MusicScore: Mobile Music Composition
for Practice and Fun

Zimu Liu, Yuan Feng, Baochun Li
Department of Electrical and Computer Engineering
University of Toronto

ABSTRACT

In this paper, we present our design of MusicScore, a professional
grade application on the iOS platform for music composition and
live performance tracking, used by composers and amateurs alike.
As its foundation, we have designed and implemented a high-quality
music engraver, capable of real-time interactive rendering on mo-
bile devices, as well as an intuitive user interface based on multi-
touch, both built from scratch using Objective-C and Cocoa Touch.
To make MusicScore appealing to the general population for their
practice and fun, we have introduced a unique auditory capability
to MusicScore, so that it can “listen” to and analyze live instrument
performance in real time. In order to compensate for the imper-
fect audio sensing system on mobile devices, we have proposed
a collaborative sensing solution to better capture music signals in
real time. To maximize the accuracy of live progress tracking and
performance evaluation using a mobile device, we have designed a
collection of note detection and tempo-based note matching algo-
rithms, using a combination of microphone and accelerometer sen-
sors. Based on our real-world implementation of MusicScore, ex-
tensive evaluation results show that MusicScore can achieve accept-
ably low error ratios, even for music pieces performed by highly
inexperienced players.

Categories and Subject Descriptors

H.5 [Information Interfaces and Presentation]: User Interfaces
and Presentation; H.5.5 [Information Interfaces and Presenta-
tion]: Sound and Music Computing—Signal Analysis, Synthesis,
and Processing
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1. INTRODUCTION

Since the advent of the iPad, there has been a steady trend of
new professional-grade applications (or “apps”) released for multi-
touch mobile devices with a large display, such as Adobe Pho-
toshop Touch for image processing, as well as GarageBand for
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soundtrack editing. Such professional applications have made it
possible for creative professionals to work on their projects effec-
tively with a mobile device.

With a burgeoning repository of mobile apps for professionals,
it may be a surprise that no mobile apps exist for interactive mu-
sic composition, score editing, and live performance tracking. Ta-
ble 1 lists a few representative mobile apps, related to music com-
position and practice. For music composition, Symphony is the
only existing mobile app supporting music editing, in comparison
to NoteStar and forScore, which only provide simple annotation in
downloaded images of music sheets. However, we notice that Sym-
phony suffers from a poorly designed music typesetting system that
violates basic score layout guidelines, an inferior user interface that
is hard to learn and use, and an incomplete music symbol support.
With respect to live performance tracking, Tonara claims that au-
tomatic page-turning is supported using sensed live piano perfor-
mance. However, in reality, Tonara can only track simple music
pieces at moderate tempo, and it fails to work as a slightly compli-
cated piece is played or a piece is played in a fast manner. Such a
lack of high-quality apps in this category reflects the inherent com-
plexity of developing professional-grade music apps. Hence, we
firmly believe that a well designed, interactive, high-performance
and feature-complete music composition app should be designed
and built. This paper presents design challenges and our proposed
solutions in MusicScore, a professional-grade music app on iOS
mobile devices, such as the iPad.

Table 1: Representative mobile apps related to music composi-
tion and practice.

[ Mobile App | Features |

Symphony | Music composition; Real-time score rendering;
Music synthesis
NoteStar Music sheet display; Key transposition; Demo
play with progress indication
forScore Music sheet display; Simple annotation

Etude Music sheet display; Demo play with progress
indication
Music sheet display; Auto page-turning

Tonara

First, MusicScore is designed for professional composers. We
developed a high-quality music engraver from scratch in Objective-
C, achieving artistic and pleasing engraving results by strictly con-
forming to traditional engraving rules. Our music engraver is opti-
mized for real-time interactive score editing on a resource-limited
mobile device, based on intuitive multi-touch gestures. Second,
MusicScore is also designed for the general population who love
music, such as piano learners and amateur musicians. An iPad with
MusicScore can be used on the music stand to display a music score
digitally, and to keep track of the progress of a live performance by



automatically highlighting the notes and measures being played, as
well as turning pages. Thanks to such live progress tracking, Mu-
sicScore is also able to evaluate the quality of live performance,
and point out mistakes and imperfections along the way (e.g., an
inconsistent tempo and a missed note).

In order to make it possible for MusicScore to accurately “lis-
ten” to a live music performance and keep track of its progress,
a number of important challenges needs to be addressed. First,
due to limitations of built-in sensors in mobile devices and inher-
ent constraints of audio signal processing, we discover that it is
a non-trivial task to capture high-quality signals and conduct ac-
curate performance tracking. In MusicScore, we take full advan-
tage of available sensors on mobile device to sense signals from
the instrument. After carefully integrating signals from the micro-
phone and the accelerometer sensor, MusicScore uses a set of care-
fully designed algorithms to identify the notes played, and compare
them with the music score for live performance tracking and eval-
uation. Due to the complexity of instrument signals, we present a
note matching algorithm using tempo estimation to minimize errors
when identifying notes, typically due to mistakes made by inexpe-
rienced players.

To objectively assess the quality of MusicScore, we present a
thorough evaluation of the performance on our implementation. In-
dividual functional components are carefully tested and measured,
so that all design and implementation details are examined.

The remainder of this paper is organized as follows. In Sec. 2,
we first introduce MusicScore’s music engraver and user interface,
designed for professional composers using a mobile device. In
Sec. 3, we discuss limitations and challenges on mobile devices
as we are trying to support the auditory capability in MusicScore.
Sec. 4 presents in detail how audio and vibration signals are pro-
cessed in MusicScore to achieve accurate and efficient tracking of
live instrument performance. In Sec. 5, we thoroughly evaluate
MusicScore to understand its quality as a professional music com-
position application, and its accuracy as an automated performance
evaluator. We conclude the paper with a discussion of related work
and final remarks in Sec. 6 and Sec. 7, respectively.

2. MUSICSCORE FOR PROFESSIONAL
COMPOSERS

The primary design objective of MusicScore is to provide profes-

sional composers with a well designed, interactive, high-performance

and feature-complete mobile app for composing and editing music
scores. MusicScore is designed and built from scratch to work on
mobile devices with limited capabilities, rather than as a desktop
application, where alternatives have been available for a long time.
To the best of our knowledge, no such mobile apps exist to fulfill
the need of professional composers to compose music, perhaps due
to the inherent complexity of designing and building it.

2.1 A Professional Music Engraver

To make composing music on mobile devices possible, the most
critical component is a typesetting engine that supports dynamic
music notation layout and rendering, commonly referred to as an
engraver. We believe that a professional-quality engraver on mo-
bile devices must exhibit two important properties. First, correct-
ness of engraving layout. As an app used by professional com-
posers, the music sheet produced by the app must conform to strict
artistic rules of music engraving (with its legacy spanning cen-
turies), so that the result of engraving is intuitive and artistically
pleasing to sightread. Second, efficiency. The engraver must re-
spond swiftly to user input in real time, so that a smooth and sat-

Table 2: Two open-source engravers: a comparison.

[ I libmscore [ LilyPond
Correctness Some major lay- | @ Almost perfect
out errors
Efficiency Suitable for inter- | O Complex Iayout

active score edit- decision making
ing suitable for batch
processing only

Suitability © Based on Qt (in
for mobile OS immature «-stage
on i0S)

® Based on pure
C++ and Scheme

(Device Rendering Layer (Device-Dependent) )

(" Rendering Functions )
(" Animation & Highlighting )
_ Dttt J

}' Cross-Symbol Layout \“ i Line Breaking
i
. )

Slur, Tie, Beam, Bracket, and etc.

! Symbol-Level Layout V7 ~“Score-Level Layout )
! n

i @ 3 i Conflict Resolver |

Rl ' Justification i

i

| [Class: Note
i |Pitch: G3
| |Ornament: Trill

\Core Elements: Scores, Measures, Notes and etc.

J

Figure 1: An architectural overview of MusicScore engraver.

isfactory user experience is guaranteed. Unfortunately, after an ex-
tensive investigation on existing works, it is discovered that neither
of the two top-of-the-line open-source engravers, libmscore (from
the MuseScore project on the desktop) and LilyPond [10], satisfies
our demanding needs, as shown in Table 2. Therefore, in Music-
Score, we have designed and built a new mobile music engraver
entirely from scratch, making design decisions that are tailored to
offer the best user experience on mobile devices.

To guarantee the engraving quality and to maximize the effi-
ciency of our new engraver on mobile systems, we adopt a layering
design pattern as illustrated in Fig. 1. The device rendering layer
is closely tied to the mobile OS and device hardware, while the
score layout layer and the music abstraction layer are device inde-
pendent, in that the core data structures storing score elements and
the core algorithms used to compute the score layout are not tied to
a particular type of mobile OS or device hardware.

The Music Abstraction Layer contains the metadata of all musi-
cal elements, from the score at the highest level, to notes and rests
at the lowest. These elements are organized using a tree-like hierar-
chical data structure, with some special links between nodes, e.g.,
two tied notes. Such a core data structure essentially captures and
presents the complex structure of a music score. Scores are indexed
and stored in the sqlite-powered Music Score Library, and can
be imported or exported through various public score-exchange for-
mats, such as MusicXML and MIDI. To improve its flexibility,
additional formats can be supported using external import/export
plug-ins.

The Score Layout Layer is in charge of the layout placement of
musical elements in a score, by strictly following guidelines of tra-
ditional music engraving [12]. Within this layer, we further par-
tition layout components into three levels: symbol level, cross-



symbol level (such as the placement of a bracket over a group of
notes), and score level, as shown in the figure. Each component is
decoupled from others using the delegate mechanism. All engrav-
ing algorithms inside the score layout layer are fully optimized so
that results can be computed swiftly on mobile devices. In addition,
the produced layout results are expressed in an abstracted score co-
ordination system, using the quarter note head as its unit of size,
which can be easily converted to any device-specific coordination
system at the rendering stage.

The Device Rendering Layer retrieves the detailed layout results
from the score layout layer, and renders them in the actual device
through the OS drawing API. Since every mobile device has its own
geometric properties, conversions from device-independent coor-
dinates to device-specific coordinates should be conducted accord-
ingly. To make it possible for users to interact with musical sym-
bols, each musical symbol is encapsulated by a graphic container
in the OS, so that touches on that symbol can be easily detected.

2.2 A Score Composition User Interface

Taking full advantage of multi-touch capabilities on the iPad, we
have designed an intuitive user interface to compose music scores
using a combination of simple touch operations and multi-touch
gestures. For example, the pitch of a note can be changed by drag-
ging a note vertically, a group of musical symbols can be selected
by dragging a selection box, and a chord can be selected using a
two-finger touch. As demonstrated in Fig. 2, all properties of musi-
cal elements can be edited “in-place” using popover controls, with
minimal finger movement. Users may also enter a score using a
multi-touch virtual keyboard, as if they are composing on an actual
piano keyboard.
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Figure 2: A screenshot of running MusicScore on the iPad.

When composing music, it is critical to provide users with au-
dio feedback in real time. In order to achieve this goal, we have
implemented a real-time audio engine with a 256-channel synthe-
sizer, as shown in Fig. 3, supporting music score playback as well
as interactive user operations, e.g., when playing on the virtual pi-
ano keyboard and when modifying the pitch of a note. Using both
the vDSP framework and the AudioUnit framework at the low-
est level, the MusicScore audio engine is carefully tuned to achieve
the highest possible performance on the iPad, with respect to both
processing delays and the sound quality. To support sounds from
multiple instruments as in an electronic keyboard, sound libraries
can be dynamically loaded or unloaded in the audio engine, so that
users may enjoy the same piece played back with different musical
instruments.

3. MUSICSCORE FOR PRACTICE AND FUN

MusicScore is designed from the ground up to allow profession-
als to create music using a user-friendly composition interface and
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Figure 3: The real-time audio engine in MusicScore.

a powerful engraving backend. In addition, we are firm believers
that a high-quality mobile app should be exciting and fun for ev-
eryone, and we strive to make MusicScore useful to piano learners
and amateur musicians alike. A casual MusicScore user may not be
interested in composing music, yet she may find MusicScore useful
and fun if it is capable of performing the following tasks:

> Displaying music scores on the iPad placed on a music stand,
and allowing her to change the score to suit her own tastes
(e.g., adding ornaments and fingering). Since MusicScore is
designed to support complex engraving and interactive edit-
ing, this can be achieved without difficulty.

> “Listening” to her live piano performance, keeping track of
the progress of her play in the music score, and automatically
turn pages for her as needed.

> Dynamically evaluating her live piano performance, by iden-
tifying possible errors in real time as the performance pro-
gresses, including incorrect or missed notes, incorrect note
timing, and inconsistent tempo. As errors are being high-
lighted in the score, she can focus more on her weaknesses.
As such, MusicScore acts as a private music tutor when she
is practicing.

Clearly, to achieve these goals, we must enable the auditory ca-
pability in MusicScore, i.e., audio and other signals from a piano
must be captured and analyzed on mobile devices in real time. In
this section, we describe the characteristics of signals to be sensed
by devices, and discuss the challenges to support high-quality mu-
sic signal sensing on mobile devices in real time.

3.1 Characteristics of Sound from the Piano

To be able to “listen” to a live piano performance, the first step
is to thoroughly understand signals from the piano. Different from
the unpleasant pure tones defined by note pitches, which have sinu-
soidal and periodic waveforms with certain frequencies, the sound
generated from a piano has a complicated waveform. Though mu-
sical sounds vary from a piano to another piano, they share a set of
characteristics that can be utilized for real-time analysis.

Fundamental frequency. The fundamental frequency, often de-
noted as fy, represents the lowest of frequency of a periodic wave-
form. In a modern Western music system with twelve-tone equal
temperament, each note pitch is assigned to a unique fundamen-
tal frequency, so that all instruments can be tuned for a perfor-
mance. By international standard, the A4 is set at 440 Hz, and
other notes’ fundamental frequencies can be derived using the log-
arithmic rule—the frequency ratio between two adjacent notes is
the twelfth root of two, 21/1? ~ 1.0595. Furthermore, notes are
grouped by octaves, where an octave corresponds to a doubling
in frequency, i.e., f° = 2f4* = 880 Hz. Naturally, to evaluate a
player’s performance, we should compare frequency characteristics
of sound, against the expected fundamental frequencies of notes in
the score. Note that a few notes of a piano might be slightly out of
tune due to temperature or humidity changes. MusicScore can be



calibrated with the player’s piano and learn its sound characteris-
tics, so that notes slightly out of tune can be correctly recognized.

Harmonic series. Musical instruments are often based on acous-
tic resonators, such as strings in a piano. Due to the inherent spac-
ing of the resonances, frequencies of waves are mostly at integer
multiples, or harmonics, of the fundamental frequency fo, and a
harmonic series is hereby formed. Take note A0 as an example,
the power is ideally concentrated at frequency points around f3° =
28 Hz, 2f3° = 56 Hz, 3f}° = 84 Hz, and etc., and the higher or-
ders of harmonics have decreasing levels of energy. However, be-
cause of the stiffness of real strings in the piano, the frequencies are
not exactly harmonic and can be modeled by f,, = nfov/1 + Bn?,
where B is the inharmonicity coefficient of an instrument [5]. Since
the order of magnitude of B is usually between 10~* and 10~° for
the piano, only lower harmonics (n < 4) can be used to accurately
infer fo.

Amplitude envelope. When an acoustic musical instrument pro-
duces sound, the loudness of the sound changes over time. To quan-
tify the loudness, we can measure the instantaneous amplitude of
the wave, as illustrated in Fig. 4. Though the changes of amplitude
vary significantly across players and instruments, the sound of a
single-note play can be, in general, partitioned into the following
four stages [11]: (1) Atrtack: the initial rise of energy from zero
to peak after the key is pressed; (2) Decay: the subsequent slight
drop of energy from the attack level to an almost constant level;
(3) Sustain: the period when the loudness is nearly constant after
the decay, until the key is released; and (4) Release: the time taken
for the sound to fade away after the key is released. Although there
is only one global peak, we observe that there exist several local
peaks in the attack, decay, and sustain stages, where energy level
is higher in general. Clearly, when multiple notes are played se-
quentially or simultaneously, as instructed in a music score, the
overlapping sound waves would produce a series of peaks: some
represent real note attacks, but others do not. In order to keep track
of the progress of live piano play and to identify the timing of each
note, we would need to correctly detect true attacks of notes when
they are mixed together.
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Figure 4: The instantaneous amplitude of note G4, played on a
grand piano, with four stages labeled.

3.2 Imperfect Audio Sensors on Mobile De-
vices

Modern mobile devices have been equipped with various sen-
sors, including the microphone, accelerometer, proximity sensor,
ambient light sensor, and gyro, serving as “input” sources of mo-
bile apps. Though mobile sensors have empowered mobile apps,
they do have their limitations. In the application scenario of Music-
Score, the built-in microphone is naturally the major signal source
of MusicScore. In order to accurately and effectively track and an-
alyze the player’s live performance, we must identify constraints of
the audio sensing system on mobile devices.

Frequency response. In contrast to professional grade audio record-

ing systems, most audio recording systems on mobile devices have

a limited frequency response, due to inferior microphone sensors,
analog-to-digital converters, and software limiters. As shown in
Fig. 5, it can be observed that there exists a clear drop of frequency
response below 150 Hz on mobile devices. Therefore, to some
extent, mobile devices would experience “listening” problems for
notes below D3, whose fundamental frequencies are below 150 Hz.
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Figure 5: The frequency response of built-in microphones on
iOS mobile devices.

To address the issue of the inferior frequency response below
150 Hz, we take advantage of the harmonic effect in a piano, and
in particular lower orders of harmonics (k - fo, k = 2, 3,4), to help
us identify notes with low fys. For example, a weak peak of BO
at fo = 31 Hz can be confirmed by a growing energy peaks at
62 Hz, 124 Hz, and 247 Hz. It should be noted that higher orders
of harmonics are not used in MusicScore due to the aforementioned
inharmonicity.

Directional characteristics. Although most microphones on mo-
bile devices are omnidirectional, they are usually embedded into
the body of the device for a better external look, and sound waves
can only reach the internal microphone through a hole or cone
carved on the body frame. Such a design leads to a unidirectional-
like sound perception, i.e., the microphone picks up sound mostly
from the direction that the hole faces, and to a lesser extent, the
sides as well. To evaluate the effect of directionality of built-in
microphones on mobile devices, we have recorded a grand piano
playing in a 4 x 4 x 2.5 m® room, using an iPad is placed on the
music stand with microphone facing the ceiling (portrait mode). As
shown in Fig. 6, even though notes are played in the same key-press
velocity, some notes cannot be clearly “heard.”

Magnitude (dB)

Figure 6: The normalized magnitude envelope of FFT on sig-
nals from the iPad on the music stand.

Although the note pitch can still be identified, the amplitude en-
velope cannot accurately reflect the exact timing of the note attack,
due to the directionality of the built-in microphone. Such a defi-
ciency of the audio sensor on mobile devices suggests that we may
consider other sensing sources to evaluate the piano player’s live
performance.

3.3 Collaborative Sensing for Real-Time
Music Capture
Since we need to judge whether a piano performer plays the cor-
rect note pitches at righting times, we need to conduct spectral anal-
ysis on the audio signal, after slicing the stream of audio samples



into “frames” using a sliding window. By examining the sound’s
frequency spectrum within a specific time frame, against the ex-
pected fundamental frequencies of one or more notes at the corre-
sponding time in the score, the player’s performance can then be
evaluated in real time. In MusicScore, the zero-padded Quadrati-
cally Interpolated Fast Fourier Transform (QIFFT) is adopted, due
to its simplicity and accuracy. However, as stated by the Heisenberg-
Gabor limit, one cannot achieve a high temporal resolution (in the
time domain) and a high frequency resolution (in the frequency do-
main after the Fourier transform) at the same time, i.e., simply ap-
plying QIFFT on the audio signal cannot achieve satisfactory spec-
tral and temporal accuracies, which are required in MusicScore.
Hence, we must carefully design special techniques, taking into ac-
count the application scenario of real-time performance evaluation.

Intuitively, QIFFT is sufficient to identify a single note attack or
notes played far apart. However, in music pieces, chords, which
consist of a set of two or more “nearby” notes sounding simulta-
neously (e.g., C2-E2-G2 in C major), are often seen. In order to
correctly identify a chord, we must be able to distinguish individ-
ual note pitches of the chord within a single frame. In the context of
the spectral analysis for MusicScore, this implies that the minimum
frequency separation of QIFFT should be no greater than than fre-
quency difference between two notes in an arbitrary chord. As we
have previously mentioned, the f, spacing between adjacent notes
is logarithmic rather than linear, i.e., the frequency difference be-
tween two adjacent notes of low pitches will be much smaller than
that of high pitches. For piano, the required minimum frequency
separation should be less than the frequency difference between its
two lowest notes, i.e., A fmin = (2% -1)- flowest — 1.6 Hz.
To achieve such a frequency separation, each frame must be longer
than MAFS/A fmin seconds long [1], where MAFS is the min-
imum allowable frequency separation coefficient given by a set
of QIFFT parameters, and MAFS is greater than 1. For a zero-
padding factor of 5 (i.e., the QIFFT input size is 5 times the frame
size with zeros padded) with the widely used Hann window func-
tion, MAFS is 2.28 in practice, implying that each frame would be
at least 1.4 seconds long, which will clearly hurt the temporal res-
olution of our signal analysis. In addition, a one-second lag is no-
ticeable to users, and intolerable for real-time interaction. Aiming
to improve the temporal resolution and reducing the processing de-
lay, we propose to take advantage of the effect of harmonics in the
piano discussed in Sec. 3.1, and use the fourth-order harmonic to
distinguish adjacent notes, so that A fmin can be relaxed to 12.8 Hz
and the each frame can thus be reduced to 178 ms long.

However, in the time domain, a 178-ms resolution is still not
enough for live play progress tracking. For example, in a typi-
cal performance with Allegro tempo (a quarter note = 140 beats
per minute (BPM) = 428 ms), each eighth note lasts for around
214 ms. To accurately identify a consecutive sequence of eighth
notes at the same pitch, which are often seen in a score, we should
achieve a temporal resolution of 100 ms, or even shorter, so that
peaks and valleys of power can be observed. Note that by allowing
two consecutive frames overlapping with each other 50%, we may
reduce the interval between frames by a half. However, a shorter
interval does not result in a better temporal resolution, since over-
lapping will also blur the changes of power in the time domain.

To overcome the shortcoming of audio signal processing with
respect to the temporal resolution, in MusicScore, the built-in high-
sensitivity accelerometer is used to work in collaboration with the
audio recording system. When a mobile device is in contact with a
piano, vibrations of the sounding board can be passed to the device
body, and then be sensed by the internal high-sensitivity accelerom-
eter (e.g., 10S devices can achieve a sensitivity of 1 mg). Using

the maximum accelerometer sampling rate of 100 Hz, we may be
able to achieve a detection interval of 10 ms, which would help to
significantly improve the accuracy of note attack identification and
shorten its response delay.

To justify the feasibility of vibration sensing, we have conducted
afew preliminary experiments using the built-in accelerometer. Fig. 7
shows that, when the device is placed on the music stand of the pi-
ano, all 15 note attacks can be identified from the accelerometer
readings. Another advantage of such a collaborative sensing so-
lution is that the directionality problem of internal microphones is
resolved naturally, as the the hammer striking the string gives an
abrupt beginning of a note.
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Figure 7: The instantaneous amplitude of accelerometer read-
ings when a C5 — C6 — Cb5 scale is practiced at a fast tempo of
180 BPM.

4. EVALUATING LIVE PERFORMANCE IN
MUSICSCORE

In this section, we present our complete solution for evaluating
live music performance, using innovative signal processing algo-
rithms within our collaborative sensing solution.

4.1 Evaluating Live Performance with Progress
Tracking: an Overview

In order to evaluate a live piano performance, both the sensed
note pitches and the timing of the attack should be compared against
the original music score. Hence, we first analyze the score to pre-
pare the expected note attack sequence as a priori knowledge for
real-time performance evaluation. Such a note attack sequence
reflects the expected structures of input signals, including funda-
mental frequencies and timing information, as demonstrated in Ta-
ble 3. This sequence will then be fed into signal processing mod-
ules running on mobile devices, as illustrated in Fig. 8, to conduct
progress tracking and performance evaluation. Note that, though
cloud-based signal processing is widely adopted in recent years, it
does not satisfy the stringent delay requirements enforced by our
real-time interactive music application. Our measurements on resi-
dential Internet connections have shown that the average round-trip
time to popular cloud service providers is around 103 ms, with de-
lay jitters up to 400 — 600 ms. Clearly, this would lead to a very
uncomfortable experience during real-time progress tracking, au-
tomated page turning, as well as music performance evaluation.
Hence, all signal processing procedures are running on local mo-
bile devices, rather than in the cloud.

4.2 Note Pitch-Attack Analyzer on Audio
Signals
To sense the note pitch and timing, we first need to analyze the
piano sound using QIFFT, as discussed in Sec. 3. In MusicScore,
the captured audio stream is partitioned into overlapped frames
(with frame size n = 8192 and overlapping coefficient oo = 75%),



Table 3: An example of the expected note attack sequence pro-
duced in MusicScore.

Relative Duration Relative
# | Since Last Attack | Not€ | fo (H2) | tion
1 j C5 523 1/8
c4 262 1/4
2 1/8 D5 587 1/8
E5 659 1/8
3 1/8 G4 | 392 1/4
Slound Score £ Pitch/Attack 1\ _Expected Note _ _
nput Analyzer * Attack Sequence
FFT Bin 1_(~ Magnitude Attack
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Figure 8: The signal processing flow chart in MusicScore.

and each frame of data is multiplied by a Hanning window func-
tion. Since the fundamental frequencies of notes in logarithmic
scale while FFT bins are in linear scale, applying the Hanning win-
dow function can effectively minimize the effect of spectral leakage
due to unaligned frequencies. After conducting FFT on the win-
dowed data, we can easily derive the power in each FFT bin, i.e.,
the magnitude of sinusoid with f™, as shown in the upper panel
of Fig. 9. As we mainly focus on the frequency points covering
Octave 0 — 8, only FFT bins below 10 kHz are processed.

To identify note attacks from magnitude signals at any given fo,
we first use a high-pass filter to cut off the magnitude values below
the human-audible note attack threshold, so that magnitude peaks
of irrelevant background noise are excluded, and those represent-
ing potential note attacks are preserved. It must be noted that the
computed magnitude values only represent the relative energy mea-
sured by the microphone, and we empirically choose 35 dB for the
iOS audio system. Afterwards, the first-order different function
is calculated and half-wave rectified, as demonstrated in the lower
panel of Fig. 9, to unveil peaks in the processed magnitude curve
after high-pass filtering. To efficiently extract peaks in real time,
we choose the rectified first-order differentiation, since it can be
conducted by simply storing magnitude values from previous FFT
frame and subtracting current and previous values in a vectorized
manner, which not only conserves memory usage on mobile de-
vices but also reduces computational complexity.

Thanks to the smoothing effect of overlapped frames, magni-
tude series are smoothed over time and contain much fewer local
sub-peaks around major peaks. Thus, the corresponding rectified
difference series D(t) are able to reveal major peaks evidently. We
identify the note attacks in audio signal by picking all local maxima
in D(¢) satisfying a threshold:

Attack(t) = (Dt >= ’Dt71) A (Dt > Dt+1) N (Dt >= Dth)-

By studying magnitude series of very “soft” piano play with the
una corda pedal, we discover that Dy, should be set to as low as
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Figure 9: An example of audio signal processing for a perfor-
mance with 16 measures. The upper panel shows the mag-
nitude curve of FFT bin of 657 Hz (the bin closest to C5 =
659 Hz); and the lower one shows the half-wave rectified differ-
ence of magnitude signal after high-pass filtering, with identi-
fied note attacks marked on the top.

4.7 dB (i.e., around three times of energy increase for a valid at-
tack) to capture soft note attacks, which are often heard in a perfor-
mance. Note that this threshold can be automatically adjusted by
calibrating MusicScore with a user’s own instrument.

4.3 High-Resolution Attack Detection using
Vibration Signals

Due to the temporal resolution issue that we have previously dis-
cussed in Sec. 3, vibration signals from the accelerometer should
also be properly processed to improve the accuracy of note attack
analysis. For each signal sequence from 3 axes, the envelope of the
vibration amplitude is first extracted by convolving with a 40-ms
half Hanning window, which keeps the sharp attacks in the ampli-
tude curve. After the envelope is extracted, envelope curves of all
axes are summed for note attack detection. Fig. 7 has revealed that
peaks in vibration signals generally rise much faster than they fall,
which is very similar to an ADSR-shape curve of a note attack in
audio signals. In order to extract note attacks from the vibration
signal, we have designed a simple, yet sufficiently efficient, adap-
tive threshold algorithm for MusicScore, which is able to achieve a
reasonable accuracy at its inherent temporal resolution.

To be specific, two criteria are used to detect a potential note
attack: (1) The current amplitude envelope rises above the mean
of the last few values, ie., V(t) > ,BZiLZI V(t — i)/L, where
[ represents the threshold coefficient and L is the number of his-
torical values to be considered. This criterion is mainly based on
our observations of the fast-rise and slow-drop phenomena in the
signal. (2) No note attack has been identified yet, since the time
t, of the last valley in signal V received so far (t, = sup{t’
t" < t,VV(t') < 0}). This criterion effectively merges subse-
quent (“back-to-back”) rises of amplitude into the first rise of a
note attack.

In reality, for a sensitive note attack, we have chosen 8 = 1.2 to
accommodate some slower rises of the amplitude envelope, which
appear occasionally in our experiments due to “soft” notes; and, L
is set to 4 (i.e., 40 ms) to ensure a swift and accurate response to a
passage of consecutive short note attacks. Fig. 10 demonstrates an
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Figure 10: An example of vibration signal processing showing
the first 5 measures in a performance. The upper panel shows
the waveform of x-axis accelerometer data; the lower one shows
the aggregated envelope with identified note attacks marked on
the top.

example of vibration analysis using our proposed algorithm. Simi-
lar to Dyn, B can be learned by MusicScore during calibration. Note
that, the attack detection criteria we have chosen can be easily im-
plemented without logging the entire history of V. Fortunately,
with the vDSP-accelerated convolutional envelope extraction, the
process of vibration signal analysis can be fully optimized for mo-
bile devices.

Once both audio and vibration signals are processed, the poten-
tial attacks are merged to obtain accurate pitch and timing infor-
mation, and then compared against notes in the expected play se-
quence from the score. As notes are matched progressively, Music-
Score will automatically advance the play progress indicator, turn-
ing to the next page if necessary, and highlighting any detected
mistakes (e.g., pressing a wrong key) on the music score.

4.4 Intelligent Note Matching with Tempo
Estimation

To achieve a better understanding of our proposed signal pro-
cessing algorithms in real-world scenarios, we have invited two
groups of piano players (5 people in each group), one with over
5 years of experience and another with less than one year of expe-
rience, to play two pieces of music with different tempos, and use
MusicScore to track their performance. Although preliminary ex-
periments show that our algorithm successfully handled the music
piece performed by more experienced players at a moderate speed,
the accuracy dropped significantly when notes were played in a
very fast tempo, e.g., a sequence of sixteenth notes at the tempo of
Vivace, or when inexperienced players made some unexpected mis-
takes, e.g., a key was accidentally pressed twice. As MusicScore is
designed to serve the general population with a wide range of music
background, it is a must to further improve its accuracy so that it is
sufficiently robust to handle various performing speeds and human
errors.

To achieve this goal, we need to identify possible cases that
we may face in real-world performances. By analyzing collected
sound tracks of musical performances, we believe that the accu-
racy is mainly affected by two categories of mismatching between
sensed note attacks and actual notes in the score: (1) Missed note

attacks (false negatives) usually happen when a very weak attack
appears in-between a sequence of strong attacks of the same note
or notes in different octaves, or in the worst case, when a player
forgets to play a note. (2) False note attacks (false positives) oc-
cur as two or more adjacent peaks exist on a single note, or, some
unexpected “attacks” from background noise. As demonstrated in
Fig. 11, both cases will result in incorrect matching of note attacks.
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Figure 11: Two examples of tempo estimation when some note
attacks are not identified accurately.

Since a piece of music is expected to be played in a near-steady
tempo for a pleasant audition, we propose to use tempo tracking
and prediction to minimize mismatching and further improve our
algorithms. Before presenting our robust note matching algorithm,
we first describe the mathematical terms used. Let T"°* be the
relative duration of the i-th note (e.g., half note, quarter note, and
etc.), TP be the actual played duration for the i-th note (regard-
less whether or not the note is detected), and T5°**? be the sensed
duration. In the ideal case, the corresponding true tempo is com-
puted by S; = T°% /TP As illustrated in Fig. 11, for the first
category of mismatching, when p note attacks are missed after the
j-th note, the system would compute the tempo as

- T;}otc T;}otc TJPlay

= . S.
J+p rpplay j+p ppplay  ©7°
2l T 2T

=J =J

;= =
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For the second category, when ¢ false attacks are detected after the
7-th note, the system would calculate the tempo as

ijotc T]potc 1

J Tjsensed ,YOijlay Yo 7
note note Tplay
3. _ it _ i i o
il = = = O+,

sensed play play
TJ'+1 pa! Tj st Tj
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where >~ _ v = 1. Note that it is safe to assume that o is not
close 1, because when 79 — 1~ the case is equivalent to ¢ — 1
attacks are falsely detected after the (j + 1)-th note. Since nearby
TP'™ and TP°* are mostly comparable due to the rhythmic struc-
ture of a performance, the relative error 7 = |(S; — S;)/S;| would
be outstanding if either missed or false attacks occur. Observing
that tempo tends to be relatively steady for a short passage, we
could infer an expected tempo S]‘ from the history of played notes,
and then compare it against S; to detect any significant error.

In order to derive the expected tempo from historical data, we
need a valid prediction model for s. Although many generic pre-



diction models, such as ARMA, have been widely used for predic-
tion, the model parameter training usually involves complex com-
putational procedures based on historical tempo data, and compli-
cated data pre-processing has to be conducted to fulfill special re-
quirements of these models [3]. Instead, we propose a simple but
effective adaptive moving average model, which directly takes the
sensed tempo history, and fully considers special characteristics of
music performance. In a nutshell, our algorithm calculates S as
the arithmetic mean of previous M values, where M is a varying
window size determined by the structure of the music score. Since
our empirical studies reveal that notes in adjacent beats are played
with a more consistent tempo, M is automatically adjusted so that
the averaging window always covers all the notes from the previous
beat to the current one.
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Figure 12: The normalized difference of true tempo series of a
music piece performed by a typical inexperienced player, with
note series marked on the top. Red stems with a square head
indicate significant changes of tempo (> 10%).

With the tempo S predicted, we also need to determine the rela-
tive error threshold 7 for comparing against S. Instead of using
a constant for 7, we have discovered that ny, would be best cho-
sen according to the context of the current note being processed.
As shown in Fig. 12, it is evident that the inexperienced player
performs at a tempo that varies significantly as the note density
changes, i.e., when the relative note duration 7*°*® of close-by
notes changes notably. Such a observation implies that 7, should
be a function of T*°* to better deal with human errors. Consis-
tent with the S prediction algorithm, we adopt the same adaptive
windowing strategy. Then, within the window-covered range, the
geometric mean is computed over the relative note duration ratios in
logarithmic scale, since T}*°*® is usually in the power of 2. Finally,
using the Weber-Fechner logarithmic law [13], 71, is calculated as

ar
Thase + Nflex 10g1() ( H > 5

1€ Window

where 7pbase = 10% and naex = 20%, considering that the loga-
rithmic ratio seldom exceeds 5 in music pieces. Note that the equa-
tion above can be further simpliﬁed to a form of arithmetic mean
over log,, ‘log2 TP — log, TiEt®
in a vectorized manner. .

With carefully chosen models of S and nh, we can then detect
missed and false attacks using our intelligent note detection algo-
rithm with tempo estimation. Our proposed algorithm, summarized
in Algorithm 1, is executed every time when a newly sensed attack
is going to be matched with the (5 4 1)-th note (i.e., all previous
J notes have matched with valid sensed attacks). Any false attacks
can be detected if S is alarmingly high as shown in Line 3 — 5,
while missed attacks can be detected iteratively when S is signifi-
cantly lower than S as shown in Line 6 — 14.

note

4
10g2 Tnote
i+1

Algorithm 1 Intelligent Note Matching with Tempo Estimation,
triggered when a sensed note attack is going to be matched with
the (§ + 1)-th note.

Input: The sensed note duration Tjse“sed, i.e., the time since j-th
note attack.
Output: If the sensed attack is valid
1: Obtain the expected tempo S using adaptive moving average
prediction and derive the relative error threshold 7n.
2: Use the sensed note duration to compute the tempo S; =
T}pﬁ)te/TJ;sensed. i ) )
: iij > Sj and ‘(SJ — SJ)/SJ‘ > Nth then
return The sensed attack is invalid (a false attack).
: end if
: Set the counter of missed notes p = 0.
: Set T'eft = TsenSed for iterative missed note detection.
: while S, < SJ+P and |(S;4+p — ]+P)/SJ+P| 2 1w do
Mark the (5 + p)-th note as detected (missed note attack).

10:  Estimate the play duration of the missed note ij_lﬁ' =

note

T /S;+p» and add S;,, into the tempo series.
11:  Update T'*" = 7" — TP,
12:  Increase p to consider the next note.
13:  Compute the tempo S;4, = T2t /T,
14:  Predict the expected tempo SJ +p. and update 7.
15: end while
16: return The sensed attack, which matches with the (5 + p)-th
note, is valid.

S. MUSICSCORE: EXPERIMENTAL EVAL-
UATION

In this section, we conduct a thorough evaluation of MusicScore,
developed on the i0S platform in Objective-C.

5.1 Professional Music Composition

As a professional music composition app for mobile devices, we
first evaluate the quality of our music engraver, which serves as
the cornerstone of MusicScore. The MusicScore engraver is de-
signed to produce artistically pleasing music sheets, by strictly fol-
lowing traditional guidelines of music engraving. To examine its
engraving quality, we carefully compare engraving outputs of Mu-
sicScore with hand-tuned engraving results [12]. In addition, we
conduct a set of regression tests from LilyPond [10], which in-
clude a large number of scenarios a professional engraver needs
to solve. For comparisons, regression tests are also run in Sym-
phony for iOS, LilyPond, and libmscore. We discover that the Mu-
sicScore engraver produces a satisfying engraving output on mo-
bile devices. For example, in the accidental and beaming tests, as
shown in Fig. 13, MusicScore produces almost identical output as
compared to LilyPond, while both Symphony and libmscore have
severely violated basic engraving rules (marked by red rectangles):
(1) accidentals are too far away from notes; (2) the ledger line is
unreadable; (3) the slope of the beam is incorrect; (4) the partial
beam is in a wrong direction. Clearly, these engraving errors may
lead to a lack of comfort as professional musicians are composing
or playing.

Since MusicScore targets mobile devices with limited computa-
tional capabilities, the efficiency of the engraver is also critically
important. Using powerful instrumentation tools from Xcode, we
evaluate in detail the performance of the MusicScore engraver on-
the-fly in terms of its CPU usage, in both static and dynamic en-
graving scenarios. As summarized in Table 4, when MusicScore is
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Figure 13: A comparison of engraver output among Music-
Score, Symphony, LilyPond, and libmscore. Red rectangles in-
dicate incorrect engraving results.

running on a less powerful first generation iPad, the average CPU
load is no more than 25% for typical usage, such as digital mu-
sic sheet display and music composition routines. The CPU load
exceeds 50% only during engraving preparation (usually no more
2 — 3 seconds at the loading stage), or when the score is being
edited intensively. Considering the inherent complexity of profes-
sional engraving, we believe MusicScore has successfully achieved
a satisfactory level of performance on mobile devices.

Table 4: Average CPU load of the MusicScore engraver.
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Figure 14: The accuracy of note pitch detection.

inexperienced players. This confirms the need for an intelligent
note matching mechanism — to be later evaluated — to identify
both false and missed attacks.

As the music sound analysis lacks sufficient temporal resolution
for accurate performance evaluation, vibration signals are analyzed
in MusicScore. We evaluate the improvement of temporal reso-
lution by comparing the note attack timing detected by audio and
vibration signals, respectively. As listed in Table 6, with the assis-
tance of vibration signals, 46.4% of note attacks can be detected
100 — 200 ms ahead of audio-based attack detection. Given that
the temporal resolution of QIFFT in MusicScore is around 200 ms,
the accuracy of note timing has been significantly improved.

Table 5: The accuracy of audio-based note detection, evaluated
by a pair of metrics (R, R¢). Both experienced and inexperi-
enced players are invited to play music pieces at different tem-
pos.

Music Players
Tempo Experienced Inexperienced
Slow (0.5%,0.3%) (2.8%,3.2%)
Moderate | (3.2%,5.6%) | (10.4%,8.7%)
Fast (12.3%,8.9%) | (17.9%,14.6%)

[ Workload | Description [ CPU (%) |
Engraving One-time engraving prepara- | 68.5 £ 10.3
preparation tion when loading a score
Music sheet | Rendering a full page of the 5.5 £39
page turning | music sheet
Moderate Using multi-touch gestures to | 13.9 £ 7.1
interactive add notes, change properties,
editing and organize the score
Intensive Adding a large number of com- | 53.2£9.3
interactive plicated chords with the virtual
editing keyboard, and etc.

5.2 Assessment of Play Progress Tracking and
Music Performance Evaluation

In addition to features designed for professional users, we strive
to provide casual users with the best possible features in Music-
Score, such as play progress tracking, automated page turning, and
live performance evaluation. To evaluate the accuracy of algo-
rithms in MusicScore, we conduct our evaluations in a progressive
manner, with aforementioned two groups of piano players.

First, we focus on our proposed note detection algorithms based
on audio signals. Given digital music scores from the Canadian
Royal Conservatory of Music Grade 3 syllabus, by using QIFFT
based spectrum analysis to sense notes played in live performance,
it is shown that MusicScore can achieve an overall detection accu-
racy of 98.6%, in terms of the note pitch. In Fig. 14, we further
summarize the identification accuracy along with the 95% CI, in
different octaves. The results reveal that notes in low octaves with
low fo may be mistakenly identified as wrong notes, due to the
limited input frequency response on iOS devices.

When note attack timing is considered, we measure the accu-
racy of our algorithm using two metrics: the ratio of missed attacks
(Rm) and the ratio of false attacks (Ry), both over the total number
of true note attacks. As shown in Table 5, the accuracy is reason-
ably high when the tempo of the music is slow, but R, and R
increase remarkably as the tempo becomes faster, particularly for

Table 6: Statistics of attack timing difference between a note
detected from vibration signals and the same note from audio
signals. A positive value implies that a note is first detected by
vibration signals.

| Time Diff. Range

Note not detected by | 1.5
vibration signals

[ % [ TimeDiff. Range | % |
[T00 ms, 150 ms) | 24.8

< 0Oms 0.8 [150 ms, 200 ms) 17.8
0 ms, 50 ms) 15.1 || > 200 ms 10.7
50 ms, 100 ms) 21.6 || Note not detected by | 7.7

audio signals

By integrating audio and vibration processing modules with in-
telligent note matching using tempo estimation, we can then assess
the accuracy of the performance evaluation feature in MusicScore.
Compared to Table 5, we measure the accuracy using R and Ry
after intelligent note matching. As shown in Table 7, a significant
degree of accuracy improvement is observed after missed note at-
tacks and false attacks have been carefully handled by our proposed
algorithm based on tempo estimation. We observe that, for experi-
enced players who have a better control of tempo, error ratios have
no strong correlation with the music tempo; and the total error ratio
is lower than 10% in general, even for inexperienced players.

Since all play progress tracking and performance evaluation al-
gorithms are running in real time, it is critical to evaluate their per-



Table 7: The accuracy of performance evaluation, evaluated by
a pair of metrics (Rn,, Ry).

Music Players
Tempo Experienced | Inexperienced
Slow (<0.1%,< 0.1%) | (0.3%,0.7%)
Moderate (0.9%,1.1%) (2.4%, 2.5%)
Fast (1.3%,1.0%) (4.2%, 3.7%)

formance when running on mobile devices. All our proposed algo-
rithms must meet the deadline for timely signal processing, such
that users experience no uncomfortable lags when using Music-
Score to track a live performance. As shown in Fig. 15, we measure
the average CPU times consumed in every iteration of our algo-
rithms. With respect to audio signals, one iteration takes a frame
of the audio stream as input, while one iteration of vibration signal
processing reads 3 values from the 3-axis accelerometer. Our mea-
surement results show that both iPhone 4S with a faster CPU and
iPad (first generation) with a slower CPU can finish our signal pro-
cessing tasks within 1 ms, which can be attributed to the simplicity
of our algorithms, as well as the fully optimized implementation
using the iOS vDSP framework.
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Figure 15: CPU times consumed for signal processing.

6. RELATED WORK

In the existing literature, pitch analysis and note attack detection
algorithms have been widely studied. Harmonic product spectrum
based algorithms proposed to extract the note pitch by finding the
maximum coincidence of harmonics among Fourier transform out-
puts [7], while Master proposed to extract the pitch using Cepstrum
along with the harmonic product spectrum [8]. In addition, an au-
tocorrelation function is applied in the time domain to identify the
fundamental frequency, which reveals a strong autocorrelation pat-
tern [4]. With respect to note attack detection, Scheirer proposed a
tempo analysis algorithm using bandpass filters and banks of par-
allel comb filters [13]. Goto used a simple peak-picking algorithm
to roughly detect note attacks for music beat tracking [6]. Differ-
ent from these algorithms which have no a priori knowledge about
the signals to be analyzed, MusicScore is targeting a different sce-
nario, where algorithms are carefully designed to analyze signals
with the knowledge of the score being played. As we have made
full use of available information, detection errors have been greatly
reduced, so that users can enjoy a smooth experience with Music-
Score. Another closely related research area is real-time score fol-
lowing, which aims to synchronize positions between the audio and
the digital score. Arzt and Widmer proposed to use online dynamic
time warping with simple tempo models to follow the music [2],
while Montecchio and Cont modeled the system as a state tracking
problem with various probabilities carefully trained [9]. Distin-
guished from these works, MusicScore can not only track the live
performance, but also identify wrongly played notes or tempo. Fur-

thermore, these existing score following algorithms require either
time-consuming searching or complicated training, i.e., they are not
suitable for mobile devices with limited computational power.

7. CONCLUDING REMARKS

This paper presents the design and implementation of Music-
Score, the first professional grade music composition application
on the i0S platform. MusicScore is designed for both professional
and casual users, as music scores can not only be composed and
edited, but also be used for live performance tracking and eval-
uation, all taking place in real time. Our design in MusicScore
features a number of salient highlights: a professional-grade inter-
active engraver, a collaborative sensor solution that mitigates the
limitations of the audio recording system on mobile devices, new
attack detection algorithms that use both audio and vibration sig-
nals, as well as a note matching algorithm with tempo estimation.
All combined, MusicScore is shown to perform well as it tracks live
performance of both experienced and inexperienced players, while
staying comfortably within the limits of the computational power
on mobile devices.
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