
Spear: Optimized Dependency-Aware Task Scheduling with
Deep Reinforcement Learning

Zhiming Hu, James Tu and Baochun Li
Department of Electrical and Computer Engineering

University of Toronto
Email: zhiming@ece.utoronto.ca, james.tu@mail.utoronto.ca, bli@ece.toronto.edu

Abstract—Modern data parallel frameworks, such as Apache
Spark, are designed to execute complex data processing jobs
that contain a large number of tasks, with dependencies
between these tasks represented by a directed acyclic graph
(DAG). When scheduling these tasks, the ultimate objective is
to minimize the makespan of the schedule, which is equivalent
to minimizing the job completion time. With task dependencies,
however, minimizing the makespan of the schedule is non-
trivial, especially when tasks in the DAG have different resource
demands with respect to multiple resource types.

In this paper, we present Spear, a new scheduling framework
designed to minimize the makespan of complex jobs, while
considering both task dependencies and heterogeneous resource
demands at the same time. Inspired by recent advances in
artificial intelligence, Spear applies Monte Carlo Tree Search
(MCTS) in the specific context of task scheduling, and trains
a deep reinforcement learning model to guide the expansion
and rollout steps in MCTS. With deep reinforcement learning,
search efficiency can be significantly improved by focusing on
more promising branches. With both simulations and exper-
iments using traces from production workloads, we compare
the scheduling performance of Spear with state-of-the-art job
schedulers in the literature, and Spear can outperform those
approaches by up to 20%. Our results have validated our
claims that MCTS and deep reinforcement learning can readily
be applied to optimize the scheduling of complex jobs with task
dependencies.

Keywords-task scheduling, big data processing, reinforcement
learning

I. INTRODUCTION

Based upon data parallel frameworks such as Hive [1],
Tez [2] and Spark [3], modern data analytic jobs are inher-
ently complex in nature, consisting of a large number of
inter-dependent tasks. The dependencies between tasks are
represented by a directed acyclic graph (DAG). It is naturally
important to scheduling these inter-dependent tasks in the
best possible way, so that the total job completion time,
represented by the makespan of the schedule, is minimized.

Fundamentally, such a problem of dependency-aware task
scheduling is challenging, especially when we need to
consider the heterogeneous demands for multiple types of
resources. First, the DAG scheduling problem is a NP-
hard problem in general settings [4], [5]. Second, thanks
to different task characteristics in the DAG, heterogeneous
demands for multiple types of resources are commonly

seen in real-world workloads [6], [7]. Knowledge about
such resource demands from tasks in a data analytic job is
necessary to pack these tasks effectively in the cluster, and
ultimately to minimize the makespan of the task schedule.

In the literature, several existing approaches has been
proposed to solve the dependency-aware task scheduling
problem, but with caveats and limitations. Tetris [6], for
example, focused on how tasks with different resource
demands can be effectively packed, but failed to consider
dependencies between tasks. Traditional DAG scheduling
algorithms [8], [9], [10], on the other hand, considered
task dependencies, but failed to take heterogeneous resource
demands for multiple types of resources into account, and
may produce schedules that are far from optimal [7].

As a step forward, Grandl et al. [7] proposed Graphene,
a new cluster scheduler that considered both task depen-
dencies and tasks with heterogeneous resource demands
for multiple types of resources. However, it heavily relied
upon a suite of manually-tuned parameters used to define
a set of troublesome tasks, which affected the scheduling
outcome significantly. In addition, within each group of
troublesome tasks, tasks are scheduled in the descending
order of their runtimes, which may not be optimal with
respect to minimizing the makespan of the entire schedule.

We argue that the root cause to the potential lack of
optimality in Graphene’s scheduler lies in the heuristic
nature of its scheduling algorithm, which sought to prioritize
tasks based on parameter settings that are defined based
on empirical experience. This design may minimize the
makespan for some DAGs, but may not work well for
others. We believe that a new task scheduling algorithm
should be designed to be disciplined and technically sound,
directly examining the search space and searching for the
best possible scheduling order to minimize the makespan.
It goes without saying that, given a typical task DAG, the
size of the search space prohibits any exhaustive search,
and unpromising search directions must be pruned. The
fundamental question is, therefore, how such a scheduling
algorithm can operate within the confines of real-world time
and resource constraints.

In this paper, inspired by recent advances in artificial
intelligence, we present our design and implementation of

Spear, a new cluster scheduler that minimizes the schedule
makespan as much as possible. The theoretical foundation in
Spear is Monte Carlo Tree Search (MCTS), used to search
for good solutions with a certain amount of budget in the
solution space. In each round of search, Spear will naturally
consider both task dependencies and task resource demands
for multiple types of resources.

To make it efficient and practical within a vast search
space, our new scheduling algorithm first limits the search
space by avoiding superficial actions, such as not scheduling
anything even when the cluster is idle. Inspired by Alp-
haZero [11], our scheduling algorithm then uses a deep rein-
forcement learning (DRL) model to guide the search process
of MCTS, in order to pay more attention to more promising
subtrees and to improve the overall search efficiency. To
achieve this objective, we replace random expansion and
random rollout in MCTS, and adopt a trained DRL model
to choose actions like an expert, rather than choosing them
randomly.

Highlights of our original contributions in this paper
are as follows. First, to the best of our knowledge, we
are the first to adopt MCTS and DRL in the design of
a new cluster scheduler that takes both task dependencies
and heterogeneous resource demands into account. Second,
we propose to train a deep reinforcement learning model
for the task scheduling problem, which incorporates both
resource demands and dependency graphs of tasks. Our
strategy to integrate MCTS and the RL model is specifically
designed for the context of dependency-aware task schedul-
ing, and is different from existing game agents such as
AlphaZero. Finally, We have implemented MCTS in Python
and deep reinforcement learning in Theano [12]. With an
extensive array of simulations and trace-driven real-world
experiments, we show convincing evidence that our new
scheduler outperforms existing solutions (such as Tetris and
Graphene) by a significant margin: the makespan of the
schedule produced by Graphene is reduced by up to 20%.

II. PRELIMINARIES AND MOTIVATION

In this section, we briefly introduce some preliminary
background on Monte Carlo Tree Search (MCTS) and Rein-
forcement Learning (RL) in general settings, and then show
an motivating example on the benefits of applying MCTS
and RL in the context of cluster scheduler design.

A. Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is an efficient search
algorithm suitable for sequential decision making problems
where the outcome is typically a win or loss; it has been
applied in many Chess AIs [11] and Go AIs [13]. In this
case, MCTS maintains a state tree where each node contains
a unique trajectory of actions and the edges represent indi-
vidual actions. Furthermore, each node also contains a value
summarizing how desirable that state is with respect to the

Selection Expansion Simulation Propogation

Figure 1. The steps for Monte Carlo Tree Search.

objective. When exploring the search space, MCTS utilizes
this value in conjunction with information regarding prior
search paths to obtain a good balance between exploiting
known information and exploring unknown states.

MCTS expands the search tree by performing four
steps: Selection, Expansion, Simulation and Backpropaga-
tion, shown in Fig. 1. When making a decision, MCTS
will explore the search space by repeating these four steps
according to how much budget is available, empirically
building a tree of states and values. Then, a decision will be
made by selecting the action leading to the child with the
highest value.

Selection: In this step, MCTS will select a path of
interest (sequence of moves) that will be searched further,
shown in Fig. 1. This step is crucial for MCTS, as it
aims to select the most promising subtree to be explored
further. When traversing down the tree, the selection process
tries to maintain a good balance between exploration and
exploitation. Exploration entails choosing nodes that have
not been explored as much with the intent of exploring
new search paths that might be better. Exploitation entails
choosing nodes with high value to obtain more information
about promising moves. Generally, the following Upper
Confidence Bound(UCB) equation is used to choose nodes
when traversing down the tree.

wi
ni

+ c

√
lnn

ni
(1)

where ni is the number of visits the i-th node has received
and wi is the number of wins throughout all of simulations
during the visits. Moreover, n is the total number of visits
of the parent node and c represents an exploration factor
that balances exploration and exploitation. In the equation,
the first term is the exploitation score, describing the win
rate from computed simulations. The second term is the
exploration score, decreasing with the number of visits; this
encourages exploring nodes that have not been explored as
much.

Expansion: Upon selecting the path of interest and stop-
ping at a node, the next step is to generate a new child node
by performing an action from the current state. The new
node is then appended to its parent and added to the search
tree. With a classic MCTS approach, the action to take is
selected randomly.

Schedule task i

Reward

Agent

Cluster status

Task features

Environment

Time

R
e
s
o

u
rc

e Resource CapTask

1

Task

2

Figure 2. The framework of reinforcement learning.

Simulation: After expansion, there is a new node added
to the search tree without any information regarding its
value and it is impossible to assess how desirable the new
state is. Therefore, in this step, MCTS will conduct a quick
rollout1, simulating to the end of the game and obtaining
the outcome. With a classic MCTS approach, actions are
selected randomly during the rollout process.

Backpropagation: The results obtained from the simu-
lation step is then backpropagated up the search tree. All
ancestor nodes will have their values updated according to
the outcome of the simulation.

In sum, to choose an action when playing a game, MCTS
will iterate over these four steps according to the budget
available, building a search tree with information on how
favorable each state is. MCTS will then choose the action
yielding the highest wi

ni
value as the next move.

B. Reinforcement Learning

In addition to MCTS, reinforcement learning is another
framework that can be used for sequential decision-making
problems. A summary is shown in Fig. 2. There are two main
entities: the agent and the environment. At each time step,
the agent will observe the environment, use that information
and a policy to take an action, then receive a reward
signal from the environment. The objective of reinforcement
learning is to maximize the expected cumulative rewards
J(θ) = E(

∑∞
t γtrt) where γ is a discount factor and rt

is the reward at the t-th time slot. By observing the state
S, action a, and reward r at every time step, the agent
can gradually improve the policy to maximize the expected
cumulative reward.

The policy π(a|St,θ) specifically describes the probabil-
ity of choosing action a given state St and the parameters
θ. In deep reinforcement learning, a neural network will be
used as the function approximator to represent the policy
mapping states and actions to probabilities. In this case, θ
denotes the parameters in the neural network as shown in
Fig. 2.

To train the neural network, a policy gradient descent
model can be used to find a local optima of θ to maximize

1We use rollout and simulation interchangeably in this paper.

{0.6!"#$%}

{0.1!"#$&} {0.4!"#$'}{0.9!"#$(}

1 2 3

5 6 7

8

4

Algorithms Scheduling Order Time

Our Approach

Graphene

Tetris

Critical path

2-3-6-5-4-1-7-8

4-2-3-7-6-1-5-8

1-3-2-6-5-4-7-8

1-2-5-3-6-4-7-8

2T

3T

3T

3T

(1− 2ε)T (1− 4ε)T (1− 6ε)T

εT εT εTT

εT
{ε, ε}

{0.8, ε} {ε, 0.85} {ε, 0.71}

Figure 3. The motivating example. The tasks will be executed in parallel
if possible given the order.

the expected cumulative rewards. The gradient of the J(θ)
can be calculated as follows [14]:

∇J(θ) = Eπ

[∑
a

qπ(St, a)∇θπ(a|St,θ)
]
, (2)

where qπ(St, a) is the cumulative reward resulting from
taking action a in state St then proceeding according to
the current policy π. Therefore, the right-hand side of the
equation is the sum of the accumulated rewards over the
actions weighted by the probability of selecting the actions
under policy π. For stochastic policies where it is not
feasible to compute or tabulate the cumulative reward, Monte
Carlo simulations can be used to empirically compute the
average cumulative reward Gt, an unbiased estimator of
qπ(St, a). Consequently, Gt will also be used to calculate
the gradient update step as follows:

θt+1 ← θt + αGt
∇θπ(At|St,θ)
π(At|St,θ)

. (3)

In this equation, the vector ∇θπ(At|St,θ)
π(At|St,θ)

represents the
direction θ should take to increase π(At|St,θ), the proba-
bility of choosing At at St. Gt specifies the magnitude of
the gradient step. In subsequent simulations, the probability
of choosing At given St will increase proportionally to Gt.
The learning process effectively reinforces promising actions
to maximize the expected cumulative reward.

C. The Motivating Example

We target typical jobs in the modern big data frameworks
like Spark, Hive and Tez; these jobs are often modeled
as a DAG. Within these DAGs, nodes represent tasks and
the edges specify dependencies between the tasks. As the
tasks run different programs on various data sets, it is
common that they differ both in the running times and

in resource demands [6], [7]. For instance, the resource
demands of reduce tasks are normally higher than map
tasks. Furthermore, these tasks often have multidimensional
resource demands, for example requesting various amounts
of CPU and memory resources. By being aware of these
resource demands, we can greatly improve the efficiency of
packing tasks in the resource cluster [6], [7]. Our objective
is to reduce the makespans of such jobs by considering the
graph topology, running times, and resource demands.

To demonstrate the effectiveness of our approach, we
show a motivating example in Fig. 3. In this figure, we
can see a job with eight tasks. In each task, the top number
denotes the runtime of the task and the bottom vector shows
the resource demands for CPU and memory, respectively.
We assume the total amount of CPU and memory available
in the cluster are both 1.0. Here ε is a very small pos-
itive number close to 0. Given this DAG, the scheduling
results and the makespans in the four algorithms are both
presented. The makespan of our approach is 2T , while the
makespans of the three other algorithms are both 3T . The
superior performance of our approach is mainly due to the
following two reasons. First, we consider both the packing
efficiency as well as the dependencies of the tasks during
scheduling. Second, we explore many promising scheduling
options and find the best scheduling decision. However,
greedy packing algorithms like Tetris do not consider the
dependencies while critical path algorithms do not consider
the resource demands for multiple resources. Graphene [7]
is a scheduler that considers both and tries to schedule the
troublesome tasks first. Although Graphene identifies the
troublesome tasks in red and tries to schedule them first,
the poor performance results from Graphene scheduling the
troublesome tasks only by runtime. In this case, it will try to
schedule the four troublesome tasks in the order of task 1,
task 5, task 6 and task 7. Graphene employs two scheduling
strategies to pack these tasks in the resource time space,
forward scheduling, which begins placing the tasks from the
bottom of the time horizon, and backward scheduling, which
begins placing the tasks from the top of the time horizon.
It then chooses the best scheduling result out of these two
strategies. Backward scheduling returns a better result for
this case and yields a scheduling order of task 7, task 6,
task 1 and task 5.

III. DESIGN

In this section, we demonstrate our design of combining
Monte Carlo Tree Search (MCTS) and deep reinforcement
learning (DRL) to solve the dependency-aware task schedul-
ing problem.

A. Overview

In Spear, we first map our problem framework to MCTS
and make adjustments to improve the search efficiency.
Furthermore, we adopt deep reinforcement learning (DRL)

Selection Expansion Simulation Propogation

DRL Agent

DRL Agent

Figure 4. The overview of Spear.

to guide the search and improve the performance of MCTS.
The overview of Spear is shown in Fig. 4. As shown in
the figure, the DRL agent can choose an action leading
to the next state during expansion and rollout, whereas the
default MCTS strategy uses a random policy during these
steps. There are two main reasons for integrating DRL into
MCTS. First, as the agent is trained for dependency-aware
task scheduling, it can expand the tree to states that typically
result in lower makespans. In other words, it can focus on the
more promising nodes and explore more promising sections
of the search space. Second, in the rollout step, the agent can
assign states a more accurate value representing the expected
makespan from that state. By utilizing DRL, we can more
efficiently explore the search space without increasing the
runtime of MCTS.

B. The Resource-Time Space and State Space

We model the resource cluster as a resource-time space
for a fixed period of time. Each resource dimension can
be expressed as a separate rectangle with the width repre-
senting the capacity and the height denoting the time span.
Multidimensional resource clusters can be represented as an
array of rectangles, one for each resource type. When tasks
are scheduled into the cluster, portions of the unoccupied
space will be filled depending on the resource demands of
the task. When the cluster is processed for a certain number
of time steps, the resource-time space will shift accordingly.
The state of the resource-time space will be fed as input to
the agent (MCTS or DRL) to make decisions.

Furthermore, the agent must also maintain a list of tasks
with their dependencies met and are available for schedul-
ing. Given a list of available tasks, each representing a
possible action, we define our action space to minimize
the breadth of the search space. If we allow the scheduler
to select any subset of the n ready tasks, the number of
possible actions will be 2n. Instead, the set of actions are
{−1, 1, 2, · · · , n−1, n} where action a = i (i 6= −1) means
scheduling i-th task and action a = −1 means processing the
tasks in the cluster. When a scheduling action takes place,
the state of the cluster and the list of available tasks will be
updated, however time will not move forward. The agent will
continue to choose the scheduling actions until it chooses
the processing action. If the agent chooses the processing

Inital
State

A B

AB

A B

B

BA

A

Figure 5. An example of state tree. The left branch schedules task A
before task B and the right branch schedules task B first.

action, time will move forward and the resource cluster will
shift forward on the time axis. Evidently, by decoupling
the set of possible scheduling decisions, the action space
has been substantially reduced to n+ 1 actions, which will
significantly reduce the search space for MCTS and the
training time for reinforcement learning.

C. An Improved Monte Carlo Tree Search Algorithm

In MCTS, we build a state tree when making scheduling
decisions. In the tree, each node denotes one state, defined
by a unique history of actions. This is because given the
same initial state, we can always reach the same state
given the same sequence of actions. Each edge represents
an action changing one state to another. As mentioned
previously, these actions can represent scheduling a task
or processing the cluster. When processing the cluster, we
will only proceed until at least one task finishes, since no
new information arrives prior. This adaptation attempts to
minimize the depth of the search tree. A simple example
for the state tree is shown in Fig. 5.

Given a certain amount of budget for the number of
iterations, we iterate over the four steps: selection, expan-
sion, simulation and backpropagation to collect data on
subsequent states. After utilizing all of the budget, we then
choose the next move based on the exploitation score in
Eq. (1). The selected action will point to a child node which
will become the new root node. This process is be carried
out for each decision and will be repeated until a terminal
node is reached and all the tasks in the DAG are complete.

Selection: Starting from the current root node, we will
use the equation in Eq. (1) to traverse down the search tree.
The most important issue in this step is how to decide the
exploration constant c. In our case, the first term in Eq. (1)
is the expected makespan if we choose to move to the node
in the next step. As the value of the second term in the
equation is between zero and one, c must be comparable
with the exploitation score to effectively balance between the
exploiting promising actions and exploring new search paths.
We set the value of c in the same order of the makespan of
the DAG.

Expansion: After stopping at a node of interest, we

move one step further by taking an unexplored action and
adding a new node to the search tree. By default, the set of
actions available include scheduling any of the ready tasks or
processing the tasks in the cluster. However, many of these
possibilities are redundant and do not have to be evaluated.

First, if there are no tasks in the cluster, then the process-
ing action is redundant and we do not need to consider it
during expansion. Second, we only consider the tasks that
can be scheduled to start before the earliest finish time of
tasks in the cluster. Otherwise, the scheduler may choose to
process the cluster and gain information from the completed
task without losing a scheduling opportunity. These two
filters significantly limit the breadth of the search space.

Furthermore, in traditional MCTS the expansion node is
chosen randomly. However, we find out that a resource-
aware DRL agent trained to minimize the makespan of a
DAG is more effective than randomly selecting a child.
By assigning probabilities to the possible actions, the DRL
agent effectively sorts the actions by how promising they are
with respect to minimizing the makespan. Therefore, when
expanding the search tree, the DRL agent will be able to
choose the best unexplored node. As a result, we can focus
on more promising subtrees instead of a randomly selected
one.

Simulation: In the simulation step, we simulate from the
expanded node until termination, returning the negative of
the makespan as the value. Instead of randomly choosing
the actions until we reach a terminal state, we also adopt
the trained DRL model to replace the random policy. In this
case, our DRL model will simulate the DAG scheduling
problem with expertise and provide a more meaningful
estimation of the makespan as opposed to random simula-
tions which may return misleading results. This is especially
effective for larger DAGs.

Backpropagation: The value of the simulation step will
be backpropagated back up the search tree and all ancestors
of the expanded node will have their values updated. For
each node, the value is updated to be the maximum of
current value2 and new value. For each node, we also keep
track of the average of all relevant simulations to use as a
tiebreaker during the selection step.

The Budget: In addition to the adjustments we have
described so far, we also design an appropriate decay func-
tion for the budget at each level. In the DAG scheduling
problem, as we traverse down the search tree, the search
space decreases exponentially. Consequently, we will reduce
the budget as well. Our strategy is to make the available
budget inversely proportional to the depth of the current
node. Additionally, we also guarantee a minimum budget for
the deeper nodes to ensure a sufficient amount of information
is gathered. Therefore, the budget available at each step will

2The value is the negative of the expected makespan.

be:

max
(binitial

di
, bmin

)
(4)

where di is the depth of the current node and binitial, bmin
denote the initial and minimum budget.

D. Our Reinforcement Learning Model

In our reinforcement learning model for a dynamic DAG
scheduling problem, a neural network will take as input the
list of ready tasks and the state of the cluster, then output a
scheduling action. To fully explain the design of the model,
we will describe how we map the DAG and cluster states to
the input, the action space to the output, and how we design
the rewards for training.

States: First, we model resource time space in the cluster
and the task demands as rectangles. However, if we only
take the ready tasks into consideration, we can only obtain
suboptimal performance like Tetris [6]. To resolve this issue,
we propose to incorporate more features to decide whether
the task is important for reducing the makespan of the DAG.
In Spear, we first adopt the b-level as one of our features,
which are widely used in the DAG scheduling literature to
prioritize the tasks in a DAG [8], [9], [10], [15]. The b-level
is the length of longest path from the exit node to the current
node (inclusive). Therefore, the upper bound of the b-level
of a node is the critical path in the DAG. If the algorithm is
based on the b-level, the scheduling algorithm is scheduling
the tasks based on the critical path of the DAG. Moreover,
the number of children of each ready task is normally used
to break the tie when the values of b-level are the same.
Therefore, we also include the number of children as one
of the features.

As the b-level only captures the information about the
running time of the tasks over the path, we also adopt one
other feature: b-load, which accumulates the load of the
tasks along the corresponding path. Here, the load is cal-
culated by the product of the task runtime and the resource
demands for a certain type of resource of the task. Therefore,
we will calculate the b-load for both CPU and memory
in our case, respectively. With these features (b-level, the
number of children, b-load (CPU), b-load (memory)), our
reinforcement learning model produces results superior to
a model where we don’t incorporate graph related features.
As a result, the DRL model can easily surpass the heuristic
approaches like Tetris and Shortest Job First (SJF).

Actions: The action space is the same with what we
mentioned in Sec. III-B. We only have n + 1 actions for
a list of n ready tasks. Note the set of ready tasks in the
DAG will be updated during the scheduling. Moreover, each
time when the DRL agent is called to take an action, it will
draw one action from the distribution of the actions in the
output layer. When the processing action is selected, the
tasks in the cluster will be processed for one time slot.

Rewards: To obtain the makespan of the scheduling, the
agent will receive -1 reward each time the processing action
is selected, during which the real executions will start for one
time slot. Therefore, the total accumulated reward over time
after all the tasks are complete, which is also the objective of
the DRL model, equals the negative of the DAG makespan.

IV. IMPLEMENTATION

To approximate a scheduling policy, Spear uses a 3
hidden layer neural network with widths of 256, 32, and 32
respectively. At each hidden layer, a linear rectifier activation
function will be used. At the output layer, a softmax function
will be used, outputting a series of probabilities for the
action space. During training, we use mini-batch gradient
descent. For each example in the mini-batch, we simulate
20 times and average the trajectories to obtain the baseline.
Since simulations are a major bottleneck for run time, we
use multiprocessing to compute simulations for each batch
example in parallel.

Prior to reinforcement learning training, we initialize our
network by using supervised training. It is necessary to
teach the network to imitate a greedy heuristic approach
such as the critical path algorithm in our case, otherwise,
simulations with a completely random network result in
extremely long and meaningless trajectories that do not
reflect the consequences of performing a certain action.

In both supervised and reinforcement learning, we used
rmsprop optimization with learning rate α = 10−4, ρ = 0.9,
and ε = 10−9.

In the MCTS implementation, since the unscaled explo-
ration score ranges from 0 to 1, we scale it by an estimate
of the makespan produced by a simulation using a greedy
packing algorithm to match the exploitation score. When
updating node values in backpropagation, Spear keeps track
of both the average and maximum values discovered in
rollouts. To determine the exploitation score when selecting
children nodes, Spear will prioritize paths with a better
maximum value and use the average value as a tiebreaker.
In this case the UCB score can be expressed as:

maxi + c

√
lnn

ni
(5)

Here maxi denotes the maximum of relevant rollouts.

V. EVALUATION

We are now ready to show the performance of Spear in
comparison with existing work, using an extensive array of
simulations and experiments.

A. Experimental Settings

Baselines: The most important baseline is Graphene [7],
since it is the state-of-the-art approach in the literature
for dependency-aware task scheduling problems. We have
implemented Graphene from scratch, and used it as our

baseline. We also compare Spear with other algorithms such
as Tetris [6], Shortest Job First (SJF) and largest Critical
Path (CP). Moreover, as Spear combines Monte Carlo Tree
Search (MCTS) and deep reinforcement learning (DRL), we
also present the performance of MCTS.

Workloads: For the simulation, the number of tasks in
each directed acyclic graph (DAG) is 100. The width of
the DAG is between 2 and 5. The runtime of the tasks
and the resource demands of the tasks both follow normal
distributions where the max task runtime is 20t and the max
resource demand is 20r. The budget of MCTS and Spear is
set to 1000 in cases without further specifications.

In our experiments, we adopt a workload from a produc-
tion cluster, which includes 99 MapReduce jobs generated
by Hive SQL query on production data. Of those jobs, the
max number of map tasks and reduce tasks are 29 and 38.
The mean runtime of the map tasks varies from 23 seconds
to 186 seconds. The mean runtime of the reduce tasks varies
from 17 seconds to 141 seconds.

Settings: During the training of the deep reinforcement
learning (DRL), the time horizon is set to be 20t and
the graph size is set to 25. The total number of resource
slots in the cluster is 20r. Moreover, the max number of
ready tasks that can be fed into the neural network at any
time is 15. If there are more ready tasks, the remaining
tasks will be placed in a backlog queue until the network
can accommodate more ready tasks. The thresholds for the
runtimes of the troublesome tasks in Graphene are 0.2, 0.4,
0.6 and 0.8. When scheduling each DAG, Graphene will
try those four different parameters to determine the best
scheduling results.

Overall, we will try to answer three important questions:
1) What is the performance of Spear compared to the state-
of-the-art approaches? 2) What is the performance of pure
MCTS? 3) Why should we adopt DRL to improve the
MCTS?

B. Simulation Results

1) Makespan: First, we compare the makespans of Spear
and the other four algorithms. In each round, we generate 10
DAGs and each DAG has 100 tasks with various runtimes
and heterogeneous resource demands for CPU and memory,
respectively. The results are consistent in different rounds.
The initial budget of Spear is set to 1000 and will decay,
being inversely proportional to the search depth. To avoid
having a budget that is too small, the minimum budget
is set to 100. The results are shown in Fig. 6(a). In this
figure, we can see that Spear outperforms all the baseline
algorithms. The average makespans of the five algorithms
are 820.1, 869.8, 890.2, 849.0 and 896.6. More specifically,
it outperforms Graphene in 90% of the cases. Moreover,
in 30% of the cases, it reduces the makespan of Graphene
solutions by more than 100 seconds. The main reason for
the improvement is that we can directly search for optimal

Spear
Tetris SJF CP

Graphene
700

800

900

1000

M
ak

es
pa

n
(s

)

(a) The makespan of the algorithms.

Spear Graphene0

1000

2000

3000

4000

Ru
nt

im
e

(s
)

(b) The runtime of our algorithm
and Graphene.

Figure 6. The performance of Spear regarding makespan and runtime.

solutions while the DRL agent guides us to more promising
branches. However, the major issue in Graphene is that
after partitioning the DAG into four groups, the tasks in
each group are greedily sorted in descending order by
runtimes, and the resource demands are not considered in
this stage. On the other hand, heuristics like Tetris and
shortest job first (SJF) do not consider the dependencies. A
greedy algorithm prioritizing tasks with high critical paths
(CP) performs better than the three other baselines in this
simulation. However, there is still room for improvements
as the algorithm does not utilize the resource demands and
cluster state to deliver efficient packing.

We further examine the runtime of Spear in the above
case in Fig. 6(b). The time measurements are conducted on a
Macbook Pro laptop with 2.6GHz Intel duo core and 16 GB
of main memory. Given the budget of 1000 and the minimum
budge of 100, the median runtime of Spear is similar
with Graphene, which is around 500 seconds. The average
runtime of Spear and Graphene is around 500 seconds and
1000 seconds, respectively. In some cases, Graphene will
take significantly more time to finish scheduling. For Spear,
most of the time is allocated to build the MCTS search tree.
The RL agent in Spear does not have a significant impact
on runtime and only slows down the scheduling process
by a negligible amount. In the practice we can reduce the
budget to 100, which can return the scheduling results within
seconds and still achieve a good result; this will be shown
later. We can also use multiprocessing techniques to further
reduce the time as MCTS can easily be parallelized [16].

2) Using DRL in Spear: We have investigated the perfor-
mance of the pure MCTS approach to see why we need to
integrate the DRL model into Spear. First, we show how the
performance of MCTS changes with the amount of budget,
which is the number of iterations to build the state tree
before making each decision. Here we change the initial
budget for each case and the minimum budget will always
be 5 to make sure that MCTS can still work. For each
setting, we generate 100 DAGs, each with 100 tasks. The
average makespans of the 100 jobs with different settings are
shown in Fig. 7(a). In this figure, we can clearly see that
the makespan decreases with the amount of budget given to
the MCTS.

1000 2000
Budget (Iterations)

845

850

855

860

865

M
ak

es
pa

n
(s

) MCTS

(a) Makespan

1000 2000
Budget (Iterations)

0.5

0.6

0.7

0.8

Fr
ac

tio
n

of
 D

AG
s MCTS

(b) The percentage of jobs with
lower makespan

Figure 7. How the performance of MCTS changes with the budget.

To evaluate the results in each setting, we also display
the percentage of jobs where MCTS will surpass Tetris. The
results are in Fig. 7(b). As we can see in this figure, even
when the budget is as low as 600, MCTS can outperform
Tetris in 56% of cases. With a budget of 1000, MCTS
performs better 67% of the time. In the case with the 2200
budget, MCTS is better 84% of the time. Therefore, we can
see that the performance of MCTS steadily improves with
more budget. However, the budget cannot be too small for
MCTS. In this figure, when the budget is 500 or less, Tetris
is the better algorithm in over half of the test examples.
Later on, we will show that Spear can have surpass other
algorithms with a much smaller budget by utilizing a trained
policy network to guide MCTS.

Although more budget will lead to better results, the
tradeoff is increased runtime overheads. To quantify the
effects of budget on runtime, we also present the runtimes of
the MCTS approach with different graph sizes and different
amount of budget in Table. I. The server used for the time
measurement is an VM instance on Google Cloud with 24
Intel Hashwell CPU core and 22 GB of main memory. In this
table, we can see that the runtimes of MCTS grow with the
graph size and the amount of budget. With larger graph sizes,
rollouts will be longer and the search space will be deeper.
With more budget, more iterations of selection, expansion,
simulation, and back-propagation will take place. Therefore,
both larger budget and graph size will increase the run time.

So the questions is, can DRL reach a good balance
between the runtime and the performance by focusing on
more promising branches? Therefore, we further examine
the performance of Spear and see whether it can reduce the
budget needed for the MCTS approach to decrease runtime.

Table I
THE RUNTIME OF MCTS ONLY APPROACH ON DIFFERENT SCALES (S).

20 30 40 50 60 70 80 90
50 0.18 0.36 0.57 0.87 1.26 1.64 2.09 2.64
100 0.33 0.58 0.89 1.29 1.75 2.13 2.81 3.36
500 1.74 2.88 4.05 5.61 6.84 8.52 9.86 11.91
1000 3.23 5.52 7.80 10.54 12.96 16.05 18.99 21.00

We further compare the performance of MCTS, Spear
(with the help of deep reinforcement learning), and three

MCTS
Spear

Tetris SJF CP

800

900

M
ak

es
pa

n
(s

)

(a) The performance of Spear with
10 times less budget.

0 2000 4000 6000
Iterations

82.5

85.0

87.5

90.0

92.5

M
ak

es
pa

n
(s

) DRL Mean
Tetris
SJF

(b) How the mean reward changes
with the training process.

Figure 8. The DRL in Spear.

other baseline algorithms Tetris, SJF and CP in Fig. 8(a).
In this experiments, we test 10 graphs and each graph
has the graph size of 100. Both the task runtimes and
the resource demands follow the normal distribution. The
average makespans of the five algorithms over the ten graphs
are 810.8, 816.7, 843.9, 884.5 and 837.9. As we can see,
MCTS and Spear perform the best, followed by Tetris, CP
and SJF. Among which, Spear performs similarly with the
MCTS approach. However, the budget for the MCTS is 1000
and the budget for Spear is only 100. In other words, we can
achieve the same level of performance with only 10% of the
budget by adopting RL in Spear. In this case, the runtime of
our approach is also reduced by six times comparing with
the MCTS approach.

3) The Learning Curve of the DRL Agent: We display
the learning curve of our DRL training in Fig. 8(b). Our
training set consists of 144 randomly generated examples,
each with 25 tasks. We trained the reinforcement learning
agent for 7000 epochs. In each epoch, we simulate each
example 20 times and average the trajectories to compute the
baseline. In this figure, we show the number of epochs versus
the mean makespan calculated from all trajectories over all
examples. Evidently, the mean makespan which is also the
negative of the reward, steadily decreases with the number
of iterations. The performance finally surpasses Tetris and
SJF after around 900 iterations. This trained neural network
is used in all the experiments of Spear.

C. Experimental Results

On top of simulations, we also conduct the experiments
based on traces collected from production clusters running
hive workloads. We first extract the task runtimes and the
graph topologies of MapReduce jobs in the trace. As are
only interested in the tasks with dependencies, we filtered
out the jobs with no more than 5 map tasks or 5 reduce
tasks. Afterwards, we obtain 99 MapReduce jobs in total
for the experiment dataset.

We first show some task characteristics in Fig. 9(a) and
Fig. 9(b). In the first figure, it shows the number of tasks in
the map stages and reduce stages, respectively. The median
number of map tasks in the jobs is 14 and the median of
reduce tasks is 17. For the task runtime, the median task

Map Reduce

10

20

30

(a) The number of tasks in the jobs.

Map Reduce

50

100

150

Ti
m

e
(s

)

(b) The task runtime.

0 10 20
Reduction in Job Duration (%)

0.00

0.25

0.50

0.75

1.00

CD
F

(c) Results comparing with Graphene.

Figure 9. Results on the production workloads.

runtimes in the map stage and reduce stage are 73 and 32,
respectively. As shown, both the number of tasks and the
task runtimes differ significantly, providing a lot of variation
for the experiments.

Here, we only set the initial budget of Spear to be 100
and the minimum budget to be 50. We take the trace as
the input and obtain the results as shown in Fig. 9(c).
In this figure, the reduction in job duration is calculated
by Makespan of Graphene − Makespan of Spear

Makespan of Graphene . We can see
that Spear performs no worse than Graphene in 90% of
the jobs. In some cases, it can reduce the makespan of
the Graphene by up to around 20%. The positive results
obtained from our approach is mainly attributed to Spear’s
ability to search and evaluate many scheduling decisions
before committing to one action. Furthermore, the trained
policy network will guide Spear’s tree exploration, guiding
it towards promising paths.

VI. RELATED WORK

In this section, we will discuss the most relevant works in
task scheduling, which can be classified into several different
categories depending on whether they consider dependencies
and varying resource demands for multiple resources.

The most closely related paper is Graphene [7], which
considers both dependencies among tasks as well as the
varying resource demands for multiple resources. However,
the performance of Graphene heavily relies on the param-
eters which define the set of troublesome tasks, which are
not robust enough for different jobs and graph topologies.
Moreover, when scheduling the troublesome tasks, they
are placed in descending order of their runtimes, which
may result in poor performance as it ignores the resource
demands for multiple resources in this step. The dependen-
cies and packing were also investigated in job-shop related
papers [17], [18], [19]. But the problem setting of the
job-shop problem is different from ours. In the job-shop
problems, there is only one type of resource while Spear
is designed for multiple resource dimensions.

There are lots of related works regarding dependency-
aware task scheduling that don’t consider the varying re-

source demands [8], [9], [10], [20] and a survey is available
in [15]. Normally, they use some node or graph related
metrics to prioritize certain tasks and then schedule these
tasks to the earliest available processor. As shown in our
results, the performance of these approaches can be further
improved because considering the varying multidimensional
resource demands of tasks is critical for efficient cluster
utilization.

Some related works do not consider the dependencies
among the tasks [6], [21], [22], [23], [24]. These approaches
schedule the tasks in a DAG level by level, which will
naturally result in a sub-optimal performance. For instance,
in Tetris [6], it explicitly considers the varying multidimen-
sional resource demands of tasks in a DAG but ignores the
dependencies among the tasks. We extensively compared our
approach with Tetris in this paper.

Monte Carlo Tree Search (MCTS) and Deep Reinforce-
ment Learning (DRL) have also been applied in scheduling
and related decision making problems. [25] and [26] applied
MCTS only for job-shop problems. Reinforcement learning
was adopted in DeepRM [27] to minimize the average job
slow down for a group of independent jobs where de-
pendencies do not exist. Moreover, AlphaGo[28], AlphaGo
Zero [13] and AlphaZero [11] both employed MCTS and
RL to create an AI for Go, Chess and other games.

VII. CONCLUDING REMARKS

In this paper, we propose to combine deep reinforcement
learning(DRL) and Monte Carlo Tree Search to minimize the
makespan of the DAGs in big data processing systems. We
first design a neural network as a function approximator to
represent a scheduling policy capable of choosing scheduling
actions given the cluster state and ready tasks. We then
train the network to minimize the makespan for the DAG
scheduling problem. For MCTS, in addition to mapping
it to our problem, we implemented several heuristics to
greatly reduce the search space. After that, we utilize
the trained DRL model by integrating the policy into the
expansion step and rollout step in MCTS, replacing the
default random policy. This way, the policy will select more

promising actions for minimizing the makespan and we can
significantly improve the searching efficiency by focusing
more on promising branches of the search tree. Both our
simulation and experimental results demonstrate Spear’s
ability to outperform other modern heuristics, reducing the
makespan of production workloads by up to 20%.

REFERENCES

[1] “Hive,” https://hive.apache.org/, accessed: 2018-05-23.

[2] “Tez,” https://tez.apache.org/index.html, accessed: 2018-05-
23.

[3] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-
Cauley, M. J. Franklin, S. Shenker, and I. Stoica, “Resilient
Distributed Datasets: A Fault-tolerant Abstraction for In-
memory Cluster Computing,” in Proc. USENIX NSDI, 2012.

[4] M. Mastrolilli and O. Svensson, “(Acyclic) Job Shops are
Hard to Approximate,” in 2008 49th Annual IEEE Symposium
on Foundations of Computer Science, 2008, pp. 583–592.

[5] ——, “Improved Bounds for Flow Shop Scheduling,” in
International Colloquium on Automata, Languages, and Pro-
gramming. Springer, 2009, pp. 677–688.

[6] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and
A. Akella, “Multi-resource Packing for Cluster Schedulers,”
in Proc. ACM SIGCOMM, 2014.

[7] R. Grandl, S. Kandula, S. Rao, A. Akella, and J. Kulkarni,
“Graphene: Packing and Dependency-Aware Scheduling for
Data-Parallel Clusters,” in Proc. of OSDI, 2016.

[8] T. L. Adam, K. M. Chandy, and J. Dickson, “A Comparison
of List Schedules for Parallel Processing Systems,” Commu-
nications of the ACM, vol. 17, no. 12, pp. 685–690, 1974.

[9] I. Ahmad, Y.-K. Kwok, and M.-Y. Wu, “Analysis, Evaluation,
and Comparison of Algorithms for Scheduling Task Graphs
on Parallel Processors,” in Second IEEE International Sym-
posium on Parallel Architectures, Algorithms, and Networks.,
1996, pp. 207–213.

[10] A. Gerasoulis and T. Yang, A Comparison of Clustering
Heuristics for Scheduling DAGs on Multiprocessors. Rutgers
University, Department of Computer Science, Laboratory for
Computer Science Research, 1991.

[11] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai,
A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel
et al., “Mastering Chess and Shogi by Self-Play with a
General Reinforcement Learning Algorithm,” arXiv preprint
arXiv:1712.01815, 2017.

[12] Theano Development Team, “Theano: A Python Framework
for Fast Computation of Mathematical Expressions,” arXiv
e-prints, vol. abs/1605.02688, May 2016. [Online]. Available:
http://arxiv.org/abs/1605.02688

[13] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou,
A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton
et al., “Mastering the Game of Go without Human Knowl-
edge,” Nature, vol. 550, no. 7676, p. 354, 2017.

[14] R. S. Sutton, A. G. Barto et al., Reinforcement Learning: An
Introduction. MIT press, 1998.

[15] Y.-K. Kwok and I. Ahmad, “Static Scheduling Algorithms for
Allocating Directed Task Graphs to Multiprocessors,” ACM
Computing Surveys, vol. 31, no. 4, pp. 406–471, 1999.

[16] G. M.-B. Chaslot, M. H. Winands, and H. J. van Den Herik,
“Parallel Monte-Carlo Tree Search,” in International Confer-
ence on Computers and Games. Springer, 2008, pp. 60–71.

[17] A. Czumaj and C. Scheideler, “A New Algorithm Approach
to the General Lovász Local Lemma with Applications to
Scheduling and Satisfiability Problems,” in Proc. of the thirty-
second annual ACM symposium on Theory of computing,
2000, pp. 38–47.

[18] L. A. Goldberg, M. Paterson, A. Srinivasan, and E. Sweedyk,
“Better Approximation Guarantees for Job-Shop Scheduling,”
SIAM Journal on Discrete Mathematics, vol. 14, no. 1, pp.
67–92, 2001.

[19] D. B. Shmoys, C. Stein, and J. Wein, “Improved Approx-
imation Algorithms for Shop Scheduling Problems,” SIAM
Journal on Computing, vol. 23, no. 3, pp. 617–632, 1994.

[20] Y.-K. Kwok and I. Ahmad, “Dynamic Critical-Path Schedul-
ing: An Effective Technique for Allocating Task Graphs to
Multiprocessors,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 7, no. 5, pp. 506–521, 1996.

[21] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella,
V. Bahl, and I. Stoica, “Low Latency Geo-Distributed Data
Analytics,” in Proc. ACM SIGCOMM, 2015.

[22] R. Viswanathan, G. Ananthanarayanan, and A. Akella,
“CLARINET: WAN-Aware Optimization for Analytics
Queries,” in Proc. USENIX OSDI, 2016.

[23] C.-C. Hung, L. Golubchik, and M. Yu, “Scheduling Jobs
Across Geo-distributed Datacenters,” in Proc. ACM SoCC,
2015.

[24] C.-C. Hung, G. Ananthanarayanan, L. Golubchik, M. Yu, and
M. Zhang, “Wide-Area Analytics with Multiple Resources,”
in Proc. of the ACM Thirteenth EuroSys Conference, 2018.

[25] T. P. Runarsson, M. Schoenauer, and M. Sebag, “Pilot,
Rollout and Monte Carlo Tree Search Methods for Job
Shop Scheduling,” in Learning and Intelligent Optimization.
Springer, 2012, pp. 160–174.

[26] T.-Y. Wu, I.-C. Wu, and C.-C. Liang, “Multi-Objective Flex-
ible Job Shop Scheduling Problem Based on Monte-Carlo
Tree Search,” in Technologies and Applications of Artificial
Intelligence (TAAI), 2013 Conference on. IEEE, pp. 73–78.

[27] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource
Management with Deep Reinforcement Learning,” in Proc. of
the 15th ACM Workshop on Hot Topics in Networks, 2016.

[28] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. Van Den Driessche, J. Schrittwieser, I. Antonoglou, V. Pan-
neershelvam, M. Lanctot et al., “Mastering the Game of Go
with Deep Neural Networks and Tree Search,” nature, vol.
529, no. 7587, p. 484, 2016.

