Communication over Finite-Ring Matrix Channels

Chen Feng1 Roberto W. Nóbrega2
Frank R. Kschischang1 Danilo Silva2

1Department of Electrical and Computer Engineering
University of Toronto, Canada

2Department of Electrical Engineering
Federal University of Santa Catarina (UFSC), Brazil

IEEE International Symposium on Information Theory
Istanbul, Turkey, July 12, 2013
Transmitter injects packets (row vectors over \mathbb{F}_q)
Intermediate nodes forward random \mathbb{F}_q-linear combinations of packets
Errors may also be injected, which randomly mix with the legitimate packets
(Each) receiver gathers as many packets as possible

At any particular receiver:

$$Y = AX + Z$$

where A is a transfer matrix, and Z is some error matrix.
Random-linear network-coding with errors can be formulated as:

\[Y = AX + Z, \]

where

- all matrices are over \(\mathbb{F}_q \);
- \(X, A, \) and \(Z \) are independent;
- channel law is specified by the distributions of \(A \) and \(Z \).
[SKK10]1 considered three variants of \(Y = AX + Z \) over \(\mathbb{F}_q \).

1. \(Y = AX \): \(A \) is invertible, drawn uniformly at random
 exact capacity, code design, encoding-decoding

2. \(Y = X + W \): \(W \) has rank \(t \), drawn uniformly at random
 exact capacity, code design, encoding-decoding

3. \(Y = A(X + W) \): \(A \) invertible, \(W \) rank \(t \), both uniform
 capacity bounds, code design, encoding-decoding

Finite-Ring Matrix Channels

Generalize from finite-field matrix channels to finite-ring matrix channels.

Why?

Finite-Ring Matrix Channels

Generalize from finite-field matrix channels to finite-ring matrix channels.

Why?

The motivation comes from physical-layer network coding, in particular, compute-and-forward.²

uncoded modulation:

- L^2-QAM $\Rightarrow R = \mathbb{Z}_L[i]$, packet space $= R^m$, where

$$\mathbb{Z}_L[i] \triangleq \{a + bi : a, b \in \mathbb{Z}_L\}.$$

nested lattice codes:

- for many practical constructions, we have\(^3\):

$$R = T/\langle \pi^{t_m} \rangle,$$

packet space $= T/\langle \pi^{t_1} \rangle \times \cdots \times T/\langle \pi^{t_m} \rangle$ for some $t_1 \leq \cdots \leq t_m$, where T is a PID.

In all cases, the packet space is R^μ for some finite chain ring R, where

$$R^\mu \triangleq R \times \cdots \times R \times \pi R \times \cdots \times \pi R \times \cdots \times \pi^{s-1} R \times \cdots \times \pi^{s-1} R.$$

Finite-Ring Matrix Channels: Packet Space

Example: \(R = \mathbb{Z}_4, \mu = (3, 5), R^\mu = \mathbb{Z}_4^3 \times (2\mathbb{Z}_4)^2 \)

\[
\mathbf{w} = \begin{bmatrix} 1 & 2 & 3 & 0 & 2 \end{bmatrix} \in R^\mu
\]
\[
\mathbf{w} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \end{bmatrix} + 2 \begin{bmatrix} 0 & 1 & 1 & 0 & 1 \end{bmatrix}
\]

So, the packet space \(R^\mu \) can be visualized as

\[
\begin{array}{cccccc}
* & * & * & & & \\
* & * & * & * & & \\
& & & & & \\
\end{array}
\]

In all cases, the packet space is \(R^\mu \) for some finite chain ring \(R \), where

\[
R^\mu \triangleq R \times \cdots \times R \times \pi R \times \cdots \times \pi R \times \cdots \times \pi^{s-1} R \times \cdots \times \pi^{s-1} R.
\]
The **multiplicative matrix channel (MMC):**

\[Y = AX \]

where

- \(X, Y \in \mathbb{R}^{n \times \mu} \);
- \(A \) : invertible, uniform;
- \(A \) and \(X \) are independent.
When R reduces to \mathbb{F}_q and $R^{n \times \mu}$ reduces to $\mathbb{F}_q^{n \times m}$:

1. **Exact capacity:** A preserves the row span, so

 \[C_{\text{MMC}} = \log_q \left(\# \text{ of subspaces of } \mathbb{F}_q^m \right) \]

2. **Capacity-achieving code:** reduced row echelon form (RREF)

3. **Efficient encoding-decoding:**
 - **encoding:**
 \[X = \begin{bmatrix} I & \text{data} \end{bmatrix} \]
 \[\begin{array}{c} n \ \ \ m-n \end{array} \]
 - **decoding:** Gaussian elimination (reduction to RREF)
Theorem

The capacity of the MMC, in q-ary symbols per channel use, is

$$C_{MMC} = \log_q \left(\text{# of submodules of } R^\mu \right).$$

The # of submodules of R^μ is $\sum_{\lambda \preceq n, \mu} \binom{\mu}{\lambda}_q$ (see, e.g., [HL00]3), where

$$\binom{\mu}{\lambda}_q = \prod_{i=1}^s q^{(\mu_i - \lambda_i)\lambda_{i-1}} \left[\frac{\mu_i - \lambda_{i-1}}{\lambda_i - \lambda_{i-1}} \right]_q,$$

and $\binom{m}{k}_q$ is the Gaussian coefficient.

- note: $\lambda \preceq n, \mu$ means $\forall i, \lambda_i \leq n, \mu_i$

code design problem \Rightarrow an appropriate generalization of RREF

The presence of zero divisors complicates the matters...

- Over a field, two matrices in echelon form with the same row span will have the same number of nonzero rows—the rank.
- Over a chain ring, this is not the case.

For example, the matrices

$$\begin{bmatrix}
2 & 1 & 1 & 2 \\
0 & 0 & 2 & 2 \\
0 & 0 & 0 & 0
\end{bmatrix} \quad \text{and} \quad \begin{bmatrix}
2 & 1 & 1 & 2 \\
0 & 4 & 0 & 4 \\
0 & 0 & 2 & 2
\end{bmatrix} \quad \text{over} \quad \mathbb{Z}_8$$

have the same row span but not the same number of nonzero rows. So, generalization of RREF seems non-trivial.
code design problem \implies \text{an appropriate generalization of RREF}

There are two matrix canonical forms that generalize RREF:

code design problem ⇒ an appropriate generalization of RREF

There are two matrix canonical forms that generalize RREF:

Example: the matrices

\[
\begin{bmatrix}
2 & 1 & 1 & 2 \\
0 & 0 & 2 & 2 \\
0 & 0 & 0 & 0 \\
\end{bmatrix}
\quad \text{and} \quad
\begin{bmatrix}
2 & 1 & 1 & 2 \\
0 & 4 & 0 & 4 \\
0 & 0 & 2 & 2 \\
\end{bmatrix}
\]

over \(\mathbb{Z}_8 \)

are Fuller and Howell canonical forms, respectively.
For details, see our paper and/or Kiermaier’s thesis (in German).
MMC: Efficient Encoding-Decoding

First attempt:
- Encoding: transmit a row canonical form (RCF)
- Decoding: reduction to RCF

The decoding complexity is $O(n^2m)$, but the encoding is hard.

Solution:
- Encoding: transmit a principal RCF
- Decoding: reduction to RCF

The encoding complexity is $O(nm)$. Principal RCFs occupy a significant portion of all RCFs.

Hence,
The simple coding scheme asymptotically achieves the capacity.
The additive matrix channel (AMC):

\[Y = X + W \]

where

- \(X, Y \in \mathbb{R}^{n \times \mu} \);
- \(W \): shape \(\tau \), uniform;
- \(W \) and \(X \) are independent.
The shape is a tuple of non-decreasing integers.

Example: \(\mu = (3, 5) \)

\[
R^\mu = R \times \cdots \times R \times \pi R \times \cdots \times \pi R \times \cdots \times \pi^{s-1} R \times \cdots \times \pi^{s-1} R.
\]

The shape of a matrix generalizes the concept of rank.

Definition The shape of a matrix \(A \) is defined as the shape of the row span of \(A \), i.e., \(\text{shape}(A) = \text{shape}(\text{row}(A)) \).
Shape of a Matrix

The shape is a tuple of non-decreasing integers.

Example: \(\mu = (3, 5) \)

\[R^\mu = R \times \cdots \times R \times \pi R \times \cdots \times \pi R \times \cdots \times \pi^{s-1} R \times \cdots \times \pi^{s-1} R. \]

The shape of a module generalizes the concept of dimension.

Theorem

For any finite \(R \)-module \(M \), there is a unique \(\mu \) such that \(M \cong R^\mu \).

We call \(\mu \) the shape of \(M \), and write \(\mu = \text{shape} M \).
The **shape** is a tuple of non-decreasing integers.

Example: \(\mu = (3, 5) \)

\[
R^\mu = R \times \cdots \times R \times \pi R \times \cdots \times \pi R \times \cdots \times \pi^{s-1} R \times \cdots \times \pi^{s-1} R.
\]

The **shape of a module** generalizes the concept of **dimension**.

Theorem

For any finite \(R \)-module \(M \), there is a unique \(\mu \) such that \(M \cong R^\mu \).

We call \(\mu \) the shape of \(M \), and write \(\mu = \text{shape} \ M \).

The **shape of a matrix** generalizes the concept of **rank**.

Definition

The shape of a matrix \(A \) is defined as the shape of the row span of \(A \), i.e., \(\text{shape} \ A = \text{shape} (\text{row} (A)) \).
When R reduces to \mathbb{F}_q and $R^{n \times \mu}$ reduces to $\mathbb{F}_q^{n \times m}$, shape τ reduces to rank t:

1. **Exact capacity:** a discrete symmetric channel

 $$C_{\text{AMC}} = nm - \log_q \left(\# \text{ of matrices of rank } t \text{ in } \mathbb{F}_q^{n \times m} \right)$$

2. **Capacity-approaching code:** ν is a parameter

 $$X = \begin{bmatrix} 0 & \cdots & 0 \\ \vdots \\ 0 \end{bmatrix} \quad \text{data}$$

3. **Efficient encoding-decoding:**
 - **encoding:** error trapping
 - **decoding:** matrix completion
The AMC is an example of a discrete symmetric channel.

Theorem

The capacity of the AMC, in q-ary symbols per channel use, is

$$C_{AMC} = \log_q |R^{n\times\mu}| - \log_q |\mathcal{T}_\tau(R^{n\times\mu})|.$$

We need to derive new enumeration results:

- $|R^{n\times\mu}| = q^{n(\mu_1 + \cdots + \mu_s)}$.
- $|\mathcal{T}_\tau(R^{n\times\mu})| = \left[\begin{array}{c} \mu \\
\tau \end{array}\right]_q |R^{n\times\tau}| \prod_{i=0}^{\tau s-1} (1 - q^{i-n})$, where

$$\left[\begin{array}{c} \mu \\
\tau \end{array}\right]_q = \prod_{i=1}^{s} q^{(\mu_i - \tau_i) \tau_i - 1} \left[\begin{array}{c} \mu_i - \tau_i - 1 \\
\tau_i - \tau_i - 1 \end{array}\right]_q.$$
AMC: Capacity-Approaching Code Design

code design problem ⇒ a generalization of error-trapping

Solution: layered error-trapping

Note that every matrix in $\mathbb{R}^{n \times \mu}$ admits a π-adic decomposition.

Example: $R = \mathbb{Z}_8$, $n = 6$, $\mu = (4, 6, 8)$, $X = X_0 + 2X_1 + 4X_2$

$X_0 = \begin{array}{c|c}
\begin{array}{c}
* * * * \\
* * * * \\
* * * * \\
* * * * \\
\end{array} & 0 \\
\end{array}$

$X_1 = \begin{array}{c|c}
\begin{array}{c}
* * * * * * \\
* * * * * * \\
* * * * * * \\
* * * * * * \\
\end{array} & 0 \\
\end{array}$

$X_2 = \begin{array}{c|c}
\begin{array}{c}
* * * * * * \\
* * * * * * \\
* * * * * * \\
* * * * * * \\
\end{array} & 0 \\
\end{array}$
code design problem ⇒ a generalization of error-trapping

Solution: layered error-trapping

Note that every matrix in $R^{n \times \mu}$ admits a π-adic decomposition.

Example: $R = \mathbb{Z}_8$, $n = 6$, $\mu = (4, 6, 8)$, $X = X_0 + 2X_1 + 4X_2$

\[
\begin{align*}
X_0 &= \begin{array}{c} * * * * * * \\ * * * \\ * * * \\ * * * \\ * * * \\ * * * \\ \end{array} \quad & 0 \\
\mu_1 &\quad \longrightarrow
\end{align*}
\]

\[
\begin{align*}
X_1 &= \begin{array}{c} * * * * * * \\ * * * * * * \\ * * * * * * \\ * * * * * * \\ * * * * * * \\ * * * * * * \\ \end{array} \quad & 0 \\
\mu_2 &\quad \longrightarrow
\end{align*}
\]

\[
\begin{align*}
X_2 &= \begin{array}{c} * * * * * * * * \\ * * * * * * * * \\ * * * * * * * * \\ * * * * * * * * \\ * * * * * * * * \\ * * * * * * * * \\ \end{array} \quad & \begin{array}{c} * * * * * * * * \\ * * * * * * * * \\ * * * * * * * * \\ * * * * * * * * \\ * * * * * * * * \\ * * * * * * * * \\ \end{array} \\
\mu_3 &\quad \longrightarrow
\end{align*}
\]

after error-trapping...

\[
\begin{align*}
X_0 &= \begin{array}{c} * * * \\ * * * \\ * * * \\ * * * \\ * * * \\ * * * \\ \end{array} \quad & 0 \\
\mu_1 &\quad \longrightarrow
\end{align*}
\]

\[
\begin{align*}
X_1 &= \begin{array}{c} * * * \\ * * * \\ * * * \\ * * * \\ * * * \\ * * * \\ \end{array} \quad & 0 \\
\mu_2 &\quad \longrightarrow
\end{align*}
\]

\[
\begin{align*}
X_2 &= \begin{array}{c} * * * * * \\ * * * * * \\ * * * * * \\ * * * * * \\ * * * * * \\ * * * * * \\ \end{array} \quad & \begin{array}{c} * * * * * \\ * * * * * \\ * * * * * \\ * * * * * \\ * * * * * \\ * * * * * \\ \end{array} \\
\mu_3 &\quad \longrightarrow
\end{align*}
\]
Encoding: layered error-trapping, $O(nm)$ complexity
Decoding: multistage matrix completion, $O(n^2m)$ complexity

Example: $R = \mathbb{Z}_8$, $X = X_0 + 2X_1 + 4X_2$. Note that

$$Y = X + W = X_0 + 2X_1 + 4X_2 + W.$$

1. Take mod 2: $[Y]_2 = X_0 + [W]_2$.
2. Decode X_0 by completing $[W]_2$.
3. Clear X_0 from Y: $Y' = Y - X_0 = 2X_1 + 4X_2 + W$.
4. Take mod 4: $[Y']_4 = 2X_1 + [W]_4$.
5. Decode $2X_1$ by completing $[W]_4$.
6. Clear X_1 from Y': $Y'' = Y' - 2X_1 = 4X_2 + W$.
7. We have $Y'' = 4X_2 + W$.
8. Decode $4X_2$ by completing W.
The additive-multiplicative matrix channel (AMMC):

\[Y = A(X + W) \]

where

- \(X, Y \in R^{n \times \mu} \);
- \(A \): invertible, uniform;
- \(W \): shape \(\tau \), uniform;
- \(A, X \) and \(W \) are independent.

Remark: This model is statistically identical to \(Y = AX + Z \).
Theorem

The capacity of the AMMC, in q-ary symbols per channel use, is upper-bounded by

$$C_{AMMC} \leq \sum_{i=1}^{s} (\mu_i - \xi_i)\xi_i + \sum_{i=1}^{s} (n - \mu_i)\tau_i + 2s \log_q 4 + \log_q \binom{n+s}{s}$$

$$+ \log_q \binom{\tau s + s}{s} - \log_q \prod_{i=0}^{\tau s - 1} (1 - q^{i-n}), \text{ where } \xi_i = \min\{n, \left\lfloor \mu_i/2 \right\rfloor\}.$$

In particular, when $\mu \geq 2n$, the upper bound reduces to

$$C_{AMMC} \leq \sum_{i=1}^{s} (n - \tau_i)(\mu_i - n) + 2s \log_q 4$$

$$+ \log_q \binom{n+s}{s} + \log_q \binom{\tau s + s}{s} - \log_q \prod_{i=0}^{\tau s - 1} (1 - q^{i-n}).$$
AMMC: Coding Scheme

coding scheme = principal RCFs + layered error-trapping

However, the combination turns out to be non-trivial. Hence, we focus on the special case when $\tau = (t, \ldots, t)$.

- **Encoding:**

 \[
 X = \begin{bmatrix}
 0 & \cdots & 0 \\
 \vdots \\
 0 \\
 \end{bmatrix}
 \]

- **Decoding:** upon receiving $Y = A(X + W)$, the decoder simply computes the RCF of Y, which exposes \bar{X} with high probability. This simple coding scheme asymptotically achieves the capacity for the special case when $\tau = (t, \ldots, t)$ and $\mu \geq 2n$.
Conclusion

- studied three variants of finite-ring matrix channels
 - exact capacities and an upper bound
 - capacity-achieving codes
 - efficient encoding-decoding methods
- refined some linear algebra tools over finite chain rings
 - row canonical form with a new proof for uniqueness
 - construction of principal RCFs
 - new enumeration results
- open problems:
 - Can we handle $Y = A(X + W)$ for general shapes?
 - What if A is not invertible?
Back-up Slides
Let R be a finite chain ring, where $\langle \pi \rangle$ is the unique maximal ideal, q is the order of the residue field $R/\langle \pi \rangle$, and s is the number of proper ideals.

Notation: (q, s) chain ring.

π-adic decomposition

Let $R(\mathbb{R}, \pi)$ be a complete set of residues with respect to π. Then every element $r \in R$ can be written uniquely as $r = r_0 + r_1 \pi + r_2 \pi^2 + \cdots + r_{s-1} \pi^{s-1}$ where $r_i \in R(\mathbb{R}, \pi)$.

$R = \langle \pi^0 \rangle$

$\langle \pi \rangle$

$\langle \pi^2 \rangle$

$\langle \pi^{s-1} \rangle$

$\{0\} = \langle \pi^s \rangle$
Let R be a finite chain ring, where

- $\langle \pi \rangle$ is the unique maximal ideal,
- q is the order of the residue field $R/\langle \pi \rangle$,
- s is the number of proper ideals.

Notation: (q, s) chain ring.
Let R be a finite chain ring, where

- $\langle \pi \rangle$ is the unique maximal ideal,
- q is the order of the residue field $R/\langle \pi \rangle$,
- s is the number of proper ideals.

Notation: (q, s) chain ring.

π-adic decomposition

Let $\mathcal{R}(R, \pi)$ be a complete set of residues with respect to π. Then every element $r \in R$ can be written uniquely as

$$r = r_0 + r_1 \pi + r_2 \pi^2 + \cdots + r_{s-1} \pi^{s-1}$$

where $r_i \in \mathcal{R}(R, \pi)$.
Definition

The degree, \(\text{deg}(r) \), of a nonzero element \(r \in R^* \), where

\[
r = r_0 + r_1 \pi + \cdots + r_{s-1} \pi^{s-1},
\]

is defined as the least index \(j \) for which \(r_j \neq 0 \).

- by convention, \(\text{deg}(0) = s \)
- units have degree zero
- elements of the same degree are associates
- \(a \) divides \(b \) if and only if \(\text{deg}(a) \leq \text{deg}(b) \)
Row Canonical Form

A matrix A is in **row canonical form** if it satisfies the following conditions.

1. Nonzero rows of A are above any zero rows.
2. The pivot of a row is of the form π^ℓ, and is the leftmost entry of the least degree.
3. For every pivot (say π^ℓ), all entries below and in the same column as the pivot are zero, and all entries above and in the same column as the pivot are residues of π^ℓ.
4. If A has two pivots of the same degree, the one that occurs earlier is above the one that occurs later. If A has two pivots of different degree, the one with smaller degree is above the one with larger degree.

For example, over \mathbb{Z}_8,

$$A = \begin{bmatrix}
0 & 2 & 0 & 1 \\
\bar{2} & 2 & 0 & 0 \\
0 & 0 & \bar{2} & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

is in row canonical form.
Reduction to Row Canonical Form: Example

Reduction is a variant of **Gaussian elimination**. An example over \mathbb{Z}_8:

\[
A = \begin{bmatrix}
4 & 6 & 2 & 1 \\
0 & 0 & 0 & 2 \\
2 & 4 & 6 & 1 \\
2 & 0 & 2 & 1 \\
\end{bmatrix} \quad \rightarrow \quad A_1 = \begin{bmatrix}
0 & 4 & 4 & 0 \\
6 & 6 & 4 & 0 \\
6 & 2 & 0 & 0 \\
\end{bmatrix} \quad \rightarrow \\
A'_1 = \begin{bmatrix}
4 & 6 & 2 & 1 \\
2 & 2 & 4 & 0 \\
0 & 4 & 4 & 0 \\
6 & 2 & 0 & 0 \\
\end{bmatrix} \quad \rightarrow \quad A_2 = \begin{bmatrix}
0 & 2 & 2 & 1 \\
2 & 2 & 4 & 0 \\
0 & 4 & 4 & 0 \\
0 & 4 & 4 & 0 \\
\end{bmatrix} \\
A_3 = \begin{bmatrix}
0 & 2 & 2 & 1 \\
2 & 2 & 4 & 0 \\
0 & 4 & 4 & 0 \\
0 & 0 & 0 & 0 \\
\end{bmatrix} \quad \text{which is in row canonical form.}
\]

Row canonical form is not necessarily an echelon form!
Construction of Principal RCFs

Definition

A row canonical form in $\mathcal{T}_\kappa(R^{n \times \mu})$ is called principal if its diagonal entries d_1, d_2, \ldots, d_r ($r = \min\{n, m\}$) have the following form:

$$d_1, \ldots, d_r = 1, \ldots, 1, \pi, \ldots, \pi, \ldots, \pi^{s-1}, \ldots, \pi^{s-1}, 0, \ldots, 0.$$

All principal RCFs in $\mathcal{T}_\kappa(R^{n \times \mu})$ can be constructed via a \(\pi\)-adic decomposition $X = X_0 + \pi X_1 + \cdots + \pi^{s-1} X_{s-1}$.

Example: $s = 3$, $n = 6$, $\mu = (4, 6, 8)$, and $\kappa = (2, 3, 4)$