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Abstract. Previous work have assumed an independent model for overlay net-
works: a graph with independent link capacities. We introduce a modwnlesf

lays (LCC-overlay) which incorporates correlated link capacities byédating
shared bottlenecks as linear capacity constraints. We define metrics sonmea
overlay quality. We show that LCC-overlay is perfectly accurate andéenjoys
much better quality than the inaccurate independent overlay. We disttater
even the restricted node-based LCC yields significantly better quality. \ifg stu
two problems in the context of LCC-graphs: widest-path and maximum-fiée

also outline a distributed algorithm to efficiently construct an LCC-overlay.

1 Introduction

The proliferation of research on overlay networks stemmftbeir versatility, ease of
deployment, and applicability in useful network serviceshsas application-layer mul-
ticast [1, 2], media streaming and content distribution Rjevious studies have uni-
formly taken the view of an overlay network as merely a weaghtetwork graph; the
nodes are end systems, the links are unicast connectiahthalinks are weighted by
unicast delay and bandwidth. Overlay networks are theeef@ated exactly as a flat
single-level network, in which the overlay links are indegent. In particular, link ca-
pacities are independent of each other. This model is imateas the overlay network
encompasses two levels: a virtual network of end systenidimgson top of an under-
lying IP network. An overlay link maps to a path, determingdHtee routing protocols,
in the underlying network. When two or more overlay links mapptths that share
an underlying link, the sum of the capacities of the overiakd are constrained by
the capacity of the shared link, i.e., these overlay linlescarrelatedin capacity. This
obvious but crucial observation leads us to conclude thatcanrate model of overlay
networks must includénk correlations

In this paper, we propose the model of overlay network witledir capacity con-
straints (LCC). An LCC-overlay is a network graph in whicle ttepacities of overlay
links are represented by variables and link correlatioesfarmulated as linear con-
straints of link capacities (i.e., LCC). The LCC-overlay debis a succinct way to
accurately represent the true network topology with alliitk correlations, requiring
only the addition of a set of linear capacity constraintgimple overlay graph.

We address the following questions. How do we qualitativeBasure the quality
of an overlay? Why do we prefer LCC-overlays instead of a sém@twork graph
with independent links? Our analysis and simulations fetlea necessity of LCC-
overlay in assuring the quality of overlay networks and wieoiuce two qualitative
metrics — accuracy and efficiency — to measure overlay qualie also study a
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restricted class of LCC, node-based LCC, that is more efficéad of a distributed
nature. Surprisingly, we find that even with such restricied incomplete LCC, the
accuracy and efficiency are much better than overlays with@©, and they are close
to overlays with complete LCC. We propose a distributed rétlgn for constructing an
LCC-overlay based on node-based LCC. We further study twwear& flow problems,

widest-path (i.e., maximum-bandwidth single-path uricasd maximum-flow (i.e.,

maximum-bandwidth multiple-path unicast), with the aidditof LCC. Traditional al-

gorithms cannot be used to solve them in a network graph w@.LWe show that
widest-path with LCC is NP-complete. We formulate the peoblof maximum-flow

with LCC as a linear program and propose an efficient algoritbr solving it.

The remainder of the paper is organized as follows. Sec.[dmtibduce the con-
cept of overlays with LCC; provide formal definitions of th€C-overlay and the qual-
ity metrics; and show the necessity of LCC-overlay in emgyitiigh overlay quality,
through analysis and simulations. In Sec. 3, we presentrtitdgm of widest-path with
LCC and show that it is NP-complete. In Sec. 4, the problem atimum-flow with
LCC is presented and formulated using linear programminggféicient algorithm for
solving it is proposed. Then, in Sec. 5, we outline an alparifor constructing an
LCC-overlay. Sec. 6 describes the related work and Sec. dludes the paper.

2 Overlay with linear capacity constraints

In this section, we will define an overlay with linear capgaibnstraints (LCC), and
two metrics for measuring overlay quality — accuracy andifficy. We will moreover
demonstrate through analysis and simulation that LCC azessary for ensuring high
quality of overlay networks.

As a result of the two-level hierarchical structure, ovetiaks are virtual links that
correspond to paths in the lower-level network. We defiimle correlation as follows:
Overlay links are correlated if they map to underlying paitad share one or more phys-
ical links. Link correlation is a fundamental property ofeolay networks. Yet, in the
current prevailing independent overlay model of a graphlirctveach link is weighted
by its unicast capacity, the underlying assumption is tiatlay links have indepen-
dent capacities. Suppose two overlay links both map to delpettk physical link of
capacityce, then each has the unicast bandwidtowever, when data flows on these
overlay links simultaneously, each has a capacity of efi} Thus, the independent
overlay may be egregiously inaccurate in representing ¢iwork in reality.

We propose an overlay mod&lCC-overlay that accurately represents the real net-
work topology, by using linear capacity constraints to sty formulate link corre-
lations. Essentially, it is a regular overlay graph, butlihk capacities are variables,
and a set of LCC express the constraints imposed by sharddrzaks. The formal
definition will be presented in Sec. 2.2.

2.1 Worst-case analysis of overlays with no LCC

For the purpose of illustration, we examine a simple exarapéetwo-level network, as
seen in Fig. 1(a). The mapping of overlay links to physicahpas the obvious one in
the graph. We adopt a simplified overlay construction athorj denoted byDC, that
is nevertheless representative of such algorithms prabwserevious work. InOC,



every node selecigneighbors to which it has links with the highest bandwitiivith

d = 3, the overlay graph for our example network is shown in Fig);lif is not hard to
see that the results we reach below holddet 2, 1. The highest-bandwidth multicast
tree for this overlay graph, denot&d -, is given in Fig. 1(c). Although thpredicted
bandwidth ofTo¢ in the overlay is3, the actuabchievablebandwidth ofT¢ is only

1 because all three tree links share the physical (inkrs) of capacity3.

In contrast, under the LCC-overlay model, capacities oflaydinks are variables
and link correlations are captured lixyear capacity constraints=or instance, the four
links (A, C), (A, D), (B, C), (B, D) are correlated, hence the sum of their capacities is
constrained by the capacity of shared physical (ink r3), i.e.,x4c + zap + zpc +
xpp < c¢(ra,rs). The linear capacity constraints for the overlay graph o E(b) are
given below in matrix form:

TAB
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The overlay graph together with the linear capacity congsgL CC) form an LCC-
overlay. For the LCC-overlay in our example, the highestelvadth multicast tree is
shown in Fig. 1(d), obtained by a greedy algorithm that is @atian of the one for
regular graphs, modified to take LCC into considerationhis tase, the predicted tree
bandwidth is equal to the achievable bandwidth; bottRare

Taking a cue from the above simple example, we arrive at thaafimg.

Proposition: For any fixed number of overlay nodes there exists a lower-level
network G such that the bandwidth of an optimal multicast tree in amgriay graph
constructed byDCresiding ovelG is asymptoticallyl /(n — 1) of the bandwidth of an
optimal multicast tree obtained in the LCC-overlay.

Proof: Consider a generalized gragh= (R U S, E) of the one in Fig. 1(a), with
n overlay nodes, shown in Fig. 2(a). Any overlay graph cormsga byOC will contain
the middle( + ¢)-link for every overlay link between the partitions, see.F). An
optimal multicast tree in th©C graph must include only thes + ¢)-links, because
otherwise its predicted bandwidth would be suboptimal. E\my, its achievable band-
width is only (8 + ¢€)/(n — 1) since alln — 1 tree links traverse the sanig + ¢)-link in
the middle. In the LCC-overlay, the optimal tree has bantlwit as shown in Fig. 2(c).
With e approaching), theOC tree asymptotically achievds(n — 1) of 5. O

2.2 Formal definitions of LCC-overlay and quality of overlay

From the above analysis, we observe that the extreme poimrpence of the overlay
with no LCC (No-LCC overlay) is a consequence ofiitaccuracyin representing the

true network topology. The LCC-overlay, on the other hamgresents the network
with perfect accuracy, and hence achieves the optimal biatliwiwo questions now

arise naturally. (1) How do we quantitatively measure thaliggof overlay networks?

(2) How does the quality (i.e., accuracy, performance) o€Ck@erlays compare with
that of No-LCC overlays in realistic networks?

! Though fictitious, this is only a slightly simpler variation of the neighbor selectitmin [4].



>
(e}

DL X

(a) A, B, C, D are overlay nodes b) Overl h
connected to each other by physical (b) Overlay grap G
links and 4 routers.

Fig. 1. A simple example of the detrimental effect that the independent modwrlesfay has on
the overlay quality.
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Fig. 2. A worst-case example of the poor quality of an overlay with no LCC.

Before we directly address these questions, we must finstity define the LCC-
overlay and the metrics to measure overlay quality. We alianake more precise the
notions of predicted and achievable bandwidth of overlayslo

The two-level hierarchy of an overlay network can be forrtedaas consisting of:
a low-level (IP) graph = (V, E) each linke € E has a capacity of(e) > 0; a
high-level (overlay) graplG (v, ) whereV ¢ V; a mappingP of every overlay
edge(v1,v9) € E to a low-level pathP(vl,vg) C G fromv; to s.

The formulation of capacity constraints in the overlay grafé is where LCC-
overlay departs from No-LCC overlay. The No-LCC overlay ipair (G, ¢), where
¢is a capacity function such that each liake E has a capacity(¢) > 0. The LCC-
overlay is defined as follows. R

Definition 1 (LCC-overlay): TheLCC-overlayis a triplet(G, C, b), where the ca-
pacity of each linke'in G is avariablerz; and(C, b) represent a set of linear capacity
constraintsCz < b: C' is a0-1 coefficient matrix of sizen x |E|, z is the|E| x 1 vec-
tor of link capacity variabled) € R™ is the capacity vector. Each roinn (C,b) is a
constraint of the fornd ;. «(; 2 ze < b(d).

Aflow f fromstotin G, isan assignment of bandwidth to every Iinkﬁlsubject
to capacity constraints and flow conservation; the flow rgtg,is the total outgoing
bandwidth ofs. We denote thachievable flovof f C G in the low-levelG by oc(f)
and theachievable bandwidtlof f by |o¢(f)|. We now describe the procedure for
obtaining these.

Let f be a flow from noded to nodeC in the No-LCC overlay shown in Fig. 1(b),
with f(A,C) = 3, f(A,B) = 2, f(B,C) = 3, hence|f| = 3. The low-level graph
G = (V,E) is shown in Fig. 1(a). Suppose low-level lirfk;,r2) is in P(A,C) N
P(B, C), then the true capacity of overlay linkgl, C') and(B, C) in f is a fair share
of the bottleneck capacity, denoted by(A4, C) = v¢(B,C) = c(r1,72)/2. For link
(A,B), P(A,B) = {(A,m), (r1,B)}, thusvs (A, B) = f(A, B). Using the true ca-



pacities of these three links with respectftpa maximum flow fromA to C' can be
obtained. This is the achievable flow ffo(f), in which a flow of1.5 is assigned to
all three links, ando¢ (f)| = 1.5 is the achievable bandwidth ¢t

In general, giverts and a flowf C G, the procedure of determinirg; (f) is shown
in Fig. 3.

for each ec E
use max-min fairness to allocate c(e) among {€:e€ P(e) and f(e) > 0},
et each allocation be denoted by ~j(e)
for each ¢e E
if f&>0 (€ «— min{~;(€): e P(e)}
el se v5(€) <0
oa(f) — maximumflow in (G, ), loa(f)| < bandwi dth of oc(f)

Fig. 3. The procedure of determiningz(f).

We introduce two metrics for measuring overlay qualégcuracyand efficiency
With respect to a maximum floyf in the overlay, accuracy is the predicted flow rate
over its achievable bandwidth; it measures the degree tochahe overlay over-estimates
a maximum flow. Efficiency is the achievable bandwidthfafivided by the low-level
maximum flow bandwidth; it measures how good an overlay marirflow performs
in comparison with the low-level optimum (which cannot baied in overlays). The
formal definitions are as follows. R

Definition 2 (Accuracy): Accuracy of a maximum-flowf in overlay networkG
residing overG, is o, = | maximum-flowf C G | / |oc(f)|-

Definition 3 (Efficiency): Efficiency of a maximum-flowf in overlay networkG
residing overG, iSEfa = log(f)| /| maximum-flowf C G |.

The overall accuracy and efficiency of an overlay are beteasured by taking the
average of accuracy and efficiency over all possible maxirfiaws. R

Definition 4 (Accuracy and Efficiency of Overlay) Accuracy of an overlay- is
themeanof {aé : s-t maximum-flowf, Vs, ¢}. Efficiency of an overlays is themean

of {e£ : st maximum-flowy, Vs, t}.

2.3 Comparing the quality of No-LCC overlay and LCC-overlay in realistic
Internet-like topologies

In practical terms, to discover a complete set of LCC incigh kost, and also requires
centralized operations. Motivated by this, we considerstricted class of LCC that
is naturally distributednode-based LCCA node-based LCC contains only capacity
variables of links that are adjacent to a single node. Thegefve simulate three types
of overlays: No-LCC, All-LCC, and Node-LCC. Through simiites with realistic
network topologies, we compare the quality of all three sypéoverlays, using the
accuracy and efficiency metrics defined above. We use améitepology generator,
BRITE [5], which is based on power-law degree distributicns

First, we compare the accuracy and efficiency of the threelaye with various
overlay sizes relative to the low-level network size. We fie number of low-level

2 A seminal paper [6] revealed that degree distribution in the Internetdasvaiplaw.
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Fig. 4. Overlay quality versus ratio of overlay size to low-level size.

nodes tal00 and vary the number of overlay nodes fraftto 90; the data are averaged
over numerous maximum flows with randomly selected sourdedastination nodes.
In Figure 4(a), accuracy is plotted against ratio of ovedagr low-level size. The All-
LCC overlay always achieves its predicted maximum flows fesxy of 1) because
it has all the bottleneck information. As the number of oagrhodes increases, the
accuracy of Node-LCC only deviates negligibly froamNo-LCC fares much worse,
with much higher values for the accuracy metric, which iaticthat it over-estimates
in predicting maximum flow values and the achievable banthsicre substantially
lower than predicted.
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Fig. 5. Accuracy distributions for No-LCC (a) and Node-LCC (b), with the fixatlo 30% of
overlay to low-level size.

Figure 4(b) shows efficiency versus overlay-to-low-levaia for the three over-
lays. All-LCC has the highest efficiency, as expected, sihbas the optimal overlay
efficiency, i.e., higher efficiency cannot be achieved by arding overlay links. The
surprise here is how closely the Node-LCC efficiency cuntofies that of All-LCC
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Fig. 6. Efficiency distributions of No-LCC (a) and Node-LCC (b) for fixed raiief, of overlay
to low-level size.

for all realistic overlay ratios (less th@5%). No-LCC has much lower efficiency than
both All-LCC and Node-LCC. It should be noted that No-LCCa#incy is not as poor
as its accuracy, relatively to the two LCC. This can be exgdiby the fact that No-
LCC heavily over-estimates (indicated by its poor accuydick capacities, and thus
overloads low-level links to their full capacity and theydienefiting the efficiency. But
overloading some low-level links results in other linksrzeunder-utilized, because it
was not foreseen that they were needed. This is why No-LC@llisignificantly less
efficient than Node-LCC.
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Fig. 7. Efficiency distribution of All-LCC (a) and the cumulative distributions for theee over-
lays (b), for the fixed rati®0% of overlay to low-level size.

Next, we evaluate the accuracy and efficiency of maximum flaxth a fixed
overlay-to-low-level ratio o80%. The distributions of accuracy ovéf0 maximum
flows for No-LCC and Node-LCC are given in Fig. 5(a) and (b3pectively. As above,
effectively all Node-LCC maximum flows have perfect accyrachile No-LCC is re-
markably inaccurate.



The distributions of efficiency are more interesting. In NG€, shown in Fig. 6(a),
only a small fraction of maximum flows are efficient. It is qudifferent for All-LCC,
seen in Fig. 7(a), where a majority of maximum flows have higkiency. The Node-
LCC distribution in Fig. 6(b) looks almost the same as AllCCThe coinciding of
Node-LCC efficiency with All-LCC efficiency is confirmed indfr cumulative distri-
butions in Fig. 7(b), where the two curves are almost the same
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Fig. 9. Efficiency distributions for No-LCC (a) and Node-LCC (b) for netwsike500.

We examine the impact of larger network sizes on accuracyefficdency, by in-

creasing the network size 0 nodes and keeping the percentage of overlay nodes at

30%. Figure 8 shows the accuracy distributions of No-LCC andéNb@C. No-LCC
accuracy is much worse than for the previous smaller netwiméc However, the in-
creased network size causes only a tiny change in Node-LC@axy, which is still
almost perfect. The efficiency distribution for All-LCC vgin in Fig. 10(a), shows ex-
tremely high efficiency for almost all the maximum flows saethlAll-LCC efficiency



has significantly improved for increased network size. Téeson, we conjecture, is
that the low-level maximum flows have to travel longer pathghie larger network,
thus they are more similar to the paths that overlay flows mapvhich means that
both overlay and low-level maximum flows encounter much efthme bottlenecks.
The same reasoning explains the improved efficiency for Nagi€ in this larger net-
work; Fig. 9(b) shows its efficiency distribution. As can ks in Fig. 9(a), No-LCC
efficiency is more inferior compared to Node-LCC than in theber network.

The cumulative distribution graph in Fig. 10(b) illustratikat the gap in efficiency
between Node-LCC and All-LCC is smaller than the gap betwéetde-LCC and No-
LCC. In Node-LCC, most of the maximum flows have high efficiemdoreover, Node-
LCC is (like All-LCC) more efficient for the larger networkzs than for the smaller
one. We conclude that increasing network size causes signifdeterioration in No-
LCC quality, but actually improves significantly the quglif All-LCC and Node-LCC.
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Fig. 10.Efficiency distribution for All-LCC (a) and cumulative distributions for theg@ overlays
(b), for network size500.

3 Widest-Path with LCC is NP-complete

The LCC-overlay is an entirely different type of network ginghan traditional network
graphs. Existing algorithms for network flow problems matwiork in the LCC-graph.
In this section, we consider the problem of widest-path Wi, i.e., finding a highest-
bandwidth path from source to destination. Widest-pathbeagolved by a variation of
Dijkstra’s shortest-path algorithm, however, this altfur does not in general find a
widest path in an LCC-graph.

We are given an LCC-graphG = (V, E),C, b}, as defined above in Sec. 2.2.
The width of a pattp = (e1,eq,...,ex) C G, w(p), is defined as: maximize.,
subjecttar., = 0,Ve; ¢ p,Cx < b, andx,, = x, = ... = x,. This can be
computed by assigning to z.,, Ve; € p, and0 to the remaining variables; and ob-
tain min{b;/z; : js.t.z; = 1}. We define Widest-Path with Linear Capacity Con-
straints (WPC) as a decision problem: INSTANCE: An LCC-graphC, b), where



G = (V,FE) and(C,b) are a set of LCC, specifiedandt, a positive integeik’ <
max{b;}. QUESTION: Is there a directed pathfrom s to ¢ whose width is no less
thanK?

Theorem: WPC is NP-complete.

Proof: WPC is in NP because a nondeterministic algorithm need ardgga subset
of E and check in polynomial time whether these edges form azpeiith w(p) > K.

We transform the Path with Forbidden Pairs (PFP) [7] to WP@. FRP problem is
defined as follows. INSTANCE: Directed gragh= (V, E), specified vertices, ¢ €
V, collectionF' = {(a1,b1),. .., (an, b,)} Of pairs of vertices fronV. QUESTION: Is
there a directed path fromto ¢ in G that contains at most one vertex from each pair in
F?

Let G, s,t, F be any instance of PFP. We must construct a gi@ph= (V', E'),
s,t € V', a set of linear capacity constraint& < b for edges inE’, and an positive
integer K < max;{b;} such thatG’ has a directed path fromto ¢ of width no less
than K if and only if there exists a directed path fronto ¢ in G that contains at most
one vertex from each pair if.

Any vertexv € V not in F' and any edge € FE not incident to a vertex it
remain unchanged v’ and E’, respectively. For every vertexin F, we replace it
with verticesu/, v” and a directed edgeg, from v’ to v”, calledu’s replacement edge.
For every edge = (v,u) € E that entersu, an edgee’ = (v, is added toFE’;
similarly, for every edge = (u,v) € E that exitsu, we adde’ = (u”,v). Now we
form the linear capacity constraints. Each non-replaceémégec € E’ gives rise to a
one-variable constraint. < 1. For each paifa, b) € F', having replacement edges
ande, in G’, respectively, we form a two-variable constraint + z., < 1. Finally we
setK = 1. Clearly the construction can be accomplished in polynbtimee.

Suppose there exists a directed paffom s to ¢ in G containing at most one vertex
from each pair inF. A corresponding path’ can be obtained iz’ by substituting
all p’s constituent vertices that appearfhby their replacement edges@. All non-
replacement edges pP"*™¢ are assigned. The PFP condition ensures that for each
replacement edge,, where(a,b) € F, e, is not inp’; thusz.,, = 1,2., = 0. It
is easy to see that all the one-variable and two-variablestcaints are satisfied, and
w(pPT™e) = 1, hence a solution of WPC.

Conversely, lep’ be ans — ¢ path inG’ satisfying all the constraints and having
width no less than 1. The width of no less than 1 and every targable constraints
being satisfied imply that at most one edge from any two-tséeiaonstraint appears in
p’. Collapsingy’ to a pathp € G by shrinking the replacement edges into corresponding
vertices, it is obvious that satisfies the PFP condition. ad

Even though the WPC problem is NP-complete, we discoverexligjtr simula-
tions that widest paths obtained without considering LC& wsually achieve optimal
bandwidth. The reason is that it is highly unlikely for links a single path to cor-
relate heavily. Therefore traditional widest-path altori suffices in realistic overlay
topologies. In general, however, the WPC problem — with atersition of all possible
pathological cases — is still NP-complete.



4 Maximum Flow with LCC

In this section we study the problem of maximum flow in an LC&gdr. The traditional
maximum flow algorithms such as Ford-Fulkerson and Pushkgékannot solve the
maximum flow with LCC problem. We first formulate the problemalinear program
and then propose an algorithm for it based on Lagrangiarattm and existing algo-
rithms for minimum cost flow. R R

Maximum Flow with LCC Problem (MFC): InputG = (V, E), C,b. Output: A
flow f C G satisfying LCC constraintéC, b). Goal : Maximize| f|.

Like the maximum flow problem, the MFC problem can be viewetliraly as a
linear program. A variable is used to indicate the total flow out efand intoz. In
the flow conservation constraind, is the node-arc adjacency matrix 61> andd is a
vector with a0 for every node, excepi(s) = —1 andd(¢) = 1.

Maximize v
subjectto Af+dv=0,Cf<b, f>0

The MFC linear program can be solved by general linear progriag algorithms,
such as the simplex method. However, due to their generataahey may not be as
efficient as algorithms that are tailored to the problem. Wipse such an alternative
algorithm.

Note that the MFC linear program only differs from the geoariaximum flow
linear program in having’ f < b (LCC) as the inequality constraint instead oK b.
MFC can be seen as a generalized maximum flow problem; maxiflouwnis a special
case of MFC with the identity matrix &. With that observation, we modify the linear
program slightly to reveal even more clearly the embeddeximam flow structure.
We do this by sieving (uncorrelated) link capacity constigfrom(C, b): for each link
e, add the constrainf(e) < b;(e), whereb;(e) = min{b(j) : C(j,e) = 1}, that is,
minimize over all constraints i@’ involving f(e). The additionalf < b, constraints do
not change the feasible flow region, therefore the new lipeagram is equivalent to
the original one. The objective function is expressed irffadint form for convenience.

z* = Minimize — v subjectto Af +dv=0, f<b, Cf<b, f>0. (2)

It is now evident that MFC is a maximum flow problem with somalitidnal
constraintsC'f < b(i.e., the LCC). We apply the decomposition solution styatef
Lagrangian relaxation [8] to the MFC problem, by assocg@tionnegative Lagrange
multipliers . = [u;]7 with the LCC constraints({f < b), and creating the following
Lagrangian subproblem:

L(p) =min —v+pu(Cf—0b) subjectto Af+dv=0, f<b, f>0. (3)

For any given vectop, of the Lagrangian multipliers, the valug(u:) of the La-
grangian function is a lower bound on the optimal objectivaction valuez* =
min —v of the original problem (4). Hence, to obtain the best pdsditbwer bound,
we need to solve the Lagrangian multiplier problem

L* = max L(p). 4)

n=0

% Rows are nodes; columns are edges; for each directed edge (i — j), A(i,e) =
1, A(j,e) = —1, otherwise entries ofl are zero.



Note that for the our Lagrangian subproblem (4), for any fixelde of Lagrangian
multipliersy, L) can be found by solving a minimum cost flow problem. A polynakmi
time minimum cost flow algorithm is the cost scaling algamthwith a running time
of O(n3log(nC)), wheren is the number of nodes ard is the upper bound on all
the coefficients in the objective function. Since the olijectoefficients ard or —1,
the time complexity in this case &(n3 log(n)). We choose the cost scaling algorithm
precisely because its running time depends neithen ¢gnumber of rows irnC'), nor on
U (upper bound on values ), which may have large values, wher&ags a constant
here.

Now that we can solve the Lagrangian subproblem for any pegiwe can solve
the Lagrangian multiplier problem (4) using the subgratimstimization technique.
It is an iterative procedure: begin with an initial choie& of Lagrangian multipliers;
the subsequent updated valyésare determined by **! = [uF + 6, (Cz* — b)] 7.
Here, the notatiof] ™ means taking the maximum 6fand each vector component;

is a solution to the Lagrangian subproblem wher:= 1.*; 6, is the step length at the
k
kth iteration. The step length is selected to be a populari$tei) = W,

where0 < \;, < 2 andU B is any upper bound on the optimal value of (#).

0

2001
-4001
-6001
-8001
-1000(
-1200f
-1400(

16001 —— Lagrangian function value
-1800F - - - Optimal value

-2000(

Objective function value

-2200
0

lb 20 30 40 5;0 éO
Number of iterations

Fig. 11. Shows the convergence of Lagrangian function values (or Lagrasgiaproblem solu-

tions) L(x) (in Problem 4) to a value near to the true optimal vadtigiin Problem 4), after a

relatively small number of iterations.

We show in Fig. 11 that for MFC in a simulated network in whitl¥% of the nodes
are overlay nodes, the Lagrangian function values convergeear optimal value in
around65 iterations.

5 Constructing an LCC overlay

In this section, we present a distributed scheme for cocisitigtan LCC overlay. In
Sec. 2, we showed that node-based LCC exhibits notablyrhugitdity than no-LCC.
The advantage of hode-based LCC is that they are naturaligaited. In our scheme,
an overlay node first determines a conservative set of nadeebLCC; it thersucces-
sively refineshe LCC.

“ 1t should be noted that sometimes there may be a gap between the optgnahgian multi-
plier objective function value and the optimal value for the original problgma branch and
bound method can be used to overcome the gap. We do not go into the details



The input is a set of overlay nodes, each possessing a lighef known nodes; the
list may not be complete at first, but it is periodically diséeated and updated. Existing
methods make use of unicast probes to estimate link bandwitiependent unicast
probes cannot yield shared bottleneck information. Theegfthe probing tool we use
in our scheme is an efficient and accurate technique for tiegeshared bottlenecks
(DSB), proposed by Katabi et al. in [9, 10]. This techniquéased on the entropy of
the inter-arrival times of packets from flows. A set of flowe gartitioned into groups
of flows, each group of flows share a bottleneck, and the Ineitle capacities are also
measured. We refer to this probing tool for detecting shamtlenecks as DSB. Every
time DSB is executed with the input of a set of flows, the ouigua collection of
groups of flows with their corresponding bottleneck capesitPrior to determining
LCC, a node selects neighbors; for our simulation, thiehighest bandwidth links are
selected.
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(a) lllustrates the phenomenon of hid- (b) The rapid convergence of the accu-
den bottlenecks. racy of discovered node-based LCC.

The node-based LCC are obtained in iterations of increasifitgement. In the first
stage, the least refined set of LCC is determined. A node &®dSB once with
the input of the set ok flows to all its neighbors. Thé flows are partitioned inta
bottleneck-sharing groups of flows,, g2, - . ., g., With the respective bottleneck ca-
pacitiesby, ba, . .., b,. The LCC obtained are thus, = {Zeé!]; z. < b} 4. Since
DSB detects only the dominant bottlenecks, some bottleneaknot be discovered in
the first stage. We give an example of this in Fig. 5(a); asshatenodel is using DSB
to probe for bottlenecks, and assume that bottlerigckas a smaller capacity thds.
When nodd/ executes DSB with aB flows from its neighborsi(1, ..., V'5), only the
most dominant bottleneckB1 and B2 can be discovered. To determine more refined
LCC, nodelU must execute DSB with the input of only the flows frém andV'2. This
will be done in the second iteration of LCC refinement.

In order to guarantee that all bottlenecks are found, akipdes subsets of flows in
each group must be probed separately. However, the brite-égarch is exponential
in computational complexity and hence infeasible. We naéin& low complexity by
randomly dividing each grouginto two subsets and execute DSB on each subset. Our
simulation results show that this non-exhaustive appréaabt only efficient but also
able to quickly find LCC that are negligibly close to the coetplLCC.



The entire procedure of discovering node-based LCC is suinetbas follows:

1. Start withG containing one single group including &lfflows.

Execute DSB with each grouypfrom G separately.

Every groupy is partitioned inton sub-groups, from which LCC derive; add to
C (the growing set of LCC) those LCC not redundant with onesaaly inC'.

4. Each sub-group af 2 flows is randomly divided into two groups, add@

5. Repeat step 2 as long as more LCC can be found.

The simulation results for a network 80 nodes with80% overlay nodes are given
in Fig. 5(b). In our simulation, LCC obtained at successtagss of refinement are used
to compute maximum flows, and maximum flows are also compuged the complete
node-based LCC. A large number of source and destinatioa ag randomly chosen
to compute maximum flows and the maximum flow bandwidths aesaged over all
such pairs. In Fig. 5(b), the average maximum flow bandwiftthsuccessive stages
of LCC refinement are plotted, and compared to the averagémaxflow bandwidth
computed using complete node-based LCC. After dntgfinement stages, the DSB
LCC are as good as complete node-based LCC. The number estguired for such
accuracy may have something to do with the node degree ihith is set a6 in this
simulation, because the node degree limit determines tixéman size of the groups
given by DSB.

The complexity of the procedure depends on two factors: murabexecutions of
DSB and number of flows probed. A reasonable estimate of thebauof packets per
DSB flow, based on reported empirical results in [9], is a famdred packets. In our
simulation, to obtain LCC that aBg8% accurate of complete node-based LCC, DSB is
executed a few times and the number of flows probed is aréQndn average. This
translates to a total of a few thousands of probes used. tiithwoting, though, that the
probing can be done passively. The overlay can begin datarigsion without knowl-
edge of LCC. The data transmission acts as passive probthgsarsed to determine
more and more refined node-based LCC over time. The datamliszon topology
can adapt to the discovered LCC.

6 Related Work

To the best of our knowledge, there has not been previous arodverlays with LCC.
Prior work have without exception assumed an overlay mofigldependent link ca-
pacities, with no correlation. To alleviate overloadingbared underlying bottlenecks,
the typical approach is to limit overlay node degrees. Sdva@ojects based on Dis-
tributed Hash Tables, e.g., CAN [11] and Chord [12], desigsteuctured overlay net-
works. Distributed algorithms for general-purpose owedanstruction were proposed
by Younget al.in [13] and by Shen in [4], using heuristics of minimum spangnirees
and neighbor selection based on unicast latency and batidwigplication-specific
proposals have been made for overlay multicast [1], cordittibution [3] and mul-
timedia streaming [2]. Also relevant is work by Ratnasagtal. [14]. A distributed
binning scheme is designed to build unstructured overldyes;aim is to incorporate
more topological awareness. This work differs from oursdousing exclusively on
latency. Due to the additive nature of the latency metrie iandwidth metric is con-
cave), overlay links are essentially independent of eabbrah latency. We focus on
overlay link capacity correlation.

wn



Common to all these proposals are heuristics that use umicasing to select over-
lay routes with low latency or high bandwidth. They view areht overlay links as in-
dependent. However, we propose a new overlay model and nrkaipon a premise
distinct from previous work.

7 Conclusions

We have introduced a new overlay model, LCC-overlay, thaslimear capacity con-
straints to efficiently and accurately represent real netsvwiith link correlations. We

showed that LCC-overlay has optimal quality, and even te&icted node-based LCC
yields good quality, while overlays with no LCC has poor dyalhich deteriorates as
network size increases. We proposed a distributed algoifitin LCC-overlay construc-

tion. We also studied the problems of widest-path and mamirfiaw with LCC.
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