A Simpler and Better Design of Error Estimating Coding

Nan Hua1, Ashwin Lall2, Baochun Li3, Jun (Jim) Xu1

1School of CS, Georgia Tech 2Dept of Math and CS, Denison Univ. 3Dept of ECE, Univ of Toronto

Presented in IEEE Infocom 2012, Mar 27, 2012, Orlando, FL
Summary

- **Backgrounds**
 - Error Estimating Code: Definition and Motivation
 - Two-party communication and Tug-of-war sketch

- **Our approach**
 - Naïve Tug-of-War
 - Enhanced Tug-of-War (EToW)
 - Analytical results of EToW
 - Numerical Results of EToW
Background: Problem Definition

Question:
- Can we estimate bit error rate directly from the packet received?
 - Not indirectly infer from packet loss ratio or signal/noise ratio

Seminally proposed by [B. Chen, et al, SIGCOMM10]

Motivations:
- Not necessarily to correct every bit
- Benefit packet re-scheduling, routing, carrier selection, wifi-rate adaptation, etc

Small Redundancy Overhead
Small Computation Overhead
Weaker Functionality

Large Redundancy Overhead
Large Computation Overhead
Stronger Functionality

Error Estimating Codes (EEC)

Our work presented here is focused on
- Can we design a better alternative EEC code?
Background: How to design Error Estimating Code?

- Something should be added into the packet sent to enable BER estimation on the receiver side.

```
X X XX data bit
additional bit
for BER estimation
X erroneous slot
```

- Some additional bits are pseudo-randomly mixed with the original data for error detection.

How to construct those bits?

- Each EEC bit is a parity bit of a group of bits sampled.

```
X X XX data bit
additional bit
(EEC bit)
```

- In this example, parity bit is from a group of 4 data bits (sample with replacement).
Parity bits sampled from the same group size is only suitable for detecting error rate p in a certain range.

- if p is too high or too low, what would happen?

A multi-level design to estimate p in a wide range proposed in [B.Chen, et al, SIGCOMM10]

- The sampling group size of each level is geometrically distributed: 2,4,8,...
- Asymptotically, $O(\log n)$ bits are needed.
- Typically, the authors suggest a 9-level 32-bits-per-level design to estimate p in $[0.001, 0.15]$
Our approach: From the angle of two-party communication

- Two-party communication
 - Bob knows (local) string x; Alice knows (local) string y
 - How to use (minimum amount of) communication to compute $f(x, y)$ (maybe approximately)?
 - The minimum amount is referred to as communication complexity

- Casted to the problem here:
 - One-round two-party communication problem
 - Target function f is the hamming distance $f(x, y) = \|x - y\|_0$.

- Any benefit from this angle?
 - Leverage the rich results in two-party communication
Our approach: From the angle of two-party communication(cont’d)

- $\Omega(\frac{1}{\epsilon^2} \log n)$ bits are needed
 - in order to approximately compute $\|x - y\|_0$ by less than ϵ error w.h.p.
 - randomization and approximation are both proved to be required
 - Proof can be found in our paper
- Therefore, the original design is already the best asymptotically!!
- Can we improve the design from a practical perspective?
 - Leverage an established result: Tug-of-war Sketch
 - (originally designed for estimating L_2 norm in data streaming application)
 - Here comes our Enhanced Tug-of-War sketch (EToW) for EEC problem.
Key idea of the Tug-of-war Sketch

- Established for the two-party computation of L_2 norm.
- Key Ideas:
 - Random project x and y by a pre-defined pseudorandom vector $\vec{s} \in \{-1, 1\}^n$
 - calculate inner product $\vec{x} \cdot \vec{s}$ and $\vec{y} \cdot \vec{s}$.
 - Note: those inner products are only $\log n$ bits.
 - Use $\|\vec{x} \cdot \vec{s} - \vec{y} \cdot \vec{s}\|_2$ to approximate $\|\vec{x} - \vec{y}\|_2$
 - Note:
 - x and y are both binary, hence measuring $\|\vec{x} - \vec{y}\|_2 \iff$ measuring $\|\vec{x} - \vec{y}\|_0$
 - $\vec{x} \cdot \vec{s}$ for binary data is actually equivalent to an xor with a random binary string and a pop-count operation. In practice, we use $\#1 - \frac{1}{2}l$ of the result, which is equal to $\vec{x} \cdot \vec{s}/2$.
 (for convenience, we define the binary \vec{x} and \vec{y} in $\{-1, 1\}^n$ in the inner product)
Tug-of-war Sketch for EEC

Sketch-Creation(\vec{b})

Input \vec{b}: original data bits vector.

Output z: the sketch encoding \vec{b}.

pre-compute random vectors $\vec{s}_j, 1 \leq j \leq c : [n] \rightarrow \{-1, 1\}$

for $j = 1$ to c do

$$z_j := (\vec{b} \cdot \vec{s}_j)/2$$

end for

return $z = \langle z_1, \ldots, z_c \rangle$

Distance-Estimation(\vec{b}', z)

Input \vec{b}': received data bits vector, z: received sketch.

Output \hat{p}: the estimated error rate.

pre-compute random vectors $\vec{s}_j, 1 \leq j \leq c : [n] \rightarrow \{-1, 1\}$

for $j = 1$ to c do

$$X_j := (z_j - \vec{b}' \cdot \vec{s}_j/2)^2$$

end for

return $\hat{p} = \frac{1}{n} \text{average}(X_1, \ldots, X_c)$

Note that $E[X_j] = E[(\frac{1}{2}(\vec{b} - \vec{b}') \cdot \vec{s}_j)^2] = p$
However

- No advantage in size compared to the original design of EEC.
 - Suppose the packet length is 1500 bytes = 12,000 bits. Each counter need to be as long as 14 bits.
 - Suppose we need 16 counters
 - 16×14 already similar to the cost of the original design of EEC.
- Moreover, errors inside each sketch might totally corrupt the approximation!
 - An immediate remedy: do “error correction” on those bits
 - Even more overhead...
- Conclusion: Naïve Tug-of-war Sketch is not a good fit for EEC.
Key ideas of the Enhanced Tug-of-War Sketch (EToW)

- Not necessary to “fully correct” the sketch with errors inside
 - Just need to detect the corrupted counter value(s)
 - Use one or two additional parity bit(s) to check

- From streaming vs. sampling perspective, streaming (every bit participates in the calculation) not necessarily better than sampling
 - if we first sample l bits to build the sketch from the sampled bits
 - length of each counter reduced from $\log_2(n)$ to $\log_2(l)$.

- the higher bits of the counter value ($\frac{1}{2}(\vec{b} \cdot \vec{s}_j)$) are not as informative as the lower bits
 - It’s a sum of random -1 and 1s and concentrated around 0. Highest bits are w.h.p 0.
 - simply use the lower k bits, k could be as small as 5.
 - The substraction in $X_j = (z_j - \vec{b} \cdot \vec{s}_j/2)^2$ defined on F_{2^k} field (the same as the standard substraction of integer in computers)
 - Small overflow only slightly influence the result
Enhanced Tug-of-War sketch (Only additional steps listed)

Sketch-Creation(\vec{b})

```
for $j = 1$ to $c$ do
    Random projection: $\tilde{z}_j := (\vec{b}_j \cdot \vec{s}_j)/2$
    $k$-bits-long truncated projection: $z_j := \text{trunc}_k(\tilde{z}_j)$
    $r$-bits-long parities $q_j := \text{parity}_r(z_j)$
return $c(k + r)$-bits long sketch $z = \langle z_1, \ldots, z_c \rangle \langle q_1, \ldots, q_c \rangle$
```

Distance-Estimation(\vec{b}', \tilde{z})

```
for $j = 1$ to $c$ do
    Random projection: $\tilde{z}_j' := (\vec{b}_j' \cdot \vec{s}_j)/2$
    Estimation $Y_j := \text{trunc}_k(\tilde{z}_j' - \tilde{z}_j)$, $X_j = Y_j^2$
    Check parities $V_j := 1_{\{q_j=\text{parity}_r(\text{trunc}_k(\tilde{z}_j'))\}}$
return $\hat{p} = \frac{\sum_{j=1}^c V_j X_j}{l \sum_{j=1}^c V_j}$ as the estimation of error rate $p$.
```
Analysis of Enhanced Tug-of-War Sketch

- Although the three techniques (sampling, truncation, parity checking) we used in EToW looks heuristic, their impacts are still analyzable.
- Welcome to our paper to find the details of analysis. Here we will only highlight the following conclusions drawn from the analysis.
Impact of Sampling Parameter l

- Use sampling to build tug-of-war sketch would lead to rising relative errors in the smaller p region.

![Graph](image)

Figure: Sampled and Original tug-of-war sketches with $c = 16$.

Nan Hua, et al (Georgia Tech)
Simpler and Better Error Estimating Coding
INFOCOM 2012, Mar 27
Impact of Truncation Parameter k

- Small k (more truncation) will lead to rising relative errors in the larger p region.

Figure: EToW’s relMSE (full protection assumed) with different parameters: $c = 16, l = \{512, 1024\}, k = \{4, 5, 6\}$.
Impact of Errors on the sketch

- Adjust the generation matrix of the parity checking bit to see the impact.

- [11111] means parity checking all bits in the 5-bit counter
 [00111] means only checking the higher 3 bits in the 5-bit counter
Numerical Results

- **Metrics:**
 - relative mean squared error
 - ratio of large errors
 - tail probability distribution

- **Candidates in the comparison:**
 - **Original EEC**
 - \hat{p}_1 and \hat{p}_2 are the two estimators of the original EEC design with 9-level 32-bit-per-level.
 - **ETOW**
 - 48 6-bit counters ($c=48$): same size
 - 16 6-bit counters ($c=16$): 1/3 size, similar performance
Numerical Result: mean squared error

Figure: Relative MSE of different schemes
Numerical Result: Ratio of large errors

![Graph showing ratio of large errors](image)

Figure: Ratio of large errors ($\hat{p} > 2p$ or $\hat{p} < \frac{1}{2}p$ of different schemes)
Figure: An example of tail distribution of different schemes
Conclusion

- Re-visited the design of error-estimating coding problem from a different angle
- Proved the original EEC design is already asymptotically optimal
- Proposed enhanced tug-of-war sketch which is better in practical for wide-range BER estimation
Thanks for your questions!

- My contact: nanhua@gatech.edu