
On Sharding Open Blockchains
with Smart Contracts

Yuechen Tao∗, Bo Li∗, Jingjie Jiang†, Hok Chu Ng∗, Cong Wang‡, Baochun Li§
∗ Hong Kong University of Science and Technology, † Future Network Theory Lab, Huawei, ‡City University of Hong Kong,

§ University of Toronto
{ytaoaf, bli, hcngac}@cse.ust.hk, j@introo.me, congwang@cityu.edu.hk, bli@ece.toronto.edu

Abstract—Current blockchain systems suffer from a number
of inherent drawbacks in its scalability, latency, and processing
throughput. By enabling parallel confirmations of transactions,
sharding has been proposed to mitigate these drawbacks, which
usually requires frequent communication among miners through
a separate consensus protocol.

In this paper, we propose, analyze, and implement a new dis-
tributed and dynamic sharding system to substantially improve
the throughput of blockchain systems based on smart contracts,
while requiring minimum cross-shard communication. Our key
observation is that transactions sent by users who only participate
in a single smart contract can be validated and confirmed
independently without causing double spending. Therefore, the
natural formation of a shard is to surround one smart contract
to start with. The complication lies in the different sizes of shards
being formed, in which a small shard with few transactions
tends to generate a large number of empty blocks resulting in
a waste of mining power, while a large shard adversely affects
parallel confirmations. To overcome this problem, we propose an
inter-shard merging algorithm with incentives to encourage small
shards to merge with one another and form a larger shard, an
intra-shard transaction selection mechanism to encourage miners
to select different subsets of transactions for validation, as well
as a parameter unification method to further improve these two
algorithms to reduce the communication cost and improve system
reliability.

We analyze our proposed algorithms using the game theoretic
approach, and prove that they converge to a Nash Equilibrium.
We also present a security analysis on our sharding design, and
prove that it resists adversaries who occupy at most 33% of
the computation power. We have implemented our designs on
go-Ethereum 1.8.0 and evaluated their performance using both
real-world blockchain transactions and large-scale simulations.
Our results show that throughput has been improved by 7.2×,
and the number of empty blocks has been reduced by 90%.

I. INTRODUCTION

With better security, greater transparency and improved
traceability, blockchain systems attracted a significant amount
of attention in both academia and industry [1]–[3]. They
served as foundations for cryptocurrencies (e.g., Bitcoin [4]
and DogeCoin [5]), and enabled distributed applications by
using a peer-to-peer architecture rather than traditional client-
server models (e.g., Ethereum [6], Namecoin [7] and IPFS [8]).
However, such systems usually suffer from poor performance,

The research was support in part by RGC GRF grants under the con-
tracts 16206417 and 16207818, Guangzhou Development Zone Project Grant
2017GH23.

particularly in terms of throughput, where it is not uncommon
that users wait for excessively long periods of time for the
confirmation of transactions [7]. With Bitcoin, only 7 transac-
tions sent from users can be confirmed per second, while Visa
is able to confirm 24,000 transactions per second [9].

The root cause for such a low throughput lies in the fact
that every miner in blockchain systems validates the same set
of transactions simultaneously. Miners can receive rewards in
the form of transaction fees. When a block is confirmed, the
creator of the block can receive the fees from the block’s trans-
actions. Therefore, miners all prefer to validate transactions
with higher fees. If we assume that several transactions arrive
at the same time, all the miners will sort these transactions in
the same order according to the transaction fees and generate
blocks that confirm the same set of transactions. In other
words, the confirmation of transactions is serialized.

To tackle this problem, sharding is proposed to validate
and confirm different sets of transactions in parallel [10]–
[16] by dividing the network into multiple small groups.
Transactions from different shards are validated by differ-
ent miners simultaneously. However, since the validation of
transactions may need transaction records in multiple shards,
frequent cross-shard communication is required. For example,
assume that there is a transaction between user A and B
who ever conducted transactions in different shards, i.e.,
miners in these two shards only have parts of the transaction
records. Different from the non-sharding systems, miners must
communicate with each other to exchange their individual
validation results to validate the transaction jointly. Different
sets of new consensus protocols [12]–[18] were proposed to
handle such cross-shard communication among miners from
different shards, where per-shard leaders exchange per-shard
validation results with each other on behalf of the miners
in corresponding shards. Such mechanisms inevitably lead to
heavy communication overhead.

In this paper, we propose a completely distributed shard-
ing system that not only eliminates cross-shard communica-
tion, but also eliminates the need for new consensus pro-
tocols during the transaction validation process. Account-
based blockchain systems, like Ethereum [6] and Hyperledge
[10], support smart contracts recording the conditions under
which certain transactions can happen. Our key observation
is that if users only participate in one smart contract on the

same blockchain, the transactions sent by these users can be
validated and confirmed independently and in isolation without
causing double spending. We propose to form one shard for
those transactions whose senders are only involved in one
smart contract. Miners use a random selection algorithm to
decide which shard they belong to, where an honest miner
can verify whether others are cheating on their identities to
ensure system consistency.

Nevertheless, forming each shard corresponding to a single
smart contract can be problematic. A small shard with too
few transactions tends to generate a large number of empty
blocks, which wastes mining power. On the other hand, if a
shard is too large and occupies the majority of transactions,
the number of shards and the number of parallel confirmations
are reduced, which adversely affects the throughput.

To avoid empty blocks in small shards, we propose an inter-
shard merging algorithm. We give miners in small shards an
extra reward if they merge and form a larger shard. To achieve
this, we model the miners’ behavior as an evolutionary coop-
erative game process. In this process, during each iteration,
miners will exchange their decisions on whether to merge
with others, based on which they revise their selections until
the Nash Equilibrium point is achieved. We obtained all the
possible Nash Equilibria under different conditions through
theoretical analysis. Based on this, we propose a gaming
strategy as our inter-shard merging algorithm and prove that
this algorithm will achieve at least one equilibrium.

To avoid marginal improvements on throughput in large
shards, we propose an intra-shard transaction selection al-
gorithm. Miners in a large shard face a significant amount
of conflicts when selecting transactions, which negatively
affects the throughput of the system. To optimize the system,
we let miners select different sets of transactions through
a congestion game [19]–[22]. We incorporate the best-reply
strategy in this congestion game as our intra-shard transaction
selection algorithm to achieve a pure strategy Nash Equilib-
rium according to the analysis in [22], [23].

However, during such a shard merging process, heavy cross-
shard communication appears. Further, miners are assumed to
be selfish and honest, yet system security may be affected if
such an assumption does not hold, i.e., malicious nodes exist.
We propose a new parameter unification scheme to handle
these two problems at the same time. To solve the security
problem, we force miners to follow our algorithms by enabling
miners to verify whether others work in a gaming manner,
and then reject blocks packed by those rule-breakers. We
prove that if miners have identical input parameters of these
algorithms, such a verification process can be executed through
running these algorithms locally. After these algorithms are
locally executed, all the miners will know how transactions
are selected and how shards are merged, which also relieve
miners from frequent communication. Similar to Omniledger
[13], those input parameters are generated by verifiable leaders
who are selected randomly with the VRF [24] algorithm.

Our original contributions in this paper are as follows.
First, we propose a novel distributed sharding system that

improves system throughput without incurring new consensus
protocols for frequent cross-shard communication. Second, we
design an inter-shard merging algorithm to dynamically merge
small shards, an intra-shard transaction selection scheme to
let miners select the best sets of transactions that maximize
both their profits and system throughput at the same time, and
a parameter unification technique to further reduce the com-
munication cost without sacrificing security. Finally, through
theoretical analysis, we prove that our inter-shard merging
algorithm converges to a mixed strategy Nash Equilibrium, and
our parameter unification scheme offers 33% attack resilience.

We have implemented our sharding system on top of go-
Ethereum 1.8.0 and evaluated its performance using both real-
world transactions and large-scale simulations. Our experimen-
tal results have shown that system throughput has increased by
7.2× with only nine shards. With our shard merging algorithm,
the percentage of empty blocks decreases by 90% with only
a 14% decrease in throughput improvement. With the intra-
shard transaction selection algorithm, the system throughput
is further improved by 3×.

II. BACKGROUND AND MOTIVATION

A. Roles in a Blockchain System

In a blockchain system, users broadcast transactions to the
network, and miners are responsible for validating those trans-
actions according to all the transaction histories. Confirmed
transactions, which are often referred to as states, are packed
to blocks by miners. Blocks are recorded by all the miners
locally in the form of linked lists, called ledgers. The entire
network can be split into multiple small groups, called shards
[12]–[18]. Miners in each shard maintain disjoint transaction
histories and ledgers of the network. In this way, transactions
in different shards are validated by different miners in parallel.

A smart contract records a transaction and the conditions
under which that transaction is valid. For instance, user A can
enforce a contract to transfer 2 ETH to user B if B’s balance
is below 1 ETH. A smart contract account will record this
potential transaction and this condition. To incorporate this
smart contract, a new transaction is conducted between user
A and that smart contract account [6], rather than directly
between users. Miners will verify whether the account balance
of user B is less than 1 coin. If so, miners will confirm the
transaction between user A and that smart contract, and record
the balance change of user A and B in their local ledgers. With
the proliferation of smart contracts (over 1.7 million smart
contracts by May 2018 [25]), contract-based transactions are
becoming dominant. In Ethereum, each of the top ten smart
contracts has 2,998,533 transactions on average, and the most
popular smart contract has 1,035,4398 transactions [26] [27].

B. Revisiting the Low Throughput of Blockchain Systems

In current-generation blockchain systems, miners validate
the same set of transactions simultaneously. Such serialization
of transaction confirmation is the root cause of the low
throughput in blockchain systems. Miners in a blockchain
system keep track of unvalidated transactions. Each time a

TABLE I
CONFIRMATION TIME WITH DIFFERENT NUMBER OF MINERS.

Number of miners 2 3 4 5 6 7
Confirmation time (sec) 218 194 113 120 103 121

miner successfully confirms a transaction, she will be rewarded
a certain number of coins, namely transaction fees. To achieve
maximal profits, miners always select transactions with the
highest fees from those unvalidated transactions. Following
this principle, all the miners are likely to select the same set
of unvalidated transactions. As a result, transactions with the
highest transaction fees are likely to be confirmed first before
the whole network moves on to the next set of transactions.
In other words, more miners do not necessarily imply higher
throughput. We injected 20 transactions into go-Ethereum
1.8.0 with the settings used in Sec. VI-B1. As shown in Table
I, the time it takes to confirm a transaction does not decrease
as the number of miners keeps increasing beyond four.

Sharding improves the throughput of blockchain systems
by validating transactions in parallel. However, randomly
sharding the entire blockchain requires frequent cross-shard
communication. For example, user A with an initial balance
of 10 ETH transferred 8 ETH to user B, and this transaction is
recorded in shard 1. If A now tries to transfer 3 ETH to user
C in shard 2, miners in shard 2 would accept and confirm this
invalid transaction if they fail to communicate with miners in
shard 1. To validate such cross-shard transactions, miners in
related shards must exchange their validation results and make
joint decisions. This not only incurs a tremendous amount of
communication times, but also jeopardizes system consistency
if such communication fails.

Furthermore, as miners in the original Blockchain systems
do not need to communicate when validating transactions,
a separate consensus protocol is needed to define how such
cross-shard communication should be conducted. Existing
cross-shard consensus protocols require per-shard leaders to
exchange validation results [13]–[16] among shards.

To summarize, an ideal sharing system should require min-
imum cross-shard communication, and should make different
shards operate independently most of the time.

C. Data Irrelevancy in Smart Contracts

We observe that in blockchain systems with smart contracts,
there are three types of senders. First, in Fig. 1(a), user A only
sends transaction 1 to user B through contract 1. Second, in
Fig. 1(b), transaction 2 and 3 are sent by user C. Contract 2
records the conditions when transaction 3 can happen. Simi-
larly, transaction 2 will be confirmed as valid if the conditions
recorded in contract 1 are satisfied. Third, in Fig. 1(c), user
F sends transaction 4 to user G through contract 1, and
transaction 5 to user H directly. Since user A only participates
in one smart contract and does not conduct transactions with
users directly, transaction 1 can be validated only with the
transaction records of user A stored in contract 1. Conversely,
other transactions in Fig. 1 cannot be validated only with the
transaction records stored in contract 1. Generally speaking,

contract-based transactions sent by users that only participate
in one smart contract can be validated and confirmed by
a subset of miners that know the transaction history of the
related contract. Other miners can validate and confirm the
remaining transactions at the same time without sacrificing
system consistency. However, in the current blockchain design,
such transactions are validated by all the miners in a serialized
manner, which unnecessarily wastes computation power and
exacerbates system throughput.

III. DISTRIBUTED SHARDING

We now present our distributed sharding design. We first
introduce how to divide transactions and miners into different
shards in a distributed fashion, and then introduce how users
and miners work in our sharding system. Finally, we will
analyze why we need our inter- and intra- shard algorithms.

A. Transactions and States Sharding

Based on our observations in Sec. II-C, transactions sent by
users who only participate in the same smart contract naturally
form a shard, and miners in this shard only record transactions
happening in the shard. Noticing that there are some users who
participate in more than one contract or have directly sent
transactions to other users. Transactions sent by these users
form a unique shard, called the MaxShard, and miners in the
MaxShard record all the transactions in the system to validate
transactions sent from these users.

With such a formation of shards, transactions in different
shards are validated independently. Miners in different shards
mine in parallel without any cross-shard communication.

B. Miner Sharding

How do we securely assign miners to shards? First, per-
mitting miners to choose shards is insecure since malicious
nodes may focus on one shard to corrupt. Therefore, we
need a source of randomness with which a shard has the
same fraction of malicious nodes with the system. Second, the
fraction of miners in a shard shall keep up with the fraction
of transactions in that shard. For example, MaxShard may
contain more transactions than other shards, thus more miners
are required to validate transactions in the MaxShard.

Several schemes have been proposed to separate miners
into shards evenly. In Omniledger [13], a verifiable leader is
selected among miners with the VRF algorithm [24]. Then that
leader generates the randomness. Which shard a miner belongs
to is calculated with her public key and the randomness
through the RandHound [28] algorithm. In this way, the
separation result can be checked by everyone in the system.

To overcome the second point on distributing miners based
on the fractions of transactions, we revise the proposal in
Omniledger [13] as follows. Apart from generating and broad-
casting the randomness, the verifiable leader is also responsible
for requesting and broadcasting the fractions of transactions
in different shards from miners in MaxShard. A miner m
will know which shard she belongs to according to the
following algorithm. She first sorts all the shards based on

User A

Contract 1

User C

Transaction 1

(a) User A only invokes contract 1.

Transaction 3

User E User C

Contract 2 Contract 1

User D

Transaction 2

(b) User C invokes in contract 2 and
3.

Transaction 5

User E User F

Contract 1

User G

Transaction 4

(c) User F carries out transaction 5
with user H directly and invokes con-
tract 1.

20 40 60 80 100
Number of Miners in a Shard

0.5

0.6

0.7

0.8

0.9

1

S
a

fe
ty

25% Adversary

33% Adversary

(d) Given a 33% attack in a shard with
30 miners, the probability to corrupt
the system is almost 0.

Fig. 1. (a)(b)(c): A motivating example: data irrelevancy in smart contracts. Only transaction 1 sent by A through contract 1 can be validated and confirmed
independently. (d): The security analysis of our miners separation mechanism.

the received fractions of transactions from the leader. βi%
represents the fraction of transactions in the ith shard, and
i is the ShardID. Then she runs the RandHound algorithm
[28] with which miners are separated to 100 groups evenly,
and obtains a random number r ranging from 1 to 100. If
r ∈ [

∑s−1
i=1 βi,

∑s
i=1 βi], she is in shard s. Obviously, users

can verify whether a miner is in shard s with this algorithm
given that miner’s public key, the randomness, as well as the
fractions of transactions received from the verifiable leader.

The security analysis of our miner separation mechanism
is identical to Omniledger [13]. Under the PoW consensus
algorithm, Fig. 1(d) illustrates the security of a shard with
a different number of miners for 25% and 33% adversaries.
Obviously, a shard with more miners is harder to be corrupted.

C. Workflow in the Distributed Sharding System

When a miner receives a transaction, she first figures out
whether the sender of that transaction is only involved in the
current shard. If so, the miner will generate and broadcast a
block whose body contains that transaction and whose header
contains the current ShardID. There are several solutions to
verify whether the sender only incorporates the current smart
contract. Trivially, since miners in the MaxShard record all
the transactions in the system, they can get the answer through
checking the local states of the system and then broadcast such
information to others. This will surely incur heavy query cost.
A more elegant way is to let miners maintain the call graph
[29] among smart contracts and users locally. In this way,
miners can check the call graph instead of remotely referring
to the whole history. Obviously, how to get such information
of a sender is pluggable in our sharding. Our future work
focuses on the design of the call graph to further improve the
efficiency of our system.

When a miner X receives a block packed by another miner
Y, she needs to perform two verifications to ensure the security
of the system. First, X verifies whether Y really corresponds
to the ShardID in the block header. If Y cheats on her shard,
X will find that and reject the block. Then, X checks whether
she is in the same shard with Y through the ShardID in the
block header. If so, Y will record that block locally.

The system’s workflow is shown in Fig. 2. User x sends
transaction 1 and 2 through contract 1 and contract 2. User y
sends transaction 3 through contract 1, and user z sends trans-
action 4 through contract 2. These transactions are broadcast

Miners validate and

record transactions.

User x

chaindata chaindata chaindata

Transaction 3 Transaction 4

Shard 1 Shard 2 MaxShard

Transaction 1, 2, 3 4

MaxShard Blocks

Transaction 4

Shard 2 Blocks

Transaction 3

Shard 1 Blocks

Contract1

Contract2

User x User y User z

User x Transaction 1

Transaction 2User x

User y Transaction 3

Transaction 4User z

Transactions

User y User z

User y User z User x User x User y User z

Transaction 1, 2

User x User x

Users broadcast transactions.

Legend

Fig. 2. Overview: our distributed sharding system. User x sends transaction 1
and 2. User y sends transaction 3. User z sends transaction 4. These
transactions will be validated and recorded in different shards.

to all miners in the same blockchain network. A miner verifies
whether the incoming transactions belong to her shard using
the principle described in Sec. III-A. Miners in each shard
validate the transactions by referring to the local ledgers. After
validation, miners pack valid transactions to blocks, modify
local ledgers, and broadcast the blocks. After receiving new
blocks belong to their shards, miners will update the local
ledgers accordingly.

D. The Necessity for Inter- and Intra- Shard Algorithms

Define the size of a shard as the number of transactions
in that shard, shard sizes vary significantly based on users’
activities in each smart contract. Neither too small nor too
large shards are preferred in the sharding system.

If a shard is too small, empty blocks will appear. Existing
research has illustrated that there is a substantially large num-
ber of empty blocks in todays blockchain systems, e.g., 20%
percent Ethereum, and 19% empty blocks in Bitcoin [30], [31].
In order to enable decentralized blockchain systems, miners
are awarded if they participate in the transaction validation
process. When a block submitted by a miner is added to the
blockchain, this miner can receive a block reward and the
transaction fees corresponding to transactions in that block.
Further, even if the block does not contain any transactions,
that miner can still get the block reward. Based on such an
incentive mechanism, if there are no unvalidated transactions, a
miner will pack empty blocks to maximize her profit. Packing
an empty block is no easier than a normal block. A great

amount of mining power is thus wasted. Therefore, we need
a dynamic inter-shard algorithm to merge small shards and
avoid empty blocks.

On the other hand, a large number of transactions might
appear in a single shard. In the extreme case, the system only
contains one large shard and one small shard, the majority
of transactions are validated and confirmed in a serialized
manner if all miners in the large shard choose to pack the most
profitable transactions. This limits the potential for throughput
improvement. Therefore, we need an intra-shard transaction
selection scheme that drives miners to select different sets of
transactions.

IV. INTER- AND INTRA- SHARD ALGORITHMS

In this section, we first propose a dynamic and distributed
inter-shard merging algorithm for small shards to avoid wast-
ing mining power. Second, we introduce an intra-shard trans-
action selection algorithm for miners in big shards to further
improve the throughput. Third, we present our parameter
unification method to ulteriorly minimize the communication
cost and enhance the security of our system. Finally, we give
the security analysis of our two algorithms.

A. Inter-Shard Merging Algorithm

To reduce the number of empty blocks, we encourage
miners in small shards to merge with others by embracing an
incentive mechanism. Under this mechanism, we model the
merging behavior of miners as a cooperative game process
and propose an iterative inter-shard merging algorithm.

1) Objective and Incentive for Merging: We first discuss
the objective of our merging process. If the number of unvali-
dated transactions is larger than 0 at any time, miners can earn
more money by validating transactions than packing empty
blocks. Therefore, the size of the newly formed shard must
satisfy the following constraint,

T ≥ L, (1)

where T is the size of a shard, L is the lower bound. Our
objective is to make miners merge so that the size of the newly
formed large shard satisfies (1).

However, miners might lose some transaction fees after
merging, because there will be more miners competing on val-
idating transactions in the new shard. Therefore, an incentive
mechanism is needed to let miners merge with others.

The incentive is given in the form of coins, called the shard
reward. The rule of distributing the shard reward is if the size
of the new shard satisfies (1), all the miners in small shards
can get the same shard reward. Like the block reward, the
shard reward is also transferred to miners’ accounts by the
system. Further, our parameter unification scheme in Sec. IV-C
ensures that the merging result is verifiable by all the miners.

2) Cooperative Game: Given the incentive mechanism,
miners’ merging behavior is a cooperative game process. For
example, assume miners in shards C, D and E decide to merge
at first. Their expected payoffs are the shard reward. After
exchanging their choices between each other, those miners

find that (1) can be satisfied even only two of them merge.
Therefore, all of them will rely on others to form the new shard
and stay in their shards. In this way, their expected payoff will
change to 0.

This is surely a gaming process, where miners may change
their decision based on others’ choices. However, a new
shard must be stable for the sake of the consistency of the
system. We then propose Algorithm 3 to form a stable shard,
i.e. to achieve the equilibrium state. Through the theoretical
analysis of miners’ merging behavior in Sec. V, we obtain the
conditions for achieving the mixed strategy equilibrium in this
scenario. Algorithm 3 satisfies such equilibrium conditions,
and thus serves as the strategy for miners.

However, Algorithm 3 only produces one stable shard.
Therefore, we need to do the merging process iteratively
as illustrated in Algorithm 1. First, miners in small shards
cooperate with each other to form one new shard whose size
is larger than L. Then miners in the remaining small shards
come to the next round to form another new shard until the
remaining shards cannot form a shard satisfying (1).

Algorithm 1: Iterative Merging Algorithm
Input: The number of shards, the size of the small shards, and

the shard reward
1 for Remaining small shards who can form a new shard do
2 Miners in small shards use Algorithm 3 to merge a new

shard with the shard reward.

The complexity of Algorithm 1 is as follows. Denote the
number of small shards as S. There are at most S

2 new shards
after merging. In other words, Algorithm 3 will be performed
at most S

2 times. According to Sec. V-B, the complexity of
Algorithm 3 is O(M ∗ log 1

E)), where M is the number of
subslots, and E is the desired error value. Therefore, the time
complexity of Algorithm 1 is O(S log 1

EM).

B. Intra-Shard Transaction Selection Algorithm

For shards that contain too many transactions, we further
design a distributed intra-shard transaction selection method
to improve the throughput of large shards by letting miners
select different sets of transactions. First, we model the miners’
behavior in selecting transactions as a congestion game. Then,
we give a transaction-selection algorithm which will achieve
equilibrium in this gaming process.

Miners validate transactions because of the transaction fees.
Given such an incentive, we can model the miners’ transaction
selection process as a congestion game process [19]–[22]. In a
congestion game, there are limited resources, and the expected
profits a player can get differ based on the resources one
selects and the number of players choosing the same resources.

For example, only miner X selects a transaction with the
highest transaction fee at first. In this way, her expected profit
is the transaction fee of that transaction. After miners exchange
their choices, others find that only miner X selects the most
expensive transaction, so others will select that transaction to
improve the expected profit. Then miner X is most likely to get

zero transaction fee, because almost all the miners compete for
this transaction at the same time. In other words, the profit of a
miner changes either she or others select different transactions.

Therefore, we let miners select different sets of transactions
through this gaming process with Algorithm 2. According to
[22] [21], our transaction selection game will reach the pure
strategy Nash Equilibrium state since all the miners follow the
best-reply strategy. The complexity of the best-reply strategy
has been proved to be O(uT 2) in past researches [32]–[35],
where u is the number of miners and T is the number of
transactions.

Algorithm 2: Transaction-Selection Algorithm
Input: The transactions set, the miners set, and the initial

transaction set selected by each miner
1 while Some miner can get a higher expected profit Ui by

selecting transaction σi do
2 Pick a miner i who can improve her expected profit by

selecting transaction σi, that is Ui(σi) ≥ Ui(j).
3 Select transaction σi for miner i.

The miners’ expected profit Ui used in Algorithm 2, which
is modeled as the utility function in the congestion game
process, is calculated as follows. Assume there are u miners
and T transactions in a shard. The strategy vector of all the
miners is {σ1, σ2, ..., σu}, the number of miners who choose
the transaction j is nj , and j ∈ {1, 2, ..., T}. The transaction
fee of the jth transaction is fj . The expected payoff of miner
i selecting transaction j is,

Ui,j =
fj

nj+1 . (2)

C. Parameter Unification

First, we claim that we still need to reduce the communica-
tion frequency among miners and improve the system security.
We then introduce the parameter unification mechanism to
solve these two problems at the same time.

In Algorithm 1 and 2, miners need to exchange their choices
for several iterations to achieve the final decision on shards
merging and transaction selection. Considering the number of
transactions and miners is huge in the real implementations,
it will be costive for miners to communicate with each other.

Further, the system may be attacked by malicious nodes.
This is because miners cannot verify whether others do merg-
ing or transaction selection jobs with our algorithms. In this
way, the adversary can incorporate multiple malicious nodes
and let them corrupt specific shards or transactions together.
On the contrary, if the verification of merging or transaction
selection is enabled, the adversary can hardly corrupt any
shards or transactions. For example, suppose miner A knows
that a transaction should not be assigned to miner C. If
malicious miner C packs a block containing that transaction,
miner A can do verification and reject that block.

To enable miners to verify whether others work using
our algorithms, we incorporate the following parameter uni-
fication method. We just let all the miners have identical
input parameters of these two algorithms, which are others’

random initial choice, the miners set, and the shards set or
the transactions set. We now argue that in this scenario, such
verification can be enabled. In this scenario, it is obvious
that all the miners will get the same output representing the
merging results by executing Algorithm 1, which also holds
for Algorithm 2. If honest ones compare others’ merging
or transaction selection behavior with that output, they can
find whether others are cheating on which shard to merge or
which transaction to validate. The blocks generated by those
liars who do not follow Algorithm 1 or Algorithm 2 will be
rejected by honest ones. Further, since miners can execute
Algorithm 1 and Algorithm 2 locally, communication does
not exist among miners. In conclusion, miners are enforced to
follow our algorithms without communication overhead using
our parameter unification method.

To unify the input parameters in Algorithm 1 and Algorithm
2, we use the same mechanism discussed in Sec. III-B on
generating randomness by verified leaders in Omniledger [13].
In our design, the verifiable leader generates the others’
random initial choices, and broadcasts it with the current
miners set, the shards set or the transactions set to the whole
network.

D. Security Analysis

We will analyze the security of our two algorithms with the
parameter unification scheme separately in this section. We
assume an infinite pool of malicious nodes, and we use the
binomial distribution to model the number of malicious nodes
in a single shard. These are practical due to the unpredictability
of the leader selection process.

During the inter-shard merging process, the adversary can
only corrupt the newly formed shard when she is the leader,
and the new shard has more than 1

2 fraction malicious nodes at
the same time. So she must be the leader for several continuous
times until there are enough malicious nodes in the new shard.
The probability that the newly formed shard is corrupted is,∑l

k=0 f
k · (1− Ps), (3)

where the adversary has f fraction computation power, Ps the
probability that a single shard is not corrupted analyzed in Sec.
III-B, l is the consecutive rounds that the adversary controls.
Based on (3), when l→∞, given a 25%-adversary, the failure
probability of our inter-shard merging algorithm is 8 · 10−6.

During the intra-shard transaction selection process, we
assume that the transaction fees obey the binomial distribution.
Given this assumption, the probability of selecting a transac-
tion with t coins of transaction fee is,

Pt =

(
t
N

)
· (1

2)N , (4)

where N is the total transaction fees. Similar to the analysis
on the single shard security, the probability of corrupting a
single transaction i is,

Pi = P
[
c >

⌊n
2

⌋]
=
∑n

k=0.5n

(
n
k

)
fk(1− f)n−k, (5)

where n is the number of miners on that transaction. To corrupt
a transaction, the adversary must control a leader, and generate
a randomness with which enough malicious nodes can validate
that transaction together. Similarly, the adversary must control
the leader repeatedly and continuously until she generates
that randomness. Therefore, the probability that the system
is corrupted with our intra-shard algorithm is,∑l

k=0 f
k ·
∑T

t=1(Pi · Pt), (6)

where T is the total number of transaction fees. When l→∞,
with a 25%-adversary and 200 transaction fees in total, the
corruption probability is 7 · 10−7.

V. A GAME THEORETIC PERSPECTIVE

In this section, we analyze miners’ merging behavior from
a cooperative game theory perspective. First, we theoretically
formulate the merging game in which miners decide to merge
with others. Second, we analyze the sufficient and necessary
conditions when the merging game achieves the mixed strategy
Nash Equilibrium. Finally, we propose a distributed algorithm
for the miners to make merging decisions which will converge
to an equilibrium.

TABLE II
NOTATIONS

ym The size of the new shard merged by m shards.
xi Replicator dynamics of player i.
x−i Replicator dynamics vector of players except i
G The shard reward.
Ci Cost of player i for merging with others.
L The minimum size of the newly formed shard.
Ui,j The expected payoff of i selecting transaction j.
UY,i The payoff of player i if she merges with others.
UN,i The payoff of i if she doesn’t merge with others.
ŪY,i(xi) The average payoff of player i if she merges.
ŪN,i(xi) The average payoff of i if she doesn’t merge.
Ūi(xi) Average payoff of i using mixed strategy.

A. Formulation of the Merging Game

For simplicity of notations, we let player i represent miners
in shard i. Assume that there are m players merging among
N players. The number of transactions in the newly formed
shard is denoted as ym. Denote that the number of transactions
in these shards as c1, c2, ..., cm, respectively. The total number
of transactions in the new shard is:

ym =
∑m

i=1 ci. (7)

Recall the incentive mechanism, if ym, which is the size of
the newly merged shard, is larger than L, all the players will
get the shard reward G. Further, merging with others can lose
some profits, noted as C. Therefore, if player i merges with
others, the utility function is:

UY,i = Pr(ym > L) ∗G− Ci,∀i ∈ [0, N], (8)

where Ci is the merging cost of player i, and Pr(ym > L)
is the probability if the number of transactions for the newly
formed shard is larger than the lower bound.

There is no cost for the staying players. The utility function
for them is

UN,i =

{
Pr(ym > L) ∗G,∀m ∈ [1, N]
0, if m = 0.

(9)

We use the definition of the evolutionarily stable strategy
(ESS) in [36] [37] to represent the player’ final stable states.
A strategy a∗ is an ESS if and only if, ∀a 6= a∗, a∗ satisfies:

• equilibrium: Ui(a, a
∗) ≤ Ui(a

∗, a∗),
• stability: if Ui(a, a

∗) = Ui(a
∗, a∗), Ui(a, a) < Ui(a

∗, a),
where Ui(a1, a2) is the utility of player i when she uses
strategy a1 and another player uses strategy a2.

Since all the players are selfish, they will cheat if cheating
can improve their payoffs, since all the players are uncertain
of other players’ actions and utilities. In such a case, to
improve their utilities, the players will try different strategies
in every play and learn from the strategic interactions using
the methodology of understanding-by-building. During the
process, the percentage of players using a certain pure strategy
may change. Such a population evolution can be modeled
by replicator dynamics. Specifically, let xa stand for the
probability of a player using pure strategy a ∈ A, where
A = 0, 1 representing whether to merge with others. By
replicator dynamics [38], the evolution dynamics of xa are
given by the following differential equation:

ẋa = η[Ū(a, x−a)− Ū]xa, (10)

where Ū(a, x−a) is the expected payoff of a player using pure
strategy a, x−a means others use strategies except a, Ū is the
expected payoff of all players, and η is a positive scale factor.

The sufficient and necessary conditions that the mixed
strategy Nash Equilibrium is achieved are analyzed in the
technical report [39].

B. Algorithm to the Nash Equilibrium

In this part, we present the distributed inter-shard merging
algorithm by iteratively updating the possibilities of whether
to join others to converge to the final equilibrium.

Since ẋi = 0 is the sufficient and necessary condition for the
system’s equilibrium, we just need to converge to the solution
of the replicator dynamics to get the final equilibrium. Hence,
we can use the classical gradient descent algorithm [37] to
reach the solution iteratively.

The discretized dynamic replicator is

xi,ai
(t+ 1) = xi,ai

(t) + η[Ūi(ai, x−i(t))− Ūi(xi(t))]xi,ai
(t),
(11)

where t is the slot index and xi,ai
(t) is the probability of player

i using strategy ai ∈ A at slot t. To make the calculation more
accurate, we divide each slot to S subslots and each player can
choose whether to merge with others in each subslot.

Based on (11), we give the algorithm in Algorithm 3. Miners
in different small shards only need to exchange the statistic
data at the end of each slot t.

The complexity of Algorithm 3 is as follows. Since this
is a iterative algorithm, denote E as the final error when
the convergence is achieved, and et as the error in the tth

Algorithm 3: One-Time Shard Merging Algorithm
Input: the step size η, the slot index t = 0

1 while xi,a does not change do
2 for q = 1 : M do
3 i tosses a coin with probability ui,a using strategy a.
4 i computes her utility with (14).

5 i approximates Ūi(a, x−i(t)) with (12).
6 i approximates Ūi(xi(t)) with (13).
7 i updates the probability of strategy ai using (11).
8 i sends the statistic data and its selection to others.

t = t+ 1.

iteration, and rt as the convergence rate at tth iteration. Based
on the relationship between the convergence rate and the error,
we have et+1

et
= rt. According to [40], [41], rt is bounded

by O(1
t). Therefore, et+1

et
≤ 1

2 , which can be re-written as
e ≤ (1

2)t. In other words, the number of iterations T satisfies
T ≤ log 1

E . In each iteration, there is a linear operation
with complexity O(M). Therefore, the total complexity is
O(M log 1

E).
Ūi(ai, x−i(t)) and Ūi(xi(t)) used in Algorithm 3 are cal-

culated as follows.

Ūi(Y, x−i(t)) =
∑S

s=1 Ui(t,s)ai(t,s)∑S
s=1 ai(t,s)

, (12)

Ūi(xi(t)) = 1
S

∑S
q=1 Ui(t, s), (13)

where ai(t, s) represent the strategy of player i at subslot s
in slot t. Ui,a(t, s) is,

Ui,a(t, s) =

Gi − Ci , i merges, and (1) is satisfied,
−Ci , i merges, and (1) is not satisfied,
Gi , i stays, and (1) is satisfied,

0 , i stays, and (1) is not satisfied.
(14)

VI. EVALUATION

A. Methodology

Testbed Environment: We implemented our sharding sys-
tem with inter- and intra- shard algorithms on a private chain
with go-Ethereum v1.8.0. The test network is composed of
nine c5.large servers on AWS, corresponding to nine miners
respectively. The consensus protocol is Proof-of-Work (PoW).
The gas limit per block is 0x300000, where at most 10 transac-
tions are contained, and the timestamp starts at 0x00. Since our
sharding mechanism does not focus on intra-shard consensus
process, we just set the number of miners in each shard as
1. Miners stop validating transactions until all the injected
transactions are confirmed. We do not use real transactions in
the Ethereum. Instead, we register multiple smart contracts,
and each of them records an unconditional transaction that
transfers money to a specified destination. Transactions in our
experiments will invoke these smart contracts. The distribution
of transactions and the workloads of miners will be illustrated
in each experiment in detail.

Schemes to compare:
• Ethereum: the original non-sharding design.

• ChainSpace: a sharding platform where smart contracts
are supported. ChainSpace differs with our sharding de-
sign in that ChainSpace separates miners and transactions
into shards randomly, incurring new cross-shard consen-
sus protocols and heavy cross-shard communications.

Benchmark: We use Ethereum as the benchmark when
evaluating the performance improvement of our sharding sys-
tem. The main performance metric is throughput improvement,
which is computed as WE/WS , where WE and WS are the
waiting time until all the transactions are validated in Ethereum
and a sharding scheme respectively.

We conducted the following set of experiments to evaluate
the benefit of sharding, the effect of our inter-shard merging
algorithm and the impact of our intra-shard transaction selec-
tion algorithm.

• We compared the throughput between our sharding sep-
aration mechanism and Ethereum (Sec. VI-B1).

• We compared the throughput improvement and the cross-
shard communication times between our sharding sepa-
ration mechanism and ChainSpace (Sec. VI-B2).

• We examined the reduction of empty blocks and the
throughput improvement of our inter-shard merging al-
gorithm (Sec. VI-C). We further compare the reduction
of empty blocks and the throughput improvement be-
tween our inter-shard merging algorithm and a random-
ized merging algorithm, where miners decide whether to
merge with others with a probability of 0.5 (Sec. VI-C).

• We evaluated the throughput improvement of our intra-
shard transaction selection algorithm (Sec. VI-D).

We further conducted large-scale simulations to compare
the performance between our algorithms and the optimal
solution.

B. The Benefit of Contract-based Sharding

1) Compared with Ethereum: We explore the performance
of our sharding separation mechanism with different numbers
of shards. We inject 200 transactions into the system with 1
to 9 shards. By incorporating different smart contracts, those
transactions will be distributed to multiple shards automati-
cally. The numbers of transactions in these shards obey a uni-
form distribution. In other words, the number of transactions
in each shard is 200

s+1 under a system with s smart contracts,
where s is larger than 1 and s + 1 indicates that there is a
MaxShard. When there are 9 shards, each shard will have 22
transactions on average. The mining process is configured with
0x40000 difficulty, under which a miner can pack one block
in one minute on average. The result is shown in Fig. 3(a) and
Fig. 3(b).

Fig. 3(a) shows that throughput increases near linearly with
respect to the number of shards. When there are 9 shards,
the throughput improvement reaches 720%. From Fig. 3(b),
there is no vital difference in the number of empty blocks
between Ethereum and our sharding design. This is because
there does not exist small shards in this circumstance. Since
the mining power of shards is almost the same and transactions

1 2 3 4 5 6 7 8 9
Number of shards

0

2

4

6

8
T

h
ro

u
g

h
p

u
t

im
p

ro
v
e

m
e

n
t

(a) Throughput improvement of shard-
ing separation: 720% with 9 shards.

1 2 3 4 5 6 7 8 9

Number of shards

0

1

2

3

4

5

N
u

m
b

e
r

o
f

e
m

p
ty

 b
lo

c
k
s

 Ethereum
 Sharding

(b) Almost the same number of empty
blocks as Ethereum.

2 3 4 5 6 7

Number of small shards

0

30

60

90

120

150

180

210

N
u

m
b

e
r

o
f

e
m

p
ty

 b
lo

c
k
s Before our shard merging

After our shard merging

(c) Average empty block reduction of
our inter-shard algorithm: 90%.

2 3 4 5 6 7
Number of small shards

2

3

4

5

6

7

8

T
h

ro
u

g
h

p
u

t
im

p
ro

v
e

m
e

n
t

Before our shard merging
After our shard merging

(d) Throughput loss of our inter-shard
algorithm :14%.

2 3 4 5 6 7

Number of small shards

2

3

4

5

6

T
h

ro
u

g
h

p
u

t
im

p
ro

v
e

m
e

n
t

Randomized shard merging
Our shard merging

(e) 11% more throughput improve-
ment than the random algorithm.

2 3 4 5 6 7

Number of small shards

5

10

15

20

25

N
u

m
b

e
r

o
f

e
m

p
ty

 b
lo

c
k
s

Randomized shard merging
Our shard merging

(f) 4% less empty blocks than the ran-
dom algorithm.

2 3 4 5 6 7
Number of small shards

0

1

2

2.5

N
u

m
b

e
r

o
f

n
e

w
 s

h
a

rd
s Randomized shard merging

Our shard merging

(g) 59% more new shards compared to
the random merging algorithm.

1 2 3 4 5 6 7 8 9

Number of miners

0

2

4

6

T
h

ro
u

g
h

p
u

t
im

p
ro

v
e

m
e

n
t

(h) Average throughput improvement
of our intra-shard algorithm: 300%.

Fig. 3. (a)(b): Performance of our sharding design without small shards. (c)(d): Performance of our inter-shard merging algorithm. (e)(f): Compared
with random merging, our inter-shard merging algorithm is more effective. (g)(h): Throughput improvement of our intra-shard transaction selection
algorithm.

are separated evenly, miners in different shards will complete
the mining process almost at the same time. Therefore, the
numbers of unvalidated transactions in these shards are always
larger than 0 during the confirmation process of all the inject
transactions, indicating (1) is satisfied at any time. In this way,
miners can get more profits by validating transactions than
only packing empty blocks.

2) Compared with ChainSpace: We first compare the
throughput improvement between our sharding design and
ChainSpace. To ensure the result is not affected by the
difference in intra-shard consensus protocols, we unify the
transaction confirmation speed in a non-sharding manner. By
revising the mining difficulty of PoW to 0xd79, a miner
confirms 76 transactions per second both with our sharding
design and ChainSpace in a single shard. We inject 24000
transactions into the system with 1 to 9 shards. In ChainSpace
[15], we need to set the number of shards manually, and trans-
actions will be distributed evenly and randomly. Therefore, the
numbers of transactions in these shards also obey a uniform
distribution.

The throughput improvement of our sharding design and
ChainSpace is shown in Fig. 4(a). Both of these two schemes
parallel the system effectively. The throughput improvement
increases near linearly with the number of shards.

Then we compare our sharding design and ChainSpace
on the communication cost with relation to the number of
transactions. There are 9 shards, and a single miner can
confirm 76 transactions in a non-sharding manner. We inject
different numbers of transactions into the whole system. All
the injected transactions have 3 inputs. The validation of
transactions with 3 inputs needs the account information from
3 users. We repeat this injecting process for 20 times and
record the average per-shard communication times to make
the results more valid.

The reason for only injecting 3-inputs transactions is as
follows. The communication complexity for validating one

cross-shard transaction in ChainSpace has been shown as
O(N2), where N is the number of miners who participate
in the communication process. According to the variable-
controlling approach, we let N ≤ 3 to better explore the
relationship between the communication cost and the number
of transactions. In ChainSpace, a 3-input transaction will be
randomly separated into a shard. In this way, the validation
of a 3-input transaction needs the information from at most
3 shards, indicating that the communication among miners in
up to 3 shards is needed.

The result in Fig. 4(b) shows the difference on com-
munication times per shard between ChainSpace and our
sharding design. The blue line corresponds to our design,
whose communication times stays at 0. In our design, all of
those 3-input transactions will be validated in the MaxShard
without any cross-shard communication. On the contrary,
the communication times per shard in ChainSpace increases
linearly with the number of injected 3-inputs transactions. In
the real implementation, the number transactions may be much
larger than 24000 and the number of inputs may be not only
3, indicating huge communication cost.

Finally, we examine the communication cost of our sharding
design with relation to the number of small shards. There are
7 shards in total with different numbers of small shards, and
a single miner can confirm 76 transactions in a non-sharding
manner. We inject 24000 transactions in total into the system.
We only inject 1000 transactions into a small shard. And we
inject more than 3600 transactions into a shard with normal
size to ensure that there are 24000 transactions in total. Miners
in small shards will start merging at the time slot 0x00.

The result shows that the communication times per shard
remains to be 2 under different numbers of smart contracts.
Based on our parameter unification scheme, miners in different
shards only need to submit the number of transactions to the
verifiable leader which is determined in the miner separation
process. Then the leader generates and broadcasts the random-

1 2 3 4 5 6 7 8 9
Number of Shards

0

2

4

6

8

10

T
h

ro
u

g
h

p
u

t
Im

p
ro

v
e

m
e

n
t

Our sharding
ChainSpace

(a) Throughput improvement of ChainSpace and
our design.

0 0.5 1 1.5 2
Number of 3-Input Transactions 10

4

0

1000

2000

3000

4000

C
o
m

m
u
n
ic

a
ti
o
n
 T

im
e
s Our sharding

ChainSpace

(b) Communication times per shard with different
numbers of 3-input transactions.

0 1 2 3 4 5 6

Number of Small Shards

0

1

2

3

4

5

C
o
m

m
u
n
ic

a
ti
o
n
 T

im
e
s

(c) Communication times per shard with different
numbers of small shards.

Fig. 4. (a): The throughput improvement of our sharding design is not worse than ChainSpace. (b): Our sharding design has zero communication cost when
validating transactions, while the communication cost in ChainSpace correlates with the number of transactions linearly. (c) Our sharding design only incurs
O(1) communication cost during the merging process.

ness. This process only incurs two communications.

C. Inter-Shard Merging Algorithm

1) Compared with our sharding separation mechanism:
With our inter-shard merging algorithm, we record the reduc-
tion of empty blocks and the throughput improvement with
different numbers of small shards. A miner can pack one block
in one minute on average with a c5.large server on Amazon
EC2 in this experiment. There are 2 to 7 small shards among
the 9 shards. We only inject 1 to 9 transactions into a small
shard, and more than 22 transactions into a regular shard while
the total number of transactions remains at 200. We record the
number of empty blocks in 212 seconds, which is the total
confirmation time when each shard has 22 transactions in the
experiment of Sec. VI-B1. The results are shown in Fig. 3(d)
and Fig. 3(c).

Fig. 3(c) shows that the average number of per-shard empty
blocks is 152, while there are only 15 empty blocks on average
after our inter-shard merging algorithm. This means our inter-
shard algorithm reduces 152−15

152 = 90% empty blocks.
From Fig. 3(d), when the number of small shards increases,

the throughput improvement decreases. This is because miners
in small shards will not validate anything after the first block
is packed. Therefore, a certain amount of mining power is
wasted on empty blocks. Further, after shard merging, the
throughput improvement is 5.20−4.48

5.20 = 14% less than the one
before merging. The reason is in a merged shard, miners from
multiple small shards will mine the same set of transactions
in a serialized manner, indicating a decreasing of transaction
validation speed.

2) Compared with a randomized merging algorithm: We
compare the performance of our inter-shard merging algorithm
with a random merging algorithm, where miners in small
shards randomly choose whether to merge with others with
a probability of 0.5. The experiment settings are the same to
the one illustrated in Sec. VI-C1. At some random point, all
the miners are at an equilibrium state as defined in Sec. V-A
to form a stable shard, and the algorithm also stops here. We
compare the throughput improvement, the number of empty
blocks, and the number of new shards as shown in Fig. 3(e),
Fig. 3(f) and Fig. 3(g).

From Fig. 3(e), our shard merging algorithm improves the
throughput by 448% on average, and the randomized algorithm
improves it by 403% on average. From Fig. 3(g), our algorithm
has 1.78−1.12

1.12 = 59% more new shards, further indicating the
higher throughput improvement. From Fig.3(f), our merging
algorithm has 14.6 per-shard empty blocks on average, and the
random algorithm has 15.3 per-shard empty blocks on average,
i.e., our algorithm reduces 15.3−14.6

15.3 = 4% more empty blocks
than the randomized algorithm on average.

In conclusion, our inter-shard merging algorithm reduces
empty blocks greatly with little throughput improvement loss.

D. Intra-Shard Transactions Selection Algorithm

We evaluate the throughput improvement of our intra-
shard transaction selection algorithm with different numbers
of miners. We inject 200 transactions into a single shard with
at most 9 miners. A miner can pack one block in one minute
on average, and keep mining until all the transactions are
confirmed. The result is shown in Fig. 3(h). According to the
result, our intra-shard transaction selection algorithm has an
average throughput improvement of 300% with 9 miners.

E. Large-Scale Simulations

We simulate our two inter- and intra- shard algorithms
on large scales with Python 3.0. Through the simulations,
we further verify the effectiveness of our algorithms and the
correctness of our experimental results.

1) Inter-Shard Merging Algorithm Simulation: We simu-
late the number of the newly formed shards of our inter-
shard merging algorithm as shown in Fig. 5(a). We randomly
generate different numbers of transactions in multiple small
shards, and record the numbers of new shards according to
our inter-shard algorithm. From Fig. 3(e) and Fig. 3(g), we
can find that the more new shards after merging, the more
throughput improvement is achieved. Therefore, we can use
the number of new shards to represent the throughput
improvement. We thus compare the number of new shards in
our inter-shard merging algorithm with the optimal value. The
system throughput is maximized when the size of all the new
shards is L which is defined in (1), i.e., the number of small
shards is #transactions

L .
Fig. 5(a) shows that our algorithm can achieve 80% of the

optimal performance on average. The reason for such high

performance is as follows. In our algorithm, a player repeats
the determination process based on the updated merging
probability several times at each iteration. According to ran-
domized algorithm theory [23], repeating increases the success
probability, indicating the higher probability for getting the
optimal solution.

0 200 400 600 800 1000

Number of small shards

0

30

60

70

N
u
m

b
e
r

o
f
n
e
w

 s
h
a
rd

s Our shard merging algorithm
Optimal Result

(a)

0 200 400 600 800 1000

Number of miners

0

300

600

900
1000

N
u
m

b
e
r

o
f
tr

a
n
s
a
c
ti
o
n
 s

e
ts

Our transaction selection algorithm
Optimal Result

(b)

Fig. 5. (a): Our merging algorithm only loses 20% throughput improvement
on average than the optimal result. (b): Our transaction selection algorithm
loses about 50% throughput improvement on average.

2) Intra-Shard Transaction Selection Algorithm Simulation:
We also simulate the number of transaction subsets under our
transaction selection algorithm as in Fig. 5(b). We randomly
generate the transaction fees of multiple transactions and
record the numbers of transaction sets according to our intra-
shard algorithm. According to the previous analysis in Sec.
II-C, if miners validate different sets of transactions, the sys-
tem throughput will be improved. Therefore, the number of
transaction sets can represent the throughput improvement
of the system. The optimal situation happens when all the
miners validate different sets of transactions. In this way, the
number of transaction sets is the same as the number of miners.
Fig. 5(b) shows that our algorithm loses 50% in throughput
on average compared to the optimal solution.

The near 50% performance loss results from the existence
of the situation that there is a transaction set with much
higher transaction fees than others, where the equilibrium is
that everyone chooses that transaction set with the highest
transaction fee. Under such circumstances, the throughput
improvement is 1, i.e., this is a serialized system, which
will pull down the average performance of our intra-shard
transaction selection algorithm.

In conclusion, we got the following evaluation results:
• Our sharding mechanism achieves 720% throughput im-

provement when there are only 9 shards (Sec. VI-B1).
• Under the same consensus achievement efficiency in a

single shard, our sharding mechanism achieves almost
the same throughput improvement to ChainSpace.

• Our sharding incurs constant communication times. Con-
versely, the communication times in ChainSpace in-
creases linearly with different numbers of transactions.

• Our merging algorithm reduces 90% empty blocks with
14% decrease in throughput improvement (Sec. VI-C).

• Our merging algorithm has 11% higher throughput im-
provement than the randomized merging algorithm, 59%
more new shards and 4% less empty blocks on average
(Sec. VI-C). In large-scale simulations, our shard merging
algorithm is near-optimal, with 20% throughput loss on
average.

• Our intra-shard transaction selection algorithm has 300%
throughput improvement on average (Sec. VI-D).

VII. RELATED WORK

Existing sharding schemes that divide the states among
different shards [13]–[16] all require a new consensus protocol.
Leaders in input and output shards of a cross-shard transaction
are responsible for conducting cross-shard communication to
reach a consensus on whether this transaction is valid. Input
shards have transaction records related to the inputs of a cross-
shard transaction, and output shards will record this transaction
after it is confirmed. RSCoin [16] adopts a Two-Phase Commit
protocol. A transaction is first committed to leaders of input
shards. If accepted by the majority of input leaders, it will be
committed to leaders of output shards for final validation. In
Chainspace [15], miners in input shards first reach an intra-
shard consensus, leaders in input shards directly communicate
with leaders in output shards to reach a cross-shard consensus.
In RapidChain [14], leaders in output shards will generate
one intra-shard transaction for each input and send it to the
corresponding input shard. Leaders of input shards then send
their validations back to output shards for final approval. In
Omniledger [13], several validators selected from miners are
responsible for validating transactions, and leaders will collect
these validation results and return the joint decision to users.

Further, all the protocols mentioned above incur frequent
cross-shard communication. To validate one cross-shard trans-
action, there will be at least 2 rounds of cross-shard commu-
nication. One round communication between two shards can
require up to O(n2) bits of network transfers [13], where n
is the number of nodes participating in the communication.
When there are a large number of cross-shard transactions,
the communication overhead will be extremely high. In our
sharding system, a shard is formed by transactions whose
inputs and outputs are within the same shard. Therefore, no
cross-shard communication is necessary to validate transac-
tions. Our sharding system only needs minimal cross-shard
communication to update the statistical information of each
shard.

On the other hand, sharding proposals where states are not
divided result in heavy storage costs since all the miners need
to store all the transaction histories [42]. Per-shard validating
peers in sharding systems like Zilliqa [11], Corda [43], and
Elastico [44] store the entire states of the system to validate
cross-shard transactions. Since validating peers have com-
plete information of the system, they can use the traditional
consensus protocols like Practical Byzantine Fault Tolerance
(PBFT) [45] to correctly validate cross-shard transactions.
However, sharding systems need to reconfigure shards and
reselect validating peers periodically to prevent the Sybil attack
[46]. Therefore, all the miners must store the entire states
of the system in the long run. The storage cost is still high
for each miner. In contrast, our sharding scheme divides the
isolated states into independent shards and miners in these
shards do not need to store the complete information of the
system. Therefore, the storage cost is significantly reduced.

VIII. CONCLUSION

In this paper, we proposed a distributed sharding system
that improves the throughput of blockchain systems with
smart contracts. Our solution requires minimum cross-shard
communication without new consensus protocols. By adopting
an inter-shard merging algorithm and intra-shard transaction
selection algorithm, miners independently join a shard and
mine different sets of transactions that maximize the system
throughput. To reduce the communication cost and improve
security, we designed a new parameter unification mechanism
and provide the corresponding security analyses. Based on our
analysis, our inter- and intra- shard algorithms can converge
to a Nash Equilibrium. We have implemented our sharding
system on go-Ethereum v.1.8.0 and evaluated its performance
by comparing it with Ethereum and ChainSpace with injected
transactions and large-scale simulations. Our experimental
results confirmed that our sharding algorithms can significantly
improve system throughput. Our future work will concentrate
on reducing the query cost on whether a user incorporates
multiple smart contracts and the storage overhead of miners
in the MaxShard.

REFERENCES

[1] S. Maiyya, V. Zakhary, D. Agrawal, and A. E. Abbadi, “Database and
Distributed Computing Fundamentals for Scalable, Fault-tolerant, and
Consistent Maintenance of Blockchains,” in ACM VLDB, vol. 11, no. 12,
2018, pp. 2098–2101.

[2] S. Maiyya, V. Zakhary, M. J. Amiri, D. Agrawal, and A. El Abbadi,
“Database and Distributed Computing Foundations of Blockchains,” in
ACM SIGMOD, 2019, pp. 2036–2041.

[3] S. Han, Z. Xu, Y. Zeng, and L. Chen, “Fluid: A Blockchain Based
Framework for Crowdsourcing,” in ACM SIGMOD, 2019, pp. 1921–
1924.

[4] S. Nakamoto, “Bitcoin: A Peer-to-peer Electronic Cash System,” 2008.
[5] T. D. Team, “Announcing New Dogecoin Foundation,” http://foundation.

dogecoin.com/.
[6] V. Buterin et al., “Ethereum white paper, 2014,” https://github.com/

ethereum/wiki/wiki/White-Paper.
[7] M. Ali, J. C. Nelson, R. Shea, and M. J. Freedman, “Blockstack:

A Global Naming and Storage System Secured by Blockchains.” in
USENIX ATC, 2016, pp. 181–194.

[8] J. Benet, “IPFS-content Addressed, versioned, p2p file system,” in arXiv
preprint arXiv:1407.3561, 2014.

[9] Blocksplain, “Blockchain speeds & the scalability debate,” https://
blocksplain.com/2018/02/28/transaction-speeds/.

[10] C. Cachin, “Architecture of the Hyperledger Blockchain Fabric,” in
Workshop on Distributed Cryptocurrencies and Consensus Ledgers, vol.
310, 2016.

[11] T. Z. Team, “The ZILLIQA Technical Whitepaper,” https://docs.zilliqa.
com/whitepaper.pdf.

[12] T. E. Team, “On Sharding Blockchains,” https://github.com/ethereum/
wiki/wiki/Sharding-FAQs.

[13] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford, “Omniledger: A Secure, Scale-out, Decentralized Ledger via
Sharding,” in IEEE SP, 2018, pp. 583–598.

[14] M. Zamani, M. Movahedi, and M. Raykova, “RapidChain: Scaling
Blockchain via Full Sharding,” in ACM CCS, 2018, pp. 931–948.

[15] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and G. Danezis,
“Chainspace: A Sharded Smart Contracts Platform,” in arXiv preprint
arXiv:1708.03778, 2017.

[16] Q. Yao, “Central Bank Encrypto-currencyAnalysis of RSCoin System,”
in Caijing Weekly, vol. 13, 2017, pp. 20–22.

[17] J. Wang and H. Wang, “Monoxide: Scale out Blockchains with Asyn-
chronous Consensus Zones,” in USENIX NSDI, 2019, pp. 95–112.

[18] H. Dang, T. T. A. Dinh, D. Loghin, E.-C. Chang, Q. Lin, and B. C. Ooi,
“Towards scaling blockchain systems via sharding,” in ACM SIGMOD,
2019.

[19] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorithmic
Game Theory. Cambridge University Press, 2007.

[20] F. Michal and N. Noam, “Potential and Congestion Games,” https://
hujieconcs.wordpress.com/lecture-notes/.

[21] I. Milchtaich, “Congestion Games with Player-specific Payoff Func-
tions,” in Games and Economic Behavior, vol. 13, no. 1. Academic
Press, 1996, pp. 111–124.

[22] T. Heikkinen, “A Potential Game Approach to Distributed Power Control
and Scheduling,” in Computer Networks, vol. 50, no. 13. Elsevier, 2006,
pp. 2295–2311.

[23] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. MIT press, 2009.

[24] S. Micali, M. Rabin, and S. Vadhan, “Verifiable Random Functions,”
in Foundations of Computer Science, 1999. 40th Annual Symposium on
Foundations of Computer Science. IEEE, 1999, pp. 120–130.

[25] A. Vikati, “Ranking Ethereum Smart Contracts,” https://medium.com/
@vikati/ranking-ethereum-smart-contracts-a27e6f622ac6.

[26] SFOX, “What 29,985,328 Transactions Say About the State of
Smart Contracts on Ethereum,” https://blog.sfox.com/what-29-985-
328-transactions-say-about-the-state-of-smart-contracts-on-ethereum-
2ebdba4bea1c.

[27] Google, “Google Public Ethereum Dataset,” https://bigquery.cloud.
google.com/dataset/bigquery-public-data.

[28] E. Syta, P. Jovanovic, E. K. Kogias, N. Gailly, L. Gasser, I. Khoffi, M. J.
Fischer, and B. Ford, “Scalable Bias-resistant Distributed Randomness,”
in IEEE SP, 2017, pp. 444–460.

[29] B. G. Ryder, “Constructing the call graph of a program,” IEEE Trans-
actions on Software Engineering, no. 3, pp. 216–226, 1979.

[30] K. Mitchell, “Get Rich by Mining Empty Blocks on Ethereum,” https:
//coinedtimes.com/get-rich-by-mining-empty-blocks-on-ethereum/.

[31] S. Zheng, “An Analysis of Empty Blocks on Ethereum,” https://
coinedtimes.com/get-rich-by-mining-empty-blocks-on-ethereum/.

[32] R. Feldmann, M. Gairing, T. Lücking, B. Monien, and M. Rode,
“Nashification and the Coordination Ratio for a Selfish Routing Game,”
in Springer International Colloquium on Automata, Languages, and
Programming, 2003, pp. 514–526.

[33] H. Ackermann, H. Röglin, and B. Vöcking, “On the Impact of Combina-
torial Structure on Congestion Games,” in Journal of the ACM, vol. 55,
no. 6, 2008, p. 25.

[34] S. Chien and A. Sinclair, “Convergence to Approximate Nash Equilibria
in Congestion Games,” in Elsevier Games and Economic Behavior,
vol. 71, no. 2, 2011, pp. 315–327.

[35] M. Gairing, T. Lücking, M. Mavronicolas, B. Monien, and P. Spirakis,
“Structure and Complexity of Extreme Nash Equilibria,” in Elsevier
Theoretical Computer Science, vol. 343, no. 1-2, 2005, pp. 133–157.

[36] J. M. Smith, Evolution and the Theory of Games. Cambridge university
press, 1982.

[37] B. Wang, K. R. Liu, and T. C. Clancy, “Evolutionary Cooperative
Spectrum Sensing Game: How to Collaborate?” in IEEE Transactions
on Communications, vol. 58, no. 3, 2010.

[38] R. Cressman, Evolutionary Dynamics and Extensive Form Games. MIT
Press, 2003, vol. 5.

[39] “On Sharding Open Blockchain with Smart Contracts,” http://bit.ly/
2lJIzbI.

[40] R. Ganti, “Convergence Rate of Gradient Descent Algorithm,”
https://rkganti.wordpress.com/2015/08/21/convergence-rate-of-
gradient-descent-algorithm/.

[41] N. Z. Shor, “Convergence Rate of the Gradient Descent Method with
Dilatation of the Space,” in Springer Cybernetics, vol. 6, no. 2, 1970,
pp. 102–108.

[42] Z. Xu, S. Han, and L. Chen, “CUB, A Consensus Unit-Based Storage
Scheme for Blockchain System,” in IEEE ICDE, 2018, pp. 173–184.

[43] R. G. Brown, J. Carlyle, I. Grigg, and M. Hearn, “Corda: An Introduc-
tion,” in R3 CEV, 2016.

[44] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
“A Secure Sharding Protocol for Ppen Blockchains,” in ACM CCS, 2016,
pp. 17–30.

[45] M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance and
Proactive Recovery,” in ACM TOCS, vol. 20, no. 4, 2002, pp. 398–461.

[46] J. R. Douceur, “The Sybil Attack,” in International Workshop on Peer-
to-Peer Systems. Springer, 2002, pp. 251–260.

