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Abstract—In a crowdsourcing system, it is important for the
crowdsourcer to engineer extrinsic rewards to incentivize the
participants. With mobile social networking, a user enjoys an
intrinsic benefit when she aligns her behavior with the behavior
of others. Referred to as network effects, such an intrinsic benefit
becomes more significant as the number of users grows in the
crowdsourcing system. But should a crowdsourcer design her
extrinsic rewards differently when such network effects are taken
into account? In this paper, we, for the first time, consider
network effects as a contributing factor to intrinsic rewards, and
study its influence on the design of extrinsic rewards. Rather than
assuming a fixed participant population, we show that the num-
ber of participating users evolves to a steady equilibrium, thanks
to subtle interactions between intrinsic rewards due to network
effects and extrinsic rewards offered by the crowdsourcer. Taken
network effects into consideration, we design progressively more
sophisticated extrinsic reward mechanisms, and propose new and
optimal strategies for a crowdsourcer to obtain a higher utility.
Via extensive simulations, we demonstrate that with our new
strategies, a crowdsourcer is able to attract more participants
with higher contributed efforts; and participants gain higher
utilities from both intrinsic and extrinsic rewards.

I. INTRODUCTION

Crowdsourcing combines the collective efforts of the crowd
to accomplish a specific task, such as collecting large volumes
of data, which is otherwise extremely costly or even unattain-
able. Crowdsourcing systems, such as Uber [1], Waze [2],
and Amazon Mechanical Turk (MTurk) [3], have become in-
creasingly popular. Another excellent example is ResearchKit,
recently launched by Apple as a mobile application framework
that supports a crowdsourcing platform for medical research
[4].

The success of a new crowdsourcing platform relies on the
scale of user participation, as well as the contribution from
each individual participant. To recruit and maintain a large
number of users, the crowdsourcer usually provides users with
monetary compensation, referred to as extrinsic rewards. In
contrast to such extrinsic rewards offered by the crowdsourcer,
a participant often enjoys a reward that is derived from a
sense of satisfaction, social status, or honor, and such rewards
are inherently intrinsic. In ResearchKit, for example, it has
been reported that only a few hours after its release, over
7,000 people has voluntarily enrolled in a study on Parkinson’s
disease without any extrinsic rewards, and the largest study
ever was only 1,700 [5].

Such intrinsic rewards, however, do not typically remain
unchanged as the size of participant population grows. When
a user’s behavior aligns with other users, she will obtain
higher intrinsic rewards, usually due to social factors. This is
known as the network effects [6]. In the example of Waze, a
mobile crowdsourcing platform for sharing traffic information,
a driver can get a better route if more users join and contribute
their local traffic data. It is intuitively conceivable that a
growing population of the crowdsourcing platform — with
more intrinsic rewards due to network effects — would help
reduce the amount of extrinsic rewards that a crowdsourcer
will need to provide.

Unfortunately, existing works in the literature have not yet
considered the influence of intrinsic rewards, as well as the
exquisite and subtle interactions between intrinsic and extrinsic
rewards. Reverse auctions (e.g., [7]) and Stackelberg games
(e.g., [8]) are typically used to model extrinsic rewards in
existing works. With reverse auctions, users submit bids with
their desired extrinsic rewards, and the crowdsourcer chooses
the users based on their bids, with a selection process that is
typically NP-hard and impractical. With Stackelberg games,
the crowdsourcer first announces her policy on extrinsic re-
wards, and the users would then make decisions on their
contribution levels. In both models, the user population is
assumed to be fixed, without considering intrinsic rewards and
network effects.

In this paper, we bring intrinsic rewards into the spotlight,
with a focus on how network effects affect the mechanism
design when a crowdsourcer provides extrinsic rewards to
incentivize crowdsourcing systems. In particular, we study
the dynamics of participation levels as a result of the inter-
action between intrinsic rewards incurred by network effects
and extrinsic rewards from the crowdsourcer. Based on our
analyses, we propose two extrinsic reward mechanisms, taking
advantage of the intrinsic rewards to boost user participation
and increase the crowdsourcer’s utility.

To start with, we first present a simple mechanism with fixed
extrinsic rewards (Section III), which is simple to implement.
In fact, mechanisms with fixed extrinsic rewards have been
adopted by many existing crowdsourcing systems, such as
MTurk. Thanks to intrinsic rewards, the participation level
is above-zero even without extrinsic rewards. Given a certain
extrinsic reward, the participation level will evolve to a stable
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equilibrium. Targeting the most profitable participation level,
we are able to compute the corresponding optimal fixed
extrinsic reward.

Taking it a step further, we proceed to design a flexible
extrinsic reward mechanism, where the extrinsic reward of
a user is a function of her effort level (Section IV). To
specify the extrinsic reward function is challenging since
we do not have any prior knowledge about its form (e.g.,
linear or logarithmic). Moreover, different extrinsic reward
functions, via a complex interaction with intrinsic rewards,
lead to different equilibrium participation levels. To tackle
this problem, we first focus on a certain participation level,
and obtain the extrinsic reward function that achieves the
highest utility for the crowdsourcer under this participation
level. We then choose the best participation level that yields
the maximum utility, and derive the corresponding optimal
extrinsic reward function.

The superiority of our proposed extrinsic reward mech-
anisms is verified through extensive simulations. With the
help of intrinsic rewards, the crowdsourcer is able to reach a
higher participation level and obtain a higher utility. Stronger
network effects will contribute to higher intrinsic rewards,
thus more beneficial to the crowdsourcer. Compared with
the fixed extrinsic reward mechanism, the flexible extrin-
sic reward mechanism is more efficient in soliciting more
user contributions. Interestingly, the flexible extrinsic reward
mechanism improves both the crowdsourcer’s and the users’
utilities, resulting in a win-win situation. This is because users’
higher contributions not only earn themselves higher extrinsic
rewards, but also become a valuable asset to the crowdsourcer.

II. SYSTEM MODEL

By participating in a crowdsourcing system, a user receives
both extrinsic rewards from the crowdsourcer, and intrinsic
rewards due to the benefits or social status she obtains. More
formally, user i exerts an effort of bi. bi ∈ [b, b], in which
b is the minimum effort, for example, a user has to register
and fill in the basic information; b is the maximum effort due
to limitations such as time, battery life and manpower. To
contribute an effort of bi, the user incurs a cost of cibi, where
ci is user i’s unit cost.

Intrinsic rewards. On one side, a user benefits from her
own effort, for example, a healthcare crowdsourcing platform
enables a user to get a better understanding of her health
condition by keeping track of her diet, exercise and heart rate.
On the other side, a user enjoys the social advantage of a
large crowd owing to network effects. Let vi denote the unit
value a user gets from her own effort, and E(n) denote the
network effects, where n ∈ [0, 1] represents the normalized
participation level and E(·) is a concave function, satisfying
E(0) = 0, E′(·) > 0 and E′′(·) < 0. This indicates that
network effects monotonically increase with the participation
level, but the marginal return decreases. Therefore, a user’s
intrinsic reward is vibi + E(n), a function of her effort and

the participation level.1

Extrinsic rewards. The crowdsourcer provides users with an
extrinsic reward of P (bi), satisfying P (0) = 0. In the fixed
extrinsic reward mechanism, P (bi) = p, irrespective of the
users’ effort levels; in the flexible extrinsic reward mechanism,
on the other hand, P (·) is a function of bi.

User i’s utility ui is the sum of intrinsic and extrinsic
rewards minus the cost:

ui = vibi + E(n) + P (bi)− cibi. (1)

We combine vibi and cibi as they have the common term bi:

ui = E(n) + P (bi)− βibi, (2)

in which βi = ci − vi is defined as the net cost of user
i. For some users, vi > ci, so the net cost βi is negative.
Even without extrinsic rewards, these self-motivated users
have incentives to participate in the crowdsourcing system.
These pioneers help attract others via network effects. The
net cost is a user’s private information. Thus, we assume
that βi ∈ [β, β] is a random variable, with a cumulative
distribution function F (β), and a probability density function
f(β) = F ′(β). We have β < 0 and β > 0, as users may have
negative or positive net costs.

Aiming at maximizing her utility in (2), a user’s optimal
effort level b∗i is a function of her net cost βi, i.e., b∗i = g(βi).
She will drop out if her utility is always negative whatever the
effort level is.

The crowdsourcer makes a profit from the users’ contribu-
tions, while having to pay extrinsic rewards. Her utility U is
the total aggregated contribution from all participants minus
the total extrinsic rewards:

U = µ

∫
β

ln(1 + g(β))dF (β)−
∫
β

P (g(β))dF (β), (3)

in which µ is the equivalent monetary worth of users’ con-
tributions. Note that g(β) is a user’s effort. We use the
logarithmic function ln(·) to transform a user’s effort to the
perceived utility by the crowdsourcer, which features the law
of diminishing return: a user’s contribution increases with her
effort level but the marginal return decreases. If a user does not
contribute any effort, the utility received by the crowdsourcer
is ln(1 + 0) = 0.

The crowdsourcer’s objective is to maximize her utility
in (3) by determining the optimal extrinsic rewards. In the
fixed extrinsic reward mechanism, the crowdsourcer has to
decide the optimal uniform extrinsic reward p∗; in the flexible
extrinsic reward mechanism, the crowdsourcer has to design
the optimal extrinsic reward function P ∗(·).

III. FIXED EXTRINSIC REWARDS

In this section, we first study how the interplay of a fixed
extrinsic reward and network effects leads to participation
levels at equilibrium, and then we derive the optimal value
of the fixed extrinsic reward.

1For simplicity, in this paper, we assume that network effects E(n) are the
same for all users. In the future, we will study the case where users obtain
heterogeneous rewards from network effects, i.e., Ei(n) for user i.



A. Equilibrium Participation Level

Given a fixed extrinsic reward, a user’s utility becomes:

ui = E(n) + p− βibi. (4)

If βi < 0, a user will definitely participate with her maximum
effort b; otherwise, she will participate with her minimum
effort b if a positive utility can be obtained. Given an expected
participation level ne and the corresponding network effects
E(ne), the marginal user, who is indifferent to the choices of
participating or not, has a utility of zero. Let βn denote the
net cost of the marginal user. We have:

βn(p) =
1

b

(
E(ne) + p

)
. (5)

βn(p) is upward sloping in p, and the curve will shift up if
ne increases. This implies that the users with higher net costs
will participate if either extrinsic or intrinsic rewards go up.
Since F (βn) = n, we have:

n = F
(E(ne) + p

b

)
. (6)

At equilibrium, the expected participation level equals the
real participation level, that is, n = ne. With p > bβ − E(1),
n = 1 will be an equilibrium,2 but the crowdsourcer will never
set a p that is more than enough to achieve full participation.
Thus, we stipulate that p ≤ bβ − E(1).

Proposition 1. Existence of an Equilibrium Participation
Level. For any extrinsic reward p, Equation (6) has at least
one root.

Proof. Define Φ(n) = F
(E(n)+p

b

)
−n. Φ(n) is continuous in

[0,1]. Φ(0) = F (p/b) > 0 and Φ(1) = F ((E(1)+p)/b)−1 ≤
0. By the intermediate value theorem, 0 is a value of Φ(n) for
some n ∈ [0, 1], which is just the equilibrium participation
level.

Fig. 1 shows the value of Φ(n) under different participation
levels, and the condition Φ(n) = 0 pinpoints the equilibria.
Given a certain extrinsic reward, there are multiple equilibria,
but they have different stability attributes.

(1) Stable equilibria, such as nB and nD in Fig. 1.
Suppose there is a small perturbation ∆n upwards at nB ,
Φ(nB + ∆n) < 0, i.e., βnB+∆nb > E(nB + ∆n) + p.
The participation level will be pushed downwards back to n,
because the net costs of the new participants are greater than
their rewards, so they will leave. Similarly, suppose there is a
small perturbation ∆n downwards at nB , Φ(nB −∆n) > 0,
i.e., βnB−∆nb > E(nB−∆n)+p. The participation level will
be pushed upwards back to n, because users whose net costs
are smaller than their rewards will rejoin.

(2) Unstable equilibria, such as nA and nC in Fig. 1.
Suppose there is a small perturbation ∆n upwards at nA,
Φ(nA + ∆n) > 0, which implies that more users will rush in,
and the participation level will be pushed further up to nB .

2If p ≤ bβ, n = 0 will be an equilibrium. Nevertheless, β < 0, so this
will not happen.
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Fig. 1: Multiple equilibria under a certain extrinsic reward.
E(n) =

√
n, b = −1, F (·) ∼ N(1, 0.2).

Similarly, suppose there is a small perturbation ∆n downwards
at nA, Φ(nA−∆n) < 0, therefore, more users will leave, and
the participation level will be pushed further down to 0.

In summary, we have the following lemma to characterize
the stability of an equilibrium.

Lemma 1. Stable Equilibrium. An equilibrium participation
level is stable if Φ′(n) < 0.

Proof. Since Φ(n) = 0 and Φ′(n) < 0, it can be easily proved
that Φ(n + ∆n) < 0 and Φ(n − ∆n) > 0. In this case, the
equilibrium is stable according to our preceding analysis.

Proposition 2. Existence of a Stable Equilibrium Participa-
tion Level. For any extrinsic reward p, there exists at least
one stable equilibrium participation level. In particular, the
highest equilibrium participation level is stable.

Proof. Let nmax denote the highest equilibrium participation
level. We prove that Φ′(ne,max) < 0 must be true, then nmax

is stable according to Lemma 1.

Φ′(nmax) = lim
h→0

Φ(nmax + h)− Φ(nmax)

h
= lim
h→0

Φ(nmax + h)

h
.

Φ(nmax+h) < 0 must be true, otherwise there will be another
equilibrium between nmax + h and 1, which contradicts the
fact that nmax is the highest.

B. Optimal Fixed Extrinsic Reward

The fixed extrinsic reward p leads to the equilibrium partic-
ipation level, which in turn, affects the crowdsourcer’s utility.3

Since users with βi ∈ [β, 0] make an effort of b and users with
β ∈ (0, βn] make an effort of b, the crowdsourcer’s utility
becomes:

3For tractability, we only consider the highest stable equilibrium participa-
tion level. In the future, we will study the possibilities of other equilibria, and
their influence on the design of extrinsic rewards.
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Fig. 2: The fixed extrinsic reward mechanism. b ∈ [1, 10], F (·) ∼ UNIF(−1, 15).

U = µ

∫ 0

β

ln(1 + b)dF (β) + µ

∫ βn

0

ln(1 + b)dF (β)− np

= µF (0) ln(1 + b) + µ
(
n− F (0)

)
ln(1 + b)− np

= µF (0) ln
1 + b

1 + b
+
[
µ ln(1 + b)− p

]
n.

(7)

The extrinsic reward p determines the equilibrium participa-
tion level n according to Equation (6). Therefore, finding the
optimal extrinsic reward p is equivalent to finding the optimal
participation level n induced by p:

max
p

U ⇒ max
n

[
µ ln(1 + b) + E(n)− bF−1(n)

]
n. (8)

Proposition 3. Optimal fixed extrinsic reward. Given the
optimal equilibrium participation level as the solution of (8),
the optimal fixed extrinsic reward is:

p∗ = bF−1(n∗)− E(n∗). (9)

Fig. 2 shows the optimal extrinsic reward, the equilibrium
participation level, and the crowdsourcer’s utility under the
fixed extrinsic reward mechanism. Exponential functions are
commonly used to model network effects in the existing
literature [6], [9], [10]. Therefore, we assume that the network
effects function is E(n) = α ·nγ . Stronger network effects (a
larger α and a smaller γ) yield higher intrinsic rewards. The
crowdsourcer therefore can take advantage of this to obtain a
higher equilibrium participation level (Fig. 2(b)) with a lower
fixed extrinsic reward (Fig. 2(a)), and her utility rises as well
(Fig. 2(c)). Neglecting network effects (α = 0) will potentially
cause a significant amount of loss to the crowdsourcer.

An anecdotal real-world example that substantiates the
observations above is that, according to its co-founder Elon
Musk, when PayPal Inc. was started in 1998, a fixed monetary
reward was paid for each user to sign up for the service.
As the number of users grew, the amount of the reward was
gradually reduced to zero, without affecting the growth of the
user population due to network effects [11].

IV. FLEXIBLE EXTRINSIC REWARDS

In this section, we first analyze the users’ strategic behavior
in response to an extrinsic reward function, which leads to an
equilibrium participation level. Given a targeted participation
level, we can then derive the extrinsic reward function which
helps the crowdsourcer achieve the highest possible utility
(referred to as the conditional optimal extrinsic reward func-
tion). Finally, we compute the optimal participation level that
maximizes the crowdsourcer’s utility, and the corresponding
global optimal extrinsic reward function.

A. Users’ Optimal Effort Level
Given an extrinsic reward function instead of a fixed extrin-

sic reward, users will strategically choose their effort levels to
maximize their utilities, rather than toggling between b and b.

Proposition 4. Optimal Effort Level. The optimal effort level
of user i, based on her net cost βi, i.e., bi = g(βi), is implicitly
given by the following equation:

E(n) + P (bi)− βig(βi) =

∫ F−1(n)

βi

g(x)dx. (10)

Proof. We prove this by the envelop theory [12]. Take partial
derivative of βi on both sides of Equation (2):

∂ui
∂βi

= −bi. (11)

Let βn represent the net cost of the marginal user, who
is indifferent towards the options of participating or not.
Integrating both sides of Equation (11) from βi to βn:

u(βn)− u(βi) = −
∫ βn

βi

g(x)dx. (12)

This yields Equation (10) as u(βn) = 0 and n = F (βn).

Given a complicated extrinsic reward function P (·), it is
difficult to solve Equation (10) to obtain the optimal effort
level function g(β). Fortunately, we show in the following
section that, as the crowdsourcer intentionally designs P (·)
for utility maximization, g(β) has a closed-form expression.



B. Optimal Extrinsic Reward Function
If a user cannot gain positive utility even with the optimal

effort level, she will not participate at all. Therefore, different
extrinsic reward functions will result in different equilibrium
participation levels. Based on this knowledge, the crowd-
sourcer can design the conditional optimal extrinsic reward
function for a targeted participation level.

Proposition 5. Conditional optimal extrinsic reward func-
tion. Given a targeted participation level n and the cor-
responding marginal user’s net cost βn = F−1(n), under
conditions that β̃ > 0 and E(n) ≤ bβn, the crowdsourcer’s
conditional optimal extrinsic reward function, and the users’
optimal effort level are given as follows, in which β̂ satisfies
β̂ + F (β̂)

f(β̂)
= µ

1+b , and β̃ satisfies β̃ + F (β̃)

f(β̃)
= µ

1+b
.

• If βn ∈ [β, β̃), the conditional optimal extrinsic reward
function is:

P (b) = βnb− E(n). (13)

The users’ optimal effort level is:

g(β) = b, β ∈ [β, βn]. (14)

• If βn ∈ [β̃, β̂), the conditional optimal extrinsic reward
function is:

P (b) = g−1(b)b− E(n) +

∫ g(βn)

b

xdg−1(x). (15)

The users’ optimal effort level is:

g(β) =

{
b, β ∈ [β, β̃],

µf(β)
βf(β)+F (β) − 1, β ∈ [β̃, βn].

(16)

In particular, g−1(b) = β̃.
• If βn ∈ [β̂, β], the conditional optimal extrinsic reward

function is:

P (b) = g−1(b)b−E(n)+

∫ g(βn)

b

xdg−1(x)+b(βn− β̂).

(17)
The users’ optimal effort level is:

g(β) =


b, β ∈ [β, β̃],

µf(β)
βf(β)+F (β) − 1, β ∈ [β̃, β̂],

b, β ∈ [β̂, βn].

(18)

In particular, g−1(b) = β̃ and g−1(b) = β̂.

Proof. The crowdsourcer’s utility is:

U =

∫ βn

β

[
µ ln(1 + g(β))− P (g(β))

]
dF (β). (19)

Substitute P (b(β)) with (10):

U =

∫ βn

β

[
µ ln(1 + g(β))− g(β)β + E(n)

−
∫ βn

β

g(x)dx
]
dF (β).

(20)

The last term is:

∫ βn

β

∫ βn

β

g(x)dxdF (β) =
[ ∫ βn

β

g(x)dx ∗ F (β)
]∣∣∣βn

β

−
∫ βn

β

F (β)
∂
∫ βn

β
g(x)dx

∂β
dβ =

∫ βn

β

F (β)g(β)dβ.

(21)

Therefore, U =
∫ βn

β
I(β)dF (β), in which:

I(β) = µ ln(1 + g(β))− g(β)β + E(n)− F (β)

f(β)
g(β). (22)

Maximizing the crowdsourcer’s utility U via the extrinsic
reward function P (·) is equivalent to inducing the optimal
effort level b = g(β) through P (·). Take the first and second
derivatives of I with respect to g(β):

∂I

∂g(β)
=

µ

1 + g(β)
− β − F (β)

f(β)
,

∂2I

∂g2(β)
= − µ

(1 + g(β))2
< 0.

(23)

If β < β̃, ∂I/∂g(β) > 0, meaning that I monotonically
increases with b, thus g(β) = b. If β > β̂, ∂I/∂g(β) <
0, meaning that I monotonically decreases with b, hence
g(β) = b. Otherwise, the optimal effort level b is the solution
to ∂I/∂b = 0. In this way, we get (14), (16) and (18).
Substituting g(β) in (10) with (14), (16) and (18), we can get
the optimal extrinsic reward functions (13), (15) and (17) for
different targeted participation levels. Special cases of g−1(b)
and g−1(b) are given in the appendix.

Corollary 1. The conditional optimal extrinsic reward func-
tion P (·) is non-negative and monotonically increasing.

Proof. If βn ∈ [β, β̃), P (b) = βnb−E(n) > 0. If βn ∈ [β̃, β],
the first derivative of P (·) with respect to b is:

∂P (b)

∂b
= (g−1(b))′b+ g−1(b)− (g−1(b))′b = g−1(b) > 0.

(24)

Therefore, P (b) monotonically increases with b, and the
minimum reward is P (b) = βnb− E(n) ≥ 0.

In Proposition 5, conditions β̃ > 0 and E(n) ≤ bβn are both
reasonable. β̃ is the threshold net cost, below which a user will
make the maximum effort b. Users with negative net costs —
and those with low positive net costs as well — will exert the
maximum effort, with certain extrinsic rewards. Therefore, β̃
is assumed to be positive. E(n) ≤ bβn indicates that network
effects cannot fully cover the cost of the marginal user who
makes the minimum effort; otherwise, the crowdsourcer will
not provide any extrinsic rewards to them.

Note that the conditional optimal extrinsic reward functions
(13), (15), and (17) are functions of users’ effort level b,



which is observable by the crowdsourcer, but not the users’
net cost β, which is private information. P (·) also depends on
βn, which is known by the crowdsourcer as the participation
level n is set as the target by the crowdsourcer. Furthermore,
the crowdsourcer is aware of the users’ response to the
extrinsic reward function, and can use Proposition 5 to derive
function g(·), which is indispensible in determining P (·). In
the conditional optimal extrinsic reward function, the term βnb
or g−1(b)b can be regarded as the compensation for the users’
cost; the term −E(n) shows how network effects help curtail
the crowdsourcer’s payment to users; the rest of the terms
are necessary to realize the targeted participation level. More
specifically, it is ensured that ui > 0,∀βi < βn, ui < 0,∀βi >
βn and βi = 0, βi = βn. Interestingly, a user’s optimal effort
level is not affected by network effects, which are counteracted
by the second term of extrinsic reward functions.

Corollary 2. Strict individual rationality. With the extrinsic
reward functions given by Proposition 5, every participant
receives strictly positive utility, i.e., ui > 0,∀βi ∈ [β, βn).
In particular, the marginal user’s utility is zero, i.e., ui =
0, βi = βn.

The proof of Corollary 2 is given in the appendix.
As the net cost increases, a user’s optimal effort level

declines, as shown in Fig. 3. µ reflects the crowdsourcer’s
appreciation for users’ contributions. If µ is higher, the crowd-
sourcer is willing to elicit more user contributions with higher
extrinsic rewards.
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C. Optimal Participation Level

Proposition 5 gives the conditional optimal extrinsic reward
function for a targeted participation level. By comparing the
crowdsourcer’s utility under each participation level with the
conditional optimal extrinsic reward function, we can find the
most lucrative participation level, and the corresponding global
optimal extrinsic reward function.

Proposition 6. Optimal participation level. The optimal par-
ticipation level is n∗ = arg maxn U , in which:
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Fig. 4: The crowdsourcer’s utility under different participation
levels with a conditional optimal extrinsic reward function.
γ = 1/2, b ∈ [1, 10], F (·) ∼ UNIF(−1, 15).

U =


n
[
µ ln(1 + b)− bβn + E(n)

]
, n ∈ [0, F (β̃)),

UA +
∫ βn

β̃

[
µ ln(1 + g(β))−

(β + F (β)
f(β) )g(β)

]
dF (β) + E(n)n, n ∈ [F (β̃), F (β̂)),

UB + n
[
µ ln(1 + b) + E(n)− bβn

]
, n ∈ [F (β̂), 1].

(25)
in which UA =

[
µ ln(1 + b)− bβ̃

]
F (β̃), UB = F (β̃)

[
µ ln(1 +

b) − bβ̃
]
− F (β̂)

[
µ ln(1 + b) − bβ̂

]
+
∫ β̂
β̃

[
µ ln(1 + b(β)) −

b(β)β − F (β)
f(β) g(β)

]
dF (β).

The key idea of Proposition 6 is to achieve the participation
level that maximizes the crowdsourcer’s utility. Fig. 4 illus-
trates the attainable utility under each participation level with
the conditional optimal extrinsic reward function. The optimal
participation level rests at the peak of each curve. The detailed
proof of Proposition 6 is in the appendix.

It is difficult to solve the maximization problem in Propo-
sition 6 since the objective function (25) contains an integral.
To address this problem, we propose an efficient analytical
approach. We first transform the integral in (25) when n ∈
[F (β̃), F (β̂)) into a quadratic sum as:

UK =UA + E(nK)nK +
K∑
k=0

f(βk)∆β
{
µ ln(1 + g(βk))

− g(βk)βk −
F (βk)

f(βk)
g(βk)

}
,

(26)

in which βk = β̃+ k∆β, nk = F−1(βk). UK+1 can be easily
calculated as:

UK+1 =UK − E(nK)nK + E(nK+1)nK+1

+ f(βK+1)∆β
[
µ ln(1 + g(βK+1))

− g(βK+1)βK+1 −
F (βK+1)

f(βK+1)
g(βK+1)

]
.

(27)

Fig. 5 shows the gap between the approximated utility in
(26) and the ground truth utility in (25), when the participation
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Fig. 5: Algorithm 1 verification. γ = 1/2, b ∈ [1, 10], F (·) ∼
UNIF(−1, 15).

level is within the range [F (β̃), F (β̂)). When ∆β = 0.01, the
quadratic sum can approximate the integral to near perfection.
The largest approximation error is 0.72% when ∆β = 0.05,
and 1.65% when ∆β = 0.1. Selecting a proper step size
∆β, we can compute the participation level within the range
[F (β̃), F (β̂)) that yields the highest utility, then we can find
the optimal participation level over the entire range [0, 1].
Algorithm 1 summarizes the detailed process.

Algorithm 1 The Optimal Participation Level

Input: Network effects E(·), probability density function
f(·), the users’ optimal effort level g(·), equivalent mon-
etary worth of users’ contributions µ, and the step size
∆β.

Output: The optimal participation level n∗.
1: βK = β̃, Umax = 0.
2: Calculate UK according to (26).
3: while βK ≤ β̂ do
4: if UK > Umax then
5: Umax = UK .
6: nmax = F (βK).
7: end if
8: βK = βK + ∆β.
9: Update UK according to (27).

10: end while
11: Find the best participation level n′max in the range

[0, F (β̃)) and range [F (β̂), 1] using fminbnd in MAT-
LAB, with the corresponding utility U ′max.

12: if Umax > U ′max then
13: n∗ = nmax.
14: else
15: n∗ = n′max.
16: end if

Fig. 6 shows the optimal extrinsic reward function, the
equilibrium participation level, and the crowdsourcer’s utility
under the flexible extrinsic reward mechanism. The flexible
extrinsic reward mechanism remunerates users for different
levels of contributions, as shown in Fig. 6(a). It can be
observed that the extrinsic reward function is concave, that

is, a user’s extrinsic reward increases with her effort level,
but the marginal return decreases. Similar to Fig. 2, network
effects boost the equilibrium participation level and the crowd-
sourcer’s utility, as shown in Fig. 6(b) and (c).

D. Fixed vs. Flexible Extrinsic Reward Mechanisms

The flexible extrinsic reward mechanism is more efficient
than the fixed extrinsic reward mechanism, as verified by
Fig. 7. Although the flexible mechanism requires more dis-
bursement from the crowdsourcer than the fixed mechanism
in order to provide the extrinsic rewards to incentivize users
(Fig. 7(a)), it induces a higher user contribution level in return.
With the fixed mechanism, most participants will only provide
a minimum level of effort; while with the flexible mechanism,
participants are stimulated to work harder in exchange for
higher extrinsic rewards. As a result, the crowdsourcer has
a higher overall utility with the flexible mechanism, as shown
in Fig. 7(b). Interestingly, users also have a higher aggre-
gate utility with the flexible mechanism, since the flexible
mechanism gives a higher payment and motivates more users
to participate. Both extrinsic rewards and intrinsic rewards
induced by network effects are augmented. This suggests that
the interests of users and the crowdsourcer are not necessarily
in conflict with each other. Quite the contrary, a thriving
crowdsourcing system with a higher participation level and
a higher user contribution level will be valuable to both users
and the crowdsourcer.

V. RELATED WORK

Extrinsic rewards in crowdsourcing. Existing works have
used reverse auctions and Stackelberg games to model extrin-
sic rewards. With reverse auctions, the crowdsourcer selects
users based on the bids, which reflect users’ anticipated extrin-
sic rewards [7], [13], [14]. The complexity of reverse auctions
is high, making them impractical in real-world implementa-
tions. With Stackelberg games, the crowdsourcer determines
the optimal extrinsic rewards, while users compete for these
rewards by making strategic decisions on their contribution
levels [15], [16]. Different from these two multi-winner mech-
anisms, in [8], [17], the authors proposed a winner-take-all
mechanism, where a single best or designated user gets all
the extrinsic rewards. In contrast, we focused on the interplay
between extrinsic and intrinsic rewards in this paper, with a
focus on the impact of network effects.

Network effects. Network effects have been extensively
discussed in telecommunication networks [9], the open-source
software community [10], and social networks [18]. As the
crowdsourcing systems connect a large number of participants,
network effects can be observed [19]. Due to network effects,
users obtain higher intrinsic rewards when the total number of
participants increases, thus requiring less extrinsic rewards to
compensate their costs. However, there is a lack of existing
works that take advantage of network effects for more efficient
extrinsic rewards design.

Empirical studies on intrinsic and extrinsic rewards. User
behavior under the influence of extrinsic and intrinsic rewards
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Fig. 6: Flexible extrinsic reward mechanism. b ∈ [1, 10], F (·) ∼ UNIF(−1, 15).
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Fig. 7: Fixed VS. flexible extrinsic reward mechanisms. α = 1, γ = 1/2, F (·) ∼ UNIF(−1, 20).

have been explored by some empirical studies. Schweizer et
al. [20] have used the feedback for crowdsourcing tasks as
a potential intrinsic reward. Anawar et al. [21] have adopted
self-determination theory to explain intrinsic motivations in
a weight loss crowdsourcing system. Competitive extrinsic
rewards are found to be more efficient than fixed extrinsic
rewards in [22]–[24]. However, intrinsic rewards incurred by
network effects, as well as how intrinsic and extrinsic rewards
interact with each other, have not been examined in existing
empirical studies.

VI. CONCLUSION

In this paper, we have proposed a new framework for
extrinsic reward design in crowdsourcing systems, which, for
the first time, exploits network effects and intrinsic rewards.
Instead of assuming a fixed participant population, we have
shown how user participation levels evolve as a result of the
interactions between extrinsic rewards and network effects.
Based on our analyses, we have proposed a fixed and a flexible
extrinsic reward mechanism, designed to help a crowdsourcer
to enlist more users and attain a higher payoff by considering
network effects. In particular, our flexible mechanism adjusts
the value of extrinsic rewards according to the contributions
from the users, and improves the utilities of both users and

the crowdsourcer. We have presented an optimal extrinsic
reward function in closed form, which can be easily used
by the crowdsourcer to determine the extrinsic reward to an
individual user. Extensive simulation results have verified that
the proposed extrinsic reward mechanisms have outperformed
existing ones that did not take network effects and the corre-
sponding intrinsic rewards into consideration.
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VIII. APPENDIX

A. Proof of Proposition 5

1) If βn ∈ [β, β̃], Equation (10) becomes:

E(n) + P (b)− βb =

∫ βn

β

bdy,

which yields P (b) = bβn − E(n).
2) If βn ∈ [β̃, β̂], when b ∈ (b, b), Equation (10) becomes:



P (b) = βb− E(n) +

∫ βn

β

g(y)dy

= g−1(b)b− E(n) +

∫ g(βn)

b

xdg−1(x).

When b = b, combine (10) and (2):

E(n) + P (b)− βb =

∫ β̃

β

bdy +

∫ βn

β̃

g(y)dy

⇒g−1(b) = β̃.
3) If βn ∈ [β̂, β], when b ∈ (b, b), Equation (10) becomes:

P (b) = βb− E(n) +

∫ β̂

β

g(y)dy +

∫ βn

β̂

bdy

= g−1(b)b− E(n) +

∫ b

b

xdg−1(x) + (βn − β̂)b.

It can be easily proved that g−1(b) = β̃ and g−1(b) = β̂.

B. Proof of Corollary 2

• If βn ∈ [β, β̃), u(b) = E(n) + βnb− E(n)− βb > 0.
• If βn ∈ [β̃, β̂), we have:

u(b) = E(n) + β̃b− E(n) +

∫ βn

β

g(y)dy − βb > 0.

u(b) = E(n) + g−1(b)b− E(n) +

∫ βn

β

g(y)dy − βb > 0.

• If βn ∈ [β̂, β], we can similarly prove that u(b) > 0 and
u(b) > 0,∀b 6= b, b 6= b.
u(b) = E(n) + βnb− E(n)− βb = (βn − β)b > 0.

C. Proof of Proposition 6

• If βn ∈ [β, β̃), the crowdsourcer’s utility is:

U =

∫ βn

β

{
µ ln(1 + b)− bβn + E(n)

}
dF (β)

= F (βn)
[
µ ln(1 + b)− bβn + E(n)

]
.

• If βn ∈ [β̃, β̂), the crowdsourcer’s utility is:

U =

∫ β̃

β

{
µ ln(1 + b)− bβ̃ + E(n)−

∫ βn

β̃

b(x)dx
}

dF (β)

+

∫ βn

β̃

{
µ ln(1 + b(β))− b(β)β + E(n)−

∫ βn

β

b(x)dx
}

dF (β)

= UA + E(n)F (βn) +

∫ βn

β̃

{
µ ln(1 + b(β))

− b(β)β +
F (β)

f(β)
b(β)

}
dF (β).

• If βn ∈ [β̂, β], the crowdsourcer’s utility is:

U =

∫ β̃

β

{
µ ln(1 + b)− bβ̃ + E(n)−

∫ β̂

β̃

b(x)dx

− b(βn − β̂)
}

dF (β) +

∫ β̂

β̃

{
µ ln(1 + b(β))

− b(β)β + E(n)−
∫ β̂

β

b(x)dx− b(βn − β̂)
}

dF (β)

+

∫ βn

β̂

{
µ ln(1 + b)− bβ̂ + E(n)− b(βn − β̂)

}
dF (β)

= UB + (µ ln(1 + b) + E(n)− bβn)F (βn).
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