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Abstract—In this paper, we present an analytical frame-
work for characterizing and optimizing the power-performance
tradeoff in Software-as-a-Service (SaaS) cloud platforms. Our
objectives are two-fold: (1) We maximize the operating profit
when serving heterogeneous SaaS applications with unpredictable
user requests, and (2) we minimize the power consumption when
processing user requests. To achieve these objectives, we take
advantage of Lyapunov Optimization techniques to design and
analyze an optimal control framework to make online decisions
on request admission control, routing, and virtual machine
(VMs) scheduling. In particular, our control framework can
be flexibly extended to incorporate various design choices and
practical requirements of a datacenter in the cloud, such as
enforcing a certain power budget for improving the performance
(dollar) per watt. Our mathematical analyses and simulations
have demonstrated both the optimality (in terms of a cost-
effective power-performance tradeoff) and system stability (in
terms of robustness and adaptivity to time-varying and bursty
user requests) achieved by our proposed control framework.

I. INTRODUCTION AND RELATED WORK

Software-as-a-Service (SaaS) cloud platforms, such as
Google Apps [1] and Salesforce.com [2], have quickly as-
cended to the spotlight in the realm of cloud computing
platforms, surpassing Infrastructure-as-a-Service (IaaS). With
SaaS cloud services, enterprise applications — as critical as
customer relationship management (CRM) and as simple as
online slide presentations — can be hosted in the cloud, with
large-scale datacenters serving a wide range of applications.

With SaaS, users are typically charged for each of its
transaction or request. For example, a popular cloud-based
email marketing application, called Campaign Monitor [3],
charges users according to their number of processed cam-
paigns and delivered recipients. By following the law of
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Fig. 1: A basic virtualized datacenter with three control decisions:
(1) admission control that accepts (or denies) arrived requests from
different applications, (2) routing control that dispatches admitted re-
quests across VMs hosted on different servers in a datacenter, and (3)
scheduling of VMs by switching between running and idle states.

diminishing marginal utility in economics∗, heavy users with
more subscribers (e.g., recipients of email newsletters) will
receive a more significant discount on the per-request charge
as the number of recipients increases. From the perspective
of the SaaS cloud, however, as requests from users arrive in
an unpredictable and even bursty fashion, such a per-request
charging model may lead to fluctuating revenues over time.

Let us consider a typical SaaS cloud platform in Fig. 1.
Due to risks of going beyond the processing capacity, we need
a front-end proxy to admit requests. We also require a load
dispatcher to redirect admitted requests across a large pool
of servers with constrained power budgets [4], each of which
is virtualized to multiple virtual machines (VMs) to process
requests from different applications.

With the presence of unpredictable and bursty application
demands, the objectives of such an SaaS cloud platform with
a per-request charging model are two-fold: (1) to maximize
its profit by accepting and processing as many application
requests as possible (system throughput), and (2) to minimize
the penalty from system congestion due to excessive requests
and the resulted power consumption of servers. To balance
such a power-performance tradeoff, three important control
decisions need to be made in the SaaS cloud: (1) how many
requests from diverse applications are to be admitted at any

∗Note that even for long-term SaaS commitments with an upfront and flat
payment, the law of diminishing marginal utility is also applicable in general,
in the form of a discount.



given time; (2) how to distribute the admitted requests from
different applications across a large number of servers hosting
the corresponding VMs; and (3) how to schedule each VM by
switching between a running state for processing requests and
an idle state for conserving server power.

To address these challenges, this paper takes advantage of
Lyapunov optimization [5] techniques to rigorously design and
analyze a new optimal online control framework, designed
to independently and concurrently make all three decisions
in the SaaS cloud. Our framework may be used to design
three simple yet effective strategies, corresponding to the
three decisions that need to be made. (1) A threshold-based
admission control strategy to improve system throughput while
avoiding system congestion; (2) a “Join the Shortest Queue”
request routing strategy for balancing the server load, reducing
service delays of admitted requests; and (3) a decentralized
greedy strategy to optimally schedule VMs, i.e., which VMs
are to process incoming requests, and which are to be kept idle
for power conservation. The upshot of our new framework
is that it can be extended to explore various design choices
and practical requirements of a datacenter. As a case study,
we demonstrate how to extend it to improve the performance
(dollar) per watt [4] at a datacenter, by enforcing a certain
power budget. With extensive simulations, we demonstrate
that our new control framework can approach a time-averaged
profit that is arbitrarily close to the optimum, while still main-
taining strong stability and low congestion. Further, it is able to
quickly adapt to bursty and time-varying arrivals of application
requests, without incurring overwhelming power consumption
costs that may outweigh the benefit of aggressively admitting
a large number of requests.

While recognizing the significance of many existing works
(e.g., [6]–[8]) on managing the two potentially conflicting
objectives related to cloud application performance and dat-
acenter power consumption, our study is different from and
complementary to existing works. First, a number of existing
works heavily relied on prediction-based or statistical offline
approaches. For example, Chen et al. [9] applied a multiplica-
tive seasonal autoregressive moving average method to predict
server workloads in each time interval, and then made power
control decisions based on steady-state queueing analysis and
feedback control theory to satisfy such predicted demands.
Govindan et al. [10] characterized statistical properties of the
power needs of hosted workloads through a measurement-
driven profiling and prediction framework. In the context of
application requests in an SaaS cloud, the common problem
with such approaches lies in the dubious feasibility of making
accurate predictions of future request patterns, due to the fact
that they are, in general, bursty and nonstationary.

Second, though there exist alternative online control solu-
tions [11]–[13] in the literature for dynamic resource alloca-
tion and power management in datacenters, our work differs
substantially in at least two important aspects. (1) We take
an economic viewpoint to price application throughput in a
nonlinear utility function based on the law of diminishing
marginal utility (Sec. II-B3), rather than a simple linear utility

function [11] that does not reflect reality in general. (2)
Our framework can be extended to focus on improving the
performance (dollar) per watt [4] at datacenters, by achieving
a desired system throughput level with a certain power budget.

II. BASIC POWER-PERFORMANCE TRADEOFF MODEL

In this section, we first formulate the basic datacenter
model in Fig. 1, consisting of N homogeneous servers S =
{1, 2, ..., N}, each of which is virtualized to M virtual ma-
chines (VMs) to serve M types of heterogeneous applications
A = {1, 2, ...,M} with diverse request arrival rates and
computing demand. Specifically, the i-th VM hosted on server
j serves the requests from the i-th type of application instance.
Inspired by the latest modeling work on datacenters [6],
we consider a discrete time-slotted system where the time
slot length can range from hundreds of milliseconds to min-
utes [12]. In every time slot t (= 0, 1, 2, ..., τ, ...), a number of
requests Ai(t) generated by the i-th type of application arrive
at the datacenter, and the time averaged rate of such an arrival
process can be denoted as λi = E{Ai(t)}.

We assume that each random variable Ai(t),∀i ∈ A, is
independent and identically distributed (i.i.d.) over time slots,
and they are independent of the current amount of unfinished
workload in the system. We also assume that there exist certain
peak levels of application requests Amax

i ,∀i ∈ A, such that
{Ai(t) ≤ Amax

i ,∀i ∈ A,∀t}. However, since the workloads in
a cloud computing environment is highly dynamic and usually
unpredictable (e.g., demands can spike abruptly [14] and
potentially exceed the current available processing capacity
of a datacenter), our model does not assume any a priori
knowledge of the statistics of Ai(t),∀i ∈ A,∀t.

A. Control Decisions
Under the datacenter workload model above, we focus on

three important control decisions to be made, introduced in
Fig. 1 and Sec. I, along with key notations in Table I.

1) Admission control of application requests: In each time
slot t, the first control decision of a datacenter is to determine
a subset of requests of each application Ri(t),∀i ∈ A (out of
the potentially substantial amount of newly arrived requests of
each application Ai(t),∀i ∈ A), that can be admitted into the
system†: {0 ≤ Ri(t) ≤ Ai(t),∀i ∈ A,∀t}.

2) Routing control of application requests: As soon as a
portion of requests of each application Ri(t),∀i ∈ A are
admitted into the datacenter, the next control decision is to
route (dispatch) Ri(t),∀i ∈ A to the corresponding queue for
each application on each server, where the requests will wait
to be processed. Let Rij(t) denote a subset of requests to
be routed to the queue maintained by the i-th VM on the j-th
server in time slot t. Then, the routing control decisions should
satisfy an obvious constraint: Ri(t) =

∑N
j=1Rij(t),∀i ∈

A,∀j ∈ S,∀t. Such a routing control can be implemented
as the load balancer(s) [14] of realistic datacenters.

†Though such an admission control of application requests can be achieved
in either a centralized frond-end component or in a distributed manner across
backend servers, our model focuses on the general underlying control decision
without being restricted to any specific design choice and implementation.



3) Scheduling of VMs: While the amount of routed requests
Rij(t) are waiting in the corresponding queue maintained by
the i-th (∀i ∈ A) VM on the j-th (∀j ∈ S) server, another
important control decision is to schedule each VM in time
slot t, by switching between the running state (to process
the routed application requests that are waiting in this VM’s
queue) and the idle state‡ to keep the routed requests waiting
in this VM’s queue, without processing them in the current
time slot. Such VM scheduling decisions are denoted by the
following indicator variables for ∀i ∈ A, ∀j ∈ S,∀t:

aij(t)=
{

1, if the i-th VM on server j is running,
0, if the i-th VM on server j is idle.

For each VM, its queue backlog, arrival rate and service
rate of application requests can be derived as follows. First,
we assume that the limited processing capacity (e.g., CPU,
memory, disk or network bandwidth) of any server ∀j ∈ S is
fairly allocated among its hosted M VMs, i.e., the processing
capacity of each VM is 1/M of the total processing capacity
of its hosting server. Second, while requests from different ap-
plications require different amounts of processing capacity, we
assume that each request from the same application requires
the same amount of processing capacity. Then, the number of
time slots di for a VM to process each request of a specific
application ∀i ∈ A is identical. Henceforth, di is referred to as
the size of each request of this particular application ∀i ∈ A.
Finally, we define the queue backlog Qij(t) of the i-th VM
on the j-th server as the total sizes of all the requests that are
waiting in the queue at the beginning of time slot t (Initially,
Qij(0) = 0,∀i ∈ A, j ∈ S). The corresponding service rate
and arrival rate of a queue in time slot t can be quantified
as aij(t) and di · Rij(t), respectively. By doing so, we can
capture the following queueing dynamics over time for each
VM hosted on each server in a datacenter:

Qij(t+ 1) = max[Qij(t)− aij(t), 0] + diRij(t). (1)

With the VM scheduling above, it is intuitive that the more
VMs remain in the running state, the better processing capacity
and performance. Yet, the tradeoff is a larger amount of power
consumed by the datacenter, as we shall characterize in the
following subsection.

B. Characterizing and Optimizing the Power-Performance
Tradeoff

1) System Throughput: For large-scale SaaS cloud plat-
forms, one of the most important performance metrics is the
overall application throughput in terms of the total number of
requests (of all provided applications) that can be admitted
and processed. Specifically, for each application ∀i ∈ A, we
define the time averaged throughput ri of a datacenter as:

ri = lim
t→∞

1

t

t−1∑
τ=0

E{Ri(τ)}, (2)

‡We focus on the decision for whether a VM will process application
request(s) or remain idle in current time slot, rather than frequently turning
on/off VMs (or servers) per time slot, which would incur considerable
performance and energy overhead [15].

TABLE I: Key Parameters in the Basic Datacenter Model.

Notations Definitions

M
The number of heterogeneous applications A

served by a datacenter
N The number of homogeneous servers S in a datacenter

aij(t)
The running/idle state of the i-th VM on the

j-th server in time slot t

Ai(t)
The number of arrived requests of

each application ∀i ∈ A in time slot t

Ri(t)
The number of admitted requests of

each application ∀i ∈ A in time slot t

Rij(t)
The portion of requests of each application ∀i ∈ A that are

routed to the i-th VM on the j-th server in time slot t

Qij(t)
The queue backlog of each application ∀i ∈ A on

the j-th server in time slot t
Pj(t) The power consumption of the j-th server in time slot t
di The respective size of a request of each application ∀i ∈ A

λi, ri, pj The time average of Ai(t), Ri(t) and Pj(t)
V Lyapunov control parameter

then, the metric
∑M
i=1 ri is the overall datacenter throughput

that is expected to be maximized, subject to the following
two constraints: (1) ri ≤ λi, as the time averaged throughput
ri cannot exceed the time averaged arrival rate λi for any
application ∀i ∈ A, and (2) ri ≤ N

di
, as the time averaged

throughput ri cannot exceed the overall processing capacity
allocated for the corresponding application i ∈ A.

2) Power Consumption: Here we focus on a basic power
consumption model of servers where the CPU processing ca-
pacity is the main bottleneck, such as for serving computation-
intensive applications. Yet, our model can be extended to
incorporate other components (e.g., memory, disk and network
I/O) [11], such as representing multi-dimensional resources
of a server as a vector in our formulation, by amending the
aforementioned request sizes and service rates accordingly.

Specifically, it has been widely shown by recent studies [12],
[16] that, the amount of power consumed by a server (CPU
processor) is primarily associated with its current CPU running
speed s, as formally characterized by the following Eq. (3).
Without loss of generality, we consider a normalized s ∈ [0, 1]
(alternatively viewed as the CPU utilization ratio) and its
corresponding normalized power consumption P (s) ∈ [0, 1],
where s = 0 represents the idle state of a server while s = 1
represents its maximum CPU speed in the running state:

P (s) = αsv + (1− α), (3)

where the exponent parameter v is empirically determined as
v ≥ 1 in practice (e.g., a typical value is v = 2 [16]). With
another parameter α ∈ [0, 1], the term (1 − α) represents
the normalized power consumption of an idle server. Practical
measurements [17] have shown that (1−α) is around 0.6 (and
barely lower than 0.5), which implies that an idle server still
consumes a non-trivial amount of power.

Based on the power model above, for a server j ∈ S that
hosts a number of M VMs with the fair capacity allocation
policy described in Sec. II-A, its normalized CPU load and
corresponding power consumption in time slot t are given as:
sj(t) =

∑M
i=1 aij(t)

M and Pj(t) = α(
∑M

i=1 aij(t)

M )v + (1 − α),
respectively. Accordingly, the time average of normalized
power consumption pj of each server ∀j ∈ S in a datacenter



can be defined as:

pj = lim
t→∞

1

t

t−1∑
τ=0

E{Pj(τ)}, (4)

then, the metric
∑N
j=1 pj is the overall power consumption of

all servers§, hopefully being minimized.
3) A Unified Objective from an Economic Perspective: So

far, we have derived both the datacenter performance metric
ri,∀i ∈ A in Eq. (2) (time averaged throughput) and power
consumption metric pj ,∀j ∈ S in Eq. (4) (time averaged
power consumption). However, the fundamental challenge is
how to optimize the tradeoff between the two potentially
conflicting objectives in a balanced and cost-effective manner?
To this end, we first construct a unified profit objective to
couple both sides in an economic way as follows.

First, quantifying the power cost. The power cost of a
datacenter can be measured as (Price ·PUE ·

∑N
j=1 pj), where

Price is the electricity market price of each unit of the
normalized power consumption, and PUE is the power usage
efficiency metric provided by Green Grid [19]. It represents
the ratio of the total amount of power used by the entire
datacenter facility to the power delivered to the computing
equipment. Reportedly, inefficient datacenter facilities can
have a PUE ∈ [2.0, 3.0], while leading industry datacenter
facilities are announced to approach a PUE of around 1.2 [14].

Second, pricing the system throughput. Different from the
power which is demanded rigidly, there exists “elastic de-
mand” for the cloud applications served by a datacenter.
Hence, we choose to price the throughput of each application
i ∈ A served by the datacenter as a log function g(ri) =
log(1 + diri), according to the law of diminishing marginal
utility in economics. Such a rule has also been adopted by
real-world SaaS cloud services (e.g., [3]). In addition, such a
nonlinear function is different from a closely related work [11],
which used a simple linear utility function.

Given the revenue brought by the system throughput and the
cost incurred by the power consumption, we can maximize the
time averaged profit of a datacenter as follows:

max
∑
i∈A

g(ri)− β
∑
j∈S

pj (5)

s.t. 0 ≤ ri ≤ λi, ri ≤ N/di, ∀i ∈ A,

where the factor β = Price · PUE.
Let r∗i and p∗j ,∀i ∈ A,∀j ∈ S denote the optimal solution

to the Problem (5). For realistic datacenters, there are two
challenges when solving this problem: (1) The datacenter
workload is time-varying and unpredictable, which makes it
infeasible to precisely capture key parameters (such as λi), and
impractical to calculate optimal solution in an offline manner.
(2) The large number of servers and their hosted applications

§Given recent reports [18] that the power consumption of other non-IT
equipments (e.g., cooling) is roughly proportional to that by servers, our
basic model can also be extended to capture the overall power consumption
of a datacenter by scaling up

∑N
j=1 pj with a constant factor [12].

exacerbate the computational complexity of centralized solu-
tion. In response, we seek to design an online and distributed
control algorithm in Sec. III, which is able to efficiently make
decisions on all three important control decisions.

III. CONSTRUCTING AN ONLINE CONTROL FRAMEWORK

In response to the challenges of Problem (5), we take
advantage of Lyapunov optimization techniques [5] to design
an online control framework, which is able to concurrently
make all three important control decisions in Fig. 1, including
request admission control, routing, and VM scheduling. In
particular, our control algorithms can be proved to approach a
time averaged profit that is arbitrarily close to optimum, while
still maintaining system stability.

A. Problem Transformation Using Lyapunov Optimization

As the function g(ri) is nonlinear, we are inspired by recent
techniques [20] to transform Problem (5) to the framework
of Lyapunov optimization Problem (6), which introduces
auxiliary variables γi for each admitted stream of application
requests Ri(t),∀i ∈ A, in the system described in Fig. 1:

max
∑
i∈A

g(γi)− β
∑
j∈S

pj (6)

s.t. γi ≤ ri, ∀i ∈ A (7)
0 ≤ ri ≤ λi, ∀i ∈ A (8)
ri ≤ N/di, ∀i ∈ A. (9)

It is easy to check that the optimal solution of the problem
above is the same as that of the original Problem (5), as the
function g(∗) = log(1 + ∗di) is non-decreasing.

To solve the problem above, we first transform the inequality
constraint (7) into a queue stability problem [5]. Specifically,
we introduce virtual queues Hi(t) for each Ri(t). Initially,
we define Hi(0) = 0,∀i ∈ A, and then update the queues per
each time slot as follows:

Hi(t+ 1) = max[Hi(t)−Ri(t), 0] + γi(t), (10)

where γi(t) denotes a process of non-negative auxiliary vari-
ables that the admission control of the datacenter system
(Sec. II-A) will determine in every time slot, which satisfy
the constraint (11). The time average of each γi(t) is defined
as γi = limt→∞

1
t

∑t−1
τ=0 E{γi(τ)}.

0 ≤ γi(t) ≤ Amax
i . (11)

Insight: Intuitively, the auxiliary variables γi(t) can be
viewed as the “arrivals” of virtual queues Hi(t), while Ri(t)
can be viewed as the service rate of such virtual queues.
The constraints (7) are enforced on the condition that the
virtual queues Hi(t) are stable, i.e., limt→∞ E{Hi(t)}/t = 0.
Specifically, from (10) it is clear that: Hi(t + 1) ≥ [Hi(t) −
Ri(t) + γi(t)]. By summing this inequality over time slots
τ ∈ {0, 1, ..., t − 1} and then dividing the result by t,
we have: Hi(t)−Hi(0)

t + 1
t

∑t−1
τ=0Ri(τ) ≥ 1

t

∑t−1
τ=0 γi(τ).

With Hi(0) = 0, taking expectations of both sides yields:



limt→∞
E{Hi(t)}

t + ri ≥ γi. If the virtual queues Hi(t) are
stable, then limt→∞ E{Hi(t)}/t = 0 (Note that we will prove
the strong stability of the virtual queues Hi(t) in Theorem 1
later), so that the constraint (7) can be satisfied.

1) Characterizing the Stability-Profit Tradeoff: Let Q(t) =
(Qij(t)) and H(t) = (Hi(t)) denote the matrix of the actual
and virtual queues maintained by VMs (Sec. II-A). Then, we
use Θ(t) = [Q(t); H(t)] to denote the combined matrix of
all the actual queues and virtual queues. However, since Q(t)
and H(t) have different scales (the former corresponds to the
request size di according to Eq. (1), while the latter corre-
sponds to the number of requests according to Eq. (10)), we
define a Lyapunov function L(Θ(t)) which assigns different
weights di and 1 to Hi(t) and Qij(t), respectively:

L(Θ(t)) =
1

2

[∑
i∈A

d2iH
2
i (t) +

∑
i∈A

∑
j∈S

Q2
ij(t)

]
. (12)

This represents a scalar metric of queue congestion [5] in
the datacenter system. For example, a small value of L(Θ(t))
implies that both actual queue backlogs and virtual queue
backlogs are small. The implication is that the corresponding
datacenter system has strong stability.

To keep the system stable by persistently pushing the
Lyapunov function towards a lower congestion state, we intro-
duce ∆(Θ(t)) as the one-step conditional Lyapunov drift [5]:
∆(Θ(t)) = E{L(Θ(t + 1)) − L(Θ(t))|Θ(t)}. In the sense
of Lyapunov optimization, the underlying objective of our
optimal control decisions on request admission control, routing
and VM scheduling is to minimize an infimum bound on the
following drift-minus-profit expression in each time slot:

∆(Θ(t))− V E
{∑
i∈A

g(γi(t))− β
∑
j∈S

Pj(t)|Θ(t)
}
. (13)

Insight: The control parameter V (≥ 0) represents a design
knob of the stability-profit tradeoff, i.e., how much we shall
emphasize the profit maximization (Problem (6)) compared to
system stability. It empowers system operators to make flexible
design choices among various tradeoff points between system
stability and profit. For example, one may prefer to achieve as
much expected profit E{

∑M
i=1 g(γi(t))−β

∑N
j=1 Pj(t)|Θ(t)}

as possible, while having to keep ∆(Θ(t)) small to avoid
higher system congestion.

2) Bounding Drift-Minus-Profit: The analysis above in-
structs a system designer to derive an infimum bound of the
drift-minus-profit expression given in Eq. (13), which requires
the following Lemma 1.

Lemma 1: In each time slot t, for any value of Θ(t),
the Lyapunov drift ∆(Θ(t)) of a datacenter system under
any control strategy satisfies the following, where B1 ,
MN+3

∑M
i=1(diA

max
i )2

2 is a finite constant parameter.

∆(Θ(t)) ≤ B1 −
∑
i∈A

d2iHi(t)E{Ri(t)− γi(t)|Θ(t)} (14)

−
∑
i∈A

∑
j∈S

Qij(t)E{aij(t)− diRij(t)|Θ(t)}.

Interested readers are referred to our detailed technical
report [21] for a complete proof of Lemma 1.

Based on Lemma 1, subtracting the expression
V E{

∑M
i=1 g(γi(t)) − β

∑N
j=1 Pj(t)|Θ(t)} from both sides

of Eq. (14) yields an infimum bound of drift-minus-profit
expression of the datacenter system:

∆(Θ(t))− V E
{∑
i∈A

g(γi(t))− β
∑
j∈S

Pj(t)|Θ(t)
}
≤ B1

−
∑
i∈A

E{V g(γi(t))− d2iHi(t)γi(t)|Θ(t)} (15)

−
∑
i∈A

E
{
d2iHi(t)Ri(t)−

∑
j∈S

diRij(t)Qij(t)|Θ(t)
}

(16)

−
∑
j∈S

E
{∑
i∈A

Qij(t)aij(t)− V βPj(t)|Θ(t)
}
. (17)

B. An Optimal Online Control Algorithm

Instead of directly minimizing the drift-minus-profit ex-
pression in Eq. (13) that involves implicit max[∗] terms in
both Eq. (1) and Eq. (10), we seek to design an optimal
Online Control Algorithm (OCA) to minimize its infi-
mum bound given above (i.e., equivalent to maximizing the
terms (15)(16)(17) on the right-hand-side), without undermin-
ing the optimality and performance of the algorithm according
to [5]. Interestingly, we will show that the maximization of the
terms (15)(16)(17) can be decoupled to a series of indepen-
dent subproblems, which can be computed concurrently in a
decentralized fashion.

Specifically, in each time slot t, based on online observation
of the queue backlogs Q(t) and H(t), OCA performs the
following four phases of control operations, including: (1)
auxiliary variable selection, (2) request admission control and
routing control, (3) VM scheduling, and (4) queue update.

1) Auxiliary Variable Selection: For each application i ∈
A served by the datacenter, we determine γi(t) by maximizing
the term (15) in Sec. III-A2. Fortunately, as the decision
variables γi(t) are independent among applications, such
centralized maximization can be decoupled to be computed
concurrently as follows:

max
γi(t)

V log(1 + diγi(t))− d2iHi(t)γi(t) (18)

s.t. 0 ≤ γi(t) ≤ Amax
i ,∀i ∈ A.

Differentiating the objective function above with respect to
γi(t) can yield the peak value of the objective function when
γi(t) = V

d2iHi(t)
− 1

di
. By taking the constraint (11) into

consideration, we obtain the optimal solution to problem (18):

γi(t) =



0, Hi(t) >
V

di
V

d2iHi(t)
− 1

di
,

V

d2iA
max
i + di

≤ Hi(t) ≤
V

di

Amax
i , Hi(t) <

V

d2iA
max
i + di

(19)

Insight: The stepped solution above is directly related to
the value of Hi(t). Recall from Sec. III-A that, if the value of



Hi(t) is small, then it implies that the time average of γi(t)
is close to that of Ri(t), which improves the system stability
as we expected. In this case, a larger value of γi(t) can be
chosen with respect to Hi(t). On the other hand, if the value
of Hi(t) is large, then it implies that the time average of γi(t)
is far away from that of Ri(t). To fill this gap, it would be
better to choose a lower value of γi(t). In addition, as the
selection of auxiliary variables can be separately performed
for each application ∀i ∈ A, this can facilitate a distributed
implementation of the decision phase above.

2) Request Admission Control and Routing: For each ap-
plication i ∈ A served by the datacenter, the re-
quest admission decisions Ri(t) and routing decisions
(Ri1(t), Ri2(t), ..., RiN (t)) as illustrated in Fig. 1 can be
decided by maximizing the term (16) in Sec. III-A2. Again,
since the admission decisions Ri(t) and routing decisions
Rij(t) of different applications are independent from each
other, this centralized maximization can be decoupled to be
computed concurrently as follows:

max
Ri(t),Rij(t)

d2iHi(t)Ri(t)− di
∑
j∈S

Rij(t)Qij(t) (20)

s.t. 0 ≤ Ri(t) ≤ Ai(t),∀i ∈ A,
Ri(t) =

∑
j∈S

Rij(t).

Different from the previous problem (18), both the control
decisions of Ri(t) and Rij(t) in problem (20) need to be deter-
mined. We first start from a simple case: if the value of Ri(t)
is known in advance, then problem (20) is exactly equivalent
to the following problem for making routing decisions:

min
Rij(t)

di
∑
j∈S Rij(t)Qij(t) (21)

s.t.
∑
j∈S Rij(t) = Ri(t),∀i ∈ A.

Insight: The problem (21) is a generalized min-weight
problem, where the amount of requests routed to server j ∈ S
for application i ∈ A is weighted by the current queue backlog
Qij(t). Hence, for each application i ∈ A served by the
datacenter, the optimal routing strategy tends to dispatch as
many admitted requests as possible to the VM with least
backlogged queue:

Rij(t) =

{
Ri(t), j = j∗i ,

0, else,
(22)

where j∗i = arg minj∈{1,2,...,N}Qij(t), i.e., the queue of the
i-th VM on server j∗i is the shortest queue among all the
N queues for the i-th type of application. Such a routing
policy is an intuitive “Join the Shortest Queue” policy for the
purpose of load balancing, which is consistent with a recent
work on scheduling of cloud computing clusters [22]. Further,
it can effectively reduce the response delay of newly admitted
requests, as they are preferentially routed to the shortest
queues. However, it requires to obtain all the queue backlog
information of those VMs serving the i-th type of applications.
To mitigate this complexity, we can adopt a recently developed

“Power-of-Two-Choices” [22] routing policy, which randomly
samples two VMs and routes the application requests to the
VM with a smaller queue backlog.

Recall that the optimal value of Ri(t) is still undecided so
far. Based on the routing strategy in Eq. (22), the second term
of Eq. (20) (i.e., di

∑
j∈S Rij(t)Qij(t)) can be rewritten as

diRi(t)Qij∗i (t). Then, the request admission control decision
can be solved as:

max
Ri(t)

d2iHi(t)Ri(t)− diRi(t)Qij∗i (t) (23)

s.t. 0 ≤ Ri(t) ≤ Ai(t),∀i ∈ A.

The problem (23) is a simple linear programming problem in
which the optimal value of Ri(t) is:

Ri(t) =

{
Ai(t), diHi(t) > Qij∗i (t)

0, else
(24)

Insight: This is a simple threshold-based admission control
strategy. When the backlog of the shortest queue Qij∗i (t) is
smaller than a threshold diHi(t), then all the newly arrived
requests are admitted into the datacenter. Essentially, this not
only reduces the value of Hi(t) so as to push γi to become
closer to ri, but also increases the datacenter throughput ri so
as to improve the profit. On the other hand, when the backlog
of the shortest queue Qij∗i (t) is larger than the threshold
diHi(t), then all the requests will be denied to ensure the
stability of the datacenter.

3) VM Scheduling: In each time slot t, the running or idle
state of each VM (a1j(t), a2j(t), ..., aMj(t)) (Sec. II-A) on
server j ∈ S can be determined by maximizing the term
(17) in Sec. III-A2. Observing that the indicator variables
aij(t) are independent among different servers, the centralized
maximization can be implemented by each server in a fully
distributed manner:

max
aij(t)

∑
i∈A

Qij(t)aij(t)− V βPj(t) (25)

s.t. aij(t) ∈ {0, 1},∀i ∈ A,∀j ∈ S,

where Qij(t) can be viewed as the weight of the decision
variable aij(t). As the growth of power consumption caused
by running each VM is the same under our model (see
the definition of Pj(t) in Sec. II-B2), the optimal solution
for Eq. (25) would prefer to schedule the VMs with most
backlogged queues (i.e., larger Qij(t) as weights) to the
running state. Following this intuition, each server adopts a
simple yet effective greedy strategy that ranks hosted VMs
according to their queue backlogs. Then, it searches from
VMs with the most backlogged queues to VMs with the least
backlogged queues: (1) If the growth in the sum of backlogs
exceeds the growth of power consumption (weighted by V β)
caused by running a certain VM, then the VM is preferentially
scheduled to the running state. (2) Such a search process can
continue until the growth in the sum of backlogs falls below
the growth of power consumption (weighted by V β) for a
certain VM, which is scheduled to the idle state. Then, the
other remaining VMs are scheduled to the idle state.



4) Queue Update: Finally, the virtual queues H(t) can be
updated according to Eq. (10), by using the optimal values of
γi(t) and Ri(t) determined by the phases above. Likewise, the
actual queues Q(t) maintained by VMs in the datacenter can
be updated according to Eq. (1), based on the optimal values
of Rij(t) and aij(t) derived above.

C. Optimality Analysis

We are now ready to analyze the optimality of OCA
algorithm, in terms of a well-balanced tradeoff between the
profit maximization and strong stability of the datacenter.

Theorem 1: For arbitrary arrival rates of application re-
quests (λ1(t), λ2(t), ..., λM (t)) (possibly exceeding the pro-
cessing capacity of a datacenter), a datacenter using the
OCA algorithm with any V ≥ 0 (the stability-profit tradeoff
parameter defined in Sec. III-A1) can guarantee that all the
actual and virtual queues are strongly stable over time slots:

Hi(t) ≤
V

di
+Amax

i ,∀i ∈ A, (26)

Qij(t) ≤ V + 2diA
max
i ,∀i ∈ A,∀j ∈ S. (27)

Meanwhile, the gap between its achieved time averaged profit
and the optimal profit ξ∗ is within B1/V :

lim inf
t→∞

{∑
i∈A

g(ri)− β
∑
j∈S

pj

}
≥ ξ∗ − B1

V
, (28)

where ξ∗ =
∑M
i=1 g(r∗i ) − β

∑N
j=1 p

∗
j , r∗i and p∗j are the

optimal solution to Problem (5), and B1 is a finite constant
parameter defined in Lemma 1.

Insight: Theorem 1 provides a strong deterministic guar-
antee of the upper bounds on backlogs of all the actual and
virtual queues in any time slot. Meanwhile, Eq. (28) indicates
that the gap between the time averaged profit achieved by
OCA algorithm and the optimal profit is within O(1/V ).
Interestingly, as the value of parameter V increases to suf-
ficiently large, the time averaged profit under OCA can be
pushed arbitrarily close to optimum. However, according to
Eq. (26) and Eq. (27), overly aggressive increases of profit can
also increase the bounds of queue backlogs. By Little’s law,
the bounds of response delays for application requests would
also increase. Interested readers are referred to our detailed
technical report [21] for a complete proof of Theorem 1.

IV. EXTENDED MODEL: ENFORCING A POWER BUDGET

Our optimization framework can be flexibly extended to
incorporate various design choices and practical requirements
of datacenter power-performance tradeoff. For instance, as
most real-world datacenters are operated within a certain
power budget [4], it is important for datacenter operators to
improve the performance (dollar) per watt [4] by achieving a
desired performance level with an enforced power budget.

Specifically, we enforce an additional power budget con-
straint pj ≤ pavj ,∀j ∈ S (in terms of the time average
of normalized server power consumption) within the basic
Problem (5), while still maintaining a demanded performance

requirement on time averaged throughput of applications ri ≥
ravi ,∀i ∈ A. This yields an extended optimization model:

max
∑
i∈A

g(ri)− β
∑
j∈S

pj (29)

s.t. ravi ≤ ri ≤ λi, ∀i ∈ A,
ri ≤ N/di, ∀i ∈ A,
pj ≤ pavj , ∀j ∈ S.

To accommodate the newly introduced constraints, we
further define virtual queues Zi(t), Xj(t) for each appli-
cation i ∈ A and each server j ∈ S, respectively:
Zi(t + 1) = max[Zi(t) − Ri(t), 0] + ravi and Xj(t +
1) = max[Xj(t) − pavj , 0] + Pj(t). Then, with our
control framework based on Lyapunov optimization pre-
sented in previous sections, we define the Lyapunov func-
tion as: L(Θ(t)) = 1

2

[∑M
i=1 d

2
iH

2
i (t) +

∑M
i=1 d

2
iZ

2
i (t) +∑N

j=1X
2
j (t) +

∑M
i=1

∑N
j=1Q

2
ij(t)

]
. According to the defi-

nition of the Lyapunov drift ∆(Θ(t)) in Sec. III-A1, the cor-
responding drift-minus-profit expression under the extended
model can be rewritten as follows, where B2 = 1

2 [MN +

5
∑M
i=1(diA

max
i )2 +

∑M
i=1(ravi )2 +

∑N
j=1(pavj )2]:

∆(Θ(t))− V E{ξ(t)|Θ(t)} ≤
∑
i∈A

ravi Zi(t)−
∑
j∈S

pavj Xj(t)

+B2 −
∑
i∈A

E{V g(γi(t))− d2iHi(t)γi(t)|Θ(t)} −∑
i∈A

E
{
d2iRi(t)(Hi(t) + Zi(t))−

∑
j∈S

diRij(t)Qij(t)|Θ(t)
}

−
∑
j∈S

E
{∑
i∈A

Qij(t)aij(t)− Pj(t)(V β +Xj(t))|Θ(t)
}
. (30)

Insight: Based on Eq. (30), we can also design an online
control algorithm for the extended Problem (29), named
EOCA, which follows the skeleton of the four phases of OCA
control operations in Sec. III-B. Specifically, the auxiliary
variable selection of EOCA is the same as that of OCA,
which implies that the newly introduced power budget and
performance constraints do not affect this phase. Additionally,
the routing policy of EOCA still follows the “Join the Shortest
Queue” policy as in OCA. However, EOCA differs from OCA
in the following aspects:

First, for the request admission control and routing phase
of EOCA, the weights of Ri(t),∀i ∈ A would be increased to
d2i (Hi(t)+Zi(t)),∀i ∈ A, after introducing the virtual queues
Zi(t),∀i ∈ A. This changes the admission control policy
to become: if di(Hi(t) + Zi(t)) > Qij∗i (t), Ri(t) = Ai(t);
otherwise, Ri(t) = 0. Second, for the VM scheduling phase
of EOCA, the term

∑
i∈AQij(t)aij(t)−V βPj(t) to be maxi-

mized is rewritten as
∑
i∈AQij(t)aij(t)−V β(Pj(t)+Xj(t)).

This adjusts the greedy strategy in OCA to become: only
when the growth in

∑
i∈AQij(t)aij(t) exceeds the growth of

V β(Pj(t) +Xj(t)) caused by running a certain VM, the VM
will be preferentially scheduled to the running state. Third, the
queue backlogs of Zi(t), Xj(t) and Qij(t) are not guaranteed



to be deterministically bounded under EOCA, though it can
ensure the stability of these queues (i.e., pj ≤ pavj ,∀j ∈ S and
ri ≥ ravi ,∀i ∈ A) and a bounded gap between its achieved
time averaged profit and the optimal profit for the extended
Problem (29), as given by the following Theorem 2.

Theorem 2: For arbitrary arrival rates of application re-
quests (λ1(t), λ2(t), ..., λM (t)) (possibly exceeding the pro-
cessing capacity of a datacenter), a datacenter can use EOCA
algorithm with any V ≥ 0 to guarantee the stability of
queues Qij(t), Zi(t), Xj(t) over time slots. Meanwhile, the
gap between its achieved time averaged profit and the optimal
profit ξ? for the extended Problem (29) is within B2/V :

lim inf
t→∞

{∑
i∈A

g(ri)− β
∑
j∈S

pj

}
≥ ξ? − B2

V
, (31)

where ξ? =
∑M
i=1 g(r?i ) − β

∑N
j=1 p

?
j , r?i and p?j are the

optimal solution to the extended Problem (29), and B2 is
a finite constant parameter defined in Eq. (30).

Interested readers are referred to our detailed technical
report [21] for a complete proof of Theorem 2.

V. PERFORMANCE EVALUATION

We conduct simulations to evaluate our online control algo-
rithm OCA and its extensions under an illustrative datacenter
scenario. This consists of 100 homogeneous servers, each of
which hosts 10 VMs to serve 10 heterogeneous applications,
respectively. Specifically, the requests from each application i
arrive according to a random process of mean rate λi, and
different applications have different mean arrival rates and
request sizes di (Sec. II-A) in Table II. For each application
i, we set its peak request arrival rate as Amax

i = 2λi, and the
number of newly arrived requests in each time slot is assumed
to be uniformly and randomly distributed within [0, Amax

i ].
With such a setup, each application is being served by a total

of 100 VMs across servers, with an allocated total processing
capacity of 100 (in terms of the total queue service rates of
these VMs as modeled in Sec. II-A), according to the fair
allocation policy of server capacity in Sec. II-A. Observing
the capacity demand of each application in terms of diλi
in Table II, we find that the capacity demands of requests
for applications 1 − 6 are within the respective allocated
processing capacity, while that for applications 7− 10 exceed
the respective allocated processing capacity. We choose a
typical setting of exponent parameter v = 2 and α = 0.5 [16]
for the normalized power function in Eq. (3), and an empirical
value of parameter β = 0.4. The following simulations are
carried out for 100, 000 time slots.

TABLE II: Request Arrival Rates and Sizes of Different Applications.

App i 1 2 3 4 5 6 7 8 9 10
λi(×103) 2.5 2 3.5 2 3 2 2.75 2.4 2.6 2.8
di(×10−2) 2 3 2 4 3 5 4 5 5 5
diλi(×10) 5 6 7 8 9 10 11 12 13 14

First, verification of algorithm optimality. Fig. 2 plots
the time averaged profit for different values of the control
parameter V under our OCA algorithm. We observe that:
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Fig. 2: Time averaged profit versus
different values of the control pa-
rameter V under OCA and BOCA
algorithms.
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Fig. 3: Time averaged system con-
gestion versus different values of
the control parameter V under
OCA and BOCA algorithms.

(1) as the value of V increases, the time averaged profit
achieved by OCA improves significantly and converges to
the maximum level for larger values of V . This quantitatively
corroborates Theorem 1 in that OCA can approach the optimal
profit with a diminishing gap (1/V ) (captured by Eq. (28)),
which also implies a cost-effective tradeoff between power and
performance unified by the profit objective (recall Problem
(5)). However, such an improvement starts to diminish with
excessive increases of V , which can adversely aggravate the
congestion of queues in the system (captured by Eq. (12)). (2)
Furthermore, we enhance the system facility by introducing a
routing buffer component for each application (between the
request admission and routing control decisions in Fig. 1)
to store the admitted requests before they are routed [11].
Compared to OCA, the variant algorithm with an enhanced
buffering facility denoted as BOCA (with detailed derivation
in our technical report [21]) can achieve a slightly higher time
averaged profit for smaller values of V , as more admitted
requests can be buffered (rather than being directly denied)
when the current workload of VMs is heavy. However, such a
profit gap (marked as BOCA–OCA) will diminish as V grows.

Second, examination of system stability. Fig. 3 plots the
time average of queue congestion [5] captured by Eq. (12)
for different values of V under both OCA and BOCA. With
the growth of V , the time averaged system congestion with
both algorithms increases. Along with Fig. 2, this reflects the
tradeoff between system stability and profit maximization, as
revealed in Sec. III-A1. In comparison, though BOCA gains
a higher time averaged profit than OCA does, the former, on
the other hand, incurs a higher level of system congestion.

Third, online control in response to bursty request arrivals.
Different from our simulations above with fixed mean arrival
rates of application requests, Fig. 4 plots the fluctuation of
the number of running VMs in the system under OCA,
when the mean request arrival rates of applications vary in
a bursty manner. We set the mean request arrival rate of each
application as half of their original rate in Table II (i.e., 0.5λi)
during the first third of the simulation time. Then, the rates
abruptly rise to 1.5λi in the next third interval before dropping
to the original λi in the last third of simulation time. Fig. 4
shows that, even under bursty and unpredictable arrivals of
requests, OCA is able to quickly adapt to the varying demand
by increasing or decreasing the number of running VMs.

Fourth, the effectiveness of admission control. We further



0 0.5 1 1.5 2 2.5 3

x 10
5

0

100

200

300

400

500

Time Slot

T
o

ta
l 
N

u
m

b
e

r 
o

f 
R

u
n

n
in

g
 V

M
s

Fig. 4: The total number of running VMs in the system using OCA
algorithm over all time slots.

0 0.5 1 1.5 2 2.5 3
0

200

400

600

800

1000

θ

A
g

g
re

g
a

te
 S

y
s
te

m
 T

h
ro

u
g

h
p

u
t

 

 

V=500,000

V=1,000,000

V=2,000,000

V=4,000,000

Fig. 5: Total system throughput
verses the multiplier θ of request
arrival rates, with the admission
control of the OCA algorithm.

1 2 3 4 5 6 7 8

x 10
5

0.75

0.76

0.77

0.78

0.79

0.8

Number of Time Slots

T
im

e
−

a
v
e

ra
g

e
 P

o
w

e
r 

C
o

n
s
u

m
p

ti
o

n

 

 

EOCA

TOCA

Fig. 6: Average power consump-
tion (normalized) of servers versus
the length of simulation time, with
EOCA against TOCA.

examine the effects of admission control with OCA on the
total system throughput (quantified as

∑M
i=1 diri) by varying

the request arrival rates in Fig. 5. By tuning the mean request
arrival rates of all applications by a factor of θ times the origi-
nal setting in Table II, we observe that as long as θ is relatively
small, the total system throughput increases linearly with the
increasing request arrival rates, despite different values of V .
The rationale is that under such a condition, all application
requests can be admitted by OCA according to the threshold-
based admission control policy in Sec. III-B. With even higher
request arrival rates, the aggregate throughput achieved by the
system under different values of V will gradually become
stabilized, which shows that OCA can prevent the system from
being overwhelmed by excessive requests.

Finally, effectiveness of power budget enforcement. Fig. 6
compares the average power consumption of servers under our
extended algorithm EOCA with both power budget enforce-
ment and throughput requirement discussed in Sec. IV, against
a counterpart algorithm with only throughput requirement
(marked as TOCA). We set the time averaged throughput re-
quirement of both EOCA and TOCA as ravi = 2, 000,∀i ∈ A.
The normalized time averaged power budget constraint of
EOCA for half of the servers in the system is set as 0.7, while
that of the other half is set as 0.8. The other parameters are
set as the same for both algorithms. As expected, we observe
that, in the long run, EOCA indeed outperforms TOCA with
respect to the reduction of server power consumption.

VI. CONCLUSION

In response to dynamic and unpredictable user requests
from heterogeneous applications served by a SaaS cloud
datacenter platform, this paper designs and analyzes an optimal
online control framework to balance the tradeoff between the
throughput performance and power consumption for process-
ing requests. By applying rigorous Lyapunov optimization

approaches, our online control framework can independently
and simultaneously make decisions on three important control
decisions of such a cloud platform, including request admis-
sion control, routing, and VM scheduling. In particular, our
control framework is shown to be flexibly extensible to explore
various design choices and practical constrains of a datacenter,
such as enforcing a certain power budget towards better
performance (dollar) per watt. Through in-depth mathematical
analysis and various simulations, we demonstrate that our
online control framework can approach a time averaged profit
— unifying a cost-effective power-performance tradeoff —
that is arbitrarily close to optimum, while still maintaining
strong system stability, in term of the robustness and adaptivity
to time-varying and bursty application requests.
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