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Core-Selecting Secondary Spectrum Auctions
Yuefei Zhu, Baochun Li, Haoming Fu, Zongpeng Li

Abstract—In a secondary spectrum market, the utility of a
secondary user often depends on not only whether it wins, but
also which channels it wins. Combinatorial auctions are a natural
fit here to allow secondary users to bid for combinations of
channels. In this context, the VCG mechanism constitutes a
generic auction that uniquely guarantees both truthfulness and
efficiency. There also exists related auction design that relaxes
efficiency due to perceived complexity issues, and focuses on
truthfulness. Starting with new empirical evidences on the com-
plexity issue, we propose to design core-selecting auctions instead,
which resolve VCG’s vulnerability to collusion and shill bidding,
and improve seller revenue. While the VCG type of auctions
are unique in guaranteeing both efficiency and truthfulness, we
prove that our core-selecting auctions are unique in guaranteeing
both efficiency and shill-proofness, and always outperform VCG
auctions in terms of seller revenue generated. Employing linear
programming and quadratic programming techniques, we design
two payment rules for minimizing the incentives of bidders to
deviate from truth telling.

Index Terms—Truthful Auctions, Secondary Spectrum Alloca-
tion, Secondary Networks, Linear Programming

I. INTRODUCTION

W ITH the continuing growth of new wireless technolo-
gies and applications, the demand for radio spectrum

escalates at a fast pace. A spectrum scarcity problem ensues,
due to the status quo static allocation in both temporal and
spatial domains: large chunks of spectrum remain idle while
non-licensed new users are unable to access them. Secondary
leasing is envisioned as a panacea to mitigate the problem: a
licensed user, or a primary user (PU), pools its idling spectrum
chunks for sale to the new users, or secondary users (SUs),
with monetary remuneration in return.

In such a secondary spectrum market, auctions are a natural
mechanism for a PU to efficiently relinquish its unused
channels to SUs [1], [2]. As illustrated in Fig. 1, the spectrum
auctioneer (PU) elicits bids from SUs for channel access,
computes a channel allocation in an interference-free manner
and a corresponding payment vector for the SUs. An important
goal in spectrum auction design is to achieve efficiency, i.e.,
to maximize social welfare, the aggregated ‘happiness’ of
everyone in the system. An efficient auction tends to allocate
channels to SUs who value them the most. Another useful
property is truthfulness. In a truthful auction, bidding its true
valuation of a channel is a dominant strategy, and an SU has
no incentive to lie.
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Fig. 1. An illustration of a secondary spectrum auction, with 7 SUs bid for
paired (LTE) or unpaired (WiMax) channels. The PU acts as an auctioneer,
computes (i) channel allocation results according to the bids and interference
constraints of each channel, and (2) a corresponding payment vector for
charging winning SUs.

Existing literature on secondary spectrum auctions often
treats wireless channels as identical goods [1], [3]. Given the
heterogeneity of channels and different technology require-
ments from real-world settings, secondary users are likely to
desire combinations of channels in practice. For instance, the
channels may experience different levels of fading at different
locations, and two users may value the same channel quite
differently. As another example, LTE and WiMAX require
paired and unpaired channels respectively [4]. An SU aiming
to provide an LTE-based service will be willing to bid for two
paired channels, while a WiMax-based SU will not. If the PU
holds multiple auctions to sell these heterogenous channels
and paired channels, that usually undermines the efficiency
in spectrum assignment [4]. Combinatorial auctions enable
expressive bids for requesting bundles of channels, and are
especially useful when the PU has no a priori information on
how SUs plan to utilize the channels.

A classic auction that guarantees truthfulness is the cele-
brated VCG mechanism [5]–[7]. It is the only auction mech-
anism that is both truthful and efficient [8], [9]. Despite a
myriad of interests in theoretical research, VCG mechanisms
witness less enthusiasm in actual implementations [10]–[12].
Part of the hurdle was attributed to the requirement for solving
the allocation problem to optimality, which is often NP-
hard, as in interference-free channel allocation. This motivated
the design of truthful spectrum auctions with a compromise
in efficiency (social welfare) [1], [13]–[15]. However, our
studies reveal that, given a representative secondary spectrum
market, winner determination and channel allocation can be
formulated into a linear integer program of modest size (on the
order of 1000 variables and constraints), which can be solved
to optimality in seconds over today’s average computing
platform. Sacrifices in efficiency are therefore less justified.

The VCG mechanism suffers from two other problems that
0733-8716/14/$31.00 c© 2014 IEEE
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are economic instead of computational. The first is that it
turns to generate a low revenue for the auctioneer, under-
exploiting the payment potential of bidders. The second is
that a VCG mechanism is susceptible to a form of strategic
bidding known as shill bidding, or false-name bidding, in
which a single bidder desires a set of items impersonate
multiple bidders, each bidding for a subset of those items [16].
For example, consider three SUs (SU1, SU2, SU3) bidding for
two different channels ch1 and ch2, and they desire {ch1},
{ch2} and {ch1, ch2}, respectively. Each SU is willing to
pay $10 for acquiring what it desires, and $0 otherwise. The
VCG mechanism allocates ch1 to SU1, and ch2 to SU2, with
zero charges (because neither of them would cause any loss to
social welfare by not participating in the auction, see Sec. V
for details). The zero income is by no means satisfactory, given
that each SU has expressed a willingness to pay up to $10,
manifesting the low revenue problem. Furthermore, assume
that SU1 and SU2 are indeed controlled by a single SU0 who
has a valuation of $10 for ch1, $10 for ch2, and $20 for
{ch1, ch2}. Knowing the rule of the auction, SU0 can reduce
its payment for winning {ch1, ch2} from $10 (because SU3
would win the two channels if SU0 was ruled out, creating
social welfare $10, the payment for SU0 is $20− $10) to $0
via impersonation, manifesting the shill bidding problem.

The vulnerabilities of the VCG mechanism are so severe
that it rarely made to a direct application in practice. Since
VCG is the only truthful and efficient mechanism [8], [9], any
other efficient auction aimed at addressing the two economic
problems inherent in VCG will have to relax the requirement
of absolute truthfulness. A promising direction of research is
core-selecting auctions [17]–[19]. An auction outcome is in-
core if no group of participants (including the auctioneer)
are motivated to secede to settle for their own solution.
Taking the group as the entire set of participants, this implies
efficiency (social welfare is maximized). Given guaranteed
efficiency, the auctioneer can further judiciously select from
the core an auction (actually a payment rule, see Sec. V) that
maximizes the likelihood of truthful bidding. Representing the
state-of-the-art of a pragmatic combinatorial auction, core-
selecting auctions recently enjoyed real-world applications,
including spectrum auctions at the primary spectrum market
level [4]. The primary and secondary spectrum markets differ
fundamentally due to concerns on wireless interference —
absent in the former and present in the latter.

In this paper, we first formulate a winner determination
problem for the combinatorial spectrum auction to be applied
in a secondary spectrum market. While previous research [1],
[13], [15] concentrated on designing truthful auctions by
relaxing efficiency, our design instead aims to guarantee effi-
ciency for ensuring effective utilization of the scarce spectrum
resources. We base our design on the emerging framework
of core-selecting auctions, which is efficient by definition.
Unlike previous core-selecting auctions in primary spectrum
markets that view channels as commodities, our auctions take
interference into consideration by assuming conflict graphs
and enable frequency reuse. We prove that the core-selecting
auctions we design are able to achieve a revenue that is at least
on par with VCG mechanisms, and are robust against shills.
The in-core property is proven to essentially forbid collusion,

because bidders have no incentive to formulate coalitions. We
further design tailored payment rules, using a pair of correlated
linear program and quadratic program. These payment rules,
beyond ensuring a core outcome, are proven to minimize the
incentives of bidders to deviate from truthful bidding.

Extensive simulation studies were performed to examine
the performance of our core-selecting auctions. Our results
reveal that our auctions optimally guarantee social welfare
efficiently on a platform with limited computing resources.
Spectrum utilization can be largely improved with channel
reuse. The core-selecting auctions achieve significantly higher
revenues than the VCG mechanism. This is due to the fact
that channels are reused geographically — every winner’s
payment is at least as large as its corresponding VCG price,
which accumulates to a high revenue since channel reuse can
accommodate more requests from bidders. The auctioneer,
while maintaining optimal social welfare, can customize the
ranking metric to achieve desired market outcomes, such as
revenue versus bidder satisfaction.

In the rest of the paper, we discuss related work in
Sec. II, and present preliminaries in Sec. III. In Sec. IV,
we introduce and analyze the core-selecting auctions for a
secondary spectrum market. In Sec. V, the payment rules
of the VCG mechanism and of our core-selecting auctions
are discussed. Simulation studies are presented in Sec. VI.
Sec. VII concludes the paper.

II. RELATED WORK

The unique auction that ensures both efficiency and truth-
fulness is the well-known VCG type of mechanisms due
to Vickrey [5], Clarke [6] and Groves [7]. However, the
VCG mechanism is rarely applied in practice directly, due
to its low revenue and vulnerability to shills. Core-selecting
auctions, originally proposed by Day and Milgrom [17],
has attracted substantial attention in economics as a more
robust and profitable alternative to the VCG mechanism. To
minimize bidders’ gain from deviating from truthful bidding,
Day and Milgrom [19] propose a bidder-optimal pricing
rule. A quadratic-core-pricing rule is presented by Day and
Cramton [18] to make the core-selecting auction more ro-
bust. Recently, the necessary and sufficient conditions for
the perfect Bayesian equilibrium of core-selecting auctions
are characterized by Guler et al. [20]. The core-selecting
auction mechanism further witnessed applications in the cloud
computing market, for selling heterogeneous virtual machines
[21].

Most existing research on spectrum auction design, starting
from almost a decade ago, choose to relax the optimality in
efficiency, and focus on a hard guarantee in truthfulness, e.g.,
through ensuring bid independence in charges [14]. This is
due to the challenge from wireless interference constraints, as
highlighted by Huang et al. [22] and others. One of the first
auctions in such a realm is VERITAS [1], which is based on a
monotonic channel allocation rule. Zhou and Zheng propose
TRUST [3], a truthful double auction with multiple sellers.
Recently the first truthful privacy preserving spectrum auction
mechanism, SPRING, is presented by Huang et al. [23]. Zhu
et al. design auctions specifically for networked secondary



ZHU et al.: CORE-SELECTING SECONDARY SPECTRUM AUCTIONS 3

users [13]. Chen et al. [24] improve uers’ utilities while
inducing only limited revenue loss by proposing a three-stage
dynamic spectrum auction.

The aforementioned auctions suffer from a common draw-
back — channels are assumed to be identical and bidders are
not allowed to bid for combinations of different channels,
which may not be feasible for modern spectrum auction
design [4]. Combinatorial auctions, instead, are expressive
enough for SUs to bid for bundled items of interest. In
this scope, Hoefer et al. propose a randomized combinatorial
auction that is truthful in expectation, with a guaranteed per-
formance bound on social welfare [15]. A recent solution due
to Dong et al. employs a combinatorial auction as well [25],
allowing bidders to have more flexible bids to require not
only the channels, but also the time periods to use them.
However, these auctions lose the optimality of efficiency as
well, and their revenues are not guaranteed to outperform the
VCG mechanism.

III. NETWORK MODEL AND PRELIMINARIES

We start by introducing the settings of our problem. We
consider a secondary spectrum market, where a primary user
periodically pools the unused channels and conducts combi-
natorial auctions to lease them to secondary users in a round-
by-round fashion. We focus on the design of a combinatorial
auction for a specific round, to be repeated in different rounds.
The system includes a set K of heterogeneous channels, and
a set N of secondary users who are bidders in the auction.
Bidders are geographically distributed in a region, each in
possession of its base station. A conflict graph Gk(Vk, Ek) is
defined for each channel k ∈ K and is known to the auctioneer.
Broadcast stations and wireless access points are SUs, which
are represented as nodes in a conflict graph. The wireless
signal of the channel used by each SU covers a certain area,
and two SUs i and j interfere with each other if they use the
same channel k and (i, j) ∈ Ek. Conflict graphs can be built
using measurement-calibrated propagation models [26].

Each bidder i ∈ N has the flexibility to bid for bundles
of channels. For each combination of channels S ⊆ K, vi(S)
represents bidder i’s valuation of S. We adopt an XOR bidding
language [19], i.e., a bidder can submit as many bids as it
wishes, but it can win a single bid only (a bidder’s bids are
mutually exclusive). Indicator variable xi(S) is 1 if bidder i
wins bundle S in an auction and 0 otherwise. We assume each
bidder i has a quasi-linear utility, defined as:

ui =

{
vi(S) − pi if agent i wins the bundle S,
0 otherwise.

where pi is the payment of bidder i if it wins bundle S.
Clearly, vi(S) is the maximum amount that i is willing to
pay for S. In a combinatorial spectrum auction, each bidder
submits as many bids as it wishes, for channels or bundles
of channels that it is interested in. Let bi(S) denote the bid
submitted by bidder i for bundle S. We denote by o the
auctioneer and uo =

∑
i∈N pi represents the revenue of the

auctioneer.
Bidders are assumed to be individually rational in that a

bidder always prefers a higher utility. Consequently, a bidder

bi(S) Bid submitted by SU i for bundle S
C Coalition of SUs
Core(N ) Core with bidder set N
Ek Edge set in conflict graph for channel k
K Set of heterogeneous channels
N Set of SUs
pi Payment of SU i
S Bundle of channels
vi(S) SU i’s valuation of bundle S
ui Quasi-linear utility of SU i
uo Revenue of the auctioneer
W Set of winning SUs
WD(N ) Winner determination problem with bidder set N
xi(S) Indicator: SU i wins bundle S or not

is willing to participate in the auction only if it is guaranteed
a nonnegative utility — the auctioneer cannot charge a bidder
beyond its bid price.

After collecting all bids submitted, the auctioneer needs to
compute both a channel allocation result and a corresponding
payment vector. Unlike regular combinatorial auctions, in our
settings, a channel can be awarded more than once in the
region, but such channel reuse must be interference-free. The
Winner Determination Problem (WDP) can be formulated
accordingly:

WD(N ) = max
∑

i∈N

∑

S⊆K

bi(S)xi(S) (1)

subject to
∑

S⊆K

xi(S) ≤ 1 ∀i ∈ N ;

xi(k) + xj(k) ≤ 1 ∀(i, j) ∈ Ek, ∀k ∈ K;

xi(S)− xi(k) ≤ 0 ∀k ∈ S ,∀S ⊆ K;

xi(S), xi(k) ∈ {0, 1} ∀i ∈ N , ∀S ⊆ K.

In this WDP, the first set of constraints represent the
employment of XOR bids, to make an individual bidder’s
bids mutually exclusive. The second set models interference
of different channels, based on their conflict graphs. The third
states that if a bidder wins a bundle S containing channel k, k
is indeed allocated to it. The WDP is an integer programming
problem, which is NP-hard. Despite its NP-hardness, the WDP
can be solved in seconds on the order of a thousand variables
and constraints on today’s average computer.

As previously mentioned, an auction mechanism whose
outcome optimally maximizes the total values in (1) is an
efficient mechanism. Important notations are summarized in
the table below for easy reference.

IV. CORE SELECTION AND ITS NECESSITY

In this section, we define the concept of the core, and
formally motivate the employment of core-selecting auctions
in a secondary spectrum market.

A. The Core of An Auction
For a bidder i, we specify by Si as the bundle allocated

to i (Si = ∅ if i loses). An outcome is said to be blocked
by coalition C ⊆ N if there is some alternative outcome with
awarded bundles {S ′

i}i∈N and payment vector p′, such that
the corresponding u′

i ≥ ui for all i ∈ C, and for which u′
o =∑

i∈N p′i > uo. An outcome not blocked by any coalition is
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Fig. 2. A geometric illustration of the core.

in the core with respect to the submitted bids b. It is worth
noting that in our setting, the first price payment (pay what
you bid) scheme is always in the core, and thus the core is
always non-empty (in some other economical settings the core
may not exist). Formally,

Core(N ) =
{
u ≥ 0|

∑

i∈N∪{o}

ui = WD(N ),
∑

i∈C∪{o}
∀C⊆N

ui ≥ WD(C)
}

(2)

For a simple example to illustrate the core of an auction,
assume there are seven different SUs/bidders, 1, 2, 3, 4, 5, 6, 7,
bidding for three channels, A,B,C. All three channels share
the same, complete conflict graph, so no channel reuse is
allowed. The following bids are submitted:

b1(A) = 10 b2(B) = 12

b3(C) = 12 b4(A,B,C) = 62

b5(A) = 38 b6(B) = 40

b7(C) = 40

Bidder 1 and bidder 5 are interested in channel A, bidder 2
and bidder 6 are interested in channel B, bidder 3 and bidder
7 are interested in channel C, and bidder 4 is interested in a
combination of all the three channels, A, B and C.

It can be determined that the unique set of winners in an
efficient allocation includes bidders 5, 6 and 7, generating a
social welfare of 118 The core can be drawn in the payment
space, shown in Fig. 2.

We note that, due to the simplicity of the example, the
constraints defining the core are simply the bids of the losing
bidders (together with the property of individual rationality
of winning bidders). Therefore, each bid defines a half space
of the payment space, the intersection of which formulates
the core. In particular, since bidder 1 will always block if
bidder 5 pays less than 10, we have the constraint p5 ≥ 10.
Similarly, bidder 2 and bidder 3 dictate p6 ≥ 12 and p7 ≥ 12,
respectively. Bidder 4 will block if all the winners, bidders 5,
6 and 7 together do not beat its bid on the channels they
win, so we have p5 + p6 + p7 ≥ 62. Upper-bounds are
given by winners’ bids themselves, consistent with individual
rationality.

B. Revenue Lower Bound of A Core-Selecting Auction
We have seen that the revenue from the VCG outcome

can be too low to be acceptable to the auctioneer. How do

b3(A,B) = 20

b4(B) = 15

b1(A) = 10

b2(B) = 20

Interference

Fig. 3. Four SUs bidding for 2 channels.

we justify the use of a core-selecting auction in a secondary
spectrum market, in terms of seller revenue, with consideration
of shill bidding? In the following, we will treat the VCG
revenue as a benchmark, and prove that a core-selecting
auction always generates a higher revenue for the PU, through
showing that it always leads to a total SU utility no higher than
that in a VCG auction (recall that the total utility from both
the PU and all SUs is constant, corresponding to an efficient
channel allocation).

We start by proving the following theorem.

Theorem 1. In an efficient secondary spectrum auction with
a WDP shown by (1), if there are bidders acting as shills, we
have WD(N ) ≥ WD′(N ), where WD′(N ) is the solution
to the WDP when shills are treated as a coalition submitting
a merged reported value.

Proof: When C ⊆ N is a coalition using shills, we treat
these shills as a single bidder and take its merged report. Then
the conflict graphs in our auction can be changed. That is,
these bidders can be viewed as a single node in a conflict
graph and the conflict relationship would change accordingly.
Fig. 3 shows a small example. There are four bidders, 1, 2, 3
and 4 bidding for two channels A and B, with reported values
shown in the figure. Assume that channels A and B share the
same conflict graph. By solving the WDP of this example, we
have WD(N ) = 45, with the result of allocating channel A
to bidder 1, and channel B to bidders 2 and 3.

However, if bidders 1 and 2 are bidding as shills, they are a
coalition hoping to obtain both A and B. In this case, we can
view the conflict graph as shown in Fig. 4, in which bidder 2
and bidder 4 will also conflict because bidder 1 interferes with
bidder 4. Note that b1(A) and b2(B) are merged to bc(A,B),
with a value 30. The solution to the WDP of it will change to
WD′(N ) = 30, by allocating both channels A and B to the
coalition formed by bidders 1 and 2.

Therefore, if we treat a coalition as a single node, we
will have more edges in the conflict graphs since extra edges
are added to preserve the property of interference (removing
the edges among shills does not change the result because
their reported values are merged). As a result, the number of
constraints in the WDP will increase. Then we have,

WD′(N ) ≤ WD(N ) (3)

where WD′(N ) is the solution of the WDP if we treat the
coalition C as a single bidder and take a merged report. Due
to the potential additional constraints introduced into the WDP,
it cannot be more than the original solution.
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b4(B) = 15
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bc(A,B) = 30

Bidder c

Fig. 4. Three SUs bidding for 2 channels, where bidder c is using shills. An
edge between bidders 2 and 4 is introduced.

We are now ready to prove that in our secondary spectrum
market, core-selecting auctions essentially form the only type
of auctions that are robust against shill bidding.

Theorem 2. An efficient secondary spectrum auction with a
WDP shown by (1) has the following property: no bidder can
gain more than its VCG utility by bidding with shills if and
only if the auction is a core-selecting auction.

Proof: Fix a set of players, including the set of bidders N
and the auctioneer o. The core-selecting condition requires that
these bidders cannot earn more utility than what they achieved
in a VCG mechanism if they were to submit a merged report.

Then in a VCG mechanism, when C ⊆ N is a coalition
using shills, the marginal utility acquired by coalition C is,

WD′(N ) − WD′(N\C) = WD′(N ) − WD(N\C) (4)

Our restriction is therefore
∑

i∈C
ui ≤ WD′(N )− WD(N\C) (5)

By Theorem 1, (5) can be further written as,
∑

i∈C
ui ≤ WD(N )− WD(N\C) (6)

This condition holds if and only if
∑

i∈(N\C)∪{o}

ui = WD(N )−
∑

i∈C
ui ≥ WD(N\C) (7)

Since C is an arbitrary coalition of bidders, we have that
for any coalition T = N\C,

∑
i∈T ∪{o} ui ≥ WD(T ), which

means there is no blocking coalition in the auction. Combining
this with efficiency, we derive u ∈ Core(N ).

Since we assume a quasilinear utility function as in con-
ventional auction theory, we have the following corollary.

Corollary 1. In our secondary spectrum market, an efficient
auction that selects a core outcome generates a revenue no
less than that of the VCG mechanism.

So far we have assumed that bids are truthful. While core-
selecting auctions relax absolute truthfulness, we study how
to maximize SUs’ intention of truthful bidding in Sec. V.

V. PAYMENT RULES

In this section, we discuss the payment rules that can be
employed in efficient auctions, including the VCG auction
(V-A) and two core-selecting auctions that we design —
revenue-minimizing (V-B) and closest-to-VCG (V-C).

A. Payment Rule of the VCG Mechanism
The VCG mechanism [5]–[7] represents a general type of

auctions that uniquely ensures both efficiency and truthfulness.
Informally, the VCG mechanism first solves the WDP to
obtain an optimal allocation with respect to (1), and asks each
winning bidder to pay an amount equal to the externality it
exerts on the other bidders. As a result, the utility of a winning
bidder is actually the marginal contribution to the total values
when it joins.

More specifically, the price charged by the auctioneer to the
winning bidder i is:

pi = bi − (WD(N )− WD(N\{i}))
= WD(N\{i})− (WD(N )− bi), (8)

where WD(N\{i}) is the result of solving the WDP again
using bids from all bidders except i, and (WD(N )−bi) is the
sum of all the winning bids by all bidders except i.

Under the above VCG mechanism, misreporting one’s value
for the item(s) is always dominated by truth telling. If all
the bidders follow the truthful bidding strategy, the allocation
outcome will be efficient.

Take the example in Section IV to compute the bidders’
VCG payments. If we remove bidder 5, then the best assign-
ment is allocating channel A to bidder 1, channel B to bidder
6 and channel C to bidder 7, generating 90 in total value.
Thus the payment of 5 is p5 = 90 − (118 − 38) = 10. The
VCG payments of bidder 6 and bidder 7 can be computed
similarly, and are p6 = 12 and p7 = 12 respectively. The
point for these VCG prices is illustrated in Fig. 2, which is
actually the intersection of the planes generated by constraints
from bidders 1, 2 and 3. The total revenue generated by such
a VCG mechanism is 10 + 12 + 12 = 34 in this case.

B. Revenue-Minimization Rule
Despite the relaxation of absolute truthfulness in core-

selecting auctions, there exist different measures that can be
taken to promote bidder incentives for reporting valuations
truthfully. It is important to find payment rules that minimize
incentives for deviating from truthful-telling.

We start with the definition of bidder-Pareto optimality:

Definition 1. A core outcome is bidder-Pareto optimal if there
is no other core outcome that can improve at least one bidder’s
utility without reducing any other one’s in a subset C ⊆ N .

To evaluate bidders’ incentive to deviate from truthful
reporting, we introduce the definition of the incentive profile
for a core-selecting auction [17].

Definition 2. The incentive profile for a core-selecting auction
M at v is {θMi (v)}i∈N where θMi (v) is i’s maximum utility
gain by deviating from truthful reporting.

The idea is to minimize these incentives to deviate from
truthful bidding, subject to the core-selection rule. Note that
the incentives are represented by a vector, and we use a Pareto-
like criterion. That is, a core-selecting auction M provides
optimal incentives, if there is no core-selecting auction M ′

such that for every bidder i, θM
′

i (v) ≤ θMi (v) with strict
inequality for some bidder.
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Day and Milgrom [17] proved that a core-selecting auction
provides optimal incentives if and only if for every v, it
chooses a bidder-Pareto optimal outcome. Suppose that a
bidder i reports a bid bi and there is an alternative efficient
auction that allocates a bundle Si and charges i pi, instead of
the VCG payment pV CG

i . pi is guaranteed to be greater than
or equal to pV CG

i . We then have the following lemma:

Lemma 1. For any efficient auction that produces payments
greater than or equal to the VCG payments, the amount that
bidder i can benefit by unilaterally deviating from the truthful
bidding strategy is no more than pi − pV CG

i .

Proof: All efficient auctions, by definition, essentially
share the same allocation outcome. Assume that bidder i
submits a bid vi and receives a bundle Si. By way of
contradiction, assume Lemma 1 is not true. That is, there is an
efficient auction that produces payments greater than or equal
to the VCG payments, with the existence of some bid vector
(b̃i,b−i), such that

vi(S̃i)− p̃i − (vi(Si)− pi) > pi − pV CG
i (9)

where S̃i is the bundle awarded to bidder i given (b̃i,b−i),
and charged i p̃i under such an auction. After rearranging and
cancelling, (9) is equivalent to

vi(S̃i)− p̃i > vi(Si)− pV CG
i (10)

Since p̃i ≥ p̃V CG
i , we have the following,

vi(S̃i)− p̃V CG
i ≥ vi(S̃i)− p̃i (11)

Combining (10) and (11), we have

vi(S̃i)− p̃V CG
i > vi(Si)− pV CG

i (12)

which contradicts the truthfulness property of the VCG mech-
anism, and that concludes the proof.

We can now prove the following theorem:

Theorem 3. A core-selecting auction provides optimal incen-
tives for truthful bidding if and only if for every vector of
reported values, it chooses a bidder-Pareto optimal outcome.

Proof: From Lemma 1, the maximum benefit for bidder
i to deviate is pi − pV CG

i for a bidder-Pareto optimal, core-
selecting auction that charges i pi. Hence the auction is subop-
timal exactly when there is another core-selecting auction with
higher utilities for all bidders, contradicting the assumption
that this core-selecting auction is bidder-Pareto optimal.

However, there may be a broad set of possible bidder-Pareto
optimal outcomes in the core. We will employ the technique
introduced by Day and Raghavan [19]: by minimizing the total
payments over the core, one can guarantee bidder-optimality,
which can narrow the field of possible outcomes further.

Corollary 2. A core-selecting auction employing a revenue-
minimization payment rule minimizes the incentive of bidders
to deviate from truthful bidding.

Recall the coalitional core constraint, we have
∑

i∈C∪0

ui ≥ WD(C) ∀C ⊆ N (13)

After the WDP is solved, we substitute the set of winning
bundles {Si}i∈N , cancel the payments that are duplicated in
u0, and obtain an alternative formulation of (13):

∑

i∈W
pi ≥ WD(C)−

∑

i∈C
(bi(Si)− pi) ∀C ⊆ N (14)

which is equivalent to
∑

i∈W\C

pi ≥ WD(C)−
∑

i∈C
bi(Si) ∀C ⊆ N (15)

where W is the set of winning users.
Setting βC = WD(C) −

∑
i∈C bi(Si), and denoting the

vector of all βC values as β, we can reformulate Eq. (15)
as

Ap ≥ β (16)

where A is a 2|N |−1 × |W| matrix. In each row aTC of A,
the i-th entry equals 0 if bidder i is in set C and equals 1
otherwise. Then we can find the minimal core payments by
solving the following linear program:

α = min 1Tp (17)
subject to:

Ap ≥ β

p ≤ b

C. VCG-Nearest Rule

There is still a lack of precision even if we minimize the to-
tal payments over the core to ensure bidder-optimality, because
these points are not unique. A simple method to specify a point
is to minimize the group’s incentive to deviate from truthful-
telling. That is, among all total-payment minimizing core
points, select the one that minimizes the Euclidean distance
from VCG [18].

Since the goal is to minimize the Euclidean distance from
the VCG point, and minimize the total payment at the same
time, we can formulate a quadratic program to determine the
payment vector p:

min (p− pV CG)T (p− pV CG) (18)
subject to:

Ap ≥ β

p ≤ b

1Tp = α

Let p∗ be the optimal solution to (18). The Karush-Kuhn-
Tucker (KKT) conditions [27] indicate that

p∗ − pV CG −ATλ+ Iω + 1ν = 0 (19)

where λ ≥ 0, ω ≥ 0, and ν ≥ 0 are the Lagrangian
multipliers associated with the constraints in (18), and I is
the unit matrix of size |p|. It is proved that ω = 0 [18]. The
KKT conditions are necessary and sufficient as QP (18) is
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a convex optimization problem with differentiable constraints
[27]. Linear system (19) can be decomposed as:

p∗i = pV CG
i +

∑

C∈W\{i}

λC − ωi − ν

We are now ready to prove the following:

Theorem 4. The set of constraints p ≤ b is redundant for
QP (18).

Proof. Suppose that constraint pi ≤ bi(Si) is necessary for
some i ∈ W . Then ∃ ε > 0 such that the constraint
relaxed by ε, i.e., pi ≤ bi(Si) + ε, is still tight and the
solution must change. Notice that after relaxation, bidder i
bids bi(Si) + ε for bundle Si, but the solution to the WDP
remains intact. We argue that the KKT conditions still form
the same linear system. The only affected condition is that
of bidder i, i.e., p∗i = pV CG

i +
∑

C∈W\{i} λC − ωi − ν,
which remains unchanged after relaxation. This is because
pV CG
i = bi(Si) − WD(N ) + WD(N\{i}), and the increase

of ε in bi(Si) is cancelled by the same amount of increase
in WD(N ). The solution to QP (18) remains the same as
KKT conditions are sufficient and necessary. The contradiction
completes our proof.

Based on Theorem 4, QP (18) is equivalent to the following
simplified form:

min (p− pV CG)T (p− pV CG) (20)
subject to:

Ap ≥ β

1Tp = α

The VCG-nearest rule has a variation which finds an in-
core payment point that is nearest to some constant point
p′, where p′ is the reference point set by the auctioneer
before auction begins. In consequence, the final payment
vector highly depends on the auctioneer’s assumption of p′.
When no information about the bids is known beforehand, it
is a general practice to set p′ = 0. We call it a zero-nearest
rule [18] when p′ = 0 and will compare it with the VCG-
nearest rule in Section VI.

D. Algorithm for In-Core VCG-Nearest Payment

Note that in the payment rules mentioned above, evaluating
each βC requires the solution of a WDP, so there will be
2|N |−1 non-empty coalitions to consider, which is formidable
in practice. However, an in-core VCG payment generation pro-
cedure adapted from the core constraint generation algorithm
[19] can be employed to reduce the complexity, as shown in
Algorithm 1. Instead of enumerating all the possibilities of
non-empty coalitions, it finds blocking coalitions effectively
by raising payments from the VCG price point, thereby
reducing the complexity.

This iterative algorithm actually continues to increase the
payments made by the winning bidders, until no blocking
coalition exists in the auction, reaching a core outcome. Note
that for the case of no blocking coalition, the vector of

Algorithm 1: In-Core VCG-Nearest Payment Generation
1 Set t := 0, payment vector pt := pV CG, coefficient

matrix At := ∅, and vector βt := ∅;
2 while True do
3 t := t+ 1;
4 for bidder i ∈ N do
5 for bundle S bid by i do
6 bti(S) := bi(S)− (bi(Si)− pt−1

i );
7 end
8 end
9 Calculate WDt(N ) with bt, with the set of winning

CUs Ct being the first violated coalition in the WDP;
10 if WDt(N ) ≤ 1Tpt−1 then break;
11 βCt := WDt(Ct)−

∑
i∈Ct bti(Si);

12 Append the corresponding row aTCt and new entry βCt

to At−1 and βt−1 to form At and βt, respectively;
13 Solve LP (17) with At and βt, obtaining αt;
14 Solve QP (20) with At,βt and αt, obtaining pt;
15 end
16 p∗ := pt−1 is the solution to QP (20).

payments generated by the VCG mechanism equals that of the
revenue minimization rule and hence the VCG-nearest rule.

The correctness of Algorithm 1 is established in the follow-
ing theorem.

Theorem 5. Payment vector generated by Algorithm 1 is the
solution to QP (20).

Proof. Algorithm 1 always terminates because: (i) the number
of blocking constraints generated is bounded by 2|N |−1, and
(ii) the core, which contains the trivial first-price payment
vector, is not empty.

We are going to prove that when the algorithm terminates,
pt−1 is in the core. By way of contradiction, assume that pt−1

is not in the core, then Eq. (15) does not hold:

∑

i∈W\C

pt−1
i < WD(C)−

∑

i∈C

bi(Si), ∃C ⊆ N (21)

Line 6 of Algorithm 1 indicates that

{
bti(Si) = pt−1

i , i ∈ W
bti(S) = bi(S), i /∈ W (22)

Combining Eq. (22) and the stopping criterion (Line 10),
we get:

WDt(C) ≤ WDt(N ) ≤
∑

i∈W\C

pt−1
i +

∑

i∈W∩C

bti(Si) (23)

Letting W̃ be the set of winners to WD(C) with bundle S̃i
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allocated to bidder i, we have:

WD(C)− WDt(C)

>1 (
∑

i∈W\C

pt−1
i +

∑

i∈C

bi(Si))− (
∑

i∈W\C

pt−1
i +

∑

i∈W∩C

bti(Si))

≥2

∑

i∈C

(bi(Si)− bti(Si)) =3

∑

i∈W∩C

(bi(Si)− pt−1
i ) (24)

WD(C)− WDt(C)

≤4

∑

i∈W̃

(bi(S̃i)− bti(S̃i))

=5

∑

i∈W̃∩(W∩C)

(bi(S̃i)− bti(S̃i))

=6

∑

i∈W̃∩(W∩C)

(bi(Si)− pt−1
i ) (25)

In the derivation above, >1 holds due to inequalities
(21) and (23). ≥2 is due to the fact that

∑
i∈C b

t
i(Si) ≥∑

i∈W∩C b
t
i(Si), and =3 is due to (22). The set of winners W̃

with bundle S̃i allocated to bidder i is a feasible solution to
WDt(C), and hence WDt(C) ≥

∑
i∈W̃ bti(S̃i), which explains

≤4. =5 is due to Eq. (21) and the fact that W̃ ⊆ C. Finally,
=6 is due to bi(S) − bti(S) = bi(Si) − pt−1

i (derived from
Line 6).

Inequalities (24) and (25) lead to:
∑

i∈W∩C
(bi(Si)− pt−1

i ) <
∑

i∈W̃∩(W∩C)

(bi(Si)− pt−1
i ) (26)

The inequality is obviously a contradiction as bi(Si) ≥ pt−1
i

and our theorem is thus proved.

VI. SIMULATION RESULTS

In this section, we present results from simulation studies,
for evaluating the performance of our core-selecting auctions.
First we investigate the influence of interference, to evaluate
the auction with or without channel reuse. Then we compare
the payment rules for efficient auctions that can be employed,
with respect to their achieved revenues. We examine the im-
pact of different metrics and settings in the auction including
the total bids submitted, extent of interference in the region
and the distribution of bids.

A. Simulation Environment
We assume a single auctioneer that handles the auction, in

which SUs act as bidders. These bidders are uniformly and
randomly distributed in a 1× 1 square region. For simplicity,
we assume a distance-based interference model for generating
the corresponding conflict graphs. Any two bidders located
within distance 0.1 × ∆ (∆ > 1) conflict with each other,
and hence cannot be allocated the same channel, leading to
an edge between them in the conflict graph.

We use the combinatorial auction test suite (CATS) de-
veloped by Leyton-Brown et al. [28] to generate auction
instances, including the number of channels to be auctioned,
the number of bids, the bidders, etc. The CATS software
suite simulates bidding behaviour in a number of realistic
economic environments. For instance, bidders are interested
in bundles of channels that are adjacent in frequency, which
can be employed in our case. We allow the number of channels

on sale to vary from 8 to 64, and the CATS number-of-bids
parameter to vary from 20 to 160. We generate 100 instances
for each set of auction parameters, i.e., all the results are
averaged over 100 times.

All the auction instances are executed using CPLEX 12.1
[29], on a 1.86 GHz Intel Core 2 Duo processor. The longest
execution time of the instances takes no more than a few
seconds.

We adopt the following three performance criteria:
• Social Welfare: Efficiency of the auction, i.e., the sum of

reported values from all the winning bidders.
• Spectrum Utilization: The sum of allocated channels of

all the winning bidders.
• Bidder Satisfaction: The percentage of bidders that win.
• Revenue: The sum of payments from all the winners.

B. Allocation Results
We first evaluate the auction in terms of allocation results.

In this section, we use “XgYb” to denote the auction settings,
where X represents the number of goods (channels) auctioned
and Y represents the number of bids submitted. (Note that
CATS adopts the number of bids as input instead of the
number of bidders. We take this setting in our evaluation as
well). A bidder can submit multiple bids, and the number of
bidders is no more than the number of bids, Y; but due to our
previously mentioned XOR-bid convention, a bidder can only
win a single bid.

In Fig. 5, we plot the social welfare, spectrum utilization
and bidder satisfaction under core-selecting auction environ-
ments, by changing the interference ratio ∆ from 2 to 10.
When traditional combinatorial auction settings are employed,
where channels are treated as regular commodities and channel
reuse is not considered, all the performance metrics do not
apparently change. When channels can be reused, the perfor-
mance is always higher, but degrades when ∆ increases. When
interference is severe in the region (∆ = 10), most of the SUs
interfere with one another (the interference range is 1, a little
less than the maximum possible distance

√
2). We can observe

that the two lines of the same colour converge at ∆ = 10, at
which point almost no channel reuse is possible.

In Fig. 5(a), when interference is not high (2 ≤ ∆ ≤ 4), as
is the case in many practical settings, the auction can achieve
at least 2 times the social welfare as compared to when channel
reuse is disabled. The ratio of spectrum utilization in Fig. 5(b)
is even higher. From Fig. 5(b), we can see that all the channels
are always sold out, in both cases of 8 channels and 16
channels. In our simulation, CATS generates sufficiently many
bids and bidders to buy these channels, even if the auction
only adopts XOR bids. This makes the spectrum utilization
number to be no less than the number of channels, even when
reuse is disabled. One interesting observation from Fig. 5(c)
is that, without channel reuse, the bidder satisfaction ratio
stays the same in the “8g50b” and “16g50b” cases. This is
due to the fact that when there are enough participants in the
auction, there exist a few bidders requesting many channels
and submitting high bids to exclude other bidders. Because
channels are not reused, only these users are able to win their
bids. This is similar to monopolization. Therefore, from this
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Fig. 5. Performance of the allocation result.

point of view, channel reuse is highly desired when designing
secondary spectrum auctions.

C. Revenues of Core-Selecting Auctions

We next study the performance of core-selecting auctions
by comparing its revenue with that of the VCG mechanism.
We first investigate the impact of interference on revenues, as
shown in Fig. 6. In this experiment, 16 channels are auctioned
and 50 bids are submitted in every simulation instance. We can
see that interference can largely deteriorate revenues when we
use core-selecting auctions with the revenue minimization rule
or the VCG-nearest rule. For example, when ∆ rises from 2
to 4, the revenue drops by 41%. However, they are always
better than the VCG revenue, especially when interference is
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Fig. 6. Impact of interference on revenues.

20 40 60 80 100 120 140 160100

102

104

106

Number of Bids

R
ev

en
ue

 

 

VCG
Revenue−Min
VCG−Nearest

(a) Revenue vs Number of bids

8 16 24 32 40 48 56 64100

101

102

103

104

105

Number of Channels

R
ev

en
ue

 

 

VCG
Revenue−Min
VCG−Nearest

(b) Revenue vs Number of channels

0.2 0.4 0.6 0.8 10

1000

2000

3000

4000

5000

6000

7000

8000

Delta

R
ev

en
ue

 

 

8g
16g
32g

(c) Revenue vs Bidder satisfaction

Fig. 7. Comparisons of revenues.

moderate. When ∆ = 2, the core-selecting auctions can even
achieve a 177% higher revenue. This high revenue is attributed
to channel reuse. Because there will be more winners in the
auction, and they are all charged at least their VCG payments,
accumulating to a much higher aggregate revenue.

We then study how core-selecting auctions outperform the
VCG mechanism in terms of revenues by changing the number
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Fig. 8. Influence of bid distribution: Revenue vs Number of bids

of bids submitted and the number of channels auctioned.
We first fix the number of auctioned channels to 16, and
vary the number of bids. The results are shown in Fig. 7(a).
One observation is that the revenue minimization rule and
the VCG-nearest rule generate the same amount of revenues,
verifying the relationship between (17) and (18). We can see
that the core-selecting auctions always achieve higher revenues
than the VCG mechanism. However, the difference between
them dwindles when the number of bids becomes larger. This
is due to the fact that in the VCG mechanism, in the presence
of more bids, is more likely to charge a higher payment to
a winner due to the latter’s higher potential externality on
other bidders. However, our auctions still manage to deliver
a 36% higher revenue when there are 160 bids submitted
(note that the vertical axis is on logarithmic scale). Then
we fix the number of bids to 80 and vary the number of
channels. Similarly, Fig. 7(b) shows that the core-selecting
auctions improves revenues significantly, as compared to the
VCG mechanism.

For a better illustration of revenues against bidder satis-
faction of our core-selecting auctions, we plot Fig. 7(c). We
fit the points with second order polynomial curves for 8, 16
and 32 channels, respectively. These curves describe trade-offs
between revenues and bidder satisfaction, which can help the
auctioneer leverage both in making long-term decisions.

In previous experiments, we assume bidders select channels
rationally and reasonably as in reality (e.g., choose channels
that are spectrally adjacent). The amount of bids are drawn
from a normal distribution. To investigate the influence on
revenues by the bid distribution, we further assume bids are
arbitrarily set and their amount are drawn from a uniform
distribution for comparison. The four settings that we adopt are
“Arbitrary-Normal”, “Arbitrary-Uniform”, “Regions-Normal”
and “Regions-Uniform” (details available in [28]), respec-
tively. From Fig. 8 and Fig. 9, we found that the performance
of our auctions is quite stable. Even when the bidders arbitrar-
ily bid for channels, the revenues do not deteriorate (we only
show the results of the VCG-nearest rule, since the revenue-
minimization rule has the same results).

D. VCG-Nearest Rule vs. Zero-Nearest Rule

It is observed that under the zero-nearest rule, the winner
with high valuation shares less of the burden to conquer a
coalitional blocking. For example, consider three SUs, 1, 2, 3,
bidding for two different channels A and B with the following
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Fig. 9. Influence of bid distribution: Revenue vs Number of channels

bids:

b1(A) = 40, b2(B) = 20, b3(A,B) = 50

Winners 1 and 2 have VCG payments (30, 10) not in the
core, and have to raise their combined payment to 50 to keep
SU3 from blocking. Under the zero-nearest rule, SU2 will be
responsible for this total payment increase with final payments
(30, 20). On the contrary, the VCG-nearest rule results in a
sharing of this burden, with payments (35, 15).

The above phenomenon is verified by Fig. 10. When VCG
payment is not in the core, the monetary burden [18] of bidder
j is defined as:

πj =
pj − pV CG

j∑
i∈N (pi − pV CG

i )

We fix the number of channels to 8 and vary the number
of bids from 20 to 160. The highest valued winners shoulder
more of the burden of conquering blocking coalitions under
the VCG-nearest rule (25.5% on average) than under the zero-
nearest rule (6.9% on average). On the contrary, the lowest-
valued winners on average pay about 18.0% under a VCG-
nearest rule, while they shoulder heavier a burden, paying
about 30.4%, under the origin-nearest implementation. We
also observe from Fig. 10 that the disparity under these two
payment rules is most pronounced when the number of bids
is small.

VII. CONCLUSIONS

Secondary spectrum auctions can serve as a promising ap-
proach to efficiently mitigate the scarcity of wireless spectrum.
We find that, if the problem scale is limited, combinatorial
auctions can be employed to enable expressive bids, while
efficiency of the auction is still guaranteed. For the first time
in the literature, we propose the use of core-selecting auctions
in the secondary spectrum market, with the consideration of
interference-free channel allocation. The advantages of core-
selecting auctions over the VCG mechanism, including higher
revenues and robustness against shill bidding, are rigorously
proven. Due to the fact that channels can be reused in the
region, accommodating more bidders compared to regular
core-selecting auctions, our design can achieve significantly
higher revenues. While absolute truthfulness is compromised,
the payment rules of our tailored core-selecting auctions still
tend to minimize any deviations from absolute truthfulness.
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Fig. 10. When total payments are more than the total VCG payments, the figures show the monetary burden shouldered by the winner(s) under (a) the
VCG-nearest rule, and (b) the zero-nearest rule.
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