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Blockchains Under Failures
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Abstract—Distributed applications that utilize heterogeneous
blockchain systems have the potential to be widely deployed. In
such applications, users from different blockchains can transact
with one another through cross-chain transactions. There are two
essential features of particular relevance for those applications
during cross-chain transactions: the atomicity in that either all or
none of the blockchains involved confirm a cross-chain transaction,
the confidentiality in that a blockchain involved in a cross-chain
transaction is only accessible for designated users. Existing cross-
chain proposals have largely relied on permissioned blockchains to
ensure confidentiality. However, we found that failures could occur
when reading or writing information during transaction confir-
mations across permissioned blockchains, namely read/write (r/w)
failures, which can lead to the violation of atomicity. In this paper,
we propose a novel mechanism, Unity, to ensure both atomicity
and confidentiality of cross-chain transactions under r/w failures
by leveraging permissioned blockchains. When failures occur in
reading or writing data, Unity classifies the data into two categories
based on its status - whether data is the latest version or not, and
presents different solutions for atomicity. Specifically, when data
is not the latest, we design a four-phase-commit protocol (4pc), in
which consensus on confirming or aborting a cross-chain transac-
tion can be achieved. If data is the latest when r/w failures occur,
we propose a smart contract based solution (SSC). We examine
the effectiveness of Unity theoretically and through experiments.
With a failure probability of 0.7, Unity achieves 98% more atomic
cross-chain transactions when compared with the state-of-the-art
cross-chain platform, Hyperservice.

Index Terms—Blockchain, protocols, heterogeneous databases,
distributed transactions, fault-tolerance, peer-to-peer computing.

I. INTRODUCTION

W ITH its security, provenance, and reliability, blockchain
technology has been widely used in real-world systems,

especially in Internet-of-things (IoT) scenarios, e.g., electric ve-
hicle charging (EV-charging) and supply chain management [1],
[2], [3], [4]. There exist heterogeneous blockchain systems de-
veloped by administrations in different scenarios [5], [6]. In that
case, a wide range of distributed applications across those het-
erogeneous blockchain systems may be deployed, where secure
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collaborations among those administrations can be provided. In
those applications, users from different blockchains can transact
with each other through cross-chain transactions. For example,
in the electric vehicle charging scenario, two gas corporations
develop two different blockchains, namely chains 1 and 2. Sup-
posing that gas stations A and B belong to those two different gas
corporations, and participate in chains 1 and 2, respectively. If
gas station A wants to request fuels from gas station B, A spends
tokens on chain 1 and B receives tokens on chain 2 through
a cross-chain transaction, enabling the collaboration between
chains 1 and 2.

Two characteristics of cross-chain transactions are notably
relevant and crucial for those distributed applications. The
first one is transaction confidentiality, which has been investi-
gated in recent blockchain research [7], [8], [9]. Specifically,
a blockchain system is only accessible to designated users.
Supposing that there is a blockchain developed by a commercial
foundation. To prevent confidential data from theft by competi-
tors, such a blockchain shall only be accessible for users that are
verified by this commercial foundation. In our example, chain
2 developed by gas corporation 2 shall not be accessible for gas
station A belonging to gas corporation 1. Second, the transaction
atomicity, as one of the well-known ACID properties [10],
has been universally believed to be essential for resilient dis-
tributed databases (RDB) [11], [12], [13]. In blockchain sce-
narios, atomicity means that either all or none of the involved
blockchains confirm a cross-chain transaction, denoted as T ,
which is critically important for users’ property [14]. In our
example, atomicity is lost if only chain 1 or 2 confirms T . On
one hand, if only chain 1 confirmsT , gas station A spends tokens
but gas station B cannot receive those tokens. On another hand,
if only chain 2 confirms T , gas station B receives tokens, while
gas station A does not spend tokens.

Some of existing cross-chain confirmation platforms assume
that each blockchain involved in a cross-chain transaction T
is permissioned [15], [16], [17], such that they can ensure
confidentiality by design. Specifically, a blockchain is consid-
ered permissioned, if only authenticated users can participate
in such a blockchain, i.e., only those authenticated users can
open accounts on such a blockchain. In our example, if chains
1 and 2 are permissioned, gas station A cannot participate in
chain 2 and gas station B is not able to participate in chain 1
without being authenticated. In that case, the confidential data
of gas corporation 2 will not be exposed to gas corporation 1,
and vice versa. However, as gas station A only has accounts on
chain 1, its tokens can only be traded on chain 1. Therefore, an
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Fig. 1. T across two chains is confidentially accomplished through an inter-
mediary.

important question is, who can send tokens to gas station B on
chain 2, and how can those tokens be sent from chain 1 to chain
2? Typically, for a cross-chain transaction T , it is assumed that
there exist intermediaries [15], [16], [17], serving as the bridge
among users from different blockchains. Each intermediary is
authenticated to participate in multiple blockchains involved in
T . As illustrated in Fig. 1, an intermediary participates in both
chains 1 and 2. Gas station A transfers tokens to that intermediary
on chain 1, and that intermediary transfers tokens to gas station
B on chain 2.

However, existing literature on cross-chain confirmations
with confidentiality assurance can penalize atomicity when cer-
tain failures take place. Typically, specific information related to
the validity of cross-chain transactionT must be read and written
across involved blockchains when confirming T . If failures dur-
ing such a reading or writing process occur, namely read/write
(r/w) failures, existing proposals can suffer from atomicity loss.
In our example, information related to the validity of T , e.g., the
account balance of gas station A, is vital when validating T . It
shall be read from chain 1, and be written on chain 2, such that
validators on chain 2 know that gas station A has sufficient tokens
for T . When either such a reading or writing operation fails,
validators on chain 2 will consider T invalid, while validators
on chain 1 know thatT is valid. As a result, only chain 1 confirms
T , leading to the atomicity loss.

It is, however, non-trivial to ensure atomicity under r/w
failures across permissioned blockchain systems. Specifically,
decentralized blockchains are essentially distinct from RDB,
making existing literatures on atomicity assurance [11], [12],
[13] not applicable. As discussed in [18], handling failures in
reading/writing some data depends on the status of such data in
terms of whether it is the latest. In RDB, it is widely assumed
that such data is older than the one to be written or read, since
read/write failures always occur due to the disaster on a read-
ing/writing server [11], [12], [18]. In contrast, a blockchain sys-
tem is decentralized without any centralized servers, indicating
that such data can be the latest version when read/write failure
occurs. As a result, the assumption related to the data status in
RDB does not apply in blockchain systems; thus novel mecha-
nisms in handling r/w failures are needed. There are two kinds
of data status under r/w failures in blockchain systems. First,
the last transaction for modifying data is confirmed after new
r/w requests for the latest data arrive. These new r/w operations
must fail. In other words, data is updated to the latest version
after those r/w failures occur. Second, that last transaction is
confirmed, but those new r/w requests for accessing the latest
data get lost.

This paper presents Unity, a novel cross-chain confir-
mation protocol that supports transactions atomicity across
permissioned and confidential blockchains, consisting of a

four-phase-commit protocol (4pc) and several smart con-
tracts (SSC). Our key observation is that, a consensus among
blockchains on whether to confirm or abort a cross-chain trans-
action is a sufficient condition for maintaining atomicity. For the
first kind of data status, where data being read/written is not the
latest, 4PC coordinates blockchains to ensure the achievement of
a consensus. Each phase in 4PC consists of different operations.
If data in the older version is read/written across blockchains,
miners can move forward to the next phase and conduct corre-
sponding operations. For the second kind of data status, where
r/w requests for the latest data are missing, i.e., data cannot
be read/written across blockchains, we consider solutions from
the perspective of enforcing all r/w operations once the latest
data is available. Our innovation design, SSC, composed of
several smart contracts, models those operations as transaction
logics and records the availability of such data as on-chain
conditions. Following the property of smart contracts, everyone
can check on-chain conditions to enforce those operations. The
difficulty lies in designing transaction logics and conditions,
where everyone shall be able to conduct the provenance of such
latest data that will be read or written, including but not limited
to IoT devices or intermediaries.

To summarize, highlights of Unity are three-folds. First, in
Unity, 4PC achieves a consensus on confirming or aborting a
cross-chain transaction among permissioned blockchains under
r/w failures with the first kind of data status. Following such a
consensus, atomicity could be ensured. Second, SSC in Unity
models 4PC as several transaction logics and conditions, which
can defend against r/w failures with the second data status. Third,
we have evaluated Unity in terms of atomicity assurance prop-
erty, the probability of successful cross-chain confirmations, and
cross-chain confirmation delay in theory and experiments. To
be more specific, we model transaction status and r/w failures
via a first-order predicate logic formalism, ACTA [19], based on
which we prove the effectiveness of Unity on ensuring atomicity.
If failures occur with a probability as high as 0.7, even with only
4pc, there are 98% more atomic cross-chain transactions com-
pared to the state-of-the-art cross-chain confirmation platform
Hyperservice [16].

The rest of this paper is organized as follows. In Section II,
we introduce some preliminaries in confidentiality requirements,
transaction confirmations across permissioned blockchains and
r/w failures to better motivate our problem. In Section III, we
give an architectural description of 4PC and SSC. In Section
IV, we present transaction logics and conditions phase-by-
phase. In Section V, we theoretically evaluate Unity in terms
of its effectiveness and the probability of successful cross-chain
confirmations. In Section VI, we examine Unity through real
implementations.

II. PRELIMINARIES

The blockchain technology provides security, provenance,
and reliability to distributed systems, where users can safely
transact with one another without any centralized authori-
ties. In EV-Charging scenarios, supposing that a commer-
cial corporation develops a blockchain, where designated gas
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stations belonging to this commercial corporation can partici-
pate. Smart vehicles can request fuel from those gas stations se-
curely by sending tokens to those gas stations on this blockchain.
Motivated by such benefits, there have been diverse but isolated
blockchain systems designed for different commercial corpora-
tions, e.g., TenneT and Bosch [5], [6]. When these corporations
collaborate, their blockchains need to be connected. Let us
consider the following cross-chain fuel recharging application,
where gas stations belonging to different companies, i.e., par-
ticipating in different blockchains, can buy and sell fuel among
one another safely. Such buying and selling operations incur
cross-chain transactions. For example, a gas station A on chain
1 running out of fuel buys fuel from gas station B on chain 2.
A cross-chain transaction, denoted as T , across chains 1 and 2
appears.

The last section has briefly discussed the importance of en-
suring transaction confidentiality and atomicity across different
blockchains. In this section, we give more thorough explanations
on existing cross-chain transaction confirmations with those two
characteristics and how r/w failures affect such confirmations.

Confidentiality Requirement: Supposing that there is a dis-
tributed system developed by a commercial corporation. To
prevent the theft of confidential data by malicious ones, a user
is able to join this system only if its identity has been veri-
fied successfully by this commercial corporation. When this
system incorporates the blockchain technology, i.e., there is a
blockchain system developed by this commercial corporation,
only designated users can participate in this blockchain. In other
words, such a blockchain shall be permissioned, and strictly
controls the identities of users that have access to it, to ensure its
confidentiality [20]. In our example, supposing that competitive
companies develop chains 1 and 2. Gas station A can only
participate in chain 1, and gas station B can only participate
in chain 2.

Actually, it is not easy to enable transaction confirmations
across permissioned blockchains. For one thing, it is difficult
to send a cross-chain transaction T to all involved users if a
user cannot participate in all involved blockchains. Supposing
that gas station A in our example is not allowed to open an
account on chain 2. In that case, gas station A can only send
coins to users on chain 1 instead of gas station B on chain 2. For
another, a validator can only check the status of users belonging
to the same blockchain. Without the same knowledge on the
status of users involved in T , it is difficult for miners from all
involved blockchains to make the same decision on confirming
or aborting T . Thus, the coordination among blockchains, with
which blockchains can jointly validate cross-chain transactions,
are necessary for the sake of atomicity.

Existing Cross-Chain Confirmations With Confidentiality:
Existing cross-chain confirmation protocols incorporate inter-
mediaries (e.g., VESes in Hyperservice) [15], [16], [17], [21],
[22], with which cross-chain transactions across permissioned
blockchains can be confirmed. Specifically, for cross-chain
transaction T , it is assumed that there is an intermediary that
is authorized for participating in all involved blockchains. In
our example, as shown in Fig. 1, an intermediary, denoted as
p, participates in both chains 1 and 2. Accomplishing T is

Fig. 2. r/w request: reading or writing request. Existing cross-chain validations
via intermediaries.

equivalent to confirming a series of sub-transactions: (a, p) and
(p, b). (a, p) transfers coins from gas station A to p on chain 1,
and (p, b) transfers coins from p to gas station B on chain 2.

There is a blockchain (e.g., a relay chain, a witness chain),
records the status of (a, p), (p, b) and ensures the honesty of in-
termediaries, as illustrated in Fig. 2. Unlike traditional database
systems, validators in a blockchain will not notify others if they
consider (a, p) invalid. To prevent the endless waiting if (a, p) is
invalid, a predefined maximum delay, denoted asM is necessary:
if (a, p) has not been confirmed within M , others consider it
invalid. In contrast, if (a, p) is confirmed within M , gas station
A and the intermediary deliver such confirmation information,
noted as c1, to miners on the relay chain. Upon c1 is successfully
written on the relay chain, this intermediary broadcasts (p, b) on
chain 2 to accomplish T .

R/w Requests Across Blockchains: In Fig. 2, the request of
reading the latest data, i.e., c1, is delivered to chain 1 by gas
station A and intermediary no later than the expiration of M .
Upon successfully reading, they deliver the request of writing
the latest data to the relay chain.

Data Status When r/w Failures Occur: We specify two kinds
of data status when r/w failures occur using our EV-charging
example. First, data is not the latest version when r/w requests
arrive. As exposed by [23], blockchains can confirm transactions
extremely slowly. In other words, (a, p) is confirmed after M
expires. The request to read the latest data, i.e., c1, must arrive
withinM before c1 is available, however. Failures in reading and
writing c1 across chain 1 and the relay chain occur. Second, data
is the latest version, but r/w requests are missing. IoT devices
and intermediaries are responsible for delivering r/w requests
across blockchains. Supposing that (a, p) is confirmed within
M . If gas stations and the intermediary fail in delivering r/w
requests, c1 also cannot be written on the relay chain.

Atomicity Loss Under r/w Failures: Under r/w failures, cross-
chain transactions in the above validation process suffer from the
loss of atomicity regardless of data status. If failures in reading
or writing the latest data c1 across chain 1 and the relay chain
occur, that intermediary will not broadcast (p, b) on chain 2.
However, in both data status categories, (a, p) will be confirmed
eventually, i.e., atomicity is lost.

III. THE UNITY ARCHITECTURE

Our key observation as follows supplies us with inspira-
tion. Supposing there is a consensus on whether to confirm or
abort a cross-chain transaction among blockchains. Then each
underlying blockchain can refer to this consensus, based on
which it confirms or aborts its sub-transactions. In this way,
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either all or none of sub-transactions are confirmed, and atom-
icity can be ensured. Thus, the objective turns to achieving a
consensus among blockchains under r/w failures without sacri-
ficing confidentiality.

Our solution, Unity, consists of two components, 4PC and
SSC. We first consider the cross-chain model built upon interme-
diaries as discussed in Section II so that the confidentiality issue
can be addressed. Atop this model, 4PC, a four-phase-commit-
process, can coordinate blockchains to achieve the consensus
under r/w failures with the first kind of data status. Besides,
specific data must be read or written across blockchains, with
which all operations in 4pc can be conducted. To handle the
second kind of data status, SSC enforces all operations to take
place once specific data is available by modeling 4PC as a series
of functions in several smart contracts.

In what follows, we first define cross-chain transactions and
their sub-transactions in our cross-chain model built upon in-
termediaries and make important assumptions to better support
Unity in Section III-A. We basically describe the four phases
of 4PC in Section III-B. Specifically, operations in each phase
and data to be read or written across blockchains are exposed
in Section III-C.

A. Cross-Chain Model and Assumptions

Definition 1. Cross-chain transactions: A cross-chain trans-
action T = {S, I,R,E} is validated through intermediaries. S
is the set of senders, R is the set of receivers, I is the set of
intermediaries, and E is the set of sub-transactions.

Definition 2. Sub-transactions: Sub-transactions of T are
modeled as follows. Supposing that there is a sender s ∈ S that
transacts with a set of receiversRs ⊆ R across different underly-
ing blockchains. For each r ∈ Rs, there will be an intermediary
p ∈ I that is correlated with s and r through sub-transactions
{(s, p), (p, r)} ⊂ E. If all sub-transactions in E are valid, T is
valid.

In our example, the cross-chain transaction between the two
gas stations A and B is validated with the assistance of an
intermediary p. There are two sub-transactions on that two
underlying blockchains. The first is {(A, p)} on chain 1, and the
second is {(p,B)} on chain 2. Thus, {S = {A}, I = {p}, R =
{B}, E = {(A, p), (p,B)}}.

Unlike existing works, we assume that an intermediary may
not directly transact with users through sub-transactions. In
our example, miners on chain 1 validate other transactions
instead of the sub-transaction (A, p), and p can receive coins
sent from gas station A upon those transactions are confirmed.
Following the security assumption in Hyperservice [16], under-
lying blockchains and the relay chain are secure. Specifically,
invalid transactions will never be confirmed by the underlying
blockchains and the relay chain. As we do not change the
relay chain design, all attack models and security analyses in
Hyperservice can be applied to Unity. Last but not least, we
assume that all underlying blockchains support smart contracts.

B. 4pc: Consensus Achievement

We now introduce our four-phase-commit protocol, referred
to as 4pc, aiming to achieve a consensus on confirming or

aborting a cross-chain transaction T under r/w failures with
the first kind of data status. The four phases are conducted as
follows:

Phase 1. Registering T on the relay chain and voting on
underlying blockchains: First, all users and the intermediary
register T on the relay chain. This registration process records
the set of sub-transactions E on the relay chain. Upon the
successful registration of T , users and intermediaries request
miners on their underlying blockchains to vote on the validity of
each sub-transaction (u, v). Only if (u, v) is checked as valid,
miners vote YES.

Definition 3. The validity of sub-transactions and voting re-
sults: For each sub-transaction (u, v), we let V(u,v) represent its
validity, and letR(u,v) denote its voting result.V(u,v) = 1means
that (u, v) is valid, and V(u,v) = 0 means that (u, v) is invalid.
Similarly, R(u,v) = 1 represents the YES voting result.

Phase 2. Collecting votes and making decisions: Second, the
data, i.e., voting results, is read from underlying blockchains and
written on the relay chain within a predefined maximum delay,
denoted asM . Based on those voting results, miners on the relay
chain make a CONFIRMING or ABORTING decision. If and only
if YES voting results are successfully read from all underlying
blockchains and written on the relay chain within M , will the
CONFIRMING decision be made.

Definition 4. Decision making: Given all voting results writ-
ten on the relay chain within M , denoted as R(M), the decision
of confirming or aborting T is:

g(R(M)) =

⎧⎨
⎩
1, if |R(M)| = |{R(u,v), ∀(u, v) ∈ E}|
and ∀R(u,v) ∈ R(M), R(u,v) = 1,
0, else.

DT (M) represents for the decision made by the relay chain,
i.e., DT (M) = g(R(M)). DT (M) = 1 or 0 means that a CON-
FIRMING or ABORTING decision is made.

Noticing that requests for reading voting results must be sent
no later than M expires. The reason is as follows. As discussed
in Section II, underlying blockchains cannot explicitly notify
users if (u, v) is invalid. Therefore, M is necessary to prevent
the endless waiting if (u, v) is invalid. To be more specific, if
the YES voting result does not exist until M expires, (u, v) is
considered invalid.

R/w failures with the first data status category can occur in this
phase. As shown in Section II, an underlying blockchain may
confirm the validity of (u, v) after M expires. In this way, the
YES voting result will not be updated when r/w requests arrive
and cannot be successfully read or written across blockchains.

Phase 3. Informing underlying blockchains of this decision:
Third, the data, i.e., the decision DT (M), is read from the
relay chain and written on each underlying blockchain. Noticing
that r/w failures with the first kind of data status will not take
place in this phase. Unlike underlying blockchains where only
valid transactions are recorded, the relay chain explicitly makes
CONFIRMING or ABORTING decision, i.e., either DT (M) = 1 or
DT (M) = 0 will be made eventually. Thus, there is no time
limit when sending r/w requests for DT (M).

Phase 4. Completing or aborting sub-transactions: Forth, all
sub-transactions of T are either confirmed or aborted based on
the same CONFIRMING or ABORTING decision. Essentially, such
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Fig. 3. Four-phase-commit protocol coordinates underlying blockchains and
achieves an aborting decision.

a decision is the consensus result among all involved underlying
blockchains.

Noticing that, during the voting process on an underlying
blockchain in the 1st phase, miners validate some specific
transactions that can represent the validity of the corresponding
(u, v). The reason is as follows. In blockchain systems, miners
directly confirm each transaction that users broadcast if it is
valid. Therefore, if a sub-transaction (u, v) is directly sent to
miners for validation, it will be confirmed once the YES voting
result is made in the 1st phase. Unfortunately, if an ABORTING

decision is made, (u, v) shall be aborted in the 4th phase, which
is, however, already confirmed in the 1st phase. To prevent this,
those specific transactions to be validated in the 1st phase need
more careful considerations, based on which we take special care
of the voting operation in the 1st phase and the sub-transaction
completion operation in the 4th phase, as discussed in Section
IV-A.

Fig. 3 illustrates how 4pc ensures atomicity under r/w failures
with the first kind of data status in our example. Chains 1 and
2 vote on T1 and T2 in the 1st phase, respectively. The data,
i.e., these voting results, shall be read from these two chains and
written on the relay chain in the 2nd phase. Under r/w failures
with the first kind of data status, where chains 1 and 2 obtain such
data after the arrival of all r/w requests, the relay chain cannot
collect enough YES voting results in the 2nd phase. As a result,
an ABORTING decision is made on the relay chain. Following this
consensus result, neither T1 and T2 can be confirmed in the next
two phases.

C. SSC in Phase Changes

There are different operations, e.g., voting and making deci-
sions, in 4 phases. Specific data must be read or written so that
miners can move to new phases and conduct their operations.
For example, r/w operations on voting results take place before
making decisions. Fig. 3 has shown that 4pc handles the first data
status category. Next, we cope with the second kind of status,
where data is the latest with missing r/w requests, by enforcing
all operations once such data is available. The difficulty lies in
the provenance and availability check of such data, which is
discussed thoroughly in Section IV.

Smart contracts provide hints for this issue. As shown in
Fig. 4, a smart contract, written by specific languages such
as Solidity and Bitcoin Script, defines functions. A function
records self-executed transaction logic under certain conditions.
For example, a function says that user A will transfer 2 coins
to user B if A has more than 5 coins. If this function is invoked
successfully, miners will check whether A has more than 5 coins.

Fig. 4. Transaction logics recorded by a smart contract function is enforced
by invoking functions.

If yes, they will revise the account balance of these two users
on the blockchain accordingly. A user can send an on-chain
transaction to invoke this function. In other words, by invoking a
function in a smart contract, its transaction logics can be enforced
to take place once corresponding conditions are met.

By utilizing such a property of smart contracts, operations
can be enforced upon data to be read or written is available. We
design several smart contracts, denoted as SSC, to help such
enforcement. Functions in SSC model operations as transaction
logic. Whether such data is ready can be known by checking
conditions recorded by functions. When functions are invoked,
miners execute the corresponding transaction logics after check-
ing conditions. SSC consists of SSCw and SSCu. SSCw is
launched on the relay chain, and SSCu is on all underlying
blockchains. In what follows, we list the set of functions in SSC
and the data to be read or written during phase changes.

In the 1st phase, users and intermediaries, I, S,R registerT =
{S, I,R,E} on the relay chain. The function Registration() in
SSCw enforces the registering. To invoke Registration(), an on-
chain transaction Tf is broadcast. Then users and intermediaries
send voting requests to their underlying blockchains. Function
Constructor() in SSCu enforces the voting operation. To invoke
Constructor(), a transaction denoted as Tl, is broadcast.

In the 2nd phase, by checking conditions in function
Collectw() of SSCw, miners know whether the data, i.e., voting
results, is ready. Collectw() writes such data on the relay chain,
whose corresponding on-chain transaction isTws. After that, two
functionsValidateYes() andValidateNo() in SSCw enforce the
decision making operation based on R(M) and obtain the final
decision DT (M). Two transactions Tc and Tr are broadcast to
invoke ValidateYes() and ValidateNo().

In the 3 rd phase, conditions recorded by function Collectu()
of SSCu, expose whether the data, i.e., CONFIRMING or ABORT-
ING decision, to be read from the relay chain and written on
underlying blockchains is available. If yes, miners on each
underlying blockchain acknowledge such a decision. The corre-
sponding on-chain transaction is Tus.

In the 4th phase, a sub-transaction is either confirmed
or aborted based on that decision. Functions Transfer() and
Refund() in SSCu enforce confirming and aborting operations,
respectively. On-chain transactions Ts and Tb are broadcast to
invoke Transfer() and Refund().

It is not trivial to design transaction logics and conditions
in SSC, requiring data provenance and availability check. For
transaction logic design, Section III-B has stated that voting
and sub-transaction completion operations in the 1st and 4th
phase cannot be trivially designed as validating or confirming

Authorized licensed use limited to: The University of Toronto. Downloaded on February 20,2024 at 23:16:46 UTC from IEEE Xplore.  Restrictions apply. 



TAO et al.: ATOMICITY AND CONFIDENTIALITY ACROSS BLOCKCHAINS UNDER FAILURES 771

sub-transactions. In other words, their transaction logic needs
to be carefully considered. Input parameters of each function
are utilized to help the condition checking process. To be more
specific, input parameters shall represent data to be read or
written, i.e., voting results and decisions. Besides, it is required
that everyone can provide such input parameters to functions,
not just limited to users and intermediaries. Therefore, it turns
out to be non-trivial for designing conditions as the availability
and provenance of such input parameters must be considered.
Two questions are to be answered: (1) what are the concrete
input parameters; (2) how do we prove the availability of data
to be read or written using such input parameters?

IV. TRANSACTION LOGICS AND CONDITIONS

We now present conditions and transaction logics recorded
by functions in SSCw and SSCu. As shown in Section III-C,
transaction logics represent operations, and conditions are used
to see whether the data to be read or written is available when
moving to each phase.

A. Transaction Logics in 4 Phases

Transaction Logics in the 1st Phase: Operations include
registering a cross-chain transaction T on the relay chain and
voting on underlying blockchains, modeled as transaction logics
in the functions Registration() and Constructor(), respectively.
In SSCw, there is a data field DECISION, representing DT (M),
i.e., the decision made on the relay chain. In Registration(),
DECISION is set as PENDED, i.e., the relay chain has acknowl-
edged the existence of T and will make a decision on it later.
Recall that to invoke Registration(), the functionTf is broadcast.
Thus, the confirmation of Tf indicates that the relay chain has
acknowledged the existence of T .

We now illustrate how to model the voting operation as
transaction logics in the function Constructor(). As shown in Al-
gorithm 2, there is a data field STATUS in SSCu, representing
the status of T . Initially, STATUS is CLOSED. In Constructor() of
SSCu, u transfers the number of coins needed in (u, v) to SSCu.
Once Constructor() is confirmed, the data field STATUS becomes
WAITING, and the YES voting result is obtained. As discussed
in Section III-C, to call Constructor(), u broadcasts an on-chain
transaction Tl.

As explained in Section III-B, miners shall validate special
transactions instead of (u, v) during the voting process. In
the above function Constructor(), miners validate Tl instead,
where u transacts with SSCu at the amount of funds needed
in (u, v). In this circumstance, the confirmation of Tl means
that u has transferred coins to SSCu, i.e., u has sufficient coins
to perform the sub-transaction (u, v). In other words, (u, v) is
valid. Therefore, the YES voting result shall be generated, i.e.,
V(u,v) = 1 and R(u,v) = 1.

Transaction Logics in the 2nd phase: We now elaborate
transaction logics of the function Collectw() used to read YES

voting results from underlying blockchains and write them on
the relay chain, as shown in Algorithm 1. Input parameters of
Collectw() are used to check whether the YES voting result, i.e.,
the confirmation of Tl, is available. If yes, such input parameters

can pass the condition checking. Then miners store such confir-
mation information on the relay chain. As discussed in Section
III-C, how does such input parameters look like and how to store
such confirmation information is related to conditions design,
which will be introduced in the next subsection.

Transaction logics of ValidateYes() and ValidateNo() for
making the CONFIRMING or ABORTING decision are included
in Algorithm 1. There is a timer counting down the predefined
maximum delay M . After this timer stops, in ValidateYes()
and ValidateNo(), miners search for the data representing for
confirmations ofTl, i.e.,R(M), on the relay chain. On one hand,
in ValidateYes(), if confirmations of Tl from all underlying
blockchains are found, i.e., DT (M) = g(R(M)) = 1, DECI-
SION becomes CONFIRMING, whose value is 1. On another hand,
in ValidateNo(), if there lack confirmations of Tl from some
underlying blockchains, i.e., |R(M)| < |{R(u,v), ∀(u, v) ∈
E}|, DT (M) = g(R(M)) = 0, DECISION is ABORTING, whose
value is 0. AsTc is broadcast to callValidateYes(), the confirma-
tion of Tc means that a CONFIRMING decision is made. Similarly,
the confirmation of Tr indicates that an ABORTING decision is
made.

Transaction Logics in the 3 rd phase: We now design trans-
action logics of the function Collectu(), where a CONFIRM-
ING or ABORTING decision is read from the relay chain and
written on underlying blockchains, as illustrated in Algorithm
2. When input parameters pass the condition checking, the
confirmation of Tc or Tr is considered to be provided to this
underlying blockchain, whose miners revise the data field STA-
TUS to CONFIRMING or ABORTING accordingly. Different with
Collectw(), such confirmation is not directly recorded on under-
lying blockchains. The reason is related to blockchain structures
and will be explained in the next subsection.

Transaction Logics in the 4th Phase: Sub-transactions shall
be either confirmed or aborted based on the decision. Noticing
that when underlying blockchains vote on the validity of each
sub-transaction (u, v) in the 1st phase, the smart contract SSCu

temporarily holds funds that is used in (u, v). Thus, SSCu must
transact with u or v to complete or abort sub-transactions. With
a CONFIRMING decision, i.e., DT (M) = 1, SSCu must transact
with v, and (u, v) is completed. In contrast, with an ABORTING

decision, i.e., DT (M) = 0 and V(u,v) = 1, SSCu transacts with
u. These operations are enforced through invoking functions
Transfer() and Refund().

Transaction logics of Transfer() and Refund() are presented
in Algorithms 1 and 2. In the 3 rd phase, the data field STATUS in
SSCu has been set as CONFIRMING or ABORTING. On one hand,
in Transfer(), if STATUS equals CONFIRMING, coins are deducted
from SSCu and charged to v. On another hand, if STATUS is
ABORTING, coins are returned back to u from SSCu in Refund().
Confirmations of on-chain transactions Ts and Tb correspond-
ing to Transfer() and Refund() represent the completion and
abortion of sub-transactions, respectively.

As discussed in Section III-B, when moving to phase 2 and 3,
voting results and the decision must be read and written across
blockchains. To be more specific, certain data representing the
confirmations of Tl, Tc and Tr shall be input parameters of
functions Collectw() and Collectu() during phase changes.
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Algorithm 1: The Smart Contract SSCw on the Relay Chain
�Cross-chain Transaction T .

1: procedure REGISTRATION(): Tf

2: Input: Cross-chain transaction T
3: DECISION = −1.
4: procedure COLLECTw(): Tws

5: Input: the block header BH, Merkle Proofs p
containing Tl.

6: if Tl passes the inclusion proof providing p and BH
then

7: Add BH to the Merkle tree MT whose root is SRw.
8: procedure ValidateYes(): Tc

9: if timeElapsed >= M then
10: for ∀Tl ∈ H do
11: Search the Merkle tree MT whose root is SRw for

Tl.
12: if Tl is found in MT then
13: DECISION = 1.
14: Terminate.
15: procedure VALIDATENO(): Tr

16: if timeElapsed >= M then
17: for ∀Tl ∈ H do
18: Search the Merkle tree MT whose root is SRw for

Tl.
19: if Tl is not found in MT then
20: DECISION = 0.

Thus, conditions in these two functions shall be able to check
input parameters. Next, we show concrete input parameters and
how to prove the existence of such confirmations using input
parameters.

B. Conditions for Phase Changes

A user can verify the confirmation of a transaction given a
block header and some light-weight information, commonly
Merkle proofs in existing Blockchain developments, such as
Bitcoin, Ethereum, and Tendermint [24], [25], [26], [27], [28].
Whether that transaction is included in that block can be known
by efficiently comparing that block header with the Merkle
proof of that transaction via an existing logarithmic complexity
algorithm. If that transaction passes such an inclusion proof,
its confirmation is naturally verified. In this way, we can verify
confirmations of Tl, Tc, and Tr by conducting this inclusion
proof using block headers and Merkle proofs.

Thus, input parameters representing confirmations of Tl, Tc,
Tr are: headers of blocks that contain Tl, Tc, Tr and their Merkle
proofs. In the function, Collectw() of SSCw, a block header from
an underlying blockchain is first checked on the inclusion of Tl

provided with a Merkle proof. If yes, this block header is added
as the rightmost leaf node to a Merkle tree of a block on the relay
chain, following the design of Hyperservice. The root of that
Merkle tree, denoted as SRw, is included in the header of that
block and updated upon each successful Collectw() invocation.
For the function Collectu() of SSCu, similar inclusion proof
is necessary when conducting the condition check. However,

Algorithm 2: The Smart Contract SSCu on Each Underlying
Blockchain �Sub-transaction (u, v).

1: procedure CONSTRUCTOR(): Tl

2: if u have sufficient funds then
3: Set the initial balance of this smart contract as X ,

deduct X coins from the account of u.
4: STATUS = WAITING.
5: procedure COLLECTu(): Tus

6: Input: the block header BH, Merkle proofs p
containing Tc or Tr.

7: if Tc or Tr passes the inclusion proof then
8: STATUS = CONFIRMING or ABORTING.
9: procedure TRANSFER(): Ts

10: if STATUS = CONFIRMING then
11: Add X coins to v, reduce X coins from SSCu.
12: procedure REFUND(): Tb

13: if STATUS = ABORTING then
14: Add X coins to u, reduce X coins from SSCu.

Collectu() does not modify the underlying blockchain structure
in adding block headers to a Merkle tree. The reason is that an
underlying blockchain may not have an additional Merkle tree
to store block headers from other blockchains like a relay chain,
where such modifications shall not be supported to prevent hard
forks.

In Fig. 5, Unity handles our cross-chain transactionT between
two gas stations. Two sub-transactions in T are {(a, p), (p, b)}.
In the 1st phase, to let miners vote on the validity of (a, p) and
(p, b), gas station A and the intermediary broadcast Tl on chains
1 and 2, respectively. Once Tl is confirmed, to move into the 2nd
phase, anyone can read such confirmation of Tl from chain 1 and
notify the relay chain of writing such confirmation by broadcast-
ing Tws. Besides, anyone can broadcastTc orTr so that the relay
chain makes the CONFIRMING or ABORTING decision. Similarly,
when entering the 3 rd phase, anyone can broadcast Tus on its
underlying blockchain to record this decision. Finally, this user
can broadcast Ts or Tb on its underlying blockchain in the 4th
phase, to complete or abort sub-transactions.

Unity ensures atomicity, confidentiality, and fault-tolerance.
In the above example, anyone broadcasting transactions is only
required to participate in its own underlying blockchain and
the relay chain without accessing other underlying blockchains,
ensuring confidentiality. Supposing that gas station A and the
intermediary have registered T on the relay chain. Everyone
can invoke all functions, where voting results and decisions can
be read and written across the blockchain, and all operations are
enforced. Besides, if the latest data, i.e., the YES voting result on
chain 1 is updated after M expires, Tr will be confirmed. As a
result, Tb is broadcast so that all sub-transactions are aborted.

V. THEORETICAL ANALYSES ON UNITY

We theoretically evaluate Unity on its atomicity assurance and
the probability of successful cross-chain confirmations.
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Fig. 5. By confirming Tl, SSCu on chains 1 and 2 temporarily hold coins from gas station A and the intermediary during voting on the validity of (a, p) and
(p, b). Tc and Tr contribute to enforcing the decision making operation. If Tws and Tus are confirmed, r/w operations of voting results and the decision are
enforced. Ts and Tb are used to enforce the completion and abortion of sub-transactions, respectively.

A. Atomicity Proof

We use ACTA, which can express the relationship among
events that take place in a system, to prove the effectiveness
of Unity in ensuring atomicity. In Unity, events include vot-
ings, making CONFIRMING or ABORTING decisions, confirming
or aborting sub-transactions, and r/w failures. We first model
the relationship among those events when atomicity is ensured.
Then we model those events in Unity and analyze their corre-
lations, which are equivalent to the relationship in ensuring the
atomicity.

Modeling Conditions on Ensuring Atomicity: Recalling Sec-
tion III, by referring to the consensus on whether to confirm or
abort a cross-chain transaction among blockchains, either all or
none of underlying blockchains confirm their sub-transactions.
There are two conditions for ensuring atomicity. First, such a
consensus is achieved. Second, a sub-transaction in an underly-
ing blockchain is not confirmed or aborted until the achievement
of such a consensus.

Theorem 1: A cross-chain transaction T is atomic if

∀(u, v),Confirmed(u,v) ∈ H ⇒ (ConfirmT ∈ H) ∧ ¬(ε′→ ε),

(1)

or ∀(u, v),Aborted(u,v) ∈ H ⇒ ((AbortT ∈ H)∧
¬(ε′→ ε)) ∨ ∃ε′′ ∈ IE, (ε′′(u,v) → Aborted(u,v))), (2)

ε′ ∈ {Confirmed(u,v),Aborted(u,v)}, ε ∈
{ConfirmT ,AbortT }. IE = {WrongTrans(u,v)}. H is the
complete history of existing events. ε′ and ε are events
belonging to the history H . The predicate ε′ → ε is true if event
ε′ precedes event ε in H . ε′ ⇒ ε explains the dependency among
events: ε′ happens if ε is true or satisfied. IE is a set of events,
where a sub-transaction (u, v) is aborted locally regardless
of the consensus result among blockchains. Specifically, if
(u, v) is invalid, denoted as WrongTrans(u,v), the transaction Tl

between u and SSCu will not be confirmed, i.e., (u, v) is aborted
locally. ConfirmT and AbortT represent the CONFIRMING or
ABORTING consensus of T . Confirmed(u,v) and Aborted(u,v)

means that the sub-transaction (u, v) has been confirmed or
aborted, respectively.

Equation (1) means confirming a sub-transaction (u, v) needs
the CONFIRMING decision. Equation (2) states precedent events

of aborting (u, v): either an ABORTING decision has been
achieved, or (u, v) is locally aborted by underlying blockchains
due to events in IE.

Modeling Unity: Our Unity is formulated as follows.
Definition 5; Events in Unity are related to each other, and

their relationship can be mathematically expressed.

∀(u, v),Lock(u,v) ∈ H ⇒ WrongTrans(u,v) /∈ H, (3)

∀(u, v),VoteYes(u,v) ∈ H ⇒ (Lock(u,v) → Expired(u,v))

∧ (Request(u,v) ∈ H) (4)

∀(u, v),RFail(u,v) ∈ H ⇒ Expired(u,v) → Lock(u,v)

∀(u, v),WFail(u,v)∈H ⇒ (Expired(u,v)→Lock(u,v))∨ (5)

(Request(u,v) /∈ H) (6)

ConfirmT ∈ H ⇒ ∀(u, v), (VoteYes(u,v) ∈ H) (7)

AbortT ∈ H ⇒ ∃(u, v),RFail(u,v) ∈ H ∨ WFail(u,v) ∈ H

∨ Lock(u,v) /∈ H (8)

∀(u, v),Confirmed(u,v) ∈ H ⇒ ConfirmT → Confirmed(u,v)

(9)

∀(u, v),Aborted(u,v) ∈ H ⇒ (VoteYes(u,v) ∈ H ∨ RFail(u,v)

∈ H ∨ WFail(u,v) ∈ H ⇒ (AbortT → Aborted(u,v)))

∨ (WrongTrans(u,v) → Aborted(u,v)) (10)

Specifically, users and intermediaries register T on the relay
chain, denoted as RegisterT . If (u, v) is checked as valid, coins
needed for completing T is locked in a smart contract, denoted
as Lock(u,v). The expiration of the predefined maximum delay is
Expired(u,v). Request(u,v) provides the voting result. RFail(u,v)
means that the voting result of (u, v) cannot be read. WFail(u,v)
means that the voting result of (u, v) cannot be written on the
relay chain. VoteYes(u,v) indicates that a YES voting result is
obtained. Decisions onT are ConfirmT or AbortT . Finally, (u, v)
is either completed, or otherwise, denoted as Confirmed(u,v) and
Aborted(u,v).

In (3), validation requests are successfully sent to all under-
lying blockchains, and T has been registered on the relay chain.
(4) indicates that the YES voting result of (u, v) is successfully
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obtained on an underlying blockchain if Tl corresponding to
(u, v) is confirmed. Equation (5) means that if the voting result
of (u, v) is updated after the arrival of r/w requests, such voting
result cannot be read. Equation (6) means that if the voting result
is not updated on time or r/w requests do not arrive, it cannot
be written on the relay chain. In (7) and (8), T is considered
valid only when YES voting results of all sub-transactions have
been read from underlying blockchains and written on the relay
chain. Equation (9) means that (u, v) is confirmed if and only
if a decision on confirming T has been made before. Equation
(10) states that in case an ABORTING decision is made, (u, v) is
aborted only after this decision is received, or it has been aborted
locally due to unsuccessful Tl, otherwise.

Analyzing Unity: We first analyze conditions for completing
or aborting a sub-transaction in Unity.

Lemma 1: A valid sub-transaction cannot be completed or
aborted until a decision is made, Mathematically speaking:
∀(u, v),VoteYes(u,v) ∈ H ∨ RFail(u,v) ∈ H ∨ WFail(u,v) ∈

H ⇒ ¬(ε′ → ε).
Proof: Combining (5) and (6), we have RFail(u,v) ∈

H ∨ WFail(u,v) ∈ H ⇒ (Expired(u,v) → Lock(u,v)) ∨
(Request(u,v) /∈ H).

1. ∀(u, v), (VoteYes(u,v) ∈ H ⇒ ¬(Confirmed(u,v) →
ConfirmT )).

Assuming VoteYes(u,v) ∈ H and Confirmed(u,v) →
ConfirmT . Thus, Confirmed(u,v) ∈ H . With (9), ConfirmT →
Confirmed(u,v), which contradicts the assumption
Confirmed(u,v) → ConfirmT .

2. ∀(u, v),RFail(u,v) ∈ H ∨ WFail(u,v) ∈ H ⇒
(¬(Confirmed(u,v) → ConfirmT )).

Assuming RFail(u,v) ∈ H ∨ WFail(u,v) ∈ H and
Confirmed(u,v) → ConfirmT . Thus, ConfirmT ∈ H . Com-
bining (7), ∀(u, v), (VoteYes(u,v) ∈ H), contradicting the
assumption RFail(u,v) ∈ H ∨ WFail(u,v) ∈ H .

3. ∀(u, v), (VoteYes(u,v) ∈ H ⇒ ¬(Confirmed(u,v) →
AbortT )).

Assuming that VoteYes(u,v) ∈ H and Confirmed(u,v) →
AbortT . Thus, Confirmed(u,v) ∈ H . Combining (9), we have:
ConfirmT ∈ H , contradicting AbortT ∈ H in the assumption.

4. ∀(u, v),RFail(u,v) ∈ H ∨ WFail(u,v) ∈ H ⇒
¬(Confirmed(u,v) → AbortT ).

Assuming that RFail(u,v) or WFail(u,v) ∈ H ,
Confirmed(u,v) → AbortT . Thus, Confirmed(u,v) ∈ H . With
(9) and (7), ConfirmT ∈ H, ∀(u, v),VoteYes(u,v) ∈ H, while
RFail(u,v) or WFail(u,v) ∈ H .

5. ∀(u, v), (VoteYes(u,v) ∈ H ⇒ ¬(Aborted(u,v) →
ConfirmT )).

Assuming VoteYes(u,v) ∈ H and Aborted(u,v) → ConfirmT .
Combining VoteYes(u,v) ∈ H and (10): AbortT →
Aborted(u,v). With the assumption: ConfirmT ∈ H, AbortT ∈
H, contradicting with each other.

6. ∀(u, v), (VoteYes(u,v) ∈ H ⇒ ¬(Aborted(u,v) →
AbortT )).

Assuming that VoteYes(u,v) ∈ H and Aborted(u,v) →
AbortT . As VoteYes(u,v) ∈ H , combining (10), we have
AbortT → Aborted(u,v), which contradicts the assumption
Aborted(u,v) → AbortT .

Proving ∀(u, v),RFail(u,v) ∈ H ∨ WFail(u,v) ∈ H ⇒
¬(Aborted(u,v) → AbortT ), ∀(u, v),RFail(u,v) ∈ H ∨
WFail(u,v) ∈ H ⇒ ¬(Aborted(u,v) → ConfirmT ) are similar
to 5 and 6.

Theorem 2: Combing Lemma 1, (9) and (10), the confirma-
tion or abortion of a cross-chain transaction using Unity is:

∀(u, v),Confirmed(u,v) ∈ H ⇒ ConfirmT ∈ H ∧ ¬(ε′ → ε),

∀(u, v), (Aborted(u,v) ∈ H ⇒ (AbortT ∈ H ∧ ¬(ε′ → ε))

∨ ∃ε′′ ∈ IE, (ε′′ → Aborted(u,v))),

matching conditions in Theorem 1, i.e., Unity ensures atomicity.
Proof: ∀(u, v),Confirmed(u,v) ∈ H

⇒ ConfirmT → Confirmed(u,v)

⇒ (ConfirmT ∈ H) ∧ (ConfirmT → Confirmed(u,v))

⇒ (VoteYes(u,v) ∈ H) ∧ (ConfirmT → Confirmed(u,v))

⇒ ConfirmT ∈ H ∧ ¬(ε′ → ε)

∀(u, v),Aborted(u,v) ∈ H ⇒
(VoteYes(u,v) ∈ H ∨ RFail(u,v) ∈ H

∨ WFail(u,v) ∈ H ⇒ (AbortT → Aborted(u,v)))∨
(Lock(u,v) /∈ H → Aborted(u,v)) ⇒
(¬(ε′ → ε) ∧ AbortT ∈ H) ∨ WrongTrans(u,v)

→ Aborted(u,v) ⇒ (¬(ε′ → ε) ∧ AbortT ∈ H)

∨ ∃ε′′ ∈ IE, (ε′′ → Aborted(u,v)). (11)

B. Successful Rate in Unity

We consider concrete circumstances where r/w failures with
two kinds of data status can occur. First, the voting results
are not updated within M because the confirmation speed in
underlying blockchains is extremely low. Denote the probability
of such a low confirmation speed as pvb. Second, voting results
are updated but users and intermediaries fail to deliver the
corresponding r/w requests. pu and pi are probabilities of such
failures rising from a user u and intermediary i, respectively.

Lemma 2: The probability P in successfully confirming T is
modeled as a multivariable function, with respect to pvb, pu and
pi.

P = P (�pu, �pi, �pvb) =
∏

u
(1− pu)

∏
i
(1− pi)

∏
b
(1− pvb).

(12)
Proof: A valid cross-chain transaction T in Unity can be

confirmed under the following two independent conditions.
First, users and intermediaries can register this cross-chain
transaction on the relay chain. P1 represents the probability that
this condition is satisfied, and P1 =

∏
u(1− pu)

∏
i(1− pi).

Second, all underlying blockchains do not experience low
confirmation speed when voting on the correctness of sub-
transactions. The probability that this condition is satisfied is
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P2 =
∏

u(1− pu)
∏

i(1− pi). Thus, we have: P = P1P2 =∏
u(1− pu)

∏
i(1− pi)

∏
b(1− pvb).

Theorem 3: In Unity, under the r/w failures with the second
kind of the data status, a cross-chain transaction is more likely
to be terminated.

Proof: We first analyze the impact of r/w failures under
the second kind of data status, denoted as P |U |+|I|, which

can be formulated as:
∂|U |+|I|(P )

· · ·∂pu∂pi · ·· = −∏
b(1− pvb), where

|U | and |I| represent the numbers of users and intermediaries,
respectively.

Similarly, we have the effect of r/w failures with the first kind
of data status, denoted as P |B|:

P (|B|) =
∂|B|(P )

· · ·∂pvb · ·· = −
∏

u
(1− pu)

∏
i
(1− pi). (13)

|B| is the number of underlying blockchains. It is sufficient to
show that P |B| > P |U |+|I| given the same probabilities in pvb,
pu and pi:

If ∀(u, i, b), pu = pi = pvb = p,

then: P |B| > P |U |+|I|. We have:

P (|B|) = −
∏

u
(1− pu)

∏
i
(1− pu)

= −
∏

u
(1− pu)

∏
i
(1− pi)

= −(1− p)|U |+|I|

P |U |+|I| = −
∏

b
(1− pvb) = −(1− p)|B|

< −(1− p)|U |+|I| = P |B|.

VI. EVALUATION

In this section, we compare the performance of Unity with
the state-of-the-art cross-chain confirmation platform, Hyper-
service, on the atomicity assurance property, the successful con-
firmation probability, and delay. In Section VI-A, we describe
implementation details, our cross-chain transaction settings, and
simulations of failures. In Section VI-B, we test the cross-chain
atomicity assurance. In Section VI-C, we examine the probabil-
ity of successfully confirming a cross-chain transaction under
failures. In Section VI-D, we conduct analyses on the delay for
confirming a cross-chain transaction with regard to the average
time of confirming transactions on underlying blockchains and
the relay chain.

A. Implementation

Blockchain and Transaction Settings: Underlying
blockchains are implemented as Ethereum blockchains,
which have already existed in real-world scenarios [6]. The
relay chain incorporates the NSB blockchain developed by
Hyperservice. Its consensus protocol is Proof-of-Action, a
variant of the Proof-of-X (PoX) protocol. Each block on the
NSB blockchain contains a Merkle tree whose leaf nodes record
headers from Ethereums.

Fig. 6. Confirming a cross-chain transaction across two Ethereums in Unity.

An account on each Ethereum is assumed to be owned
by a user, which can only participate in one Ethereum.
Thus, a user cannot access data from another Ethereum.
In these circumstances, confidentiality is ensured. An
intermediary owns three accounts on the relay chain and
two Ethereums, denoted as pr, p1, and, p2, respectively.
Following the convention in Hyperservice [16], we use two
kinds of cross-chain transactions. First, each user only owns
one account on its Ethereum and transfers coins to another.
The second is a mutual payment operation, where each user
sends and receives ethers with one another. For example,
two users A and B own 2m accounts on Ethereum 1 and 2,
denoted as A1, . . .A2m,B1, . . ., B2m. Ai sends 1 ether to
Bi, and receives 2 ethers from Bi. Following Section III-A,
S = {A1, . . .Am, Bm+1, . . ., B2m}, I = {pr, p1, p2}, R =
{Am1

, . . .A2m,B1, . . ., Bm}, E = {(Ai, p1), (p2, Bi)|i ∈
[1,m]} ∪ {(Bi, p2), (p1, Ai)|i ∈ [m+ 1, 2m]}. We let m = 1,
and sub-transactions are: (A1, p1), (p2, B1), (B2, p2), (p1, A2).

Smart Contracts SSCw and SSCu: A function in SSCw

on the relay chain is implemented as a built-in Tendermint
ABCI applicationwritten with Go language. The timer in
ValidateYes() and ValidateNo() is implemented via the built-in
timer package of Go. Users interact with those functions
by implementing two interfaces CheckTx(), Commit()
provided by Tendermint, by calling which, transactions
Tf , Tws, Tc, and Tr can be checked and broadcast. Different
with SSCw on the relay chain, the smart contract SSCu on
Ethereums is written as a class using Solidity v0.8. Users
interact with Ethereums through theWeb3.js library providing
multiple interfaces on invoking functions in SSCu. Specifically,
SSCu is first compiled to bytecodes using the interface solc,
so that transaction logics can be recognized by the Ethereum
Virtual Machine (EVM) modules of miners. In particular, param-
eters provided to functions in SSCu are encoded following the
Ethereum ABI encoding standard, in the form of fulfilling
data fields of corresponding functions.

Workflow: To deploy Unity, we just need to deploy SSCw

and SSCu on the relay chain and underlying blockchains, re-
spectively. The workflow of Unity when confirming cross-chain
transactions among two Ethereums is illustrated in Fig. 6. Each
user has a cross-chain transaction processing client that auto-
matically warps all functions invoking operations to on-chain
transactions and interacts with one another. A sender first calls
clients of users and intermediaries ( 1©) to register T on the relay
chain and send validation requests to underlying blockchains
by invoking Register() and Constructor() ( 2©). After that, if
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users and intermediaries go offline, functions can be invoked by
anyone so that all operations are enforced (( 3©)( 4©)( 5©)).

Failures Simulation: We use two specific errors to simulate
r/w failures under two kinds of data status. First, a blockchain has
not updated the data to be read or written when requests arrive.
We let miners in Ethereums put off the calling of a mining in-
terface miner.start() until the predefined maximum delay
expires, namely low confirmation speed. Second, data to be read
or written is the latest resulting from delivery errors when users
or intermediaries deliver r/w requests. We just let confirmation
processing clients of users or intermediaries terminate.

Performance Metrics: First, if the number of cross-chain
transactions losing atomicity, denoted as E, does not equal 0,
atomicity is lost. Second, a ratio, pu, between the number of
unsuccessful and total cross-chain transactions, quantifies the
probability that a cross-chain transaction is unsuccessful, i.e.,
either aborted or losing atomicity. Third, the elapsed time, D,
from submitting a cross-chain transaction until it is confirmed,
exposes confirmation latency.

Benchmarks: We evaluate our 4pc and SSC against the state-
of-art cross-chain transaction confirmation platform Hyperser-
vice on the above performance metrics. Though [14], [29] serves
as an atomic assurance protocol for swapping coins across
blockchains, they do not incorporate intermediaries. To be more
specific, each user must participate in all blockchains during
cross-chain confirmations. Therefore, [14], [29] cannot become
a comparison benchmark for cross-chain atomicity with the
confidentiality requirement.

Results are summarized as follows.
� 4pc prevents the loss of atomicity from r/w failures with the

first data status category. SSC handles the second category.
� If the failure probability is higher than 0.7, only 4pc is

enough to ensure atomicity.
� If r/w failures in the first kind of data status occur at a

probability higher than 0.5, a cross-chain transaction is
aborted in Unity at a probability near 1.

� In Unity, the delay for confirming a cross-chain transaction
is more sensitive to the relay chain’s latency than underly-
ing blockchains.

� The confirmation delay of 4pc is near Hyperservice.

B. Evaluating the Atomicity

We first prove that the cross-chain atomicity under different
failures can be ensured using Unity. To move forward, we
evaluate 4pc on the atomicity assurance.

Atomicity in Unity: For each transaction type, we send 10
cross-chain transactions into the network. Besides, we randomly
select an Ethereum blockchain and a user, either a user or an
intermediary, experiencing low confirmation speed and delivery
errors, respectively. In Table I, numbers of cross-chain trans-
actions losing their atomicity, E, are recorded. In Table I, all
cross-chain transactions are atomic under the two specific er-
rors. This result indicates that Unity ensures atomic cross-chain
transactions under r/w failures with two data status categories.

Atomicity in 4pc: We compute numbers of cross-chain trans-
actions losing atomicity, E, under different numbers of failures

TABLE I
NUMBER OF CROSS-CHAIN TRANSACTIONS LOSING ATOMICITY UNDER

DIFFERENT KINDS OF ERRORS

in 4pc, compared with Hyperservice. Cross-chain transactions
are asset movement operations. Different from the previous
experiment, errors can occur at the same time when confirming
a cross-chain transaction. Results are shown in Fig. 7(a), (b).

Parameter settings are illustrated as follows. We have 100
cross-chain transactions. A cross-chain transaction experiences
3 kinds of errors at most. Delivery errors do not take place in the
1st phase. The maximum number of errors is 300. The x-axis
is the actual number of errors, denoted as F . The y-axis is the
percentage of low confirmation speed, denoted as c. The z-axis
is the number of cross-chain transactions that lose atomicity,
denoted as E.

There are two findings in Fig. 7(a), (b). First, in Fig. 7(b),
almost all cross-chain transactions are atomic in 4pc ifF > 200,
no matter how many delivery errors there are. The reason is as
follows. If low confirmation speed and delivery errors take place
when validating the same cross-chain transaction, this cross-
chain transaction will be aborted by 4pc eventually. With more
errors, there will be more cross-chain transactions experiencing
low confirmation speed, and more cross-chain transactions can
maintain their atomicity by being aborted in 4PC. Second, in
Fig. 7(a), the number of cross-chain transactions losing atom-
icity in Hyperservice keeps increasing with more errors. The
reason is that Hyperservice cannot defend against both kinds of
errors. More errors in this circumstance result in more cross-
chain transactions losing their atomicity.

To further verify these two findings, we expanded the evalu-
ation scale by simulating confirmation results in Hyperservice
and 4pc. Specifically, there are at most 6542 errors that can occur
at any time, including the 1st phase. We iterate all probable cir-
cumstances that errors can occur when validating a cross-chain
transaction in Hyperservice and 4pc. The x-axis, R represents
the probability that an error occurs, calculated by the ratio be-
tween the actual number of errors and the maximum one. Results
are in Fig. 7(c), (d). In Fig. 7(d), when R is larger than 0.7,
almost all cross-chain transactions are atomic in 4pc. Another
interesting finding is that in Hyperservice, as illustrated by Fig.
7(c), when R > 0.98 and c > 0.6, the number of cross-chain
transactions that lose atomicity is also near 0. The reason is
that delivery errors can occur at the very beginning before a
cross-chain transaction is sent to miners. In these circumstances,
validation on this cross-chain transaction does not start, and none
of the sub-transactions are confirmed.
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Fig. 7. F represents how many times failures occur. c: the probability that validation status are not read successfully on time due to low confirmation speed. R:
the probability that failures occur. E: Total number of cross-chain transactions losing atomicity.

Fig. 8. Probabilities of unsuccessful cross-chain transaction transactions (pu) as to error probabilities (pl, po). (a), (b): Low confirmation speed less substantially
affect cross-chain confirmations.

Insight: In the event that failures come about at a probability
higher than 0.7, 4pc can ensure atomicity.

C. Evaluating the Unsuccessful Probability

This evaluation is in two moves. We first examine how low
confirmation speed and delivery errors affect probabilities of
unsuccessful confirmations in 4pc, Hyperservice, and Unity.
We distinguish unsuccessful cross-chain transactions into two
categories: aborted and losing atomicity. Then, the relationship
between numbers of cross-chain transactions in these two cate-
gories using 4pc is learned.

For each po varying from [0, 1] representing the probability of
delivery errors, we use a uniform distributed probability function
to generate a variable v. If v < po, we simulate delivery errors
for a user when validating a cross-chain transaction and check
whether it is successfully confirmed later. This operation is
repeated 100 times. We record the number of unsuccessful times
and compute the ratio between such a number and 100. The
same process is conducted for the probability at low confirmation
speed pl. In Fig. 8, x-axes are probabilities in low confirmation
speed and delivery errors, denoted as po, pl, respectively. The
y-axis is the ratio above, denoted as pu.

We now explain four findings from Fig. 8. First, in Fig.
8(b), when the probability of delivery errors for each user and
intermediary is higher than 0.5, almost all cross-chain trans-
actions fail. Second, in Fig. 8(b), where only delivery errors
occur, Unity outperforms Hyperservice and 4pc. This result is
easy to explain as SSC in Unity eliminates the need for users
and intermediaries to deliver r/w requests. Third, in Fig. 8(b),
more unsuccessful cross-chain transactions appear in 4pc than

Hyperservice if only delivery errors appear. The reason is that
users and intermediaries in 4pc need to more frequently deliver
requests of reading or writing voting results and decisions across
blockchains. Forth, in Fig. 8(a), cross-chain transactions have
an almost equal probability of being confirmed in these three
proposals given the context that only low confirmation speed
exists. This is because none of the three protocols can ensure
the confirmation of cross-chain transactions in the presence of
r/w failures with the first kind of data status.

Insights: By diving into these four findings, we obtain two
insights as follows. Based on the first finding, r/w failures with
the first kind of data status have less significant and negative
effects on the probability of successfully confirming a cross-
chain transaction, which verifies the result in Theorem 3.
Based on the second finding, under delivery errors, a cross-chain
transaction is more probable to be confirmed in Unity, compared
to Hyperservice.

Then we verify the analysis in Fig. 7(d) that with a large
number of delivery errors, a cross-chain transaction is highly
probable to be aborted, rather than losing atomicity, in 4pc.
Unsuccessful cross-chain transactions are separated into two
categories: aborted and losing atomicity. We record the numbers
of these two categories of unsuccessful cross-chain transac-
tions in 4pc under different probabilities in delivery errors.
The result is shown in Fig. 8(c). The x-axis is the probability
of delivery errors. The y-axes are the percentages of aborted
cross-chain transactions and those losing their atomicity. Results
show that if the probability that a user or intermediary experi-
ences delivery errors is larger than 0.6, 4pc can ensure atom-
icity at a probability higher than 98% by aborting cross-chain
transactions.
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Fig. 9. Relay chain has more significant impact on the cross-chain confirma-
tion latency D.

D. Evaluating the Delay

We assessed the latency of confirming a cross-chain transac-
tion, D, with respect to delays in underlying blockchains and
the relay chain in this experiment. We let du and dw represent
the delay in the underlying blockchain and the relay chain,
respectively. By changing the mining difficulty in Ethereum,
the delay for confirming a sub-transaction in an underlying
blockchain, du, varies from [10 s–800 s]. By setting additional
sleeping commands in the checkTx() interface, the delay on
the relay chain, dw, varies from [10 s–800 s]. For each du, we
repeatedly send an asset movement cross-chain transaction into
the network for 100 times, and record the average latency for
confirming one cross-chain transaction in Fig. 9(a). The x−axis
is du, and the y-axis is the average latency, D. Similarly, D with
respect to dw is in Fig. 9(b).

Insights: Fig. 9 gives us three insights. First, in Fig. 9(a), (b),
the confirmation delay of the relay chain has a more significant
impact on D in Unity. The reason is that the relay chain collects
voting results from all underlying blockchains, requiring at least
4 validations. In contrast, there are only three validations on
each underlying blockchain, fewer than the relay chain. Sec-
ond, in Fig. 9(a), (b), D in 4pc is about the same as that in
Hyperservice, while Unity takes much longer time to confirm a
cross-chain transaction. The reason is that 4pc does not incorpo-
rate smart contracts on the relay chain in writing voting results,
incurring much fewer validations. Third, combing the insight
in Section VI-B, 4pc achieves a balance between atomicity
and efficiency: with masses of failures, 4pc ensures atomicity
without a sharp increase in D.

VII. RELATED WORK

All involved blockchains must jointly validate a cross-chain
transaction. Typically, a cross-chain transaction is split into
multiple sub-transactions, each being validated on an underlying
blockchain [14], [29], [30], [31], [32], [33]. To issue all sub-
transactions, a user is required to participate in all underlying
blockchains in these works. However, in distributed applications
with the confidentiality requirement, it is not easy for a user to
participate in all blockchains. Therefore, these works do not
adapt to distributed applications with confidentiality require-
ments.

Some works incorporate intermediaries to protect confiden-
tiality [15], [16], [17], [21], [22], [27], [32]. An intermediary is
required to have access for multiple blockchains. To complete

a cross-chain transaction, users from different blockchains can
transact with that intermediary, eliminating the need for partic-
ipating in one another’s blockchain. Specifically, the validation
status must be read from a blockchain and written on other
blockchains, such that validators on all blockchains can keep
the same knowledge on the transaction status. Unfortunately,
such read/write operations can fail in asynchronous distributed
scenarios, as discussed by existing works [14], [33]. Under
read/write failures, validators on different blockchains have
different knowledge on the transaction status, and must make
different decisions on that cross-chain transaction, resulting in
the atomicity loss eventually.

Generally, the two-phase-commit protocol [14], [33], [34]
ensures atomicity, whose variants are used in diverse scenarios,
including but not limited to blockchains. Ins [14], [33], there is a
witness blockchain helping coordinate the two-phase-commit-
process among involved blockchains. To be more specific, each
user participates in all involved blockchains, transmits the vali-
dation status at appropriate points across blockchains. However,
if a user loses in delivering such validation status, atomicity
is lost. Besides, as each user can access data of all involved
blockchains, the confidentiality requirement is not satisfied.
Other cross-chain transaction proposals tried to let users return
funds back if failures take place [16]. However, they assume that
all users and intermediaries are honest enough to sign the funds
reversion transaction. In Unity, such funds are locked by smart
contracts and will be enforced to be returned.

There also exist research works on enabling cross-shard
transactions in a blockchain system [35], [36], [37], [38], [39].
Similar to cross-chain transactions, a cross-shard transaction is
split into several sub-transactions and is validated by different
sub-communities (i.e., shards) jointly. However, those proposals
cannot be directly applied in cross-chain scenarios. For one
thing, a user can freely join any shards by broadcasting transac-
tions, sacrificing confidentiality. For another, users and miners in
different shards can communicate directly as they are managed
by the same blockchain system. However, users and miners
from heterogeneous blockchain systems typically obey different
consensus protocols, making such communications impractical.

VIII. DISCUSSION

Incentive Mechanisms: All users on an underlying blockchain
shall be encouraged to invoke Collectw() and Collectu(), whose
input parameters represent the data to be read and write across
blockchains during phase changes. Such an incentive mecha-
nism could be a plug-in unit of our proposal. Fortunately, existing
works, such as BTCRelay [28], have provided multiple solutions
to this problem. These methods can be directly applied to our
proposal by adding new functions in SSCw and SSCu, where
users obtain rewards once their block headers and Merkle proofs
have passed the inclusion proof.

Selection of Intermediaries: Considering the scenario where
commercial corporations cooperate with one another, where
special roles can access part of the data in corporations. Those
roles must participate in different blockchains managed by those
corporations and can take on the responsibility of intermediaries.
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Therefore, checking whether somebody can become an inter-
mediary is equivalent to checking the role of this user, which
is a popular topic and may become the research dominance
in the security and privacy community, going parallel with our
focus.

IX. CONCLUSION

This paper proposes Unity, which protects the transaction
atomicity under r/w failures across permissioned blockchains, so
that the confidentiality is also ensured by design. We capture two
data status categories under r/w failures and propose separate
solutions for ensuring atomicity. For the first kind of data status,
where data is not the latest version when r/w failures occur, Unity
first presents 4pc, a four-phase-commit protocol, to ensure that
a cross-chain transaction is either confirmed or aborted. For the
second kind of data status, where data is the latest while it cannot
be read/written across blockchains, Unity incorporates several
smart contracts, denoted as SSC, whose highlight is to enforce
all operations during cross-chain confirmation once such latest
data is available. Theoretical and experimental results investi-
gated Unity and provided several important insights. First, Unity
ensures atomicity under r/w failures. Second, if failures occur
frequently, 4pc ensures atomicity without prolonging the confir-
mation latency, compared with the state-of-the-art cross-chain
confirmation platform, Hyperservice. Actually, SSC requires
more validations on the relay chain, extending the confirmation
delay. Our future work may consider how to reduce such delays
for a better user experience.
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