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Group Strategyproof Multicast in Wireless
Networks

Ajay Gopinathan, Zongpeng Li, and Baochun Li

Abstract—We study the dissemination of common information from a source to multiple nodes within a multihop wireless network,
where nodes are equipped with uniform omni-directional antennas and have a fixed cost per packet transmission. While many nodes
may be interested in the dissemination service, their valuation or utility for such a service is usually private information. A desirable
routing and charging mechanism encourages truthful utility reports from the nodes. We provide both negative and positive results
towards such mechanism design. We show that in order to achieve the group strategyproof property, a compromise in routing optimality
or budget-balance is inevitable. In particular, the fraction of optimal routing cost that can be recovered through node charges cannot
be significantly higher than 1

2
. To answer the question whether constant-ratio cost recovery is possible, we further apply a primal-

dual schema to simultaneously build a routing solution and a cost sharing scheme, and prove that the resulting mechanism is group
strategyproof and guarantees 1

4
-approximate cost recovery against an optimal routing scheme.

Index Terms—Mechanism Design, Wireless Networks, Game Theory, Linear Programming, Approximation Algorithms, Theory
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1 INTRODUCTION

A wireless ad hoc network consists of self-organizing
wireless nodes, who must cooperate to route data for
each other in the absence of a fixed network infrastruc-
ture. We consider ad hoc networks in the setting where
wireless nodes are both autonomous and selfish. Each
node is equipped with an omni-directional antenna, and
expends resources such as energy and processing time
when routing packets. As such, nodes may demand a
fixed payment for each unit of information transmitted.
We focus on the case when a subset of nodes are inter-
ested in obtaining identical information such as a media
streaming service from a designated source node. In this
scenario, nodes are faced with two major challenges.
First, nodes must compute an efficient routing solution
that obtains the information from the source node while
minimizing transmission costs. A natural and attractive
solution to this problem is multicast, which is efficient
in terms of both bandwidth usage and transmission
cost. Second, nodes must also decide on an appropriate
and equitable scheme to distribute the multicast cost
amongst themselves. Designing cost-sharing schemes that
adhere to well defined notions of fairness and economic
feasibility is a classic problem in economic theory [1]–[3].

Computing appropriate cost-shares becomes espe-
cially challenging when nodes are selfish, and the utility
obtained for receiving the multicast is private informa-
tion known only to the node itself. Wireless nodes may
then misreport their willingness to pay for the service, in
the hope of being charged less. In such a non-cooperative
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scenario, the goal is to design a mechanism that ensures
nodes have no incentive to lie about their utility. Such
a mechanism is said to be strategyproof. A strategyproof
mechanism that is in addition robust against collusion by
nodes is said to be group strategyproof. Almost all known
group strategyproof mechanisms are based on the semi-
nal work of Moulin and Shenker [1]. The crucial ingredi-
ent underlying a Moulin-Shenker mechanism is a cost-
sharing scheme that is cross-monotonic. A cost-sharing
scheme is said to be cross-monotonic if the cost share of
a node does not increase when the service set containing
the node expands. Using a simultaneous Cournot taton-
nement process, Moulin and Shenker proved that cross-
monotonic cost-shares give rise to group strategyproof
mechanisms. Moreover, under reasonable notions of fair-
ness, Immorlica, Mahdian and Mirrokni showed that the
converse is true as well [4]. Motivated by this, group
strategyproof mechanisms have been fashioned via the
design of cross-monotonic cost-sharing schemes for a
plethora of games, including minimum spanning tree [5],
facility location [6], Steiner forests [7] and multicast in
wired networks [8].

While the key to achieving group strategyproofness
lies in a cross-monotonic cost-sharing scheme, at first
glance, such a property does not seem difficult to
achieve. Requiring only cross-monotonicity, it is easy
to design a cost-sharing scheme that is either trivial
(offering the service for free), or unfair (charging ev-
eryone a fixed price that is too high). Indeed, in most
practical situations, we simultaneously require the cost-
sharing scheme to be competitive and budget-balanced. A
cost sharing scheme is competitive if no subset of nodes
is charged more than the optimal cost of serving this
subset alone. Such a requirement ensures that there is
no threat of secession by some subset of nodes, who
may instead choose to obtain the service from another
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provider charging less. The budget-balance requirement
is natural — a reasonable mechanism should seek to
recoup the cost incurred by the routing solution. From a
computational perspective, we are further interested in
cost sharing schemes that are competitive and budget-
balanced with respect to the min-cost routing solution.

In this paper, we design cost sharing schemes for
information dissemination in a wireless ad hoc network,
when the underlying charging scheme is required to be
group strategyproof. Simultaneously, we require the data
delivery method employed to be efficient in terms of
routing costs. Any efficient routing mechanism should
exploit the following two important properties; (1) the
broadcast advantage inherent in wireless environments,
and (2) the replicable property of information. A natural
data dissemination method that suggests itself is multi-
cast. The optimal multicast route ensures that there are
no redundant transmissions by any node, thus ensuring
the total cost of wireless transmissions is minimized.

We show that cross-monotonic, competitive and
budget-balanced cost sharing schemes do not exist
for multicast in wireless networks. Hence, we relax
the budget-balance requirement, to obtain a cross-
monotonic, approximately budget-balanced cost-sharing
scheme1. This guarantees a truthful mechanism, to the
detriment of the cost recovery ratio. An interesting
question is then to find upper and lower bounds on
cost recovery. For a wireless network with T multicast
receivers, we show that the budget-balance ratio for any
cross-monotonic cost-sharing scheme is upper bounded
by 1

2+O( 1
T ), which is asymptotically constant. In the spe-

cial case of uniform transmission costs, the upper bound
is 2

3 +O( 1
T ). Our result hinges on a pathological network

construction, and we employ a probabilistic argument
similar to that of Immorlica et al. [4] and Li [8]. We
complement this upper bound by showing that constant
factor budget-balanced schemes are possible. We design
an algorithm that computes a 2-approximate routing
solution, and show how we can modify this algorithm
to guarantee a cost recovery ratio of at least 1

4 of the
total cost of multicast in a wireless ad hoc network. Our
technique is based on the primal-dual schema [6], [9],
[10], and is unique in that it ensures cross-monotonicity
by continuously increasing dual variables, which results
in violated dual constraints. This results in an infeasible
dual vector. Nevertheless, we show that the recovered
cost shares is bounded with respect to the feasible dual.

The rest of this paper is organized as follows; in
Section 2, we discuss related work. We introduce our net-
work model as well as some game theoretic definitions
in Section 3. In Section 4, we argue using a probabilistic
method that perfect budget-balance in wireless networks
is impossible, and derive upper bounds on cost recovery.
We design a primal-dual based algorithm that computes
cross-monotonic cost-shares for wireless networks with

1. Relaxing the budget-balanced requirement is equivalent to relax-
ing the competitiveness property. See Section 3.

uniform cost in Section 5, and prove its performance
bound, before concluding in Section 6.

2 RELATED WORK

The study and design of group strategyproof mecha-
nisms was initiated by the seminal work of Moulin [2]
and Moulin and Shenker [1], in which they showed that
the Cournot tatonnement under a cross-monotonic cost-
sharing scheme gives rise to mechanisms that are group
strategyproof. Further, they show that if the cost func-
tion is submodular, then it is possible to achieve cross-
monotonic cost sharing with the Shapley value [11]. In
a Moulin-Shenker mechanism, the service is offered in
the beginning to all interested agents at prices computed
using some cost-sharing scheme. Agents that are un-
willing to meet the price imposed are removed from
the service set, new cost-shares are computed, and the
service is offered to the remaining agents. The process
repeats until all agents agree to meet the asking price of
the mechanism. If the underlying cost-sharing scheme is
cross-monotonic, the dominant strategy of every agent,
whether acting individually or in conspiracy with other
agents, is to report her true valuation for the service.
Inspired by their work, group strategyproof mechanisms
have been developed for various games through the de-
sign of cross-monotonic, competitive and approximately
budget-balanced cost-sharing algorithms. The minimum
spanning tree [5], the travelling salesman problem [5],
facility location [6], single-source rent-or-buy [12] and
Steiner forest [7] all constitute combinatorial optimiza-
tion games for which algorithms have been developed
for computing cost shares with the previously stated
properties.

With the notable exception of the minimum spanning
tree game, a recurring theme in the cost-sharing schemes
for the previously mentioned games is the poor budget-
balance ratio. Using a novel probabilistic argument, Im-
morlica et al. [4] prove upper bounds on cost recovery
for various games, including edge and vertex cover,
set cover and the metric facility location game. Further,
Immorlica et al. showed that under the reasonable as-
sumptions of no free riders and upper continuity, group
strategyproof mechanisms give rise to cross-monotonic
cost-sharing schemes. Recently, Mehta et al. [13] consider
weakening the group strategyproof property with the
aim of improving the budget-balance ratio. They propose
acyclic mechanisms with exponentially better budget-
balance properties for some class of games, but are only
weakly group strategyproof. Subsequently, Brenner and
Shafer [14] showed how to turn any α-approximation
algorithm for a combinatorial optimization problem into
an α-budget-balanced acyclic mechanism.

Cross-monotonic cost-sharing for optimal multicast
with network coding [15] was studied by Li [8] for
both directed and undirected networks. Similar to Im-
morlica et al. [4], Li used a probabilistic technique to
show the existence of directed networks for which no
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cross-monotonic cost-sharing scheme recovers more than
O( 1√

k
) of the cost, where k is the number of multicast

receivers. For undirected networks, the upper bound
was shown to be O( 1

2 ). In a preliminary version of
this paper [16], we showed that the cross-monotonic
cost recovery upper bound for wireless networks was
1
2 +O( 1

η ) where η was a network dependent parameter,
and further designed an algorithm for computing a 1

8 -
budget-balanced cost-sharing scheme for uniform cost
networks. In this paper, we improve these results by de-
riving cost recovery upper and lower bounds of 1

2+O( 1
T )

and 1
4 respectively, where T is the number of multicast

receivers.

3 PRELIMINARIES

In this section, we will introduce the wireless network
model we use, and discuss some desirable properties of
cost-sharing schemes. We will also show that the optimal
multicast cost in wireless networks is not submodular,
thus precluding the use of the Shapley value [11] as a
viable cost-sharing scheme for group strategyproofness.

3.1 The Network Model
We assume that the wireless networks we study can be
modeled by disk graphs with some uniform radius, r.
In such graphs, a wireless node u is connected to all
nodes whose physical distance from u is less than r.
The broadcast property of wireless networks means that a
transmission by u can be heard by all other nodes within
range r of u. We will say v is in the neighbourhood of u
or is adjacent to u if v is within u’s transmission radius.
Each node charges a fixed price to transmit a unit of
information, and we denote the cost of transmitting a
unit of information via node u as c(u). We will use d(u, v)
to denote the cheapest cost path from node u to node v,
including the cost of u’s transmission. We assume that
there is a distinguished source node s, with identical
data to be sent to a set of receivers T . To exploit the
replicable property of information and efficiently utilize
bandwidth, the data delivery mechanism employed by
s will be multicast. Optimal multicast is equivalent to
computing the optimal Steiner tree in a network. Since
Steiner trees are NP-Hard to compute [17], we will
compute an approximately optimal Steiner tree instead.

3.2 Cross-Monotonic Cost Sharing Schemes
Consider the following problem: a set U of agents are
interested in obtaining a service from a service provider.
For any set S ⊆ U of agents, there is a cost of providing
this service to S. Let COPT (S) denote the optimal (i.e.
cheapest) cost of serving S. Agents share the cost of
obtaining the service, and each agent i ∈ U has some
private valuation, vi, which is the maximum amount she
is willing to pay for the service. In such a scenario, we
are interested in designing a cost-sharing mechanism that
solves the following two problems; (1) deciding the set
of agents S ⊆ U that should receive the service, and (2)
deciding the cost-share of agent i in the set S, denoted as

1u 2u

3u 4u

5u

Fig. 1. Multicast in wireless networks is not submodular

ξ(i,S). The mechanism solicits bids bi from each agent
i ∈ U , computes S, and allocates the cost so that for
each i ∈ S, ξ(i,S) ≤ bi. We assume each agent i is
selfish, and thus wishes to maximize her utility, which
is ui = vi − ξ(i,S) if i ∈ S , and 0 otherwise. Agent i
may lie about her valuation, and bid bi 6= vi if doing
so yields higher utility. As such, we require that the
cost-sharing mechanism is truthful, that is, the dominant
strategy [3] for every agent is to bid her true valuation
bi = vi. A Moulin-Shenker mechanism [1], coupled with
a cross-monotonic cost-sharing scheme, ensures that truth-
ful bidding is the dominant strategy for every agent,
even when agents are allowed to act in collusion with
other agents. Formally, a cross-monotonic cost-sharing
scheme for some agent i in the set A has the following
property

ξ(i,A) ≤ ξ(i,B) ∀B ⊇ A (1)

Essentially, an agent i in some service set is guaranteed
that her current cost-share will never increase when the
service set expands, if a cross-monotonic cost-sharing
scheme is used. It is also further desirable that the
computed cost-shares possess the following properties:
• Competitiveness To ensure agents do not switch to

another provider, the cost-sharing scheme should
not overcharge users, that is:∑

i∈S ξ(i,S) ≤ COPT (S)

• Budget-balance The cost-sharing scheme should re-
cover the full cost of the solution, that is:∑

i∈S ξ(i,S) ≥ COPT (S)

However, many games of interest lack cost-sharing
schemes that are simultaneously cross-monotonic, com-
petitive and budget-balanced [4]. One can relax the
budget-balance requirement, to obtain a competitive,
approximately budget-balanced scheme. A cost-sharing
scheme is said to be competitive and β-budget-balanced
for 0 ≤ β ≤ 1 if the following holds instead:

β COPT (S) ≤
∑
i∈S

ξ(i,S) ≤ COPT (S) (2)

Alternatively, one may relax the competitiveness require-
ment instead. A budget-balanced, α-competitive cost
sharing scheme for α ≥ 1 is one that obeys the following

COPT (S) ≤
∑
i∈S

ξ(i,S) ≤ αCOPT (S) (3)

A competitive, β-budget-balanced cost-sharing scheme
is equivalent to a budget-balanced, 1

β -competitive cost-
sharing scheme. In the sequel, a cross-monotonic and
approximately budget-balanced cost sharing scheme will be
taken to also mean one that is, in addition, competitive.

3.3 Wireless Multicast Cost is Non-Submodular
One possible approach to cost sharing is to allocate
the multicast cost according to the Shapley value [11],
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which is a well known approach in economic theory
for equitable and fair allocation of goods. The Shapley
value essentially charges each agent i the marginal cost
of serving i, in expectation over all possible orderings of
the set of agents. More formally, the cost share of agent
i according to the Shapley value is

ξ(i, T ) =
∑

S⊆T \{i}

|S|!(|T | − |S| − 1)!

|T |!

(
COPT (S∪{i})−COPT (S)

)
It turns out that if the cost function COPT (.) is submodu-
lar, then the Shapley value is both cross-monotonic and
perfectly budget-balanced (see Moulin and Shenker [1]
for details). A function f is said to be submodular if for
all A ⊂ B and for some i /∈ B, the following holds

f(B ∪ {i})− f(B) ≤ f(A ∪ {i})− f(A) (4)

A cost function that is submodular intuitively means that
the marginal cost of servicing a new agent decreases as
the service set expands. Unfortunately, the cost function
for multicast in wireless networks is not submodular,
thus precluding the use of the Shapley value to com-
pute cost shares that are cross-monotonic and budget-
balanced. Consider the example network shown in Fig. 1.
Assume that u3 is the multicast source, and let c(ui) = 1
for all i. Then

COPT ({u1, u5}) = 2 COPT ({u5}) = 2

COPT ({u1, u4, u5}) = 3 COPT ({u4, u5}) = 2

Letting A = {u5}, B = {u4, u5}, i = u1, we can see from
(4) that wireless multicast cost is not submodular.

4 COST RECOVERY UPPER BOUND

In this section, we will show that for wireless networks,
cost-sharing schemes that distribute the optimal (i.e.
minimum) multicast routing cost in a cross-monotonic
fashion cannot be budget-balanced. We first prove this
for a simple topology, which provides an intuition into
why the broadcast advantage restricts cross-monotonic cost
recovery. Subsequently, we generalize the ideas used to
show that the upper bound on cost recovery in networks
with T multicast receivers is at most 1

2 +O( 1
T ).

4.1 Example topology with 3
4 -budget-balance bound

Consider once again the network shown in Fig. 1. As-
sume that the source node is u5, which has zero trans-
mission cost, and let all other nodes have cost c(ui) = 1
to transmit a unit of information. Let {u1, u2, u3, u4}
be potential multicast receivers, and let A1 = {u1, u2},
A2 = {u2, u3}, A3 = {u3, u4} and A4 = {u1, u4}. Now,
choose at random any set Ai as the target multicast
receiver set. Since the network is symmetric and Ai is
randomly chosen, for any given budget-balanced cost
sharing scheme, each node in Ai will pay at most 1/2
in expectation. Now consider multicasting to some set
{{uj}∪Ai} for any i and uj /∈ Ai. Since there is a node in
Ai which together with uj forms a multicast set in which
uj pays at most 1

2 , by cross-monotonicity, uj will also
only pay at most 1/2 when in the superset {{uj} ∪ Ai}.
However, the multicast cost for this set is 2, hence, the
cost recovery ratio in expectation is at most

1
2+

1
2+

1
2

2 = 3
4

θ

s

r

t

i

i

u juku
r r

r

θ ≤ 120˚ - δ

Fig. 2. Placement of relays ui and potential receivers ti
for topology with budget-balance at most 1

2 +O( 1
T )

4.2 Poor cost recovery for wireless networks
We now generalize the argument in the previous section
to wireless networks that can be modeled by disk graphs
with uniform radius. We construct a pathological net-
work that does not admit a cost-sharing scheme that is
cross-monotonic and perfectly budget-balanced for any
optimal minimum cost multicast.

Theorem 1. There exists a wireless network that can be
modeled by unit disk graphs which does not admit a cost-
sharing scheme for optimal multicast that is cross-monotonic
and ( 1

2 +O( 1
T ) + ε)-budget-balanced for any ε > 0, where T

is the number of potential multicast receivers.

Proof: Assume that the source node s has transmis-
sion cost c(s) = x. Arrange relay nodes ui, i = 1 . . . T ,
with c(ui) = y, at equidistant points from each other
along the circumference of s’s neighbourhood. Fix a
relay node ui, and let uj and uk be two other relay
nodes with equal distance from ui, and such that uj ,
ui and uk subtends an angle of at most 120◦ − δ for
some δ > 0 (see Fig. 2). For each such set of nodes
uj , ui and uk, place a receiver node ti at the point
outside of s’s neighbourhood where the coverage area
of uj and uk intersect. By construction, ti is within the
neighbourhood of all relay nodes between uj and ui,
as well as ui and uk. Hence, each ti is connected to
η = b( 120−δ

360 )T c = O(T ) relay nodes. Symmetrically, each
relay node is also connected to exactly η receivers. To
prove the budget-balance ratio of this network, pick a
receiver t′ at random and include the next η receiver
nodes in the clockwise direction, and label this as the
target multicast group, T . Denote the set consisting of t′
and the next η − 1 nodes in T as A, and denote by B
the set of η nodes T \ {t′}. Observe that receivers in A
(resp. B) have one relay node in common, call this uA
(resp. uB). Since T is picked at random, we can bound
the expected cost share of each receiver as follows:

E[
∑
ti∈T

ξ(ti, T )] = E[
∑
ti∈B

ξ(ti, T )] + E[ξ(t′, T )]

≤ E[
∑
ti∈B

ξ(ti,B)] + E[ξ(t′,A)]

= η
x+ y

η
+
x+ y

η
= (x+ y)(1 +

1

η
)

The first equality is from linearity of expectations. The
next inequality follows from cross-monotonicity, since
A,B ⊂ T . Since COPT (T ) = x + 2y and |A| = |B| = η,
the fraction of cost recovered is at most

(x+ y)(1 + 1
η
)

x+ 2y
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Setting the cost x = 0 and y = 1 yields the theorem.
The proof of Theorem 1 also implies the following:

Corollary 1. For uniform cost wireless networks that can
be modeled by unit disk graphs, there is no cross-monotonic,
( 2
3 +O( 1

T ) + ε)-budget-balanced cost-sharing scheme.

5 COMPUTING CROSS-MONOTONIC COST-
SHARES

In this section, we will design an algorithm for com-
puting cost-shares that are cross-monotonic for multicast
transmission in wireless ad hoc networks with arbitrary
topologies. In particular, we will build a Steiner tree for
efficient multicast, and design a scheme to distribute the
cost of the Steiner tree to multicast users in a cross-
monotonic fashion. Our techniques are grounded in the
linear programming based primal-dual framework for
approximation algorithms, first introduced by Goemans
and Williamson [9]. The primal-dual schema employed
not only facilitates the construction of a good routing so-
lution, but also provides a natural means for computing
cost shares that are cross-monotonic. The latter can be
achieved by treating the variables in the dual solution
as cost shares.

Our strategy will be to first focus on computing a good
multicast routing solution. In particular, the primal-
dual algorithm we design will build a 2-approximate
solution. However, the dual variables obtained by this
algorithm cannot be used directly as a cross-monotonic
cost-sharing scheme. Instead, we will modify this algo-
rithm in Section 5.3 to compute cost-shares that are cross-
monotonic, and 1

4 -budget-balanced.

5.1 The primal-dual schema
We begin by introducing the primal-dual framework
within the context of multicast in wireless networks.
We focus on the case when each node has uniform
transmission radius, as well as uniform cost to transmit
a packet. The former assumption allows us to assume
that links between nodes are symmetric, while the latter
admits c(u) = c(v),∀u, v without loss of generality.

Before we can describe the algorithm, we will require
some definitions and notations. For a set of nodes S, we
define the binary function f : 2V → {0, 1}, where V is
the set of all nodes in the network, such that for any
S ⊆ V , we have the following:

f(S) =

{
1 if |S ∩ T | ≥ 1 and s /∈ S
0 otherwise

That is, f(S) = 1 implies that the set of nodes S contains
at least one multicast receiver, and does not contain
the source node s. We define a node cut of the set S
as the minimal set of nodes δ(S), such that following
conditions hold
• V \ δ(S) induces a graph such that the set of nodes
S and S̄ are disconnected.

• If u ∈ δ(S), then there exists a w ∈ S such that u
and w are adjacent.

A node cut for S is essentially the minimal set of nodes
that are adjacent to S, and whose removal from the
network disconnects S from the source node.

The definitions of the binary function f together with
the notion of a node cut, allows us to succinctly state
the problem of computing the optimal Steiner tree in a
symmetric, wireless network as a linear integer program
(IP) of the following form:

Minimize
∑
u∈V

c(u)x(u) (5)

Subject To ∑
u∈δ(S)

x(u) ≥ f(S) ∀S ⊆ V (5a)

x(u) ∈ {0, 1} ∀u ∈ V (5b)

In IP (5), the binary variable x(u) indicates if node u
should be used to transmit information in the optimal
Steiner tree connecting s to each node in T . The objective
function tries to minimize the total cost of transmitting
nodes. The first constraint ensures that for any set of
nodes S for which f(S) = 1, (i.e. S contains at least
one receiver but not the source node), at least one of
the nodes that disconnects S and s should be included
in the Steiner tree. Since this constraint is stated for all
possible sets of nodes, it is easy to see that a solution
x that satisfies all the constraints also ensures that each
node in T will be connected to s.

Computing a Steiner tree directly using IP (5) is in-
tractable, since the number of constraints is exponential
in the number of nodes in the network. Instead, we will
resort to the primal-dual technique based on linear pro-
gramming theory [9] to solve for an approximately op-
timal Steiner tree. The primal-dual schema will employ
the linear program (LP) relaxation of IP (5), achieved by
relaxing the integrality requirement to merely requiring
that x(u) ≥ 0 for all u. This gives us the primal linear
program, for which we can subsequently formulate the
following dual linear program:

Maximize
∑
S⊆V

f(S)y(S) (6)

Subject To ∑
y(S):u∈δ(S)

y(S) ≤ c(u) ∀u ∈ V (6a)

y(S) ≥ 0 ∀S ⊆ V (6b)

We know from the weak duality theorem [18] of linear
programming theory, the objective function of the LP
relaxation of (5) is lower bounded by the objective
function of the dual LP in (6). Recall also that from linear
programming duality theory, the optimal solutions to the
primal and dual LPs are related via complementary slack-
ness conditions [18]. In particular, whenever a constraint
of type (6a) holds with equality in the optimal dual
solution, then it follows that the corresponding primal
variable x(u) > 0. The primal-dual schema essentially
seeks to exploit the properties just stated. It begins with
a feasible dual solution in which y(S) = 0 for all S ⊆ V ,
and an infeasible primal solution where x(u) = 0 for
all u ∈ V . The algorithm then attempts to construct a
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Algorithm 1: Primal-Dual Algorithm
Initialize x(u) = 0 ∀u, set time τ = 0
Update solution set W = ∅

Phase 1:

1) Update set of active components C using Definition 1
2) If C = ∅, go to Phase 2.
3) Increase y(S) for all S ∈ C and τ at uniform rate until

constraint (6a) becomes tight for some u
4) Set x(u) = 1, and add u to W . Repeat step 1).

Phase 2:

1) Examine nodes in W in an arbitrary, predetermined order.
2) For each u ∈ W , if graph induced by W ∪ T \ {u} does not

disconnect s and some t ∈ T , set x(u) := 0, W :=W \ {u}.

Phase 3:

1) Update set of unsatisfied components C using Definition 2
2) If C = ∅, go to Phase 4.
3) Increase y(S) for all S ∈ C and τ at uniform rate until

constraint (6a) becomes tight for some u
4) Set x(u) = 1, and add u to W . Repeat step 1).

Phase 4:

1) Examine nodes in W in an arbitrary, predetermined order.
2) For each u ∈ W , if the graph induced by W \ {u} does not

disconnect s and some t ∈ T , set x(u) := 0, W :=W \ {u}.

feasible primal solution, by increasing judiciously se-
lected dual variables in a controlled manner. Whenever
this dual increase results in a dual constraint of type
(6a) holding with equality, we set the corresponding
primal variable x(u) = 1. This process repeats until
the primal solution constructed is feasible. At the end,
the primal solution is used to obtain a feasible tree
connecting s to all multicast receivers in T . The crucial
observation here is that the dual variable y(S) can be
interpreted as cost-shares for the set of nodes S. We will
leverage this property later to compute cost-shares from
the dual solution that are cross-monotonic while having
a constant budget-balance ratio.

5.2 A 2-approximate Steiner tree construction
We next turn to describing our primal-dual based algo-
rithm for computing an approximately optimal routing
solution in wireless networks. We first require some
terminology. We will say a constraint is tight if (6a) holds
with equality for some node u. A node is said to be open
if x(u) = 1. In the beginning, all nodes are said to be
closed, that is x(u) = 0 for all nodes u. We will require
the following definition of a component:
Definition 1 A component is a set of nodes S that meet the
following conditions:
• S is connected, that is for any u, v ∈ S there is a path

from u to v using only nodes in S,
• if u ∈ S, then either x(u) = 1 or u ∈ T

A component S is said to be satisfied if f(S) = 0, i.e.,
S includes s. Since x(u) = 0 for all u in the beginning
of the algorithm, we will initially have |T | unsatisfied
components, each consisting of a receiver t ∈ T .

Algorithm 1 shows our algorithm for computing a
2-approximate Steiner tree in symmetric wireless net-

works. Similar to most primal-dual schemas in the lit-
erature, it will be necessary to introduce a notion of
time, τ into our algorithm. Unlike other primal-dual
schemas however, our algorithm consists of 4 phases.
The first phase consists of carefully increasing or growing
selected dual variables, in an attempt to build a routing
solution. Growing dual variables leads to opening nodes,
due to complementary slackness conditions. Let W be
the set of open nodes at any time during this dual
growing phase. Then this phase ends when the set of
nodes W ∪ T induces a subgraph such that the source
node is connected to each multicast receiver. This first
phase of dual variable growth may however result in
more open nodes than is necessary for a feasible routing
solution. Hence, the second phase consists of “pruning”
these superfluous nodes by removing them from the
set W , without sacrificing the feasibility of the solution
computed thus far. At the end of the pruning phase, the
setW∪T induces a tree, connecting s to T . Note however
that dual has only paid for nodes in W , and from
Definition 1, we may have tacitly included receivers in
the tree W∪T that transmit for “free”. Therefore, phase
3 repeats the dual growing process, this time obtaining
enough dual payment to pay for transmitting receivers
that were not opened in the first dual growing phase.
The final phase once again performs node pruning to
remove nodes that were unnecessarily added to the
solution W in during the dual growing process in Phase
3. We next describe each phase in detail.

Phase 1: Dual Growth I - In this phase, a component
is said to be active if it is not satisfied. Let W consist of
the set of open nodes. Initially, at time τ = 0, we have
W = ∅, and each multicast receiver forms a standalone,
active component. For each active component S, we
grow its dual variable y(S), uniformly in time τ , until
some constraint of type (6a) corresponding to some node
u goes tight. At this point, we stop dual growth, and
open node u by setting x(u) = 1 and adding u to
W . We then update the set of active components, and
begin growing dual variables for this latest set of active
components. This phase ends when there are no longer
any active components. It is easy to see that at the end
of this phase, we will have a single, satisfied component
consisting of nodes in the set W ∪ T . Since nodes have
uniform transmission radius, the links between nodes
are symmetric, and the set of nodes W ∪ T induces a
subgraph where each receiver is connected to the source
node. It is crucial to note however, that only the nodes in
W have been “paid” for thus far by the dual variables.

Phase 2: Pruning I - Increasing the dual variable y(S)
contributes to reducing the slack in the constraints for
all nodes u ∈ δ(S). Hence, the dual growing phase es-
sentially opens more nodes than is necessary to connect
S and S̄, and these unnecessary nodes may be pruned.
Consequently, in this phase, we will examine only nodes
in the setW\T for pruning – later we will show that our
choice of this set helps to preserve cross-monotonicity
when computing cost shares. For each node we examine,
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we set x(u) = 0 and remove u from W if this can be
done without disconnecting any receiver from the source
node in the subgraph induced by W∪T . Essentially, we
try and close any node that is not a multicast receiver,
without sacrificing connectivity induced by the union of
the remaining set of open nodes and T . Clearly, by the
end of the pruning phase, the set of nodesW∪T induces
a tree connecting the source node to every receiver.

Phase 3: Dual Growth II - One can view the dual
growing in Phase 1 in the following way - each com-
ponent seeks to open a path of nodes to the source
by paying for them. However, the dual variable of a
component only contributes to node cuts adjacent to a
component. This means that any point in the algorithm,
all nodes in a component have been paid for, with the
possible exception of the multicast receivers themselves. In
order to remedy this situation, we define a component in
this phase differently. Specifically, a component is instead
now defined in the following way:
Definition 2 A component is a set of nodes S that meet the
following conditions:
• S is connected, that is for any u, v ∈ S there is a path

from u to v using only nodes in S,
• if u ∈ S, then x(u) = 1.

That is, a component in this phase consists strictly of
connected nodes in W . The dual growing process in
this phase then proceeds in a similar fashion to Phase 1.
Once again, we grow the dual variables for unsatisfied
components uniformly in time. Observe however that
now unsatisfied components must be adjacent to at least
one multicast receiver, and hence the increase in dual
variables during this phase is bounded by the uniform
cost c(u). Once again, whenever a constraint of type (6a)
goes tight for some node u, we stop the dual growing
process, set x(u) = 1 and add u to W . This process
repeats until there are no longer any active components.

Phase 4: Pruning II - At the end of Phase 3, we are
guaranteed that the set of nodes W induces a subgraph
that connects s to each receiver in T . Since the brief dual
growing process in Phase 3 may have once again opened
superfluous nodes, we prune unnecessary nodes in W
without disconnecting any receiver from the source. The
final solution W is thus a tree connecting s to each
multicast receiver in T .

The next theorem shows that the final solution W
forms a 2-approximate Steiner tree connecting s and T .

Theorem 2.
∑
u∈W c(u) ≤

∑
S⊆V 2y(S)

Proof: There are two crucial ideas behind this lemma.
The first is that dual variables for components grow at
uniform rate. Second, the primal solution W induces
a tree, and thus every receiver has exactly one path
to the source. Consider any point in time during the
dual growing phase on the network graph. Only active
components are increasing their duals. Increasing the
dual variable of component S never pays for nodes in
the component, only to nodes in the node cut set adjacent
to S. Now, let us shrink each active component into a
single node, and remove all other nodes outside of these

components that do not appear in the final solution W .
The resulting graph (call it H) now consists of nodes that
are either active components, or nodes that will be paid
for at some time in the future. Let us define the degree
of an active component S, as the nodes in H adjacent
to S, and let us denote it by deg(S). We claim that the
average degree of all the active components is not more
than 2. To see that this is indeed the case, recall that
the final solution W is a tree. Therefore, every node in
H adjacent to an active node, must either be in a path
from the active node to the source, or to another active
node. If an active node has paths in H to more than
one active node, than each of those active nodes must
have degree of 1 (otherwise, we would have redundant
paths to active nodes). By definition, since nodes in W
are open, its corresponding constraint must be tight, and
so we get∑
u∈W

c(u) =
∑
u∈W

( ∑
S:u∈δ(S)

y(S)
)
=
∑
S⊆V

( ∑
u:u∈W∩δ(S)

y(S)
)

=
∑
S⊆V

(
deg(S)y(S)

)
But from the previous argument, we know that average
degree for all active components is at most 2, so we get∑

u∈W

c(u) ≤
∑
S⊆V

2y(S)

From the duality theorem in linear programming [18],
the above implies that the solution W constructed is
within a factor of 2 of the optimal Steiner tree.

5.3 The cross-monotonic cost-sharing scheme
We next describe how to compute cross-monotonic cost
shares for Steiner tree based information dissemination
in wireless networks. In order to do so, we need to
modify Algorithm 1. The crucial observation that we
will employ is the following: the dual variable y(S)
can be interpreted as the cost of connecting the set S
to S̄. Intuitively, cross-monotonic cost-shares can then
be obtained through equitable distribution of the cost
y(S) to receivers S ∩ T , coupled with the “smooth”
increase of dual variables y(S) during the dual growing
phase of the primal-dual algorithm. A smooth growth
of dual variables essentially avoids sudden arbitrary
increases in the dual variables, which would harm cross-
monotonicity. Unfortunately, the dual-growth of Phase 1
is not smooth, in the sense that dual variables cease to
increase when components are satisfied.

In order to preserve cross-monotonicity, we need to
ensure that dual variables do not cease to increase
prematurely in Phase 1. Let d(s, t) be the shortest path
cost from the source node to receiver t. Let Sτ be the
set of nodes in component S at time τ . In our modified
primal-dual algorithm, a component S is active at time
τ in Phase 1 if the following condition holds

max
t∈Sτ∩T

d(s, t) ≥ τ (7)

Here, we depart from the usual primal-dual schema
by continuing to increasing dual variables for satisfied
components, as long as the condition in (7) holds. We
will call a component’s contribution after it becomes
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satisfied as its ghost contribution [6]. Note that at all
times in the algorithm, at most one component’s dual
increase can be viewed as ghost contribution, namely,
the component containing the source.

Let Sτ (t) be the component that t is a member of
at time τ , and let φ(t) be the time in the algorithm
when some component containing t first becomes sat-
isfied. Our cost-sharing scheme can then be expressed
as follows

ξ(t, T ) =
∫ φ(t)

τ=0

1

|Sτ (t) ∩ T |dτ (8)

Lemma 1. The cost-sharing scheme of (8) is cross-monotonic.

Proof: Consider the dual growing process in Phase 1
of the modified primal-dual algorithm. Adding receivers
can only lead to more receivers being in the same compo-
nent, which leads to less cost per receiver, since from (8),
the cost of every component is shared equally. Further,
adding receivers can only cause other receivers to be
satisfied earlier. Crucially, during Phase 1, a component’s
dual continues to grow even after the component is
connected, for time at least as long as the shortest path
cost from every receiver in the component to the source.
This continuous growth mimics the behaviour of dual
growth when any arbitrary subset of receivers is present
in the multicast set. Hence, adding a receiver can never
cause another receiver’s cost to increase. This smooth
growth of cost-shares leads to cross-monotonic cost-
shares in Phase 1. Due to the choice of nodes pruned
in Phase 2, the subset of receivers whose cost increases
due to the dual growing process in Phase 3 can only be
paying to open other receiver nodes. Hence, removing
any receiver whose cost does not increase during this
phase cannot decrease the extra cost accrued by the other
receivers, thus preserving cross-monotonicity.

Next, we bound the cost-sharing scheme of (8) against
the feasible dual vector y of the unmodified version of
Algorithm 1.

Lemma 2.
∑
t∈S ξ(t, T ) ≥ 1

2y(S) for every component S.

Proof: Without loss of generality, assume that com-
ponent S has a single receiver, since the cost of a
component is shared equally between receivers in a
component. Let τ1 and τ2 be the time when S first
becomes satisfied under the unmodified and modified
versions of Algorithm 1 respectively. Clearly τ1 ≤ τ2,
since components can only get satisfied earlier due to the
ghost contribution. If τ1 = τ2, this means that S did not
get satisfied due to ghost contribution, and the lemma
holds trivially. Now let τ1 + δ = τ2 for some δ > 0. Since
the ghost component and S are growing at uniform rate,
y(S) ≥ δ at time τ1. The cost share of t is therefore at
least δ, while the total cost to connect t in the unmodified
algorithm is at most 2δ, thus proving the lemma.

Theorem 2 together with Lemma 2 immediately im-
plies the following theorem.

Theorem 3. The modified primal-dual algorithm computes
cost-shares that are cross-monotonic and 1

4 -budget-balanced
for the optimal Steiner tree in uniform cost wireless networks.

6 CONCLUSION

Ensuring a mechanism is group strategyproof invari-
ably entails the design of cost sharing schemes that are
cross-monotonic. In this paper, we showed that cross-
monotonic cost sharing schemes that balance the budget
do not exist for multicast in wireless networks, and
derived upper bounds on the cost recovery ratio that
are asymptotically constant. On the positive side, we
designed a primal-dual based algorithm that guarantees
a constant budget-balance ratio when transmission costs
are uniform. An important question is whether the gap
between the upper and lowed bounds on cost recovery
derived here can be decreased. Another direction is
to consider the case when receivers dynamically leave
and join the multicast session. It is interesting to see if
the primal-dual approach can be adapted for this more
realistic scenario. We intend to pursue these directions
of research in our future work.
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