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Efficient Fair Queuing Using Deficit Round-Robin 
M. Shreedhar and George Varghese, Member, IEEE 

Abstract- Fair queuing is a technique that allows each flow 
passing through a network device to have a fair share of net- 
work resources. Previous schemes for fair queuing that achieved 
nearly perfect fairness were expensive to implement; specifically, 
the work required to process a packet in these schemes was 
0 (log( 71 ) ), where 71. is the number of active flows. This is expen- 
sive at high speeds. On the other hand, cheaper approximations of 
fair queuing reported in the literature exhibit unfair behavior. In 
this paper, we describe a new approximation of fair queuing, that 
we call deficit round-robin. Our scheme achieves nearly perfect 
fairness in terms of throughput, requires only O(1) work to 
process a packet, and is simple enough to implement in hard- 
ware. Deficit round-robin is also applicable to other scheduling 
problems where servicing cannot be broken up into smaller units 
(such as load balancing) and to distributed queues. 

I. INTRODUCTION 

HEN THERE is contention for resources, it is impor- W tant for resources to be allocated or scheduled fairly. 
We need firewalls between contending users, so that the fair 
allocation is followed strictly. For example, in an operating 
system, CPU scheduling of user processes controls the use 
of CPU resources by processes, and insulates well-behaved 
users from ill-behaved users. Unfortunately, in most computer 
networks, there are no such firewalls; most networks are 
susceptible to sources that behave badly. A rogue source that 
sends at an uncontrolled rate can seize a large fraction of the 
buffers at an intermediate router; this can result in dropped 
packets for other sources sending at more moderate rates. A 
solution to this problem is needed to isolate the effects of bad 
behavior to users that are behaving badly. 

An isolation mechanism called fair queuing (FQ) [3] has 
been proposed, and has been proven [SI to have nearly 
perfect isolation and fairness. Unfortunately, FQ appears to be 
expensive to implement. Specifically, FQ requires O(log(n)) 
work per packet, where n is the number of packet streams that 
are concurrently active at the gateway or router. With a large 
number of active packet streams, FQ is hard to implement 
at high speeds.’ Some attempts have been made to improve 
the efficiency of FQ, however, such attempts either do not 
avoid the O(log(rt)) bottleneck or are unfair. We will use the 
capitalized “Fair Queuing” (FQ) to refer to the implementation 
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FQ, this will probably drive up the cost of the router. 

in [3], and the uncapitalized “fair queuing” to refer to the 
generic idea. 

In this paper, we shall define an isolation mechanism that 
achieves nearly perfect fairness (in terms of throughput), and 
takes O(1) processing work per packet. Our scheme is simple 
(and, therefore, inexpensive) to implement at high speeds at a 
router or gateway. Furthermore, we provide analytical results 
that do not depend on assumptions about traffic distributions. 

Flows: Our intent is to provide firewalls between different 
packet streams. We formalize the intuitive notion of a packet 
stream using the more precise notion of a j o w  [18]. A flow 
has two properties: 

A flow is a stream of packets that traverses the same route 
from the source to the destination and requires the same 
grade of service at each router or gateway in the path. 
In addition, every packet can be uniquely assigned to a 
flow using prespecified fields in the packet header. 

The notion of a flow is quite general and applies to datagram 
networks (e.g., IP, OSI) and virtual circuit networks (e.g., 
X.25, ATM). For example, in a virtual circuit network, a flow 
could be identified by a virtual circuit identifier (VCI). On the 
other hand, in a datagram network, a flow could be identified 
by packets with the same source-destination addresses.2 While 
source and destination addresses are used for routing, we 
could discriminate flows at a finer granularity by also using 
port numbers (which identify the transport layer session) to 
determine the flow of a packet. For example, this level of 
discrimination allows a file transfer connection between source 
A and destination B to receive a larger share of the bandwidth 
than a virtual terminal connection between A and B. 

As in all fair queuing variants, our solution can be used to 
provide fair service to the various flows that thread a router, 
regardless of the way a flow is defined. 

Organization: The rest of the paper is organized as follows. 
In the next section, we review the relevant previous work. 
A new technique for avoiding the unfairness of round-robin 
scheduling called deficit round-robin is described in Section 
111. Round-robin scheduling [13] can be unfair if different 
flows use different packet sizes; our scheme avoids this 
problem by keeping state, per Bow, that measures the deficit 
or past unfairness. We analyze the behavior of our scheme 
using both analysis and simulation in Sections IV and V. Basic 
deficit round-robin provides throughput in terms of fairness but 
provides no latency bounds. In Section VI, we describe how 
to augment our scheme to provide latency bounds. 

2Note that a flow might not always traverse the same path in datagram 
networks, since the routing tables can change during the lifetime of a 
connection. Since the probability of such an event is low, we shall assume 
that it traverses the same path during a session. 
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Fig. 1. The parking lot problem 

11. PREVIOUS WORK 
Existing Routers: Most routers use first-come first-serve 

(FCFS) service on output links. In FCFS, the order of arrival 
completely determines the allocation of packets to output 
buffers. The presumption is that congestion control is imple- 
mented by the source. In feedback schemes for congestion 
control, connections are supposed to reduce their sending rate 
when they sense congestion. However, a rogue flow can keep 
increasing its share of the bandwidth and cause other (well- 
behaved) flows to reduce their share. With FCFS queuing, if 
a rogue connection sends packets at a high rate, it can capture 
an arbitrary fraction of the outgoing bandwidth. This is what 
we want to prevent by building firewalls between flows. 

Typically, routers try to enforce some amount of fairness 
by giving fair access to traffic coming on different input links. 
However, this crude form of resource allocation can produce 
exponentially bad fairness properties as shown below. 

In Fig. 1 for example, assume that all four flows F1-F4 
wish to flow through link L to the right of node D, and that all 
flows always have data to send. If node D does not discriminate 
flows, node D can only provide fair treatment by alternately 
serving traffic arriving on its input links. Thus, flow F4 gets 
half the bandwidth of link L and all other flows combined get 
the remaining half. A similar analysis at C shows that F3 gets 
half the bandwidth on the link from C to D. Thus, without 
discriminating flows, F4 gets 1/2 the bandwidth of link L, 
F3 gets 114 of the bandwidth, F2 gets 118 of the bandwidth, 
and F1 gets 118 of the bandwidth. In other words, the portion 
allocated to a flow can drop exponentially with the number 
of hops that the flow must traverse. This is sometimes called 
the parking lot problem because of its similarity to a crowded 
parking lot with one exit. 

Nagle’s solution: In Fig. 1, the problem arose because the 
router allocated bandwidth based on input links. Thus, at router 
D, F4 is offered the same bandwidth as flows Fl ,  F2, and F3 
combined. It is unfair to allocate bandwidth based on topology. 
A better idea is to distinguish flows at a router and treat them 
separately. 

Nagle [13] proposed an approximate solution to this prob- 
lem for datagram networks by having routers discriminate 
flows and then providing round-robin service to flows for every 
output link. Nagle proposed identifying flows using source- 
destination addresses and using separate output queues for 
each flow; the queues are serviced in round-robin fashion. This 
prevents a source from arbitrarily increasing its share of the 
bandwidth. When a source sends packets too quickly, it merely 
increases the length of its own queue. An ill-behaved source’s 
packets will get dropped repeatedly. 

Despite its merits, there is a flaw in this scheme. It ignores 
packet lengths. The hope is that the average packet size over 

the duration of a flow is the same for all flows; in this case, 
each flow gets an equal share of the output link bandwidth. 
However, in the worst case, a flow can get “ d i n  times the 
bandwidth of another flow, where max is the maximum packet 
size and min is the minimum packet size. 

Fair Queuing: Demers et al. devised an ideal algorithm 
called bit-by-bit round-robin (BR) that solves the flaw in 
Nagle’s solution. In the BR scheme, each flow sends one 
bit at a time in round-robin fashion. Since it is impossible 
to implement such a system, they suggest approximately 
simulating BR. To do so, they calculate the time when a packet 
would have left the router using the BR algorithm. The packet 
is then inserted into a queue of packets sorted on departure 
times. Unfortunately, it is expensive to insert into a sorted 
queue. The best known algorithms for inserting into a sorted 
queue require O(log(n)) time, where n. is the number of flows. 
While the BR guarantees faimess [8], the packet processing 
cost makes it hard to implement cheaply at high speeds. 

A naive FQ server would require O(log(m)), where m is the 
number of packets in the router. However, Keshav [ 111 shows 
that only one entry per Bow need be inserted into a sorted 
queue. This still results in O(log(n)) overhead. Keshav’s other 
implementation ideas [ll] take at least O(log(n)) time in the 
worst case. 

Stochastic Fair Queuing (SFQ): SFQ was proposed by 
McKenney [12] to address the inefficiencies of Nagle’s al- 
gorithm. McKenney uses hashing to map packets to cor- 
responding queues. Normally, one would use hashing with 
chaining to map the flow ID in a packet to the corresponding 
queue. One would also require one queue for every possible 
flow through the router. McKenney, however, suggests that 
the number of queues be considerably less than the number 
of possible flows. All flows that happen to hash into the 
same bucket are treated equivalently. This simplifies the hash 
computation [hash computation is now guaranteed to take O(1) 
time], and allows the use of a smaller number of queues. The 
disadvantage is that flows that collide with other flows will 
be treated unfairly. The fairness guarantees are probabilistic, 
hence, the name stochastic fair queuing. However, if the size 
of the hash index is sufficiently larger than the number of 
active flows through the router, the probability of unfairness 
will be small. Notice that the number of queues need only be 
a small multiple of the number of activeflows (as opposed to 
the number of possible flows, as required by Nagle’s scheme). 

Queues are serviced in round-robin fashion, without con- 
sidering packet lengths. When there are no free buffers to 
store a packet, the packet at the end of the longest queue 
is dropped. McKenney shows how to implement this buffer- 
stealing scheme in O( 1) time using bucket sorting techniques. 
Notice that buffer stealing allows better buffer utilization 
as buffers are essentially shared by all flows. The major 
contributions of McKenney’s scheme are the buffer stealing 
algorithm, and the idea of using hashing and ignoring colli- 
sions. However, this scheme does nothing about the inherent 
unfairness of Nagle’s round-robin scheme. 

Other Relevant Work: Golestani introduced [9] a fair queu- 
ing scheme, called self-clocked fair queuing. This scheme uses 
a virtual time function that makes computation of the departure 
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times simpler than in ordinary Fair Queuing. However, this 
approach retains the O(log( n) )  sorting bottleneck. 

Together with weighted fair queuing, a pioneering approach 
to queue management is the virtual clock approach of Zhang 
[18]. Delay bounds based on this queuing discipline have 
recently been discovered [ 181. However, the approach still has 
the computational cost associated with sorting. 

V. Jacobson and S. Floyd have proposed a resource al- 
location scheme called class-based queuing that has been 
implemented. In the context of that scheme, and independent 
of our work, S. Floyd has proposed a queuing algorithm 
[5]-[7] that is similar to our deficit round-robin scheme 
described below. Her work does not have our theorems about 
throughput properties of various flows, however, it does have 
interesting results on delay bounds and also considers the moire 
general case of multiple priority classes. 

A recent paper [ 151 has (independently) proposed a similar 
idea to our scheme: in the context of a specific local area 
network (LAN) protocol (DQDB) they propose keeping track 
of remainders across rounds. Their algorithm is, howevea, 
mixed in with a number of other features needed for DQDIB. 
We believe that we have cleanly abstracted the problem, thus, 
our results are simpler and applicable to a variety of contexts. 

A paper by Parekh and Gallagher [14] showed that Fair 
Queuing could be used together with a leaky bucket admission 
policy to provide delay guarantees. This showed that FQ 
provides more than isolation; it also provides end-to-end 
latency bounds. While it increased the attractiveness of FQ, 
it provided no solution for the high overhead of FQ. 

111. DEFICIT ROUND-ROBIN 
Ordinary round-robin servicing of queues can be done in 

constant time. The major problem, however, is the unfairness 
caused by possibly different packet sizes used by different 
flows. We now show how this flaw can be removed, while slill 
requiring only constant time. Since our scheme is a simple 
modification of round-robin servicing, we call our scheme 
deficit round-robin. 

We use stochastic fair queuing to assign flows to queues. 
To service the queues, we use round-robin servicing with a 
quantum of service assigned to each queue; the only difference 
from traditional round-robin is that if a queue was not able to 
send a packet in the previous round because its packet siize 
was too large, the remainder from the previous quantum is 
added to the quantum for the next round. Thus, deficits are 
kept track off; queues that were shortchanged in a round are 
compensated in the next round. 

In the next few sections, we will describe and precisely 
prove the properties of deficit round-robin schemes. We start 
by defining the figures of merit used to evaluate differlent 
schemes, 

Figures ofMerit: Currently, there is no uniform figure of 
merit defined for fair queuing algorithms. We define two 
measures: F M  (that measures the fairness of the queuing 
discipline) and work (that measures the time complexity of 
the queuing algorithm). Similar fairness measures have been 
defined before, but no definition of work has been proposed. 

It is important to have measures that are not specific to deficit 
round-robin so that they can be applied to other forms of fair 
queuing. 

To define the work measure, we assume the following model 
of a router. We assume that packets sent by flows arrive to 
an enqueue process that queues a packet to an output link 
for a router. We assume there is a dequeue process at each 
output link that is active whenever there are packets queued for 
the output link; whenever a packet is transmitted, this process 
picks the next packet (if any) and begins to transmit it. Thus, 
the work to process a packet involves two parts: enqueuing 
and dequeuing . 

Dejinition 1: Work is defined as the maximum of the time 
complexities to enqueue or dequeue a packet. 

For example, if a fair queuing algorithm takes O(log(n)) 
time to enqueue a packet and O(1) time to dequeue a packet, 
we say that the work of the algorithm is O(log(n)). 

We will use a throughput fairness measure F M  due to 
Golestani [9], which measures the worst case difference be- 
tween the normalized service received by different flows that 
are backlogged during any time interval. Clearly, it makes no 
sense to compare a flow that is not backlogged with one that is, 
because the former does not receive any service when it is not 
backlogged. If the fairness measure is very small, this amounts 
to saying that the the service discipline closely emulates a bit- 
by-bit round-robin server [ 3 ] ,  which is considered an ideal fair 
queueing system. Note that if the service discipline is idealized 
in a fluid-flow model to offer arbitarily small increments of 
service, then F M  becomes zero. 

Definition 2: A flow is backlogged during an interval I of 
an execution if the queue for flow i is never empty during 
interval 1. 

We assume there is some quantity f z ,  settable by a manager, 
that expresses the ideal share to be obtained by flow i .  Let 
sent;(tl,ta) be the total number of bytes sent on the output 
line by flow i in the interval (tl ,  t2). Fix an execution of the 
DRR scheme. We can now express the fairness measure of 
an interval ( t l ,  t 2 )  as follows. We define it to be the worst 
case [across all pairs of flows i and j that are backlogged 
during (t l ,  tz)], of the difference in the normalized bytes sent 
for flows a and j during ( t l , t2) .  

Dejinition 3: Let PM(t1 , t 2 )  be the maximum, over all 
pairs of flows i ,  j that are backlogged in the interval (tl ,  t 2 ) ,  

of (senti(tl,tZ)/fi - sentj(t l , t ;?)/fj) .  Define F M  to be the 
maximum value of F M ( t l ,  t 2 )  over all possible executions of 
the fair queueing scheme and all possible intervals ( t l ,  t 2 )  in 
an execution. 

Finally, we can define a service discipline to be fair if F M  is 
a small constant. In particular, FM(t1 ,  t 2 )  should not depend 
on the size of the interval [9]. 

Algorithm: We propose an algorithm for servicing queues 
in a router called deficit round-robin (Figs. 2-3). We will 
assume that the quantities f i ,  which indicate the share given 
to flow i, are specified as f01lows.~ We assume that each 
flow i is allocated Qi worth of bits in each round. Define 

More precisely, this is the share given to queue z and to all flows that hash 
into this queue. However, we will ignore this distinction until we incorporate 
the effects of hashing. 
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Fig. 2. Deficit round-robin: At the start, all the DC variables are initialized 
to zero. The round-robin pointer points to the top of the active list. When the 
first queue is serviced, the Q value of 500 is added to the DC value. The 
remainder after servicing the queue is left in the DC variable. 

Q = Min;(Q;). The share f ;  allocated to flow i is simply 
Q; f Q. Finally, since the algorithm works in rounds, we can 
measure time in terms of rounds. A round is one round-robin 
iteration over the queues that are backlogged. 

Packets coming in on different flows are stored in different 
queues. Let the number of bytes sent out for queue i in round 
k be bytes,(k). Each queue i is allowed to send out packets in 
the first round subject to the restriction that bytesi(l) 5 Qz. 
If there are no more packets in queue i after the queue has 
been serviced, a state variable called DC; is reset to zero. 
Otherwise, the remaining amount ( Q ;  - bytesi(k)) is stored 
in the state variable DC;. In subsequent rounds, the amount 
of bandwidth usable by this flow is the sum of DC; of the 
previous round added to QZ. Pseudo-code for this algorithm 
is shown in Fig. 4. 

To avoid examining empty queues, we keep an auxiliary 
list ActiveList that is a list of indices of queues that contain 
at least one packet. Whenever a packet arrives to a previously 
empty queue i ,  i is added to the end of ActiveList. Whenever 
index i is at the head of ActiveList, the algorithm services up 
to Q; + DC; worth of bytes from queue i ;  if at the end of 
this service opportunity, queue i still has packets to send, the 
index i is moved to the end of ActiveList; otherwise, DC, is 
set to zero and index i is removed from ActiveList. 

In the simplest case Q; = Qj for all flows i ,  j .  Exactly 
as in weighted fair queuing [3], however, each flow i can 
ask for a larger relative bandwidth allocation and the system 
manager can convert it into an equivalent value of Q;. Clearly, 
if Q; = 2Qj, the manager intends that flow i get twice the 
bandwidth of flow j when both i and j are active. 

Comparing DRR with BR: The reader may be tempted to 
believe that DRR is just a crude approximation of BR. For 
instance, the reader may suspect that when the quantum size is 
one, the two schemes are identical. This plausible conjecture 
is incorrect. 

Consider an example. Suppose n - 1 flows have large 
packets of size Max and the nth flow is empty. Even with 
a quantum size of one bit, the deficit counter will eventually 

Packet Queues 
Deficit \ counter 

. ~~ 

Quantum Size 

# 4  5 0  7 0 0  
__ 

Fig. 3. Deficit round-robin (2): After sending out a packet of size 200, the 
queue had 300 bytes of its quantum left. It could not use it the current round, 
since the next packet in the queue is 750 bytes. Therefore, the amount 300 
will carry over to the next round when it can send packets of size totaling 
300 (deficit from previous round) + 500 (quantum). 

count up to Max - 1 (after Max - 1 scans of the n - 1 queues). 
Now assume that a small one-bit packet arrives to the nth 
flow queue. On the next scan, DRR will allow all other flows 
to send a maximum sized packet before sending the one-bit 
packet of the nth flow. Thus, even with one bit quanta, the 
maximum delay suffered by a one-bit packet (once it comes to 
the head of the queue) can be as bad as (n - 1) c Max, while 
in bit-by-bit, it can never be worse than n - 1 bit delays. Thus, 
DRR is off by a multiplicative factor in delays and the two 
schemes are not identical. 

IV. ANALYTICAL RESULTS 
We begin with an invariant that is true for all executions 

of the DRR algorithm (not just for the backlogged intervals 
that are used to evaluate fairness). Recall that an invariant is 
meant to be true after every program action; it is not required 
to be true in the middle of a program action. 

Lemma 1: For all i, the following invariant holds for every 
execution of the DRR algorithm: 0 5 DC; < Max. 

Prooj Initially, DC, = 0 + DC; < Q;. Notice that 
DC, only changes value when queue i is serviced. During 
a round, when the servicing of queue i completes, there are 
two possibilities: 

If a packet is left in the queue for flow i ,  then it must 
be of size strictly greater than DCi. Also, by definition, 
the size of any packet is no more than Max, thus, DC, 
is strictly less than Max. Also, the code guarantees that 
DC; 2 0. 
If no packets are left in the queue, the algorithm resets 

0 
The router services the queues in a round-robin manner 

according to the DRR algorithm defined earlier. A round is 
one round-robin iteration over the queues that are backlogged. 

We first show that during any period in which a flow i is 
backlogged, the number of bytes sent on behalf of flow i is 

DC, to zero. 



SHREEDHAR AND VARGHESE: EFFICIENT FAIR QUEUING USING DEFICIT ROUl \ID-ROBIN 379 

roughly equal to m.Q;, where m is the number of round-robin 
service opportunities received by floi ’ during this interval. 

Lemma 2: Consider any execution the DRR scheme and 
any interval ( t l , t z )  of any executi I such that flow i is 
backlogged during ( t l , t z ) .  Let m be the number of round- 
robin service opportunities received by flow i during the 
interval ( t l  , t 2 ) .  Then 

m . Q; - Max 5 senti (tl t ~ )  5 m Q; + Max. 

Pro08 We start with some definitions. Let us use the 
term round to denote service opportunities received by flow i 
within the interval (tl I t 2 ) ) .  Number these rounds sequentiallly 
starting from one and ending with round m. For notational 
convenience, we regard t l ,  the start of the interval, as the erid 
of a hypothetical round zero. 

Let DCi(k)  be the value of DC, for flow i at the end of 
round k .  Let bytesi(k) be the bytes sent by flow i in round ,IC. 
Let senti ( k )  be the bytes sent by flow i in rounds one through 
k .  Thus, senti(m) = C& bytesi(k). 

The main observation (which follows immediately from the 
protocol) is: bytesi(k) + DC;(k)  = Q; + DCi(k - 1). We use 
the assumption that flow p i  always has a backlog in the above 
equation. Thus, in round k ,  the total allocation to flow i is 
Qi + DC,(k - 1). Thus, if flow i sends bytes,(k), then the 
remainder will be stored in DCi(k) ,  because queue i nev’er 
empties during the interval ( t l ;  t z ) .  This equation reduces to 

bytesi(k) = Qi + DCi(k - I) - DC;(k). 

Summing the last equation over m rounds of servicing 
of flow i, we get a telescoping series. Since sent;(m) = 
C;i.=, bytes,(k) we get 

senti(m) = m . Qi + DC;(O) - DCL(m). 

The lemma follows because the value of DCi is alwTys 

The following theorem establishes the fact that the fairness 

Theorem 3: For an interval (tl t 2 )  in any execution of the 

non-negative and 5 Max (using Lemma 1). 

measure for any interval is bounded by a small constant. 

DRR service discipline 

0 

F M ( t l ,  t2) 5 2Max + Q, where Q = Min;(Q;). 

Prooj? Consider any interval (tl , t 2 )  in any execution of 
DRR and any two flows i and j that are backlogged in this 
interval. 

A basic invariant of the DRR algorithm (Fig. 4) is thiat 
during any interval in which two flows i and j are backlogged, 
between any two round-robin opportunities given to flow i ,  
flow j must have had a round-robin opportunity. This is easy 
to see because at the end of a flow i opportunity, the index i is 
put at the rear of the active queue, Since flow j is backlogge:ll, 
index j is in the active queue and, thus, flow j will be served 
before flow i is served again. Thus, if we let m be the numk . 
of round-robin opportunities given to flow i in interval (tl ti ) 
and if we let m’ be the number of round-robin opportunities 
given to flow j in the same interval, then Im - m’I 5 1. 

Thus, from Lemma 2, we get 

senti(t1, t 2 )  5 m . &i + Max. 

Consider any output link for a given router. 
Queue; is the ith queue, which stores packets 
with flow id i. Queues are numbered 0 to  ( n  - l) ,  
n is the maximum number of output link queues. 

Enqueue()  , Dequeue() a.re standard Queue operators. 
We use a list of active flows, ActiveList, with 
standard opesations like InsertActiveList, which adds 
a flow index to the end of the active list. 
FreeBu f f e r ( )  frees a buffer from the flow with the 
longest queue using using McKenney’s buffer stealing. 
Qi is the quantum allocated t o  Queue;. 
DCi contains the bytes that Queue; did not 
use in the previous round. 

Initialization: 

DC; = 0; 
For ( i = O ; i < n ; i = i + l )  

Enqueuing module: on arrival of packet p 
i = ExtractFlow(p)  
If (Exis ts lnAct iweList( i )  == F A L S E )  then 

InsertAct iveLis t ( i ) ;  (*add i to active list’) 
DC, = 0; 

If no free buffers left then 
FreeBu f f er () ; ( *  using buffer stealing *) 

Enqueue( i ,p ) ;  (* enqueue packet p to queue i*) 

Dequeuing module: 
While(TRUE) do 

If ActiveList is not empty then 
Remove head of ActiveList, say flow i 

while ((Dc > 0) and 
DCi = Q; + DC’; 

(Queue; not empty)) do 
PacketSize = Size(Head(  Queue;)); 
If (PacketSize 5 DC;) then 

Send(Dequeue( Queue;)); 
DC% = DC, 

- PacketSize; 
Else break; (*skip while loop *) 

DC; = 0; 
If (Empty(Queue;))  then 

Else InsertAct iveLis t ( i ) ;  

Fig. 4. Code for deficit round-robin. 

Thus 

sent,(tl, t z )  5 (m  - 1) . QZ + &, + Max. 

From the definition, fi, the share given to any flow 2, is 
equal to Qz/&. Thus, we can calculate the normalized service 
received by i as 

sent,(t1,t2)/ft 5 (m - 1) . Q + Q + Max/f, 

since Q L  = fiQ. Recall that Q is the smallest value of Qz 
over all flows 2. Similarly, we can show for flow j (using 
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Work Complexity 
O(1) expected 

0 ( log(4)  
O(log(n)) 

O( 1) expected 

Lemma 2) that 

sent, ( t l .  t 2 )  2 m’ Qi. - Max 

and so 

sent,(tl.t2)/f, 2 m’.Q-Max/f , .  

Subtracting the equations for the normalized service for 
flows i and , j ,  and using the fact that m/ 2 m - 1, we get 

The theorem follows because both f i  and f, are 2 1 for 
DRR. 0 

Having dealt with the fairness properties of DRR, we 
analyze the worst-case packet processing work. It is easy to 
see that the size of the various Q variables in the algorithm 
determines the number of packets that can be serviced from a 
queue in a round. This means that the latency for a packet (at 
low loads) and the throughput of the router (at high loads) is 
dependent on the value of the Q variables. 

Theorem 4: The work for deficit round-robin is 0(1), if for 
all i ,  Q ,  2 Max. 

Proofi Enqueuing a packet requires finding the queue 
used by the flow [0(1) time complexity using hashing since 
we ignore collisions], appending the packet to the tail of the 
queue, and possibly stealing a buffer (O(1) time using the 
technique in [ 121). Dequeuing a packet requires determining 
the next queue to service by examining the head of ActiveList, 
and then doing a constant number of operations (per packet 
sent from the queue) in order to update the deficit counter and 
ActiveList. If Q 2 Max, we are guaranteed to send at least one 
packet every time we visit a queue and, thus, the worst-case 

Note that if we use hashing and we do not ignore collisions, 
then Work for DRR becomes O(1) expected [as opposed to 0 
(1) worst case] because of possible collisions. 

time complexity i s  O(1). 0 

A. Comparison to Other Fair Queuing Schemes 

Golestani [9] states the following result for the fairness 
measure of self-clocked Fair Queueing (for any time interval 
(tl ,  t 2 ) )  

senti(tl,t2)/fi ~ sent,i(tl,t2)/fj 5 Maxlf, + Max/f7. 

On the other hand, (1) shows that for DRR 

senti(t1, &)Ifz ~ sentj(t1, t z ) / . f j  

- < (2 + Max,?/fj + Mazi / . f i .  

Thus, the only difference in the fairness measure is the 
additive term of Q caused by DRR. Since we need Q 2 Marc 
to make the work complexity O(1), this translates into an 
additive term of Max, assuming Q = Max.  

Let us call the Demers-Keshav-Shenker scheme [3] DKS 
Fair Queuing. In summary: DKS Fair Queuing has a maxi- 
mum value of F M  of Max; self-clocked Fair Queuing has 
a maximum value of F M  of 2Maz, and DRR fair queuing 
has a maximum value of F M  of 3Marc. In all three cases, 
the fairness measure is a small constant that does not depend 

on the interval size, and becomes negligible for large inter- 
vals. Thus, the small extra discrepancy caused by DRR in 
throughput fairness seems insignificant. 

We compare the F M  and Work of the major fair queuing 
algorithms that have been proposed, until now, in Table I. For 
this comparison only, assume that DRR does hashing but does 
not incorporate collisions. This is the only reasonable way 
to compare the algorithms because the trick of using hashing 
and ignoring collisions (as pioneered by [12]) can be applied 
to all fair queueing algorithms. At the same time, DRR can 
easily be modified to treat each flow separately (as opposed to 
treating all flows that hash into the same bucket equivalently). 
We will analyze the effect of ignoring collisions in the next 
subsection. We have also taken the fairness measure for round- 
robin schemes as infinity. This is because if we consider two 
flows, one that uses large packets only, and a second that uses 
small packets only, then over any infinitely large interval, the 
first flow will get infinitely more service that the second. We 
have also taken the Work of round-robin to be 0(1) expected, 
because even in ordinary round-robin schemes, we need to 
look up the state for a flow, using say hashing. 

From the table, deficit round-robin is the only algorithm that 
provides a fairness measure equal to a small constant and a 
Work of expected O(1). 

B. Incorporating Hushing 
In the previous analysis, we showed that if we did not 

lump together Bows that hashed into the same bucket, then 
DRR achieves an F M  equal to 3Mnz and a work = O(1), 
expected. This is a reasonable way to compare DRR to other 
schemes (except Stochastic Fair Queueing) that do the same 
thing. 

On the other hand, we have argued that implementations 
are likely to profit from the use of McKenney’s idea of 
using hashing and ignoring collisions. The consequence of this 
implementation idea is that there is now some probability that 
two or more flows will collide; the colliding flows will then 
share the bandwidth allocated to that bucket. 

The average number of other flows that collide with a flow 
can be shown [2] to be n/&,  where n is the number of flows 
and Q is the number of queues. For example, if we have 
1000 concurrent flows and 10000 queues (a factor of ten, 
which is achievable with modest amounts of memory) the 
average number of collisions is 0.1. If B is the bandwidth 
allocated to a flow, the effective bandwidth in such a situation 
becomes B/l  + (n/Q).  For instance, with 10000 queues and 
1000 concurrent flows, this means that two backlogged flows 
with identical quanta can differ in terms of throughput by 
10% on the avarage, in addition to the additive difference of 
3Maz guaranteed by the fairness measure. Thus, assuming a 
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reasonably large number of queues, the unfairness caused by 
ignoring collisions should be small. 

V. SIMULATION RESULTS 

We wish to answer the following questions about tlhe 

We would like to confirm experimentally that DRR pro- 
vides isolation superior to FCFS as the theory indicates, 
especially in the backlogged case. 
The theoretical analysis of DRR is for a single router (Le., 
one hop). How are the results affected in a multiple hop 
network? 
We want to confirm that the fairness provided by DRR is 
still good when the flows arrive at different (not neces- 
sarily backlogged) rates and with different distributions. 
Is the fairness sensitive to packet size distributions and 
arrival distributions? 

Since we have multiple effects, we have devised experi- 
ments to isolate each of these effects. However, there are other 
parameters (such as number of packet buffers and flow index 
size) that also impact performance. We first did parametric 
experiments to determine these values before investigating 
our main questions. For lack of space, we only present a few 
experiments and refer the reader to [16] for more details. 

performance of DRR: 

A. Default Simulalion Settings 

Unless otherwise specified, the default for all the lxter 
experiments is as specified here. We measure the throughput 
in terms of delivered bits in a simulation interval, typically 
2000 

In the single router case (see Fig. S), there are one or more 
hosts. Each host has twenty flows, each of which generates 
packets at a Poisson average rate of 10 packets/s. The packet 
sizes are randomly selected between zero and Max (which 
is 4500 b). Ill-behaved flows send packets at three times the 
rate at which the other flows send packets (i.e., 30 packet&). 
Each host in such an experiment is configured to have one 
ill-behaved flow. 

In Fig. 6, we show the typical settings in a multiple hop 
topology. There are hosts connected at each hop (a routler) 
and each host behaves as as described in the previous section. 
In multiple hop routes, where there are more than twenty flows 

4Throughput is typically measured in b/s. However, it is easy to convert 
our results into b/r by dividing by the simulation time. 

Host #1 Router A Router B Router C Router D - ~~ 

Fig. 6.  Multiple router configuration. 
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Fig 7 This i s  d plot of the bandwidth offered to flows using FCFS queuing 
and DRR In FCFS, the ill behaved flow (flow 10) obtains an arbitrary share 
of the bandwidth. The isolation property of DRR is clearly illustrated 

through a router, we use large buffer sizes (around 500 packet 
buffers) to factor out any effects due to lack of buffers. In 
multiple hop topologies, all outgoing links are set at 1 Mb/s. 

B. Comparison of DRR and FCFS 
To show how DRR performs with respect to FCFS, we 

performed the following two experiments. In Fig. 7, we use 
a single router configuration and one host with twenty flows 
sending packets at the default rate through the router. The 
only exception is that flow 10 is a misbehaving flow. We use 
Poisson packet arrivals and random packet sizes (uniformly 
distributed between 0 and 4500 b). All parameters used are 
the default settings. The figures show the bandwidth offered to 
different flows using the FCFS and DRR queuing disciplines. 
We find that in FCFS the ill-behaved flow grabs an arbitrary 
share of bandwidth, while in DRR, there is nearly perfect 
fairness. 

We further contrast FCFS scheduling with DRR scheduling 
by examining the throughput offered to each flow at different 
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and DRR to schedule the departure of packets. 

The bandwidth allocated to different flows at router D usins FCFS 

stages in a multiple hop topology. The experimental setup is 
the default multiple hop topology described in Section V-A. 
The throughput offered is measured at router D (see Fig. 8). 
This time we have a number of misbehaving flows. The figure 
shows that DRR behaves well in multihop topologies. 

C. Independence with Respect to Packet Sizes 
We investigate the effect of different packet size on the 

fairness properties. The packet sizes in a train of packets can 
be modeled as random, constant or bimodal. We use a single 
router configuration with one host that has 20 flows. In the first 
experiment, we use random (uniformly distributed between 0 
and 4500) packet sizes. In the next two experiments, instead of 
using the random packet sizes, we first use a constant packet 
size of 100 b, and then a bimodal size that is either 100 or 
4500 b. 

Figure 9 shows the lack of any particular pattem in response 
to the usage of different packet sizes in the packet traffic into 
the router. The difference in bandwidth offered to a flow while 
using the three different packet size distributions is negligible. 
The maximum deviation from this figure while using constant, 
random and bimodal cases tumed out to be 0.3%, 0.4699%, 
and 0.32%, respectively. Thus, DRR seems fairly insensitive 
to packet size distributions. 

This property becomes clearer when the DRR algorithm 
is contrasted with the performance of the SFQ algorithm. 
While using the SFQ algorithm, flows sending larger packets 
consistently get higher throughput than the flows sending 
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random sized packets, while all flows get equal bandwidth 
while using DRR. 

It is clear from Fig. 10 that DRR offers equal throughput 
to all kinds of sources. SFQ offers higher throughput to flows 
sending larger packets (for example, flow indices 44, 53, 863, 
875 etc. which are flows originating from the clever host); 
this affects the throughput offered to normal flows (e.g. flow 
indices 60, 107. 190, etc. which are flows originating in the 
host sending random sized packets), which get substantially 
lower throughput. 

D. Independence with Respect to Trafic Patterns 

We show that DRR’s performance is independent of the 
traffic distribution of the packets entering the router. We used 
two models of traffic generators: exponential and constant 
interarrival times, respectively, and collected data on the 
number of bytes sent by each of the flows. We then examined 
the bandwidth obtained. The other parameters (e.g. number 
of buffers in the router) are kept constant at sufficiently high 
values in this simulation. 

The experiment used a single router configuration with 
default settings. The outgoing link bandwidth was set to 10 
Kb/s. Therefore, if there are 20 input flows each sending 
at rates higher than 0.5 Kb/s, there is contention for the 
outgoing link bandwidth. We found almost equal bandwidth 
allocation for all flows. The maximum deviation from the 
average throughput offered to all flows in the constant traffic 
sources case is 0.3869%. In the Poisson case, it is bounded by 
0.3391% from the average throughput. Thus, DRR appears to 
work well regardless of the input traffic distributions. 
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VI. LATENCY REQUIREMENTS 

Consider a packet p for flow i that arrives at a router. 
Assume that the packet is queued for an output link instantly 
and there are no other packets for flow i at the router. Let 
s be the size of packet p in bits. If we use bit-by-bit round- 
robin, then the packet will be delayed by s round-robin rounds. 
Assuming that there are no more than n active flows at any 
time, this leads to a latency bound of n * s /B ,  where B is the 
bandwidth of the output line in b/s. In other words, a small 
packet can only be delayed by an amount proportional to its 
own size by every other flow. The Demers-Keshav-Shenker 
(DKS) approximation only adds a small error factor to this 
latency bound. 

The original motivation in both the work of Nagle arid 
DKS was the notion of isolation. Isolation is essentially a 
throughput issue: we wish to give each flow a fair share of 
the overall throughput. In terms of isolation, the proofs given 
in the previous sections indicate that deficit round-robin is 
competitive with DKS Fair Queuing. However, the additional 
latency properties of BR and DKS have attracted considerable 
interest. In particular, Parekh and Gallager [ 141 have calculated 
bounds for end-to-end delay, assuming the use of DKS Fair 
Queuing at routers and token bucket traffic shaping at sources. 

At first glance, DRR fails to provide strong latency bounds. 
In the example of the arrival of packet p given above, the 
latency bound provided by DRR is Ca Q,/B. In other words, 
a small packet can be delayed by a quantum’s worth by every 
other flow. Thus, in the case where all the quanta are equal 

to Max [which is needed to make the work O(l)], the ratio of 
the delay bounds for DRR and BR is Max/’in. 

We note that the counter-example given in Section I11 
indicates that reducing the quantum size does not help improve 
the worst-case latency bounds for DRR. 

However, the real motivation behind providing latency 
bounds is to allow real-time traffic to have predictable and 
dependable performance. Since most traffic will consist of a 
mix of best-effort and real-time traffic, the simplest solution is 
to reserve a portion of the bandwidth for real-time traffic and 
use a separate Fair Queuing algorithm for the real-time traffic 
while continuing to use DRR for the best-effort traffic. This 
allows efficient packet processing for best-effort traffic; at the 
same time, it allows the use of other fair queuing schemes that 
provide delay bounds for real-time traffic at reasonable cost. 

As a simple example of combining fair queuing schemes, 
consider the following modification of DRR called DRR+. In 
DRR+, there are two classes of flows: latency critical and 
best-effort. A latency critical flow must contract to send no 
more than z bytes in some period T .  If a latency critical flow 
f meets its contract, whenever a packet for flow f arrives to 
an empty flow f queue, theflow f is placed at the head of 
the round-robin list. 

Suppose, for instance, that each latency critical flow guar- 
antees to send, at most, a single packet (of size, at most, s) 
every T s. Assume that T is large enough to service one packet 
of every latency critical flow as well as one quantum’s worth 
for every other flow. Then if all latency critical flows meet 
their contract, it appears that each latency critical flow is, at 
most, delayed by (n’ * s) + MaxlB, where n’ is the number of 
latency critical flows. In other words, a latency critical flow is 
delayed by one small packet from every other latency critical 
flow, as well as an error term of one maximum size packet 
(the error term is inevitable in all schemes unless the router 
preempts large packets). In this simple case, the final bound 
appears better than the DKS bound because a latency critical 
flow is only delayed by other latency critical flows. 

In the simple case, it is easy to police the contract for latency 
critical flows. A single bit that is part of the state of such a 
flow is cleared whenever a timer expires and is set whenever 
a packet arrives; the timer is reset for T time units when a 
packet arrives. Finally, if a packet arrives and the bit is set, the 
flow has violated its contract; an effective (but user-friendly) 
countermeasure is to place the flow ID of a deviant flow at 
the end of the round-robin list. This effectively moves the 
flow from the class of latency critical flows to the class of 
best-effort flows. 

Figure 11 shows the results of a simulation experiment 
using DRR+ instead of DRR. The simulation parameters are 
as follows. We use a single router configuration as described 
earlier. The structure of a BONeS host for these experiments is 
as follows. Each host has 20 flows, out of which, one is marked 
as latency critical. Therefore, to have three LatencyCriticaZ 
flows, we use three hosts. The default parameters are set in 
the DRR+ router and the hosts (The LatencyCritical and 
BestEffort flows send packets with exponential interarrival 
times at an average of 10 packetds and they have random 
packet sizes). The delay experienced by the LatencyCritical 
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flows when therc are three latency critical flows through the router. The 
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flows is averaged into 20 batch intervals spread over the 
simulation time. The rest of the flows (i.e., the BestEffort 
flows) are also batched together and averaged. 

It is evident from the figure that the LatencyCritical flows 
experience bounded latency in a DRR+ environment. How- 
ever, note that this experiment only considered a single router. 
DRRf is a simple example of combining DRR with other fair 
queuing algorithms to handle latency critical flows. By using 
other schemes for the latency critical flows, we can provide 
better bounds while allowing more general traffic shaping 
rules. 

VII. OTHER APPLICATIONS OF DRR 
DRR schemes can be applied to other scheduling contexts in 

which jobs must be serviced as whole units. In other words, 
jobs cannot be served in several time slices as in a typical 
operating system. This is true for packet scheduling because 
packets cannot be interleaved on the output lines, but it is true 
for other contexts as well. Note also that DRR is applicable to 
distributed queues because it needs only local information to 
implement. We describe two other specific applications: token 
ring protocols and load balancing schemes. 

The current 802.5 token ring uses token holding timers that 
limit the number of bits a station can send at each token 
opportunity. If a station's packets do not fit exactly into the 
allowed number of bits, the remainder is not kept track off; 
this allows the possibility of unfairness. The unfairness can 
easily be removed by keeping a deficit counter at each ring 
node and by a small modification to the token ring protocol. 

Another application is load balancing or, as it is sometimes 
termed, striping. Consider a router that has traffic arriving on 
a high speed line that needs to be sent out to a destination over 
multiple slower speed lines. If the router sends packets from 
the fast link in a round-robin fashion across the slower links, 
then the load may not balance perfectly if the packet sizes 
are highly variable. For example, if packets alternate between 
large and small packets, then round-robin across two lines can 
cause the second line to be underutilized. But load balancing 
is almost the inverse of fair queuing. It is is not hard to see 
that deficit round-robin solves the problem; we send up to to 
a quantum limit per output line but we keep track of deficits. 
This should produce nearly perfect load balancing; as usual, it 
can be extended to weighted load balancing. In [I], we show 
how to obtain perfect load balancing and yet guarantee first- 
in first-out (FIFO) delivery. Our load balancing scheme [ I ]  
appears to be a novel solution to a very old problem. 

VIlI. CONCLUSIONS 

We have described a new scheme, DRR, that provides near- 
perfect isolation at very low implementation cost. As far as we 
know, this is the first fair queuing solution that provides near- 
perfect throughput fairness with O( 1) packet processing. DRR 
should be attractive to use while implementing fair queuing at 
gateways and routers. 

A number of readers have conjectured that DRR should 
reduce to BR when the quantum size is one bit. This is 
not true. The two schemes have radically different behaviors. 
A counter-example is described in Section 111. The counter- 
example also indicates that reducing the quantum size to be 
less than Max does not improve the worst-case latency at all. 
Thus DRR is not just a crude approximation of BR; it has 
more interesting behaviors of its own. 

We have described theorems that describe the behavior of 
DRR in ensuring throughput fairness. In particular, we show 
that DRR satisfies Golestani's [9] definition of throughput 
fairness, i.e., the normalized bandwidth allocated to any two 
backlogged flows in any interval is roughly equal. Earlier 
versions of this paper [16], [17] had only shown throughput 
fairness for the case when all flows were backlogged. Our use 
of Golestani's definition makes the results in this paper more 
general, and indicates why DRR works well in nonbacklogged 
and backlogged scenarios. Our simulations indicate that DRR 
works well in all scenarios. 

The Q size is required to be at least Max for the work 
complexity to be O(1). We feel that while Fair Queuing using 
DRR is general enough for any kind of network, it is best 
suited for datagram networks. In ATM networks, packets are 
fixed size cells, therefore, Nagle's solution (simple round- 
robin) will work as well as DRR. However, if connections in 
an ATM network require weighted fair queuing with arbitrary 
weights, DRR will be useful. 

DRR can be combined with other fair queuing algorithms 
such that DRR is used to service only the best-effort traffic. 
We described a trivial combination algorithm called DRR+ 
that offers good latency bounds to latency critical flows as 
long as they meet their contracts. However, even if the source 
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meets the contract, the contract may be violated due to bunch- 
ing effects at intermediate routers. Thus, other combinations 
need to be investigated. Recall that DRR requires having the 
quantum size be at least a maximum packet size in order far 
the packet processing work to be low; this does affect delay 
bounds. 

We believe that IIRR should be easy to implement using 
existing technology. It only requires a few instructions beyond 
the simplest queuing algorithm (FCFS), and this addition 
should be a small percentage of the instructions needed for 
routing packets. The memory needs are also modest; 6K size 
memory should give a small number of collisions for about 
100 concurrent flows. This is a small amount of extra memory 
compared to the buffer memory used in many routers. Note 
that the buffer size requirements should be identical to the 
buffering for FCFS because in DRR buffers are shared between 
queues using McKenney’ s buffer stealing algorithm. 

DRR can be applied to other scheduling contexts in which 
jobs must be serviced as whole units. We have described two 
other applications: token rings with holding timers and load 
balancing. For these reasons, we believe that DRR scheduling 
is a general and useful tool. We hope our readers will use it 
in other ways. 
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