of the SFQ algorithm.
While using the SFQ algorithm, flows sending larger packets
consistently get higher throughput than the flows sending

IEEEiACM TRANSACTIONS ON NETWORKING, VOL 4. NO. 3, JUNE 1996

t
ExDected ThrouhDut

,

9800 __ , -&-I
0 0 5 0 10 0 15 0 20 0

Flows (in serial order) - Bimodal Packet Sizes
+ - x Constant Packet Sizes

~ Random Packet Sizes

Fig 9
times and constant, biniodal and random packet sizes

The bandwidth offered to different flows with exponential interpacket

random sized packets, while all flows get equal bandwidth
while using DRR.

It is clear from Fig. 10 that DRR offers equal throughput
to all kinds of sources. SFQ offers higher throughput to flows
sending larger packets (for example, flow indices 44, 53, 863,
875 etc. which are flows originating from the clever host);
this affects the throughput offered to normal flows (e.g. flow
indices 60, 107. 190, etc. which are flows originating in the
host sending random sized packets), which get substantially
lower throughput.

D. Independence with Respect to Trafic Patterns

We show that DRR’s performance is independent of the
traffic distribution of the packets entering the router. We used
two models of traffic generators: exponential and constant
interarrival times, respectively, and collected data on the
number of bytes sent by each of the flows. We then examined
the bandwidth obtained. The other parameters (e.g. number
of buffers in the router) are kept constant at sufficiently high
values in this simulation.

The experiment used a single router configuration with
default settings. The outgoing link bandwidth was set to 10
Kb/s. Therefore, if there are 20 input flows each sending
at rates higher than 0.5 Kb/s, there is contention for the
outgoing link bandwidth. We found almost equal bandwidth
allocation for all flows. The maximum deviation from the
average throughput offered to all flows in the constant traffic
sources case is 0.3869%. In the Poisson case, it is bounded by
0.3391% from the average throughput. Thus, DRR appears to
work well regardless of the input traffic distributions.

SHREEDHAR AND VARGHESE: EFFICIENT FAIR QUEUING USING DEFICIT ROUND-ROBIN 383

I’ I

2.0

Flow Ids - Using DRR
* - - -* Using SFU

Fig. 10. Comparison of DRR and SFQ: SFQ offers higher bandwidth to
flows sending large packets, while DRR offers equal bandwidth to all flows.

VI. LATENCY REQUIREMENTS

Consider a packet p for flow i that arrives at a router.
Assume that the packet is queued for an output link instantly
and there are no other packets for flow i at the router. Let
s be the size of packet p in bits. If we use bit-by-bit round-
robin, then the packet will be delayed by s round-robin rounds.
Assuming that there are no more than n active flows at any
time, this leads to a latency bound of n * s /B , where B is the
bandwidth of the output line in b/s. In other words, a small
packet can only be delayed by an amount proportional to its
own size by every other flow. The Demers-Keshav-Shenker
(DKS) approximation only adds a small error factor to this
latency bound.

The original motivation in both the work of Nagle arid
DKS was the notion of isolation. Isolation is essentially a
throughput issue: we wish to give each flow a fair share of
the overall throughput. In terms of isolation, the proofs given
in the previous sections indicate that deficit round-robin is
competitive with DKS Fair Queuing. However, the additional
latency properties of BR and DKS have attracted considerable
interest. In particular, Parekh and Gallager [141 have calculated
bounds for end-to-end delay, assuming the use of DKS Fair
Queuing at routers and token bucket traffic shaping at sources.

At first glance, DRR fails to provide strong latency bounds.
In the example of the arrival of packet p given above, the
latency bound provided by DRR is Ca Q,/B. In other words,
a small packet can be delayed by a quantum’s worth by every
other flow. Thus, in the case where all the quanta are equal

to Max [which is needed to make the work O(l)], the ratio of
the delay bounds for DRR and BR is Max/’in.

We note that the counter-example given in Section I11
indicates that reducing the quantum size does not help improve
the worst-case latency bounds for DRR.

However, the real motivation behind providing latency
bounds is to allow real-time traffic to have predictable and
dependable performance. Since most traffic will consist of a
mix of best-effort and real-time traffic, the simplest solution is
to reserve a portion of the bandwidth for real-time traffic and
use a separate Fair Queuing algorithm for the real-time traffic
while continuing to use DRR for the best-effort traffic. This
allows efficient packet processing for best-effort traffic; at the
same time, it allows the use of other fair queuing schemes that
provide delay bounds for real-time traffic at reasonable cost.

As a simple example of combining fair queuing schemes,
consider the following modification of DRR called DRR+. In
DRR+, there are two classes of flows: latency critical and
best-effort. A latency critical flow must contract to send no
more than z bytes in some period T . If a latency critical flow
f meets its contract, whenever a packet for flow f arrives to
an empty flow f queue, theflow f is placed at the head of
the round-robin list.

Suppose, for instance, that each latency critical flow guar-
antees to send, at most, a single packet (of size, at most, s)
every T s. Assume that T is large enough to service one packet
of every latency critical flow as well as one quantum’s worth
for every other flow. Then if all latency critical flows meet
their contract, it appears that each latency critical flow is, at
most, delayed by (n’ * s) + MaxlB, where n’ is the number of
latency critical flows. In other words, a latency critical flow is
delayed by one small packet from every other latency critical
flow, as well as an error term of one maximum size packet
(the error term is inevitable in all schemes unless the router
preempts large packets). In this simple case, the final bound
appears better than the DKS bound because a latency critical
flow is only delayed by other latency critical flows.

In the simple case, it is easy to police the contract for latency
critical flows. A single bit that is part of the state of such a
flow is cleared whenever a timer expires and is set whenever
a packet arrives; the timer is reset for T time units when a
packet arrives. Finally, if a packet arrives and the bit is set, the
flow has violated its contract; an effective (but user-friendly)
countermeasure is to place the flow ID of a deviant flow at
the end of the round-robin list. This effectively moves the
flow from the class of latency critical flows to the class of
best-effort flows.

Figure 11 shows the results of a simulation experiment
using DRR+ instead of DRR. The simulation parameters are
as follows. We use a single router configuration as described
earlier. The structure of a BONeS host for these experiments is
as follows. Each host has 20 flows, out of which, one is marked
as latency critical. Therefore, to have three LatencyCriticaZ
flows, we use three hosts. The default parameters are set in
the DRR+ router and the hosts (The LatencyCritical and
BestEffort flows send packets with exponential interarrival
times at an average of 10 packetds and they have random
packet sizes). The delay experienced by the LatencyCritical

384 IEEEIACM TRANSACTIONS ON NETWORKING, VOL. 4, NO. 3, JUNE 1996

1.100

1.000

0.900

0.800

4 0.700

$ 0.600

$ 0.500

a, 0.400
F
9 0.300
Q

0.200

0.1 00

I

8
U

x

c

_I

III)

- Best Effort Flows - Latency Critical Flor

--. * 7 . ---

0.000 -

L -0.1 00

-0.200
0.0 5.0 10.0 15.0 20.0

Simulation Time (1 unit = 50 seconds)

Fig. 11. The latency experienced by latency critical flows and best-effort
flows when therc are three latency critical flows through the router. The
algorithm s e d for servicing the queues was DRR+.

flows is averaged into 20 batch intervals spread over the
simulation time. The rest of the flows (i.e., the BestEffort
flows) are also batched together and averaged.

It is evident from the figure that the LatencyCritical flows
experience bounded latency in a DRR+ environment. How-
ever, note that this experiment only considered a single router.
DRRf is a simple example of combining DRR with other fair
queuing algorithms to handle latency critical flows. By using
other schemes for the latency critical flows, we can provide
better bounds while allowing more general traffic shaping
rules.

VII. OTHER APPLICATIONS OF DRR
DRR schemes can be applied to other scheduling contexts in

which jobs must be serviced as whole units. In other words,
jobs cannot be served in several time slices as in a typical
operating system. This is true for packet scheduling because
packets cannot be interleaved on the output lines, but it is true
for other contexts as well. Note also that DRR is applicable to
distributed queues because it needs only local information to
implement. We describe two other specific applications: token
ring protocols and load balancing schemes.

The current 802.5 token ring uses token holding timers that
limit the number of bits a station can send at each token
opportunity. If a station's packets do not fit exactly into the
allowed number of bits, the remainder is not kept track off;
this allows the possibility of unfairness. The unfairness can
easily be removed by keeping a deficit counter at each ring
node and by a small modification to the token ring protocol.

Another application is load balancing or, as it is sometimes
termed, striping. Consider a router that has traffic arriving on
a high speed line that needs to be sent out to a destination over
multiple slower speed lines. If the router sends packets from
the fast link in a round-robin fashion across the slower links,
then the load may not balance perfectly if the packet sizes
are highly variable. For example, if packets alternate between
large and small packets, then round-robin across two lines can
cause the second line to be underutilized. But load balancing
is almost the inverse of fair queuing. It is is not hard to see
that deficit round-robin solves the problem; we send up to to
a quantum limit per output line but we keep track of deficits.
This should produce nearly perfect load balancing; as usual, it
can be extended to weighted load balancing. In [I], we show
how to obtain perfect load balancing and yet guarantee first-
in first-out (FIFO) delivery. Our load balancing scheme [I]
appears to be a novel solution to a very old problem.

VIlI. CONCLUSIONS

We have described a new scheme, DRR, that provides near-
perfect isolation at very low implementation cost. As far as we
know, this is the first fair queuing solution that provides near-
perfect throughput fairness with O(1) packet processing. DRR
should be attractive to use while implementing fair queuing at
gateways and routers.

A number of readers have conjectured that DRR should
reduce to BR when the quantum size is one bit. This is
not true. The two schemes have radically different behaviors.
A counter-example is described in Section 111. The counter-
example also indicates that reducing the quantum size to be
less than Max does not improve the worst-case latency at all.
Thus DRR is not just a crude approximation of BR; it has
more interesting behaviors of its own.

We have described theorems that describe the behavior of
DRR in ensuring throughput fairness. In particular, we show
that DRR satisfies Golestani's [9] definition of throughput
fairness, i.e., the normalized bandwidth allocated to any two
backlogged flows in any interval is roughly equal. Earlier
versions of this paper [16], [17] had only shown throughput
fairness for the case when all flows were backlogged. Our use
of Golestani's definition makes the results in this paper more
general, and indicates why DRR works well in nonbacklogged
and backlogged scenarios. Our simulations indicate that DRR
works well in all scenarios.

The Q size is required to be at least Max for the work
complexity to be O(1). We feel that while Fair Queuing using
DRR is general enough for any kind of network, it is best
suited for datagram networks. In ATM networks, packets are
fixed size cells, therefore, Nagle's solution (simple round-
robin) will work as well as DRR. However, if connections in
an ATM network require weighted fair queuing with arbitrary
weights, DRR will be useful.

DRR can be combined with other fair queuing algorithms
such that DRR is used to service only the best-effort traffic.
We described a trivial combination algorithm called DRR+
that offers good latency bounds to latency critical flows as
long as they meet their contracts. However, even if the source

SHREEDHAR AND VARGIHESE. EFFICIENT FAIR QUEUING USING DEFICIT ROUND-ROBIN 385

meets the contract, the contract may be violated due to bunch-
ing effects at intermediate routers. Thus, other combinations
need to be investigated. Recall that DRR requires having the
quantum size be at least a maximum packet size in order far
the packet processing work to be low; this does affect delay
bounds.

We believe that IIRR should be easy to implement using
existing technology. It only requires a few instructions beyond
the simplest queuing algorithm (FCFS), and this addition
should be a small percentage of the instructions needed for
routing packets. The memory needs are also modest; 6K size
memory should give a small number of collisions for about
100 concurrent flows. This is a small amount of extra memory
compared to the buffer memory used in many routers. Note
that the buffer size requirements should be identical to the
buffering for FCFS because in DRR buffers are shared between
queues using McKenney’ s buffer stealing algorithm.

DRR can be applied to other scheduling contexts in which
jobs must be serviced as whole units. We have described two
other applications: token rings with holding timers and load
balancing. For these reasons, we believe that DRR scheduling
is a general and useful tool. We hope our readers will use it
in other ways.

ACKNOWLEDGMENT
The authors would like to thank several people for listening

patiently to ideas and providing valuable feedback. They arc:
D. Clark, S. Floyd, A. Fingerhut, S. Keshav, P. McKenney, mid
L. Zhang. The authors also thank A. Costello, A. Fingerhut,
and S. Keshav for their careful reading of this paper, anid
S. Keshav and the anonymous SIGCOMM referees who
prodded the authors into using Golestani’s fairness definition.
They thank R. Gopalakrishnan and A. Dalianis for valuable
discussions.

REFERENCES

[l] H. Adiseshu, G. Parulkar, and G. Varghese, “Reliable FIFO load
balancing over multiple FIFO channels,” Washington Univ., St. Louis,
MO. Tech. Rep. 95-1 1, available by FTP.

17.1 T. Cormen, C. Leiserson, and R. Rivest, Inlroduction to Algorithnu.
Cambridge, MA/New York: MIT PresdMcGraw-Hill, 1990.

[3] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a
fair queueing algorithm,” in Proc. SIGCOMM’89, vol. 19, no. 4, Sept.
1989, pp. 1-12.

[4] N. Figuera and J . F’asquale, “Leave-in-time: A new service discipline for
real-time communication in a packet-switching data network,” in Proc.
SIGCOMM’95, Sept. 1995.

[5] S. Floyd, “Notes on guaranteed service in resource management,”
Unpublished note. 1993.

[6] -, Personal communication. 1993.
[7] S. Floyd and V. Jacobson, “Link-sharing and resource management

models for packet networks,” IEEE/ACM Truns. Networking, Aug. 95.
[8] A. Greenberg and N. Madras, “How fair is fair queueing?’ in Proc.

Performunce’90, 1990.
[9] S. Golestani, “A self clocked fair queueing scheme for broadband

applications,” in Proc. IEEE INFOCOMM’94, 1994.
[IO] R. Jain and S. Routhier, “Packet trains measurement and a new model

for computer nctwork traffic,” IEEE J . Select. Areus Commun., Sept.
1986.

[I l l S. Keshav, “On the efficient implementation of fair queueing,” in
Internelworking: Reseurch and Experience, vol. 2, Sept. 1991, pp. 157-
173.

[121 P. McKenney, “Stochastic fairness queueing,” in Internetworking; Re-
search and Experience, vol. 2, Jan. 1991, pp. 113-131.

[I31 John Nagle, “On packet switches with infinite storage,” IEEE Trans.
Commun., vol. COM-35, no. 4, Apr. 1987.

[I41 A. K. Parekh and R. G. Gallagher, “A generalized processor sharing
approach to flow control in integrated services networks,” in Proc. IEEE
INFOCOMM’93, 1993.

[15] D. Saha and M. Saksena and S. Mukherjee, and S. Tripathi, “On
guaranteed delivery of time-critical messages in DQDB,” in Proc. IEEE
INFOCOMM’94, 1994.

1161 M. Shreedhar, “Efficient fair queuing using deficit round robin,” M.S.
Thesis, Dept. of Computer Science, Washington Univ., St. Louis, MO,
Dec. 1994.

[17] M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit
round robin,” Previous version of this paper, in Proc. SIGCOMM’95,
Boston, MA, Aug. 1995.

[18] L. Zhang, “Virtual clock: A new traffic control algorithm for packet
switched networks,” ACM Trans. Comput. Syst., vol. 9, no. 2, pp.
101-125, May 1991.

M. Shreedhar received the B.E. degree from the Birla Institute of Technology
and Science, Pilani, India, in June 1992 and the M.S. dcgree from Washington
University, St. Louis, MO, in December 1994, both in computer science.

He currently works on Mobile Networks as part of Microsoft Corporation
in Seattle. WA.

George Varghese (M’94) received the Ph.D. degree in computer science from
The Massachusetts Institute of Technology, Cambridge, MA, in 1992.

He began his professional career in 1983 at Digital Equipment Corporation
where he worked on designing network protocols and doing systems research
as part of the DECNET architecture and advanced development group. Hc
has worked on designing protocols and algorithms for the DECNET and
GIGAswitch products. He has been an Associate Professor of Computer
Science at Washington University since September 1993. His research interests
are in two areas: first, applying the theory of distributed algorithms to the
design of fault-tolerant protocols for real networks; second, the design of
efficient algorithms to speed up protocol implementations. Together with
colleagues at DEC, he has been awarded six patents, with six more patents
pending.

Dr. Varghese’s Ph.D. dissertation was jointly awarded the Sprowls Prize
for best thesis in computer science at MIT. He was granted the ONR Young
Investigator Award in 1996.

