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Abstract—With the proliferation of mobile devices in both
smartphone and tablet form factors, it is intuitive and natural for
users to socially interact with their collaborators or competitors in
multi-party conferencing, productivity, or gaming applications. In
this paper, we make a case that such social interactions should be
much more spontaneous to users in these applications. We design
and implement a new system framework, Reflex, to provide the
required system support to achieve spontaneous social interaction
with other users in the same mobile application, be they in
the same living room or around the world. Reflex features a
simple and intuitive application programming interface (API),
and uses cloud computing services from Google App Engine
to offer the scalability and performance required to support
spontaneous social networking at a large scale. Reflex is able to
transparently switch to local interactions over Bluetooth or Wi-Fi
interfaces, available on mobile devices, whenever possible. In order
to evaluate Reflex in the iOS platform, we developed a real-world
music composition application, called MusicScore, from scratch on
the iPad, which takes advantage of Reflex to let music composers
collaborate in real time.

I. INTRODUCTION

It is no longer a disputable fact that mobile devices, in both
tablet and smartphone form factors, have become mainstream
computing devices for the general population to work and inter-
act more effectively with their colleagues, clients, and friends
in social circles. The current generation of social networks has
changed the way people socialize online, making words such
as “liking,” “friending,” “status,” or “following” commonplace.
But where are future social experiences trending? We believe
that the answer lies in two words: apps and spontaneity.

In-app social experiences. we argue that social interactions
will soon migrate from traditional online social websites to
mobile devices, in dedicated mobile applications, or more
simply, “apps.” The need for social interaction with other users
has already appeared in mobile game applications that require
multi-party gameplay, both collaboratively and competitively.
Yet, such a need will soon evolve to a wide range of mainstream
mobile applications designed for productivity, media creation,
and media consumption. Imagine the level of satisfaction if a
photographer can interact with his team members live while
editing photos; if a designer can show an illustration sketch to
her clients in a remote location; or if fans anywhere in the world
can watch a live concert event together while interactive com-
ments can be exchanged with a variety of media alternatives,
such as text and audio streams.

Spontaneity. We are convinced that a wide variety of mobile
applications, including multi-party games, need to allow users
to interact socially with their partners spontaneously. Spontane-

ity implies that users may not be “friends,” and they do not
need to create social credentials or log in with such credentials
before social interactions may occur. Yet, spontaneous social
interaction progresses in real time (as in online chat), rather
than asynchronously (as in Twitter). Thanks to dedicated mobile
applications, such spontaneous social interactions involve much
richer experiences than status messaging or text chat, typical
in online social networks today.

At first glance, features provided by such a framework
seem to be widely available: after all, an instant messaging
(IM) or social networking platform, such as MSN Messenger,
Skype, or Facebook, allows users to spontaneously interact with
one another in a social circle in real time, while supporting
text, audio, and even video streams. One can only imagine
the surprise and disappointment when our extensive research
discovered no available system frameworks off-the-shelf to
support in-app spontaneous social interaction, as we try to
implement such social interaction features in a new real-world
music composition application on the iOS platform.

Existing IM or social networking platforms do not offer
a suitable solution for a number of reasons: First, they are
proprietary and custom-designed for purposes of spontaneous
messaging, with no effort devoted to reusability. It would be
difficult to use them directly in mobile applications. Second,
they require users to create new accounts or to login with
existing ones in a proprietary system, and to remember their
login passwords. Third, all messages are strictly relayed by
IM or social network servers, even if users are at the same
location within the range of Bluetooth or Wi-Fi. Last but not
the least, they may not be able to handle bursty exchanges
of application-specific states — such as avatar updates in an
action game — in a short timespan. In conclusion, when users
in a game or media creation application need to spontaneously
interact and exchange application-specific states in real time,
we believe that it is not feasible to use proprietary IM or social
networking solutions.

In this paper, we design and implement Reflex, a new system
framework we have developed on the iOS platform. Reflex takes
full responsibility for maintaining online presence status up-
dates, and for managing application-specific live data broadcast
sessions among users, be they in the same living room or across
the world. Reflex takes advantage of existing cloud services
such as Google App Engine, yet transparently switches to
local interactions using Bluetooth or Wi-Fi interfaces whenever
possible. It is designed with reusability as a first-class goal,
and with carefully chosen design patterns to maximize its
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flexibility and to minimize tight coupling across components.
It supports the relay of data streams to other users via a
number of reflectors in the cloud. In order to evaluate Reflex, we
developed a real-world music composition application, called
MusicScore as shown in Fig. 1, from scratch on the iPad. We
show an extensive array of experimental results using Reflex in
MusicScore, assisted by existing cloud services in Google App
Engine and PlanetLab.

Fig. 1. A screenshot of running MusicScore on the iPad.

The remainder of this paper is organized as follows. In
Sec. II, we present our objectives when designing our system
framework. In Sec. III, we show how Reflex spontaneous
presence is designed and implemented in the cloud to achieve
our objectives. In Sec. IV, we reveal details of Reflex framework
for mobile applications. In Sec. V, we present results from
our real-world experiments using Reflex and MusicScore. We
conclude the paper with a discussion of related work and final
remarks in Sec. VI and VII, respectively.

II. REFLECTING ON THE REFLEX DESIGN

To architect the best possible system framework design
for mobile social interaction, we believe that Reflex should
focus on features that off-the-shelf IM and social networking
solutions are not able to readily provide to mobile applications.
With respect to the set of features, we believe that Reflex
should seamlessly support spontaneous presence that is custom-
tailored to mobile users, as well as live streaming sessions
of application-specific states. With respect to performance, our
design and implementation of Reflex focus on scalability and
energy efficiency. With respect to the Application Programming
Interface (API), Reflex should take full responsibility of mun-
dane aspects of mobile social interaction, yet providing suffi-
cient flexibility for alternative mechanisms specific to a mobile
application to be deployed. With respect to implementation, we
have chosen to implement Reflex in the iOS platform, widely
adopted by commercial mobile application developers.

Spontaneous Presence
Spontaneity. The thesis of the Reflex framework is to support

spontaneous social interaction. With existing spontaneous pres-
ence systems, such as Apple’s Game Center, Google Talk, and
Facebook, mobile users will need to explicitly register using
their email addresses, and login with a password. Such curated

online presence is adequate when security and privacy are
primary concerns, but is too cumbersome for spontaneous and
live social interactions within mobile applications. We believe
that Reflex should be designed to function well without explicit
user registration: a mobile user may simply use an anonymous
user profile, such as a nickname, to join a socially interactive
session and start socialize with others spontaneously. This way,
the threshold to interact with others is as low as it gets. If the
need arises, a user can certainly update her profile with her
social network profiles (e.g., from Facebook or Twitter) at any
time.

Persistence. Routinely, a running application in a mobile
device may be forcefully terminated due to an incoming call or
a network failure (e.g., when a user roams to a location with
weak signal strength). As such, spontaneous presence in Reflex
should provide superior support to the persistence of states in
live social interactive sessions, allowing a user to restore her
previous status after a brief “offline” period.

Live Social Interactive Sessions
To relieve developers from the burden of network program-

ming on mobile devices, Reflex should be designed to en-
capsulate mundane details of low-level network programming,
providing a simple high-level API that supports live social
interactive sessions. It should seamlessly integrate available
network interfaces, including 3G cellular, Bluetooth, and Wi-
Fi, and carefully monitor and control their usage to achieve the
best possible performance and energy efficiency.

Performance
As a system framework serving users with mobile devices, it

is critically important for Reflex to deliver a smooth online in-
teractive experience with live streaming sessions of application-
specific states. With the potential of large flash crowds attending
live social events within a mobile application, Reflex needs to
be robust and scalable to allow a large audience in live sessions.
In addition, Reflex needs to be energy efficient, and conserves
battery power in mobile devices as much as possible, by making
adequate selections of network interfaces when data are to be
transmitted.

Reusable and Flexible API
As a system framework, Reflex must be highly reusable and

flexible enough to support a wide variety of applications with
social interaction needs. Without distracting developers from
implementing the core functionality of their own applications,
Reflex should hide internal details that support spontaneous
presence and live interactive sessions. Reflex should function
well off-the-shelf, with a simple interface. For applications
requiring custom-tailored mechanisms, it must be able to incor-
porate them as delegates using carefully chosen design patterns.

III. THE REFLEX CLOUD FOR SPONTANEOUS SOCIALIZING

To achieve our objectives towards the best possible design
of the Reflex framework, we present highlights in our design
from two different perspectives: in the cloud and on mobile
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devices. In the cloud, we build a platform using existing cloud
services to support spontaneous presence and live interactive
sessions. On mobile devices, we focus on transparent switching
among different network interfaces, as well as a reusable and
flexible API to developers. In this section, we discuss how
Reflex uses support from the cloud to provide core services
for spontaneous social interactions, with a focus on its design
issues and implementation details.

A. Designing Spontaneous Presence with Cloud Support

As the principal goal of the Reflex is to support spontaneous
social interaction among mobile users, the Reflex service in
the cloud should allow mobile applications to easily join the
spontaneous presence system, query other online users, and
initiate spontaneous online collaboration or competition, all
without the need of creating user accounts. Conceptually, a
mobile application built on the Reflex framework communicates
with front-end servers using its unique mobile device identifier,
and obtains a customizable online profile dynamically created
for this device. By personalizing the profile (such as specifying
a nickname, location, gaming skills, or preferences), online
users with similar characteristics are able to find each other
easily to start a live interactive session, i.e., explicit “friending”
is unnecessary in Reflex. The spontaneous presence service
keeps all online profiles well organized in the database for
searching, and coordinates the creation of social interactive
sessions among multiple users with common interests. In Fig. 2,
we present an illustration of how the Reflex spontaneous pres-
ence is designed.

Reflex Spontaneous Presence within Cloud

Presence
Database

Front-End
Servers

PROFILES
device-id
nickname......

SESSIONS
session-id
players......
......

Schema

A Social Interactive Session
Managed by Spontaneous Presence

Mobile Users
without Accounts

App w/
Reflex

App w/
Reflex

......
Invite
Search
Join

Fig. 2. The design of Reflex spontaneous presence.

To design a spontaneous presence service supporting a grow-
ing population of mobile users, our primary objective is to scale
up to a large crowd of spontaneous users joining live sessions.
To achieve this goal, the traditional approach is to build a
distributed registration service from scratch, and then deploy
it over a group of physical or virtual servers in the Internet.
Such an approach would lead to an insurmountable level of
complexity as the number of online users scales up, in order
to maintain high levels of data consistency and permanence.

In contrast, we believe it would be better to take full
advantage of Platform as a Service (PaaS) in the cloud [5],

provided by cloud service providers such as Google App Engine
(GAE) [2]. PaaS delivers a complete solution stack (including
programming/scripting runtime, generic database support, and
communication interfaces) and facilitates the development and
deployment of network-centered services, without the cost
and complexity of purchasing and managing the underlying
hardware and software layers. Specifically, we choose GAE
as the cloud backend to host Reflex. With the support of
GAE, the Reflex spontaneous presence cloud is designed to
simultaneously handle HTTP requests, process various queries,
and deliver push notifications. GAE allows the Reflex cloud
platform to run concurrently and independently across dis-
tributed servers, and provides it with a persistent, yet highly
scalable, distributed database interface, called datastore, for
data storage and retrieval. These features match well with our
requirements for a scalable spontaneous presence service.

Design Choices for Presence Communication
GAE provides two core services for live communication with

end users: HTTP and XMPP. Intuitively, XMPP seems to be a
good fit for spontaneous presence. However, it turns out that
XMPP in GAE can only work in client mode, i.e., we have to
setup our own XMPP servers to relay message streams between
Reflex and the GAE backend, which to some extent defeats
the purpose of using PaaS. In contrast, we do not need to
run additional servers if the self-contained HTTP service is
used. In Reflex, to allow HTTP to transport our customized
requests or queries, we adopt JSON-RPC over HTTP as the
communication tunnel for spontaneous presence. In a nutshell,
all spontaneous presence requests are sent over HTTP POST
with JSON-encoded messages, and the corresponding results
are returned by our GAE service handler as HTTP responses.
Fig. 3 illustrates how a device joins into the Reflex spontaneous
presence service via JSON-RPC. To protect the privacy of user
profiles and improve system security, SSL is enforced across
all HTTP connections.

{
  "join",
  {
    "uniqueId": "deviceId"
    "nickname": "Tom"
  }
}

{
  "result":"OK",
  "error": null
}

HTTP POST Request

HTTP Response

Spontaneous Presence
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x 
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k

RequestHandler.post()

RPCHandler.dispatch()

RPCMethods.login()

GAE WSGI

Fig. 3. A user joins Reflex spontaneous presence using JSON-RPC.

However, we notice that due to the nature of HTTP, all
information from the cloud has to be passively carried by re-
sponses. What should we do when the cloud actively generates
a notification for a user? To make spontaneous presence capable
of sending messages to mobile users, Reflex provides both
a passive polling mechanism, and an active push notification
service. For periodic and non-essential information updates
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from the cloud, periodic polling will be initiated from users
as regular JSON-RPC queries. Urgent notifications, such as
a collaboration invitation, can be send through GAE’s one-
way communication tunnel, called a channel. As illustrated in
Fig. 4, whenever a user connects to the Reflex spontaneous
presence cloud, it obtains a secret channel token from the
cloud, and listens on the incoming push channel identified by
the token, using a JavaScript-based channel client embedded
in the Reflex framework. Although the embedded JavaScript
client in Reflex is not as efficient as native Objective-C code,
it is sufficient to accommodate short notification messages for
regular operations.

Register

Invite A

Create a channel identified by 
Token-A for push notification

Token-A

Connect to channel service using
Token-A; wait for pushed data

Send invitation via the channel 
associated with Token-A

RPC Request
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Initialize Reflex
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. . .
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Fig. 4. Reflex actively sends a push notification through a channel.

B. Implementation Challenges in GAE

Although GAE provides us a powerful yet convenient PaaS
cloud platform, there is always a flip side of the coin. To be a
more scalable infrastructure, GAE enforces certain limitations
to its clients. Due to GAE’s unique characteristics and various
constraints, implementing a reliable and scalable spontaneous
presence is not without its challenges.

Choice of the Database Structure
The datastore facility provided in GAE is based on

BigTable [6], a sparse distributed multi-dimensional sorted
map. In datastore, each data object is stored as an entity
with multiple properties, which can be manipulated or queried
using a simplified datastore interface. Different from relational
databases, it lacks support of foreign keys and complex filtering.
In particular, datastore does not support inequality filters on
more than one entity property per query. In this sense, for
social spontaneous presence, we have to carefully design table
structures to support complicated social search. For example,
in GAE it would be impossible to find friends within a given
geographical region by conducting a query with two inequality
filters on both longitude and latitude. To overcome this issue,
whenever a user reports her location, we not only store her
geographical coordinates, but also store the corresponding
geohash value [1]; and the database index is build over the
geohash property, rather than over actual coordinates.

Since social networks may gradually evolve over time, it
would be best to maximize the flexibility of underlying database
structures for future feature expansions. In the Reflex’s under-
lying database structure, we adopt the Expando data model in
GAE, whose properties are determined dynamically. This model
allows both fixed properties to be used as Reflex’s essential data
fields (e.g., a user’s device ID and nickname), and dynamic
properties to be customized by different developers or users
with various preferences. With the help of such a dynamic
model, the complexity of adding additional social features can
be greatly simplified.

Minimizing the Processing Time
For the sake of fairness among applications, GAE imposes

a 30-second limit on responding to a request. To meet such
a processing deadline in Reflex, we decide to move a part of
jobs from foreground RPC handlers to GAE’s task queues in
the background, which allows much longer processing times
(around 10 minutes). For example, once a user has uploaded
a profile image, producing thumbnails in different sizes can
be executed in the background, as shown in Fig. 5(a). Such
a foreground/background job partition also leads to smooth
and responsive interactions between the cloud and the mobile
application, which is important for a smooth user experience.

We also notice that a substantial portion of the time is
consumed on processing queries to the datastore, which can
be accelerated by using an in-memory data cache, called
memcache. For frequently accessed data, Reflex caches them
after the first datastore query, and subsequent queries can
be directly retrieved from memcache, as shown in Fig. 5(b).
Additionally, we take advantage of the cron service in GAE to
process heavy workloads that can be executed periodically, by
scheduling them as scheduled tasks.

(a) task queues: producing thumbnails in the background

1 def uploadProfileImage(...):
2 self.updateProfileImage(userId, image)
3 taskqueue.add(url=’/background/generateThumbnail?target=

userId=%s&sizes=48,128’ % userId);

.(b) memcache: caching a user’s profile

4 def getUserProfile(...):
5 profile = memcache.get(userId)
6 if profile is None:
7 profile = self.queryUserProfile(userId)
8 memcache.add(userId, profile)
9 return profile

.Fig. 5. Performance tuning with task queues and memcache.

C. The Reflector Cloud

After users establish a live multi-party interactive session
using the spontaneous presence service, it is up to Reflex
to relay data traffic in such a session. Intuitively, forming
a complete mesh topology among users in the session may
not be scalable, bandwidth-efficient, or energy-efficient. As an
alternative solution, bandwidth usage within a complete mesh
can be reduced by nominating a device as a session “host,”
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relaying streams for others. However, power consumption on
such a host will inevitably increase, which may not be fair to the
host. In addition, direct device-to-device connections may not
even be feasible in most cases, as Network Address Translation
(NAT) is extensively used on mobile devices.

In Reflex, we resort to the deployment of reflectors in a
reflector cloud, which helps with the aggregation and relay of
data streams in live interactive sessions. Devices connect to
a common set of nearby reflectors in the cloud, and data are
broadcast to receivers in the session via two-hop relay paths
over these reflectors. To achieve timely delivery from users
around the world, it would be best to distribute reflectors to
different geographical locations in the cloud. For this reason, we
choose to use Infrastructure-as-a-Service (IaaS) cloud service
providers, which are based on Virtual Machine instances (VMs)
across the world with excellent connectivity in the Internet, to
host and implement our reflectors. To implement an efficient
reflector in a VM-based cloud platform, we need to choose the
most suitable design between two alternatives: (1) a thread-
based server that handles simultaneous connections in separated
threads, with a small amount of memory overhead; and (2) an
event-driven server, handling requests asynchronously in very
few threads. Reflex adopts the latter alternative to avoid the
scheduling overhead of multi-threading. We implement reflec-
tors using Python and the Twisted asynchronous networking
engine with full event-driven networking support. Each reflector
instance in Reflex runs in a VM in the cloud, and registers itself
in the spontaneous presence service via the same JSON-RPC
interface.

IV. THE REFLEX FRAMEWORK IN MOBILE APPLICATIONS

From the application’s point of view, Reflex provides a
unified API hiding all underlying network plumbing that man-
ages spontaneous presence and socially interactive sessions.
Internally, application-specific data in interactive sessions are
dispatched by Reflex, either to reflectors in the cloud, or to
locally connected sessions over Bluetooth or Wi-Fi interfaces.
Social profiles and session information in Reflex are under the
control of dedicated “managers.” Application-specific policies
can be “plugged in” via delegates. Fig. 6 presents an architec-
tural overview of Reflex.

Application Delegate
Events

Managers

Po
lic

y

Pr
of

ile

Se
ss

io
n

API

3G Misc. iOS events

Spontaneous 
Presence

Re!ectors

...

R
ef

le
ct

or

Internal

Messages

JSON-RPCLow-Level Networking Dispatch

Social
Interaction
Processor

Fig. 6. An architectural overview of Reflex framework for mobile applications.

TABLE I
CHARACTERISTICS OF NETWORK INTERFACES ON MOBILE DEVICES [4].

Bandwidth Active Idle Scan Range
(J/MB) (W) (W) (m)

Cellular 100+ kbps 100 −∗ −∗ 500
Wi-Fi 11+ Mbps 5 0.77 1.29 100

Bluetooth 700 kbps 0.1 0.01 0.12 10

Note: the cellular interface is usually on.

A. Local Interactions

In Table I, we present the strong motivation for Reflex to
transparently switch to Bluetooth or Wi-Fi network interfaces
whenever possible, with respect to both performance and power
efficiency. As shown in Fig. 7, when some users in an online
session are at the same location (e.g., user A and B), there may
be an opportunity to connect them using Bluetooth or Wi-Fi
networks in an ad hoc manner (shown as solid lines). The Reflex
framework transparently discovers such a local interaction
opportunity over Bluetooth or Wi-Fi, so that communication
among nearby devices are no longer relayed by reflectors in
the cloud.

Local interactive sessions

A

B

C

D

Proxy
Re!ector

cloud

Fig. 7. Local interaction vs. the use of reflectors in a 4-party live session.

This feature of the framework also makes it possible when
a user without Internet access (e.g., user D in Fig. 7) wishes to
join the session. D can connect to a nearby device with access
to reflectors in the cloud (e.g., user C), and with C’s permission,
C may act as a proxy that sends and receives data on behalf
of D (shown as a dotted line). Again, the Reflex framework is
responsible for the design and implementation of such a proxy,
completely transparent to applications using the framework.

The iOS platform provides an excellent API that allows
two or more nearby devices to create and manage an ad hoc
Bluetooth or local wireless network (Wi-Fi). Given a specific
identifier, devices are able to discover one another to form a
local interactive session. One of the modes for such discovery
is the peer mode, in which a device acts as both a server and a
client, and is able to accept incoming connections and establish
outgoing ones at the same time. Once devices are intercon-
nected within the session, they are granted to exchange data,
either reliably as ordered data streams, or unreliably as data-
grams. A packet can either be broadcast to all local participants
via [sendDataToAllPeers:withDataMode:error:], or
be sent to an arbitrary subset of devices, identified by
their peerId, using [sendData:toPeers:withDataMode:

error:].
To explore opportunities of creating local interactive ses-
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sions, after a device has entered an online multi-party session,
the Reflex framework will enter the discovery period using the
peer mode for a short period of time. Such a discovery period
will last no more than 30 seconds to conserve energy. The
Reflex framework then establishes an ad hoc network among
discovered devices and refrains from further advertising or
searching. Accordingly, all data in the interactive session are
addressed by Reflex to nearby devices directly via a Bluetooth
or Wi-Fi network interface, rather than via reflectors in the
cloud.

B. A Reusable and Flexible API
Aiming to provide a powerful but developer-friendly system

framework for a wide range of mobile applications featuring
social interaction, we have designed the programming interface
carefully to make Reflex both reusable and flexible.

First, as a framework specifically designed for mobile devices
in the iOS platform, Reflex provides an entirely event-driven
and asynchronous programming interface. Following the ac-
tions design pattern, Reflex allows an application to register its
own application controller as an event handler, as illustrated
in Fig. 8. When Reflex has finished processing an internal
event, the corresponding application-specific event handler will
be invoked asynchronously, with results as parameters in the
callback. Such a design enables communication between appli-
cations and the Reflex framework without tight coupling.

Application Re!ex framework

handleError:error

handleInData:data

handleUserLeave:user

Low-Level
Networking
RunloopsIn

te
rn

al
Ev

en
t P

ro
ce

ss
or

Bluetooth

Cellular
MySessionController

Registered Event
Handler

Fig. 8. The event-driven programming interface in Reflex.

Second, applications may wish to design their own algo-
rithms to be used by Reflex, such as favouring a subset of
reflectors in the cloud based on application-specific preferences.
To make this possible, Reflex is able to load application-
specific delegates in a loosely coupled manner. Designed with
the delegate pattern, as shown in Fig. 9, when an applica-
tion wishes to make decisions with its own algorithms, it
simply implements an instance conforming to ReflexPo-

licyDelegateProtocol. It then registers this instance as a
delegate of the Reflex framework. Whenever a decision needs
to be made, Reflex will invoke a corresponding method in its
delegate provided by the application, and use returned results
to refine its final decision. The use of delegates in Reflex adds a
substantial degree of flexibility, while minimizing its coupling
with the application.

Finally, we also focus on making the design of Reflex itself
as loosely coupled as possible, so that it is easy to expand and

ReflexPolicyDelegateProtocol.h given by Reflex

1 @protocol ReflexPolicyDelegateProtocol
2 - (NSSet *)filterParticipantCandidates:(NSSet *)candidates
3 inContext:(NSDictionary *)ctx;
4 // other delegate method declarations
5 @end

.MyAppPolicy instance provided by a developer

6 @interface MyAppPolicy : NSObject<
ReflexPolicyDelegateProtocol> {

7 }
8 @end

10 @implementation MyAppPolicy
11 - (id)init {
12 if (self = [super init]) {
13 [[ReflexPolicyManager sharedManager] setDelegate:self];
14 }
15 return self;
16 }

18 - (NSSet *)filterParticipantCandidates:(NSSet *)candidates
19 inContext:(NSDictionary *)ctx {
20 // app-specific participant candidate selection algorithm
21 return aSetOfSuitableParticipants;
22 }
23 @end

.A segment of code inside Reflex

24 id delegate = ReflexPolicyManager.delegate;
25 if (delegate != nil) {
26 participants = [delegate filterParticipantCandidates:

candidates
27 inContext:ctx];
28 }

.Fig. 9. Using an application delegate to select game participants.

to maintain. With liberal uses of decoupling design patterns
such as actions, delegates and notifications, each component
in Reflex has little or no knowledge of instances of other
components. This makes it feasible to improve — or even
replace — a component with relative ease. Taking the noti-
fication mechanism as an example, there is no strong coupling
among components associated with a named notification (e.g.,
"ReflexPlayerOffNotification"). Either the notification
broadcaster or observer can be easily modified, as long as a
globally unique notification name is defined in Reflex. For glob-
ally shared resources, corresponding managers are implemented
with the singleton pattern.

V. EXPERIMENTAL RESULTS

We believe that the best way to evaluate the Reflex framework
is to implement it, along with a real-world mobile application
that takes advantage of Reflex to enable spontaneous social
interaction. Towards this objective, we have implemented Mu-
sicScore, a professional-grade multi-touch application for music
composition (shown in Fig. 10). We developed MusicScore with
about 59, 000 lines of code (LOC) in Objective-C. MusicScore
takes full advantage of our Reflex implementation to allow
composers to enjoy a live collaborative session, and students
to benefit from a live educational experience, all without any
knowledge of the architectural design choices in Reflex.

Beyond MusicScore, we have implemented the Reflex frame-
work entirely from scratch, from mobile devices to the cloud
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service, with about 3000 LOC. MusicScore produces actual
multi-touch interaction workload that is used to evaluate the
performance of Reflex. In order to collect run-time traces,
a compact logging module has been implemented to anony-
mously record performance metrics as multi-touch interactions
are streamed. To emulate a large number of concurrent online
users and synthesize multi-touch streams, we implement a
multi-touch trace playback module to replay user-interaction
traces we captured in MusicScore. In this section, we present
a performance evaluation of the Reflex framework.

Fig. 10. MusicScore in action: two users are collaboratively composing a
musical piece over local interaction support in the Reflex framework.

A. Reflex Spontaneous Presence on GAE

Our first experiment is designed to evaluate the spontaneous
presence cloud, which serves as the “portal” of Reflex. We
begin with an investigation of the performance and scalability
of spontaneous presence at different request rates. As shown
in Fig. 11, although the response time increases from 44 to
91 msec when the request rate increases from 50 to 300 requests
per second, the response time is almost maintained around
the same level when the request rate is high, and is no more
than 100 msec. This can be attributed to both the excellent
performance of GAE and our fine-grained performance tuning
in the Reflex implementation, described in Sec. III.

Furthermore, we would like to study how well the underlying
GAE infrastructure performs in Reflex. By taking a closer look
at the data access time consumed by GAE’s internal API,
such as distributed datastore and memcache, in Fig. 12, we
discover that there are no significant changes in the internal
data access time when the request rate increases. These results
further confirm that our choice of the Google App Engine for
the spontaneous presence cloud is appropriate when it comes
to scalability.

To conduct a more thorough examination on its scalability,
we push the spontaneous presence cloud to its limits, when a
flash crowd happens within a few minutes. By synthesizing
a large volume of mobile devices, we closely monitor the
resulting JSON-RPC request rate and the number of serving
instances in GAE. As shown in Fig. 13, to guarantee the quality
of service as the request rate increases, the GAE dynamically
spawns more instances during 25− 70 sec and 175− 205 sec.
Consistent with results in Fig. 11, the response time is less
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Fig. 11. Response time of the Reflex
spontaneous presence service at dif-
ferent request rates.
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Fig. 12. Data access time consumed
internally in the cloud at different
request rates.
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Fig. 13. GAE instance spawning
when a flash crowd occurs.
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Fig. 14. Per-instance performance
comparison between two snapshots in
a flash crowd.

than 100 msec. Further, we examine two typical snapshots in
our flash crowd traces, one before the second batch of spawning
(S1) corresponding to a sharp raise of requests starting from
163 sec and the other after the spawning (S2). In Fig. 14, we
observe that at S1 before spawning, almost all instances are
heavily loaded at 11− 14 requests per second, with an average
response time of 78 msec. Afterwards at S2, a major part of
load has been shifted to newly created instances, and thus the
response time is improved.
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Fig. 15. Performance comparison with different approaches to access a user’s
spontaneous presence status.

In addition, it is also interesting to investigate the per-
formance gain with detailed tuning for Google App Engine,
particularly when combining the distributed memcache with the
distributed datastore to accelerate data access. In Fig. 15, we
summarize the time consumed on read/write operations of a
user’s spontaneous presence status. Surprisingly, we observe
almost 6 times of speedup on write operations. As to read
operations, we notice that memcache is more than twice faster
than datastore with a proper index in the corresponding data,
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and over 5 times faster than datastore without the index.
This observation also confirms the importance of choosing
appropriate keys for datastore.

B. Reflex Reflectors across PlanetLab

To evaluate the performance of reflectors in Reflex, we deploy
the reflector cloud in PlanetLab nodes, which support long-
lived distributed service prototypes. Each reflector runs in a
PlanetLab “slice,” essentially a virtual machine with a resource
sandbox on a PlanetLab node.

As discussed in Sec. IV, Reflex allows applications to imple-
ment custom-tailored reflector selection algorithms, by invoking
methods in application-provided delegate instances. An applica-
tion with delay-sensitive sessions may wish to favour reflectors
with low latencies, while data-intensive interactive sessions may
prefer reflectors with higher throughput and lighter workload.
In our experiments, we take minimizing end-to-end delays as a
widely accepted scenario, and implement an intuitive solution
in which each user greedily and dynamically selects the reflector
with the highest preference, i.e., the one that provides a relay
path with the shortest end-to-end delay. Although only one relay
path is chosen to be active, nodes keep other idle paths alive,
and delay measurements are periodically probed over these idle
paths. Once a user finds a “better” reflector that forms a relay
path with a shorter delay, it will immediately switch to that
reflector.
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Fig. 16. CDF of end-to-end delay be-
tween Wi-Fi/3G users with the greedy
algorithm.
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Fig. 17. CDF of standard deviation
of end-to-end delays in different In-
ternet access types.

In Fig. 16, our measurement shows that the average end-
to-end delay is 140.2 msec and 394.3 msec, respectively, for
Wi-Fi and 3G users, which are acceptable in general. With
respect to variations of delays over time, we quantify such
delay variations in our trace by plotting the CDF of standard
deviation of end-to-end delays in different Internet access types
in Fig. 17. As shown, in both faster Wi-Fi networks and slower
cellular networks, half of the end users experienced less than
98 milliseconds of delay variations.

To measure the performance of reflectors on heavy load
scenarios, we perform pressure tests on a typical Reflex reflector
with a monotonically increasing number of users and forward-
ing requests, as shown in Fig. 18. We notice that the forwarding
rate reaches a ceiling of around 6× 102 packets/sec, when the
CPU is fully utilized. With respect to memory consumption,
thanks to our event-driven design, there is no significant in-
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Fig. 18. Pressure testing results on a Reflex reflector with an increasing
workload.
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Fig. 19. Impact of reflector workload
(in terms of packet forwarding rate)
on end-to-end delays.
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Fig. 20. Performance of 10 typical
reflectors (out of 53) deployed in dif-
ferent countries.

crease as more users arrive, and the usage increases only when
more unprocessed packets are queued.

In Fig. 19, we further investigate the impact of the reflector
workload — in terms of the forwarding rate — on the latency of
relay paths over a reflector, i.e., the end-to-end delay between
two mobile devices. The box-and-whisker plotting reveals that,
when the reflector load is lower than or around 5× 102 pack-
ets/sec, medians (red bars within notched boxes) and upper
quartiles (top of boxes) of end-to-end delay are below 100
msec and 200 msec, respectively. Since the Reflex framework is
designed to serve mobile users all over the world, we examine
the performance of globally distributed reflectors in Fig. 20.
In the case of MusicScore, as our default reflector selection
algorithm prefers low latency relay paths, upper quartiles of
delay are roughly balanced and the means are mostly below
300 msec.

C. Reflex with Local Interactions

With respect to the support for local interactions in Reflex,
we conduct experiments with two iPads within the same local
wireless network, and within an active Bluetooth transmission
range. In Table II, we summarize statistics of improvement
on one of two iPads when local interactions are enabled in
a 2-party music composition session in MusicScore. Clearly,
local interactions have significantly improved the performance
of Reflex at mobile devices, in terms of throughput, delay, as
well as battery life.

In addition, we are interested in the case when a Reflex user
works as a proxy to help a local node. In our experiments, an
iPad connected with a 3G cellular network serves as a proxy
for another iPad using Reflex. Shown in Fig. 21, we discover



9

TABLE II
PERFORMANCE IMPROVEMENTS WITH LOCAL INTERACTIONS.

Connectivity Internet Local
3G Wi-Fi/DSL Wi-Fi Bluetooth

Throughput (KB/s) 92∗ 482 1, 081 69
Delay (msec) 298 116 76 41

Battery life (hours) 6.1 6.9 6.9 7.4

Note: The 3G throughput is constrained by the unlink capacity.
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Fig. 21. Performance statistics when a Reflex proxy is used.

that the experienced end-to-end delay of the proxy device is
only affected by the local device slightly (around 10%), and
the battery life is reduced up to 20%. Measurement results also
show that the communication overhead at a Reflex proxy is
around 5.8%.

VI. RELATED WORK

In recent years, there is a strong trend of closely integrating
mobile devices with the cloud to provide various feature-rich
services. Cuervo et al. proposes MAUI to offload computing
workload from mobile devices to the cloud to maximize energy
saving [8]. CloneCloud designed by Chun et al. makes it
possible for unmodified mobile applications running in an
application-level virtual machine to seamlessly offload part of
their execution to the cloud [7]. Wu et al. propose a widget-
based model for mobile social network service, featuring both
high scalability and flexibility [11]. However, to our best
of knowledge, no literature has reported system frameworks
supporting spontaneous social interactions within the cloud for
mobile applications.

In the context of industrial protocols and standards, the
Extensible Messaging and Presence Protocol (XMPP) attempts
to extend the features of Jabber [9], an open instant messaging
and online presence platform, with a pure XML signaling
channel that can be used for various applications beyond
instant messaging. Jingle [10] was proposed to extend XMPP
to support the transmission of large volumes of binary data
rather than textual messages, such as voice, video, and file
sharing. Signaling and data transmissions in Jingle are carried
out in two separate channels. In order to transmit multimedia
content, a sender has to first upload its data to a dedicated
server, and then send the server address to receivers. Only then
can receivers download data from the server. As such, Jingle
is not specifically designed for spontaneous social interactive
sessions, let alone other features — such as a reusable and

flexible API and transparent switching to local interfaces —
supported by the Reflex framework.

Another related framework may be Apple’s Game Kit, which
supports online presence service using its cloud service called
Game Center, when a user presents her Apple ID. Game Kit
is designed to manage player information in games, such as
scoreboards, as well as the exchange of in-game data. When
in-game data is to be exchanged, however, all participants of
a match have to rely on a full peer-to-peer mesh established
among them [3], with no centralized cloud-based infrastructure
for data communication. Such a full mesh may suffer from con-
nectivity problems when Network Address Translation (NAT)
devices or firewalls block peer-to-peer connections. Without
cloud support, it would be difficult to adopt it as a reliable
data exchange facility for media-rich content.

VII. CONCLUDING REMARKS

What we see today, with online social networks connecting
people via status messaging, is just a beginning. It is our hope
that a spontaneous social experience in mobile applications can
deliver its promise to motivate people to act and create together,
solve meaningful problems together, and improve the quality of
social wellbeing. In this paper, we present and evaluate the
design of Reflex, a system framework in the iOS platform,
supporting spontaneous presence without requiring explicit
user account registration, as well as live interaction sessions
using cloud services. Our design in Reflex is governed by the
principles of reusability and flexibility. In closing, we are in
the hope that this paper only represents the first step towards a
mature framework that facilitates spontaneous social interaction
within mobile applications, so that users may socially interact
with one another to create or consume media content in a
spontaneous and transparent fashion, wherever they may be
around the world.
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