Design Criteria for Lattice Network Coding

Chen Feng
Department of Electrical & Computer Engineering
University of Toronto, Canada

joint work with:
Danilo Silva, Federal University of Santa Catarina, Brazil, and
Frank R. Kschischang, University of Toronto

CISS 2011, Baltimore, MD, USA
23 March, 2011
Compute-and-Forward Relaying Strategy
Compute-and-Forward Relaying Strategy
Compute-and-Forward Relaying Strategy

\[y_3 = h_{13} x_1 + h_{23} x_2 + z_3 \]

\[y_4 = h_{14} x_1 + h_{24} x_2 + z_4 \]
Compute-and-Forward Relaying Strategy

\[y_3 = h_{13} x_1 + h_{23} x_2 + z_3 \]

\[w_3 = a_{13} w_1 + a_{23} w_2 \]

\[y_4 = h_{14} x_1 + h_{24} x_2 + z_4 \]

\[w_4 = a_{14} w_1 + a_{24} w_2 \]
Compute-and-Forward Relaying Strategy

\[w_3 = a_{13} w_1 + a_{23} w_2 \]

\[w_4 = a_{14} w_1 + a_{24} w_2 \]
Compute-and-Forward Relaying Strategy

\[y_5 = h_{35}x_3 + h_{45}x_4 + z_5 \]

\[w_3 = a_{13}w_1 + a_{23}w_2 \]

\[w_4 = a_{14}w_1 + a_{24}w_2 \]
Compute-and-Forward Relaying Strategy

$w_3 = a_{13} w_1 + a_{23} w_2$

$w_4 = a_{14} w_1 + a_{24} w_2$

$w_5 = a_{35} w_3 + a_{45} w_4$

$y_5 = h_{35} x_3 + h_{45} x_4 + z_5$
Problem Setup

Assumption

The receiver is only interested in a linear combination u
Problem Setup

\[\begin{align*}
 w_1 & \in \mathbb{F}_q^k & x_1 & \in \mathbb{C}^n \\
 w_2 & \in \mathbb{F}_q^k & x_2 & \in \mathbb{C}^n \\
 \vdots & \vdots & \vdots & \vdots \\
 w_L & \in \mathbb{F}_q^k & x_L & \in \mathbb{C}^n \\
\end{align*} \]

\[\begin{align*}
 u &= \sum_{\ell=1}^{L} a_{\ell} w_{\ell} \\
 y &= \sum_{\ell=1}^{L} h_{\ell} x_{\ell} + z
\end{align*} \]

\[\hat{u} \]

Assumption

Same power constraint \(P \) for all transmitters
Problem Setup

The encoder rate $R \triangleq k \log_2 q / n$; probability of error $P_e \triangleq \Pr[\hat{u} \neq u]$.

$w_1 \in \mathbb{F}_q^k \rightarrow \mathcal{E} \rightarrow x_1 \in \mathbb{C}^n \rightarrow u = \sum_{\ell=1}^L a_{\ell}w_{\ell}$

$w_2 \in \mathbb{F}_q^k \rightarrow \mathcal{E} \rightarrow x_2 \in \mathbb{C}^n \rightarrow \vdots \rightarrow \mathcal{E} \rightarrow x_L \in \mathbb{C}^n \rightarrow y = \sum_{\ell=1}^L h_{\ell}x_{\ell} + z$

$y \rightarrow \mathcal{D} \rightarrow \hat{u}$

Performance metrics

(a_1, \ldots, a_L)

(h_1, \ldots, h_L)
Nazer-Gastpar’s Approach

A lower bound for the encoder rate R: Nazer-Gastpar (2008)

$$R \geq R_{\text{comp}} = \log_2 \left(\frac{\text{SNR}}{Q(a)} \right)$$

where $Q(a) = aM a^\dagger$, and the matrix M is

$$M = \text{SNR} I_L - \frac{\text{SNR}^2}{\text{SNR} \left\| h \right\|^2 + 1} h^\dagger h.$$

Key idea: asymptotically-good lattice partitions (Erez and Zamir) and MMSE estimation
Some High-Level Questions

- **Which lattice partitions can be used?**
 instead of asymptotically-good lattice partitions

- **What are their performances?**
 in terms of the probability of error P_e
Some High-Level Questions

- **Which lattice partitions can be used?**

 considered in our ISIT 2010 paper
 also in the work of Hern and Narayanan (2010)
 and in the work of Ordentlich and Erez (2010)

- **What are their performances?**

 considered in this paper
Problem Considered in This Paper

\[\mathbf{w}_1 \in \mathbb{F}_{q}^k \rightarrow \mathbf{x}_1 \in \mathbb{C}^n \rightarrow \mathbf{u} = \sum_{\ell=1}^{L} a_\ell \mathbf{w}_\ell \]

\[\mathbf{w}_2 \in \mathbb{F}_{q}^k \rightarrow \mathbf{x}_2 \in \mathbb{C}^n \rightarrow \mathbf{y} = \sum_{\ell=1}^{L} h_\ell \mathbf{x}_\ell + z \]

Problem

Let \(\Lambda / \Lambda' \) be a lattice partition. Let \(\mathbf{a} \) be a coefficient vector. Then what is the probability of error \(P_e \triangleq \Pr[\hat{\mathbf{u}} \neq \mathbf{u}] \)?
Main Result

Let Λ/Λ' be a lattice partition. Let \mathbf{a} be a coefficient vector. Assume that hypercube shaping is used for Λ/Λ'. Then the union bound estimate of the probability of error P_e is

$$P_e \approx N(\Lambda \setminus \Lambda') \exp \left(-\frac{d^2(\Lambda/\Lambda')}{4\sigma^2 Q(\mathbf{a})} \right)$$

for high signal-to-noise ratios, where $Q(\mathbf{a})$ is exactly the same as that in Nazer-Gastpar’s result.

Definitions of the parameters $N(\Lambda \setminus \Lambda')$ and $d(\Lambda/\Lambda')$

$N(\Lambda \setminus \Lambda')$: number of the shortest vectors in the set difference $\Lambda \setminus \Lambda'$

$d(\Lambda/\Lambda')$: length of the shortest vectors in the set difference $\Lambda \setminus \Lambda'$
Implications of the Main Result

Solve a “disign-time” problem

Question: How shall we choose the lattice partition Λ/Λ'?
Answer: maximize $d(\Lambda/\Lambda')$ and minimize $N(\Lambda \setminus \Lambda')$

Solve a “run-time” problem

Question: How shall we choose the coefficient vector \mathbf{a}?
Answer: minimize $Q(\mathbf{a})$
Implications of the Main Result

Solve a “design-time” problem
Question: How shall we choose the lattice partition Λ/Λ'?
Answer: maximize $d(\Lambda/\Lambda')$ and minimize $\mathcal{N}(\Lambda \setminus \Lambda')$

Solve a “run-time” problem
Question: How shall we choose the coefficient vector \mathbf{a}?
Answer: minimize $Q(\mathbf{a})$

Remark
Note that these two problems are separable under our assumptions
Proof of the Main Result (real-valued case)

Each transmitter applies the same nested lattice code \(\Lambda/\Lambda' \)
There is a one-to-one linear map between messages and cosets
Proof of the Main Result (real-valued case)

Transmitter 1 maps w_1 to a coset representative
Proof of the Main Result (real-valued case)

Transmitter 2 maps w_2 to a coset representative
The channel is given by $y = 1.4x_1 + 0.6x_2 + z$
Proof of the Main Result (real-valued case)

\[y = h_1 x_1 + h_2 x_2 + z \]

\((h_1, h_2) = (1.4, 0.6)\)

Hence, the received signal \(y\) is like this.
Proof of the Main Result (real-valued case)

\[y = h_1 x_1 + h_2 x_2 + z \]

\[(h_1, h_2) = (1.4, 0.6) \]

\[(a_1, a_2) = (2, 1) \]

Receiver picks up a coefficient vector \((a_1, a_2) = (2, 1)\)
Proof of the Main Result (real-valued case)

\[y = h_1 x_1 + h_2 x_2 + z \]
\[(h_1, h_2) = (1.4, 0.6) \]
\[(a_1, a_2) = (2, 1) \]

Receiver scales the received signal to \(\alpha y = 2.04x_1 + 0.88x_2 + 1.46z \)
Proof of the Main Result (real-valued case)

\[y = h_1 x_1 + h_2 x_2 + z \]

\[(h_1, h_2) = (1.4, 0.6) \]

\[(a_1, a_2) = (2, 1) \]

Hence,
\[\alpha y = 2x_1 + x_2 + 0.04x_1 - 0.12x_2 + 1.46z = 2x_1 + x_2 + n_{\text{eff}} \]
Proof of the Main Result (real-valued case)

\[y = h_1 x_1 + h_2 x_2 + z \]
\[(h_1, h_2) = (1.4, 0.6) \]
\[(a_1, a_2) = (2, 1) \]

Since the effective noise is small, the decoding is correct.
Proof of the Main Result (real-valued case)

Recall that...

there is a one-to-one linear map between \mathbb{F}_3^2 and Λ / Λ'

Finally, map the decoded lattice point to a corresponding message

$w_1 = (1, 0)$

$w_2 = (0, 1)$

$\hat{u} = (2, 1)$

$\hat{u} = 2w_1 + w_2$
Proof of the Main Result (real-valued case)

\(y = h_1 x_1 + h_2 x_2 + z \)

\((h_1, h_2) = (1.4, 0.6)\)

\((a_1, a_2) = (2, 1)\)

\(P_e = \Pr[n_{\text{eff}} \notin \text{the Voronoi region of } \Lambda] \)

It might seem that \(P_e \)
Proof of the Main Result (real-valued case)

\[\begin{align*}
 y &= h_1 x_1 + h_2 x_2 + z \\
 (h_1, h_2) &= (1.4, 0.6) \\
 (a_1, a_2) &= (2, 1)
\end{align*} \]

In fact, \(P_e < \Pr[\mathbf{n}_{\text{eff}} \notin \text{the Voronoi region of } \Lambda] \)
The correct answer is $P_e = \Pr[\mathcal{D}_{\Lambda}(n_{\text{eff}}) \notin \Lambda']$
Proof of the Main Result (real-valued case)

\[y = h_1 x_1 + h_2 x_2 + z \]
\[(h_1, h_2) = (1.4, 0.6) \]
\[(a_1, a_2) = (2, 1) \]

Hence, we shall approximate \(\Pr[\mathcal{D}_\Lambda(n_{\text{eff}}) \notin \Lambda'] \)
Proof of the Main Result (real-valued case)

The original problem

Approximate $\Pr[D_{\Lambda}(n_{\text{eff}}) \notin \Lambda']$
Proof of the Main Result (real-valued case)

<table>
<thead>
<tr>
<th>The original problem</th>
<th>Approximate Pr[$\mathcal{D}\Lambda(n{\text{eff}}) \notin \Lambda'$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A simpler problem</td>
<td>Approximate Pr[$\mathcal{D}\Lambda(n{\text{eff}}) \notin \mathbf{0}$]</td>
</tr>
<tr>
<td>The original problem</td>
<td>Approximate $\Pr[\mathcal{D}\Lambda(n{\text{eff}}) \notin \Lambda']$</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>A simpler problem</td>
<td>Approximate $\Pr[\mathcal{D}\Lambda(n{\text{eff}}) \notin 0]$</td>
</tr>
<tr>
<td>A much simpler problem</td>
<td>Approximate $\Pr[\mathcal{D}_\Lambda(z) \notin 0]$</td>
</tr>
</tbody>
</table>
Proof of the Main Result (real-valued case)

<table>
<thead>
<tr>
<th>A much simpler problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question: Approximate $\Pr[D_{\Lambda}(z) \not\in 0]$</td>
</tr>
<tr>
<td>Solution: Union bound</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A simpler problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question: Approximate $\Pr[D_{\Lambda}(n_{\text{eff}}) \not\in 0]$</td>
</tr>
<tr>
<td>Solution: Union bound + Chernoff bound</td>
</tr>
</tbody>
</table>
Proof of the Main Result (real-valued case)

A much simpler problem

| Question: Approximate $\Pr[\mathcal{D}_\Lambda(z) \notin 0]$ |
| Solution: Union bound |

A simpler problem

| Question: Approximate $\Pr[\mathcal{D}_\Lambda(n_{\text{eff}}) \notin 0]$ |
| Solution: Union bound + Chernoff bound |

The original problem

| Question: Approximate $\Pr[\mathcal{D}_\Lambda(n_{\text{eff}}) \notin \Lambda']$ |
| Solution: Union bound + Chernoff bound + A Lemma |

Lemma

Consider the set difference $\Lambda \setminus \Lambda'$. Let $R_V(0)$ be the Voronoi region of 0 in the set $\Lambda \setminus \Lambda' \cup \{0\}$. Then $\Pr[\mathcal{D}_\Lambda(n) \notin \Lambda'] \leq \Pr[n \notin R_V(0)]$
Recall that
\[\Pr[\mathcal{D}_{\Lambda}(\mathbf{n}) \notin \Lambda'] \leq \Pr[\mathbf{n} \notin \mathcal{R}_V(0)] \]

Finally, we have
Let \(\Lambda/\Lambda' \) be a lattice partition. Let \(\mathbf{a} \) be a coefficient vector. Assume that hypercube shaping is used for \(\Lambda/\Lambda' \). Then the union bound estimate of the probability of error \(P_e \) is

\[
P_e \approx \mathcal{N}(\Lambda \setminus \Lambda') \exp \left(-\frac{d^2(\Lambda/\Lambda')} {4\sigma^2 Q(\mathbf{a})} \right)
\]

for high signal-to-noise ratios, where \(Q(\mathbf{a}) \) is exactly the same as that in Nazer-Gastpar’s result.
Conclusions

Nazer-Gastpar’s result (asymptotically-good lattice partitions)
\[R \geq R_{\text{comp}} = \log_2 \left(\frac{\text{SNR}}{Q(a)} \right) \]

Main result (lattice partitions that admit hypercube shaping)
\[P_e \approx N(\Lambda \setminus \Lambda') \exp \left(-\frac{d^2(\Lambda/\Lambda')}{4\sigma^2 Q(a)} \right) \]

Implications of the main result
- The lattice partition \(\Lambda/\Lambda' \) should be chosen such that \(d(\Lambda/\Lambda') \) is maximized and \(N(\Lambda \setminus \Lambda') \) is minimized.
- The coefficient vector \(a \) should be chosen such that \(Q(a) \) is minimized.
- These two problems are separable under our assumptions.
Some Open Problems

- Relax the assumption of hypercube shaping
- Construct good lattice partitions
Thank You!
A Short Summary of Nazer-Gastpar’s Architecture

First, pick up a coefficient vector \((a_1, \ldots, a_L)\)

Then, apply a linear MMSE estimator \(g(y) = \alpha y\)

\[
\alpha y = \sum_{\ell=1}^{L} \alpha h_{\ell} x_{\ell} + \alpha z
\]

\[
= \sum_{\ell=1}^{L} a_{\ell} x_{\ell} + \sum_{\ell=1}^{L} (\alpha h_{\ell} - a_{\ell}) x_{\ell} + \alpha z
\]

\[
= \sum_{\ell=1}^{L} a_{\ell} x_{\ell} + n_{\text{eff}},
\]

where \(a_1, \ldots, a_L \in \mathbb{Z}[i]\) and \(\alpha \in \mathbb{C}\) is the MMSE coefficient.

Finally, map the decoded lattice point \(\sum_{\ell=1}^{L} a_{\ell} x_{\ell}\) to \(\sum_{\ell=1}^{L} a_{\ell} w_{\ell}\).
Design Criterion 1

The coefficient vector \((a_1, \ldots, a_L)\) should be chosen such that
\[Q(a) = a^* M a \] is minimized.
Design Criterion 1

The coefficient vector \((a_1, \ldots, a_L)\) should be chosen such that
\[Q(a) = a^* Ma^\dagger \] is minimized.

It is a shortest vector problem. Why?

Since \(M\) is Hermitian and positive-definite, we have \(M = LL^\dagger\). Hence,
\[Q(a) = a^* Ma^\dagger = \|aL\|^2 \]
Design Criterion 2

The nested lattice code Λ/Λ' should be chosen such that $d(\Lambda/\Lambda')$ is maximized.
Applications of Our Design Criteria 2

Design Criterion 2

The nested lattice code Λ/Λ' should be chosen such that $d(\Lambda/\Lambda')$ is maximized.

It is related to some well-studied problems. Why?

1. For Construction A, $d^2(\Lambda/\Lambda')$ is proportional to $w_E^{\text{min}}(C)$
2. $w_E^{\text{min}}(C)$ is the minimum Euclidean weight of the linear code C
3. $w_E^{\text{min}}(C)$ has the following lower bounds
 - $w_E^{\text{min}}(C) \geq w_H^{\text{min}}(C)$ and $w_E^{\text{min}}(C) \geq w_M^{\text{min}}(C)$, where
 - $w_H^{\text{min}}(C)$: the minimum Hamming weight of C
 - $w_M^{\text{min}}(C)$: the minimum Mannheim weight of C
4. Hence, we can maximize these lower bounds
Some Comparisons

Recall the results for AWGN channels (high SNR regime)

Shannon: \(R = \log_2(1 + \text{SNR}) \approx \log_2(\text{SNR}) \)

Union bound estimate: \(P_e \approx K(\Lambda) \exp \left(- \frac{d^2(\Lambda)}{4\sigma^2} \right) \)

What are the parameters \(N(\Lambda \setminus \Lambda') \) and \(d(\Lambda / \Lambda') \) then?

\(N(\Lambda \setminus \Lambda') \): number of the shortest vectors in \(\Lambda \setminus \Lambda' \)

\(d(\Lambda / \Lambda') \): length of the shortest vectors in \(\Lambda \setminus \Lambda' \)
Some Comparisons

Recall the results for AWGN channels (high SNR regime)

Shannon: \(R = \log_2(1 + \text{SNR}) \approx \log_2(\text{SNR}) \)

Union bound estimate: \(P_e \approx K(\Lambda) \exp \left(-\frac{d^2(\Lambda)}{4\sigma^2} \right) \)

Compare the results for our problem (high SNR regime)

Nazer-Gastpar: \(R_{\text{comp}} = \log_2 \left(\frac{\text{SNR}}{Q(a)} \right) \)

Union bound estimate: \(P_e \approx \mathcal{N}(\Lambda \setminus \Lambda') \exp \left(-\frac{d^2(\Lambda/\Lambda')}{4\sigma^2 Q(a)} \right) \)

What are the parameters \(\mathcal{N}(\Lambda \setminus \Lambda') \) and \(d(\Lambda/\Lambda') \) then?

- \(\mathcal{N}(\Lambda \setminus \Lambda') \): number of the shortest vectors in \(\Lambda \setminus \Lambda' \)
- \(d(\Lambda/\Lambda') \): length of the shortest vectors in \(\Lambda \setminus \Lambda' \)
Some Comparisons

Recall the results for AWGN channels (high SNR regime)

Shannon: \(R = \log_2(1 + \text{SNR}) \approx \log_2(\text{SNR}) \)

Union bound estimate: \(P_e \approx K(\Lambda) \exp \left(-\frac{d^2(\Lambda)}{4\sigma^2} \right) \)

Compare the results for our problem (high SNR regime)

Nazer-Gastpar: \(R_{\text{comp}} = \log_2 \left(\frac{\text{SNR}}{Q(\mathbf{a})} \right) \)

Union bound estimate: \(P_e \approx \mathcal{N}(\Lambda \setminus \Lambda') \exp \left(-\frac{d^2(\Lambda/\Lambda')}{4\sigma^2 Q(\mathbf{a})} \right) \)

What are the parameters \(\mathcal{N}(\Lambda \setminus \Lambda') \) and \(d(\Lambda/\Lambda') \) then?

\(\mathcal{N}(\Lambda \setminus \Lambda') \): number of the shortest vectors in \(\Lambda \setminus \Lambda' \)

\(d(\Lambda/\Lambda') \): length of the shortest vectors in \(\Lambda \setminus \Lambda' \)