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Abstract—Many video streaming applications operate their
geo-distributed services in the cloud, taking advantage of superior
connectivities between datacenters to push content closer to users
or to relay live video traffic between end users at a higher
throughput. In the meantime, inter-datacenter networks also
carry high volumes of other types of traffic, including service
replication and data backups, e.g., for storage and email services.
It is an important research topic to optimally engineer and
schedule inter-datacenter traffic, taking into account the stringent
latency requirements of video flows when transmitted along inter-
datacenter links shared with other types of traffic. Since inter-
datacenter networks are usually over-provisioned, unlike prior
work that mainly aims to maximize link utilization, we propose a
delay-optimized traffic routing scheme to explicitly differentiate
path selection for different sessions according to their delay-
sensitivities, leading to a software-defined inter-datacenter net-
working overlay implemented at the application layer. We show
that our solution can yield sparse path selection by only solving
linear programs, and thus in contrast to prior traffic engineering
solutions, does not lead to overly fine-grained traffic splitting,
further reducing packet resequencing overhead and the number
of forwarding rules to be installed in each forwarding unit.
Real-world experiments based on a deployment on 6 globally
distributed Amazon EC2 datacenters have shown that our system
can effectively prioritize and improve the delay performance of
inter-datacenter video flows at a low cost.

Index Terms—Inter-datacenter networks; video traffic; routing
algorithm; packet delays; software-defined networking.
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I. INTRODUCTION

TO reduce management costs and improve performance,
many video streaming applications rely on public cloud

providers, such as Amazon Web Service (AWS), Google Cloud
and Microsoft Azure. For example, Netflix has migrated its
entire video streaming service to AWS datacenters [1]. In
addition, with a growing demand for social live streaming,
many applications allow users to broadcast their videos live to
other users, such as Periscope [2], Meerkat [3], and FaceTime
[4]. All these video streaming applications can greatly benefit
from a well provisioned inter-datacenter wide-area network
(inter-DC WAN), provided by major cloud service providers.
With inter-DC capacities approaching hundreds of Mbps or
higher [5], content stored at one datacenter can be swiftly
transferred to another that is closer to the requesting user.
In terms of social live streaming, the content generated at
one user’s mobile device can be relayed through the inter-
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DC network to other users in remote regions at a much higher
throughput than that of direct point-to-point links.

For similar reasons, other types of applications are also
relying on the high-speed inter-DC network of cloud providers,
typically for service replication, bulk transfers, data backup,
and database maintenance, especially in cloud storage (e.g.,
Dropbox, Google Drive and Microsoft OneDrive) and email
services. Therefore, flows with different service priorities share
the same links in inter-DC networks. Under this scenario, the
video traffic, which has a much more stringent requirement on
latency, has to compete for the shortest paths with all kinds
of traffic, including bandwidth-hungry flows, which are large
in size yet less sensitive to latency.

However, current solutions for distributed inter-DC network
resource allocation are not particularly designed to accommo-
date video streaming flows with high delay-sensitivities. As an
example, Multiprotocol Label Switching Traffic Engineering
(MPLS TE) is commonly applied in most inter-DC WANs
today [6], [7]. Without using any global coordination, MPLS
TE may greedily assign flows to the shortest paths with
available capacity as they arrive [6], which often leads to
suboptimal routing decisions. For example, delay-sensitive
video streaming traffic may be forced onto detoured paths
with longer latencies, when earlier background flows have
occupied direct links between datacenter pairs. Moreover, with
MPLS TE, it is difficult to prioritize routing decisions and path
selections according to service urgency levels.

In response, it has recently become an important research
topic to engineer inter-DC traffic from a global point of view.
Google’s software-defined inter-DC WAN, B4 [8], adopts
an approximate fairness criterion to greedily maximize flow
rate allocations according to certain bandwidth functions that
indicate flow priorities. Microsoft has presented SWAN [5],
a software-driven inter-DC WAN, that classifies flows into
three classes — interactive, elastic and background flows
— according to their delay-sensitivities, and solves a multi-
commodity flow problem in each flow class to maximize the
throughput. With centralized traffic engineering and control
over Openflow-enabled switches in a software-defined net-
work, these solutions have improved network throughput and
addressed the flow priority issues to a certain degree.

Unfortunately, the routing algorithms in B4 and SWAN are
not explicitly designed to minimize packet delays for delay-
sensitive video flows, which are transmitted among other di-
verse types of inter-DC traffic. Moreover, a common limitation
faced by both B4 and SWAN is that traffic engineering usually
leads to fractional rate allocations on multiple paths, incurring
a large number of rules to be installed on switches, disre-
garding rule count limits on hardware switches. Additionally,
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splitting traffic over a large number of parallel paths may incur
packet resequencing overhead at the destination, which may
also increase latencies. In fact, the problem of finding a fixed
number of paths that maximize throughput is NP-complete [9].

In this paper, we design, implement and evaluate a new
software-defined sparse traffic routing solution for inter-DC
networks, specifically tailored to optimize packet delays for
delay-sensitive video traffic, when they are transmitted among
other diverse types of flows. We make the following major
contributions:

First, unlike prior work on inter-DC traffic engineering
that mainly aims to maximize throughput or link utilization,
we explicitly optimize flow latencies according to delay-
sensitivities, which is more important for video traffic. Prior
work [5] implicitly optimizes latencies by allocating rates to
three flow classes (interactive, elastic, background) one after
another following the order of urgency. In contrast, we do
not divide delay-sensitivities into a small and fixed number
of classes. Instead, we respect the diverse delay-sensitivities
of all flows and incorporate a fine-grained priority measure
in our optimization. Note that unlike throughput which is a
linear function of rate allocation, the latency of a flow split on
multiple paths (i.e., the maximum latency of all chosen paths
with non-zero rates) is a non-convex function of the allocated
rates, which makes the problem a non-convex integer program.
We adapt the Log-det heuristic [10], which was originally
introduced to solve matrix rank minimization [11], to tackle
our delay minimization problem through a short series of linear
programs (LPs). We mathematically prove the convergence
of the proposed algorithm under a range of delay measures
and demonstrate its fast convergence and scalability in general
scenarios.

Second, while leveraging multipath diversity, our solution
yields sparse path selection such that each flow is assigned
to only one path in most cases (two paths in some rare
cases), leading to a small number of switching rules, and
addressing the issue of fine-grained flow splitting. Moreover,
sparse path selection also helps to reduce packet reordering
overhead, and thus further reducing packet delays. We show
that our proposed Log-det algorithm converges under sparsity
regularization and effectively limits the path selection for most
sessions to a single path.

Third, we have implemented delay-optimized sparse traffic
routing in a software-defined networking (SDN) framework at
the application layer instead of the network layer, requiring no
change on the underlying infrastructure. Since each datacenter
usually has only a few WAN switches [5] and the number of
flow entries a hardware switch can support is limited, these
hardware switches will not be able to store a large number
of computed rules after all, as the number of flows scales
up. Further supported by the fact that not all switches in
datacenters support OpenFlow [12] and SDN, it may be costly,
if feasible at all, to implement complicated and dynamic inter-
DC routing rules at large scales in hardware switches.

In our application-layer SDN implementation, we launch
computing instances at different datacenters and use these
virtual machines as “forwarding devices.” We implement a
centralized controller that optimizes traffic routing decisions

based on measured delays and rate demands at the edges,
and installs converted forwarding rules into the “forwarding
devices” launched on demand. By adopting SDN concepts at
the application layer, our solution supports a potentially unlim-
ited number of rules and highly intelligent traffic engineering.
In the meantime, our solution can still benefit from all the
innovations in L2 and L3 layers without changing the current
infrastructure.

To evaluate the performance of our delay-optimized inter-
DC video traffic routing solution, we have implemented our
system on an inter-DC network of 6 Amazon datacenters
around the globe. Our experimental results show that by
optimally selecting paths for coexisting flows based on their
delay-sensitivities, our solution can always prioritize and re-
duce packet delays for sensitive video flows to meet their
latency requirements, while maximizing network throughput
and utilization.

The remainder of this paper is organized as follows. In
Sec. II, we discuss our work in the context of related work.
In Sec. III, we formulate the delay-optimized inter-DC traffic
routing problem under various delay measures. In Sec. IV, we
propose an algorithm to generate the sparse routing solutions,
and mathematically prove its convergence. In Sec. V, we
present our SDN-based implementation for delay-optimized
inter-DC video traffic routing at the application layer. In
Sec. VI, we show an extensive set of performance evaluations
based on our deployment in the Amazon EC2 cloud. Sec. VII
concludes the paper.

II. RELATED WORK

There have been many studies focusing on improving video
delivery and transfer quality in communication networks [13]–
[19]. Similar to this work, Feng et al. [20], [21] focused on
managing video flows in the context of inter-DC networks. In
[20], Feng et al. studied live multi-party video conferencing
as a cloud service while maximizing the total throughput
of all sessions. In [21], they further designed algorithms to
minimize cloud providers’ operational cost to route inter-DC
video traffic given the ISP pricing model. In contrast, our goal
is to minimize packet delays for inter-DC video traffic (e.g.,
flows of Netflix and Periscope), and to improve quality of
service (QoS) even when video flows are transmitted with high
volumes of other competing traffic types among datacenters.

Inter-DC traffic engineering has been an important research
topic recently, with increasingly high volumes of traffic [22].
Multiprotocol Label Switching Traffic Engineering (MPLS
TE) [23], [24] were commonly used in many production inter-
DC networks. In MPLS TE, equal cost multipath routing
(ECMP) was used to first split the traffic at ingress router,
and then a constrained shortest path first (CSPF) algorithm was
adopted to find the best paths for each flow running in inter-DC
networks. There are two mechanisms applied in MPLS TE to
make sure that different services can enjoy the corresponding
forwarding treatment based on their service priorities. First,
paths with lower latencies and higher bandwidth are assigned
to high-priority services. Second, there are multiple priority
queues (4-8) on each switch, different types of services are
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queued at different priority queues. However, MPLS TE is
likely to select the locally optimal routes instead of the
globally optimal ones, due to distributed knowledge of the
entire network state [6]. Our Sparse Traffic Routing algorithm
running in an SDN-based system has the global view of the
entire network, and can coordinate all running sessions on
demand to achieve their desired resource allocation objectives.

Although there exists a rich literature on using traditional
switch-level SDNs for traffic engineering [25]–[31], the exist-
ing literature focused on the case of intra-DC networks, rather
than inter-DC networks where latency is a concern. SWAN [5]
and B4 [8] focused instead on inter-DC traffic engineering,
and are closely related to our work. Both SWAN and B4
were implemented based on the SDN paradigm to manage
traffic forwarding across multiple datacenters. SWAN [5] used
linear programs (LPs), which solved a multi-commodity flow
(MCF) problem, to allocate rates for sessions to maximize the
throughput. It performed rate allocation first for interactive
flows, then for elastic flows and finally for background flows.
B4 [8] adopted approximate fairness to greedily maximize flow
rate allocations according to certain bandwidth functions that
indicated flow priorities. Both B4 and SWAN used heuristics
to select a subset of routes from a large number of paths
generated by optimization, and quantized the traffic splitting
granularity down to the level supported by the switching
hardware.

Our work distinguishes itself from SWAN and B4 in four
aspects. First, instead of maximizing throughput, we aim at
reducing delays for delay-sensitive video sessions. Different
from Internet Service Provider (ISP) WANs that reach end
users, to achieve reliability, cloud providers typically over-
provision their inter-DC link capacity by 2-3× on a dedicated
backbone [8], with an average utilization of 30-60% even on
busy links [5]. Such a high bandwidth capacity implies that
most inter-DC flows can always be accommodated at their
target rates, except for a few bandwidth-hungry yet delay-
tolerant background flows, which can easily be set aside during
busy periods. In this case, it is less relevant to increase flow
rates and more important to optimize flow latencies according
to their diverse needs. Second, we do not divide flows into
three fixed classes. Instead, we allow more fine-grained session
priority measures indicated by a session weight, where a high
weight implies high delay-sensitivity. Third, we propose a new
algorithm that is able to generate sparse path selection by
solving the sparsity-regularized optimization via LPs, which
greatly and effectively reduces traffic splitting overhead at the
source and packet resequencing overhead at the destination.
Finally, our system is implemented as an application-layer
SDN instead of at the network layer, and can thus support
a large number of forwarding rules, with no concern of the
flow table size limit. Therefore, it can potentially scale up to
a much larger number of sessions.

It is worth mentioning that a substantial amount of work
[32]–[36] has been proposed in the 1990s to improve service
quality for diverse applications with different priorities. Inte-
grated Services (IntServ) [32], [33] attempted to provide QoS
guarantees in networks in a fine-grained fashion. Differentiated
Services (DiffServ) [34] classified and marked packets at edge

routers to manage network traffic. Our work is significantly
different from this stream of work by adopting SDN-based
traffic engineering at the application layer. By performing path
selection and rate allocation in a centralized and data-driven
manner, our scheme can better approximate global optimal
solutions to prioritize flow delay minimization, whereas con-
ventional traffic engineering approaches mentioned above are
often trapped into suboptimal solutions due to local views.

III. DELAY-OPTIMIZED SPARSE TRAFFIC ROUTING

In an inter-DC network, given a collection of coexisting
unicast or multicast sessions of different delay-sensitivities
(including video and other types of sessions), we solve a traffic
routing problem to determine the sending rate of each session
on each available path (or tree in the case of multicast). Our
objective is to maximize a certain aggregate network utility
that translates to delay or throughput objectives, subject to
bandwidth capacity constraints on inter-DC links. Moreover,
for each session, the sending rates should be non-zero only on
a couple of paths or trees to yield sparse path selection.

We model an inter-DC network of geo-distributed datacen-
ters as a complete and directed graph G = (V,E), with
N = |V | representing the number of datacenters. For each
edge e ∈ E, we use C(e) to denote its availability bandwidth
capacity, and L(e) to denote the latency on link e, measured
by the one-way delay, taking into account both propagation
delay and queuing delay. Suppose there are S unicast and/or
multicast sessions in G, each with a required target rate Ri,
i = 1, 2, . . . , S and a priority parameter wi > 0, where a
larger wi indicates a higher priority and a greater sensitivity
to latency. Typically, a video streaming session has a higher
priority value, whereas elastic and background flows have
lower priority values. Since each unicast session is a special
case of a multicast session, we will only consider multicast
sessions henceforth.

For each session i originated at a certain datacenter, it is not
difficult to find out all the feasible trees (or paths in the case
of unicast) to reach all the destinations by a depth-first search
algorithm to be elaborated in Sec. III-C. For each session i,
we denote the feasible multicast trees as Ti1, . . . , Tiki , and
represent the packet latency on each multicast tree Tij by Lij ,
for j = 1, . . . , ki. Furthermore, let rij denote the rate allocated
to the tree Tij . Then, our objective is to determine a sparse
rate allocation rij such that most rij are zeros while achieving
different network utility objectives under different cases.

A. Latency Minimization in Over-Provisioned Networks

Most inter-DC networks are over-provisioned, as has been
reported by Microsoft [5] and Google [8]. Although the inter-
DC network capacity is usually sufficient to accommodate all
the session demands, there could still be inefficient routing
decisions that do not optimize session packet delays based
on their priorities. Let us illustrate the idea in a simple toy
example. Consider the network shown in Fig. 1, where each
link has a bandwidth capacity of 2 units and a link latency
of 1 ms. There are 5 sessions S1,. . ., S5 all sending packets
from the same source, node A, to the same destination, node
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C. Suppose that sessions S1 and S2 are background sessions,
and each consumes 1 unit of bandwidth with lower delay-
sensitivity, while sessions S3, S4, and S5 are video sessions,
and each consumes 0.5 unit of bandwidth yet with higher
delay-sensitivity. The total bandwidth capacity from node A to
C is 4 units and is able to accommodate all 5 sessions which
have a total bandwidth demand of 3.5 units. Thus, the network
is over-provisioned.

Now we describe a typical scenario in which the routing de-
cision is not respecting delay-sensitivities of different sessions,
and degrades the performance of video sessions. Suppose S1
and S2 are background flows. They typically arrive first and
occupy the best direct route A → C. The video sessions S3,
S4 and S5 join afterwards, and will have to take the detoured
path A → B → C if constrained shortest path first (CSPF)
routing is used, since S1 and S2 have already used up the
bandwidth on the direct route A→ C, as shown in Fig. 1(a).
Yet, in this case, video sessions S3, S4, and S5 will suffer from
a longer latency of 2 ms, whereas the direct route A→ C has
been occupied by background sessions who do not care about
latency at all.

A better routing decision is to adjust the routing decision
after sessions S3, S4 and S5 have joined, such that video
sessions will take the direct route A→ C, while background
flows should only be allocated with the remaining bandwidth
on A→ C, and even rerouted to detoured routes if the direct
route does not have enough bandwidth, as shown in Fig. 1(b).

We run a data-driven optimization framework to update traf-
fic routing strategies periodically, respecting delay-sensitivity
levels of different sessions, regardless of the order they join the
network. In over-provisioned networks, all rate demands can
be accommodated. Therefore, maximizing the network utility
can be translated to minimizing an aggregate delay objective
as follows:

minimize
{rij}

S∑
i=1

wi max
j∈{1,...,ki}

{Lijφ(rij)}+ γ
∑
(i,j)

φ(rij)

(1)

subject to
ki∑
j=1

rij = Ri, ∀i ∈ {1, . . . , S}, (2)∑
(i,j):e∈Tij

rij ≤ C(e), ∀e ∈ E, (3)

rij ≥ 0, ∀(i, j), (4)

where φ(·) is an identity function defined as

φ(x) =

{
1, if x > 0,
0, if x = 0.

(5)

Now we explain the rationale behind the formulation above.
The objective of problem (1) is to minimize the weighted
sum of session delays by controlling rij , i.e., the flow rate
assigned to the tree j within each session i. The term
maxj∈{1,...,ki}{Lijφ(rij)} represents the worst-case packet
latency of session i, which is the longest latency among all
the chosen trees that have non-zero rijs, since the tree Tij
is adopted with φ(rij) = 1 only if rij 6= 0. The weight

A

B

C

S1, S2

1 ms

1 ms 1 ms

S3, S4, S5

(a)

A

B

C

S3, S4, S5, and half of S1

1 ms

1 ms 1 ms

S2 and half of S1

(b)

Fig. 1. A poor routing decision may lead to unoptimized packet delays even
in an over-provisioned network. Each link has a bandwidth capacity of 2 units.

wi > 0 is used to prioritize different sessions according to
their delay-sensitivities. The weight of background flow with
the minimum requirement on latency should have a wi close
to 0, and the weight of an interactive delay-sensitive session
will have a larger wi. The regularizing term γ

∑
(i,j) φ(rij) is

a penalty function to yield sparse tree selection by preferring
solutions with fewer non-zero rijs. Constraint (2) guarantees
that flow rates distributed to different trees must sum up to
the session target rate in over-provisioned networks. Constraint
(3) ensures that none of the link capacities is violated. Thus,
congestion will never occur on each link and in this case, Lij
will be independent of rate allocations during optimization.

A variation to problem (1) is

minimize
{rij}

S∑
i=1

wi

ki∑
j=1

Lijφ(rij) + γ
∑
(i,j)

φ(rij) (6)

subject to the same constraints (2)−(4). In (6), the worst-
case latency of each session i is replaced by the sum of
latencies of all the chosen trees

∑ki
j=1 Lijφ(rij). Note that∑ki

j=1 Lijφ(rij) can also be replaced by
∑ki
j=1 Lijrij , which

indicates the average packet latency. However, problem (6) is
preferred in order to yield both sparsity and low latencies,
since minimizing

∑ki
j=1 Lijφ(rij) also penalizes the number

of trees with non-zero rates while favouring low-latency trees
among the sparse selections.

Another variation is to minimize an aggregate objective on
tree depths, without measuring latencies Lij , i.e.,

minimize
{rij}

S∑
i=1

wi

D∑
d=1

d max
j:depth(Tij)=d

φ(rij) + γ
∑
(i,j)

φ(rij),

(7)
where for each session i, maxj:depth(Tij)=d φ(rij) is 0 if
and only if no tree Tij of depth d is selected. Thus,
unlike problem (6) which minimizes the sum of latencies
on all the chosen trees, problem (7) minimizes for each
session the sum of all distinct tree depth values that are
adopted. For example, if session i only uses one-hop trees,∑D
d=1 maxj:depth(Tij)=d φ(rij) = 1; if it uses both one-hop

and two-hop trees,
∑D
d=1 maxj:depth(Tij)=d φ(rij) = 1+2 = 3.

Therefore, problem (7) penalizes the number of distinct tree
depths adopted, while preferring trees with low depths. And
the advantage of problem (7) is that it does not even require
latency measurements between datacenters.

In all of these problems (1), (6) and (7), delay-sensitive
sessions (e.g., video streaming) with larger wis will be routed
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to low-latency (low-depth) paths, while delay-tolerant sessions
like background flows with low wis may be placed on detour.
However, as soon as delay-sensitive video sessions conclude,
background flows will be routed back onto the shortest paths
due to positive though small wis. Apparently, problems (1),
(6) and (7) are all non-convex optimization problems, because
of the identity function φ(rij).

B. Utility Maximization under Insufficient Bandwidth

In some rare cases, in spite of over-provisioned inter-DC
networks, some bandwidth-hungry background flows (with wi
close to 0) may be too large to be accommodated by the
available network capacity. Even in this case, the aggregate
traffic of delay-sensitive video sessions is most likely still
small enough to be accommodated by the network. Therefore,
we can perform a two-stage process to handle bandwidth-
hungry flows. In the first stage, we solve problem (1), (6) or (7)
for all delay-sensitive sessions. Then, in the second stage, we
subtract the rates allocated to delay-sensitive sessions from the
bandwidth capacity to obtain the remaining link capacity. And
we allocate the rates for background flows in the remaining
network to maximize their throughput, e.g., by solving a multi-
commodity flow (MCF) problem [5], which is an LP, or a
min-cost MCF to penalize long paths. Alternatively, in the
second stage, we can perform max-min fair rate allocation
for all the background flows onto the remaining network [9],
although in most cases, background flows are indifferent to
latency performance and fairness issues.

In case bandwidth is not sufficient to accommodate even
delay-sensitive sessions, which is an extremely rare scenario
in today’s heavily over-provisioned inter-DC networks, we
propose to solve a sparsity-penalized network utility maxi-
mization (NUM) problem to judiciously decide the allowable
sending rate

∑ki
j=1 rij for each session i:

maximize
{rij}

S∑
i=1

wiUi(ri1, . . . , riki)− γ
∑
(i,j)

φ(rij) (8)

subject to RLi ≤
ki∑
j=1

rij ≤ Ri, ∀i ∈ {1, . . . , S}, (9)∑
(i,j):e∈Tij

rij ≤ C(e), ∀e ∈ E, (10)

rij ≥ 0, ∀(i, j), (11)

where Ui(ri1, . . . , riki) is a utility function for each session i
depending on the achieved rate and latency, e.g.,

Ui({rij}) =


∑ki
j=1 rij − βimaxj∈{1,...,ki}{Lijφ(rij)},∑ki
j=1 rij − βi

∑ki
j=1 Lijφ(rij),∑ki

j=1 rij − βi
∑D
d=1 dmaxj:depth(Tij)=d φ(rij),

where each Ui is a function of the total rate allocated for
session i minus a certain delay measure. As NUM is a well-
known formulation for optimal resource allocation and for
handling network congestion, our sparsity-penalized NUM
(8) further drives the rate allocations to zero on most trees.
Furthermore, for a delay-sensitive video session with a larger

wi, problem (8) will prefer a solution that allocates more rate∑ki
j=1 rij to session i until its target rate Ri is achieved in

constraint (9). On the other hand, for a background flow with
a small wi, problem (8) will allocate a rate to it with a lower
priority, if there is still leftover bandwidth after all delay-
sensitive sessions have reached their target rates.

C. Finding Available Paths

Although the number of datacenters, N , is small, the
number of possible multicast trees for each multicast session
may be large. Taking the worst case of unicast sessions as
an example, on a complete graph, there exist

∑N−2
i=0 AiN−2

possible paths between every pair of datacenters. For an
Amazon EC2 cloud with 7 datacenters distributed globally, the
maximum number of paths between each pair of datacenters
is 326. It is not hard to imagine that the number of available
multicast trees for each multicast session will be even larger.

To reduce complexity, when generating the set of feasible
multicast trees for each session i, we restrict tree depth to be
no more than D and only select k trees with the least latencies
Li1, . . . , Lik. The rationale is that our goal is to reduce an
aggregate delay objective; longer paths imply longer latencies
and are unlikely to be chosen by our optimization outcome.
Thus, we should exclude these longer paths from consideration
upfront.

We use a simple variant of the depth-first search (DFS)
algorithm to enumerate the k shortest multicast trees men-
tioned above for each session i. In particular, starting from the
source node, we continue exploring as far as possible along
each branch in G before reaching all the destination nodes or
exceeding a hop count restriction. After all possible multicast
trees {Tij} are found, we can easily calculate the latency Lij
based on measured link latencies, i.e., Lij equals to the latency
of the longest path from the source to any receiver in {Tij}.
Then the k shortest multicast trees can be picked. Note that
in reality, choosing only 1 or 2-hop trees would be sufficient
for delay-optimized routing. Furthermore, the small number
of datacenters of each cloud provider makes it very fast to
generate available trees using the scheme mentioned above.

IV. A SPARSE SOLUTION BASED ON Log-det HEURISTIC

Apparently, problems (1), (6), (7) and (8) are all non-convex
optimization problems, since φ(rij) is a 0− 1 valued integer
to indicate whether tree Tij is chosen or not. In this section,
we propose to solve these problems using a Log-det heuristic,
which was first used to solve matrix rank minimization in
statistical sparse recovery. As a special case, the method has
been applied to cardinality minimization [10], i.e., finding a
vector x = (x1, . . . , xn) with the minimum cardinality in a
convex set C, or equivalently, minimizing

∑
i φ(xi) subject to

x ∈ C. The basic idea is to replace the 0− 1 valued function
φ(xi) by a smooth log function log(|xi|+ δ) and to minimize
a linearization of log(|xi|+δ) iteratively. In the following, we
extend this technique to our particular sparse routing problems,
whose objective functions are clearly far more complicated
than cardinality, and provide a convergence proof for certain
cases.
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We present Algorithm 1, which replaces the integer value
φ(·) by a series of carefully re-weighted linear functions that
are updated in each iteration.

Algorithm 1 Iterative Linear Relaxation for Problems (1), (6),
(7), or (8)

1: t := 0. r0ij := 1− δ.
2: t := t+ 1.
3: Given the solution {rt−1ij } in the previous iteration, define

φ̂tij(rij) :=
rij

rt−1ij + δ
, ∀ j ∈ {1, . . . , ki}, ∀i ∈ {1, . . . , S},

where δ > 0 is a small positive constant.
4: Replace φ(rij) in problem (1), (6), (7), or (8) by φ̂tij(rij),

and solve the modified problem to obtain {rtij}.
5: If {rtij} approximately equals {rt−1ij }, return r∗ij = rtij for

all possible (i, j); else, go to Step 2.

Clearly, by replacing φ(rij) by φ̂tij(rij) in problem (1),
(6), (7), or (8), the corresponding modified problem solved by
Algorithm 1 in each iteration is a convex problem, which can
also be converted to an LP in the case of problem (1), (6), or
(7). After a number of iterations, Algorithm 1 will eventually
yield a sparse solution of {r∗ij} with most r∗ij being zero.
Recall that if r∗ij = 0, the multicast tree Tij is not adopted by
session i.

To see why the modified problem eventually approximates
the corresponding original problem, note that for a sufficiently
small δ > 0, upon convergence, i.e., when rt−1ij ≈ rtij = r∗ij ,
we have

φ̂tij(r
∗
ij) =

r∗ij

rt−1ij + δ
≈
{

0, if r∗ij = 0,
1, if r∗ij > 0,

which approximately equals φ(r∗ij). Therefore, the objective
function involving φ̂tij(r

∗
ij) eventually approaches that of the

corresponding original problem.

A. Convergence Analysis
In the following, we provide a proof for the convergence

of Algorithm 1 for a class of objective functions, while
prior literature can only show convergence when the objective
function is the cardinality Card(x) =

∑
i φ(xi) [10]. We point

out how this result applies to various formulations proposed
in the Sec. III.

Proposition 1. Consider a non-convex optimization problem:

minimize
n∑
i=1

wiφ(xi) +

J∑
j=1

lj max
i∈Ij

φ(xi) (12)

subject to x = (x1, . . . , xn) ∈ C,

with wi ≥ 0 and li ≥ 0, where C ⊆ Rn is a convex set, and
Ij ⊆ {1, . . . , n} for j = 1, . . . , J . If Algorithm 1 is applied to
problem (12) with φ(xi) replaced by φ̂ti(xi) = xi/(x

t−1
i + δ)

with δ > 0 in each iteration t, then we have xti − x
t−1
i → 0,

for all i.

Proof. Since φ(xi) = maxi∈Ij φ(xi), the first term in (12) is
a special case of the second term. Thus, it suffices to prove

the case when wi = 0 for all i. Since {xti} solves problem
(12) with φ(xi) replaced by φ̂ti(xi) = xi/(x

t−1
i + δ), and

{xt−1i } ∈ C, we have

J∑
j=1

lj max
i∈Ij

xti + δ

xt−1i + δ
≤

J∑
j=1

lj max
i∈Ij

xt−1i + δ

xt−1i + δ
=

J∑
j=1

lj . (13)

On the other hand, define yi(t) :=
xt
i+δ

xt−1
i +δ

. By the inequalities
between geometric and arithmetic means, we have

J∑
j=1

lj max
i∈Ij

yi(t) ≥
J∑
j=1

lj
∏
i∈Ij

yi(t)
1/|Ij |

≥

 J∑
j=1

lj

 ·
 J∏
j=1

∏
i∈Ij

yi(t)
lj/|Ij |

 1∑J
j=1

lj

.

(14)

Combining with inequality (13), we obtain

J∏
j=1

∏
i∈Ij

yi(t)
lj/|Ij | =

n∏
i=1

yi(t)
∑

j:i∈Ij
lj/|Ij | ≤ 1,

or equivalently,

n∏
i=1

(xti + δ)
∑

j:i∈Ij
lj/|Ij | ≤

n∏
i=1

(xt−1i + δ)
∑

j:i∈Ij
lj/|Ij |.

Since li ≥ 0, the left-hand side of the above is bounded below
by δ

∑
j:i∈Ij

lj/|Ij |. Therefore, the non-increasing sequence
{
∏n
i=1(x

t
i+δ)

∑
j:i∈Ij

lj/|Ij |} is converging over t to a nonzero
limit, which implies that

lim
t→∞

n∏
i=1

yi(t)
∑

j:i∈Ij
lj/|Ij | = 1.

Now using the inequality (14), we obtain

J∑
j=1

lj max
i∈Ij

(
lim
t→∞

yi(t)
)

≥

 J∑
j=1

lj

 ·( lim
t→∞

n∏
i=1

yi(t)
∑

j:i∈Ij
lj/|Ij |

) 1∑J
j=1

lj

=

J∑
j=1

lj ,

with equality achieved only if limt→∞ yi(t) = 1
for all i. Combining with inequality (13), we obtain∑J
j=1 lj maxi∈Ij limt→∞ yi(t) =

∑J
j=1 lj . Therefore, we

must have limt→∞ yi(t) = 1 for all i, which means xti −
xt−1i → 0 for all i.

It is not hard to check that problem (6) is a special case
of the general form (12), when there is no second term (i.e.,
lj = 0 for all j), and (7) is also a special case of (12) when
each index group Ij corresponds to all the trees of a certain
depth d in a certain session i. However, the convergence in the
case of problem (1) is much harder to analyze, which involves
a different Lij inside each max function. We will evaluate
and compare the performance of different formulations in our
experiments in the Sec. VI.
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U 1

U 3

U 2

U 4 U 5

Controller

(a) Existing SDN at the network layer.

U 1

U 3

U 2

U 4 U 5

Controller

(b) Our implementation: SDN applied at the application layer.
Fig. 2. Examples of software-defined networks at the network vs. application layer with the same underlying network topology.

V. IMPLEMENTATION

We have completed a real-world implementation of pro-
posed sparse traffic inter-DC routing mechanism. Our imple-
mentation is based on SDN implemented at the application
layer, which provides us with the capability to optimize packet
forwarding in a globally optimal manner. Despite the merits
of existing SDN solutions based on OpenFlow, the table size
is limited in hardware switches, which can not scale well to
support a large number of unicast and multicast rules as the
session number grows. Furthermore, not all hardware switches
are OpenFlow-enabled. In contrast, by implementing the full
control plane and data plane at the application layer, our
implementation can leverage the advantage of intelligent traffic
engineering offered by SDN, without changing any current
infrastructure. Furthermore, our system can still take advantage
of all the latest technologies in Layer 2 and/or Layer 3 network
components.

By implementing the core principles of the SDN paradigm,
which is the separation of the control plane from the data
plane, we are able to preserve the control flexibility of SDN at
the application layer. Fig. 2 illustrates the difference between
the existing SDN solution and our application-layer SDN. The
application layer provides a much simpler abstraction; it hides
complexities of handling flows with lower layer components
and avoids fatal issues that are easy to encounter. For instance,
lower-layer messages, such as ARP packets, will not be one
of our concerns since they are handled naturally by the
lower layer. Moreover, building our system completely at the
application layer makes it readily deployable in the inter-
DC network of any public cloud provider without making
assumptions on their underlying infrastructure. Furthermore,
by using virtual machines (VMs) as forwarding devices, we
do not have a hard limit on the number rules that can be
supported, which means that our application-layer solution can
scale to a large number of sessions.

There are two major components in our system: a central-
ized controller implemented in Python to compute routing
decisions, and forwarding devices implemented in C++ to
forward traffic based on the rules instructed by the controller.

Both the centralized controller and forwarding devices are
operated as software systems running in virtual instances
launched at different datacenters. As the brain of our system,
the controller is launched in a virtual machine in one of the
datacenters. It offers the abstraction and programmability over
the network. The forwarding device for each datacenter in the
inter-DC network is launched as one or multiple VMs in that
datacenter.

The controller and forwarding devices interact in intricate
ways. Each forwarding device is connected to the controller
using a long-lived TCP connection. Whenever a new for-
warding device comes online, the controller will save its
information and send it to other existing forwarding devices.
When a forwarding device has obtained information about
other devices in the network, it will start measuring the one-
way delays from itself to other devices in the network, and
reports the measured values to the controller to be used
in routing optimization. In addition, whenever a new flow
emerges in the network, the first forwarding device that has
received it will send the information of this flow, such as the
delay-sensitivity weight and the requested target rate, to the
controller. Therefore, the controller always has the up-to-date
knowledge of the entire network.

Given the information of the sessions, link latencies and
bandwidth capacities gathered from forwarding devices, our
controller written in Python will run the proposed Sparse
Traffic Routing algorithms to determine the best routes as well
as rate assignments on the selected routes for each session
according to their delay requirements. There are two steps
to be conducted by the controller. First, it will enumerate
the feasible multicast trees for each session, based on the
network topology constructed from the collected information
as well as the source and destination of each session reported
by the forwarding devices. Combining such information, the
feasible multicast trees can be readily generated using the
method mentioned in Sec. III-C, and stored in a matrix to
serve as the input of the next step. Second, by using CVXPY
and NumPy packages, our program solves the optimization
problem (i.e., problem (1), (6), (7) or (8) depending on
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US WEST
(Oregon)

US EAST
(Northern Virginia)

South America
(Sao Paulo)
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(Ireland)

Asia Pacific
(Tokyo)

Asia Pacific
(Singapore)

Fig. 3. The 6 Amazon EC2 datacenters used in our deployment and
experiments.

different objectives) to obtain sparse routing decisions and
optimized rate assignments within several seconds.

To reduce unnecessarily redundant computations, our rout-
ing optimization does not run whenever a new flow joins; it
will be carried out every two minutes or whenever the number
of new joins has exceeded a threshold. We always allow a new
flow to join the system according to simple protocols, such
as a greedy shortest-path-first routing based on the current
network conditions. Whenever the controller has computed a
new routing scheme, it will make a global re-routing decision
and send out the new forwarding rules for all existing flows
to all the forwarding devices.

The forwarding devices are completely managed by the
controller, and are responsible for buffering and forwarding
traffic. Like traditional SDN, these forwarding devices do not
have control intelligence; they need to ask the controller for
forwarding rules whenever they see packets of a new flow
coming in. In addition to basic storing and forwarding, we have
also implemented a multi-path forwarding and traffic splitting
functionality in each forwarding device. Specifically, whenever
a traffic splitting decision requires a proportion of the allocated
flow rate to be sent on a path or tree, the forwarding device
will send packets onto the path or tree according to the
corresponding probability. Since our optimization algorithms
may only use traffic splitting at the source, there is no need
to split an incoming flow.

VI. PERFORMANCE EVALUATION

We have deployed our real-world implementation with
delay-sensitive Sparse Traffic Routing on 6 Amazon EC2
datacenters distributed globally, whose locations are shown
in Fig. 3. We have launched 6 XLarge compute instances,
each with 4 compute units and 15 GB memory. Each compute
instance is launched in a different datacenter and hosts our
forwarding device. The centralized controller is hosted in
Oregon, sharing the same compute instance as one of our
forwarding devices.

A. Bandwidth and Latency Measurements

Link bandwidth capacities between the 6 datacenters can
be readily measured. Measurement results have demonstrated
that the available bandwidth is highly stable on all the links in
the Amazon EC2 inter-DC network. To avoid queuing delays

OR

IR SI

VI

Virginia

Oregon

Singapore3 Sessions
5 Sessions

5 Sessions

2 Sessions

Ireland

Fig. 4. Our experiment to verify the independence of link latency measure-
ments on the throughput.
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Fig. 5. The relationship between average RTT and throughput on each link
in the experiment in Fig. 4.

and congestion, we have been conservative on link capacity
measurements: we use the 10th percentile of the measured
available bandwidth to indicate the capacity on each link, as
shown in Table I, i.e., 90% of available bandwidth values
we measured are higher than the 10th percentile values used
in Table I. By using a low capacity value, we make sure
that our optimization will never make a decision that may
potentially congest a link. During our experiments, all link
latency measurements are logged once every 5 seconds.

We now show that latencies Lij used as inputs in our
optimization framework will not depend on rate allocations
and thus can be deemed as constants during the relatively
short period of a single optimization run. We conduct a simple
experiment shown in Fig. 4 to verify this fact. The target
rate of each session is 10 Mbps, and the available capacity
on each link is listed in Table I. 15 sessions come into the
network at random times in a 3-minute period. Therefore, the
throughput on each link accumulates as more sessions join and
start transferring data on it. Fig. 5 plots the average round-
trip times (RTTs) versus the measured throughput on three
links, respectively. It is obvious that the measured RTT is
stable as the rate allocated to each particular link varies. Since
each link’s capacity is not exceeded, the queuing delay of the
corresponding link will remain negligible and will not accrue,
while the propagation delay still plays the most important role
on each inter-DC link. Therefore, we can conclude that Lij
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does not depend on rate allocation decisions, and thus can be
treated as a constant within a single run of optimization.

B. Schemes for Comparison

Due to the nature of inter-DC transfers, we bundle small
sessions (including both unicast and multicast sessions) of
similar delay-sensitivity together to form larger and longer
persistent session groups. The rationale is that traffic engi-
neering is meaningless for short sessions, as they may have
already left the network before an optimized rerouting decision
is made. Therefore, in our experiment, we bundle sessions that
are originated from the same datacenter to be sent to the same
destination datacenter and have similar delay sensitivities, e.g.,
all live video streams of a certain quality, into a same session
group. Inside a session group, we might have different smaller
sessions joining and leaving from time to time, while the
overall session group is still kept alive and will exist in the
network for a long time. A similar technique of flow groups
has also been adopted in B4 [8] to avoid overhead of overly
fine-grained flow management in inter-DC networks. In the
following, we may abuse the term session to indicate session
groups.

In our experiment, we will compare the following different
routing solutions, in terms of achieved end-to-end delays,
fine service differentiation/prioritization among sessions of
different delay-sensitivities, paths sparsity and overhead of
traffic split, as well as throughput when bandwidth capacity is
insufficient. The latter two schemes, i.e., Shortest Path Routing
and Multi-Commodity Flow, will serve as baseline schemes
which have been adopted in current inter-DC routing solutions
or in recent literature.

Delay-Sensitive Sparse Traffic Routing (1), (6) and (7).
Our delay-sensitive Sparse Traffic Routing (1), (6) and (7)
are all designed to reduce packet delays for sessions with
high wis, yet using different objective functions. It is worth
noting that we have proved in the Sec. IV that Algorithm 1 for
formulations (6) and (7) is guaranteed to converge in theory.
Moreover, problem (7) measures the delay only by counting
the number of hops and does not even require to measure link
delays, which reduces the measurement overhead of system.
In other words, problem (7) provides a sparse routing solution
to minimize packet delays for delay-sensitive sessions, without
relying on accurate latency measurements.

Shortest Path Routing. As the first baseline scheme, we
have implemented the constrained shortest path first (CSPF)
algorithm, which is commonly adopted in MPLS TE today.
Specifically, it chooses the shortest path with available band-
width for each session subject to several constraints, such as
bandwidth requirements, hop limitations and session priorities.

Multi-Commodity Flow (MCF). As the second baseline
scheme, MCF has been adopted in SWAN [5] to allocate rates
in three classes of flows one after another, first processing
interactive flows, followed by the processing of elastic flows
and background flows. MCF is mainly used to increase the
network utilization or total throughput while preferring shorter

TABLE I
10TH PERCENTILE OF LINK CAPACITIES MEASURED IN THE AMAZON EC2

INTER-DC NETWORK.

Oregon Virginia Ireland Tokyo Singapore Sao Paulo
Oregon N/A 82Mbps 86Mbps 138Mbps 74Mbps 67Mbps
Virginia - N/A 72Mbps 41Mbps 52Mbps 70Mbps
Ireland - - N/A 56Mbps 44Mbps 61Mbps
Tokyo - - - N/A 166Mbps 41Mbps

Singapore - - - - N/A 33Mbps
Sao Paulo - - - - - N/A

paths. MCF, as an LP, can be expressed as

maximize
{rij}

ki∑
j=1

rij − βi
ki∑
j=1

wirij

subject to the same target rate and capacity constraints as in
problem (8). In fact, MCF can be equivalently represented via
problem (8), with

Ui({rij}) :=
ki∑
j=1

rij − βi
ki∑
j=1

Lijrij .

Our evaluation mainly consists of three parts. First, we
compare the performance of delay-sensitive Sparse Traffic
Routing with that of Shortest Path Routing in over-provisioned
networks. As randomly synthesized sessions join, Sparse Traf-
fic Routing will be carried out on demand to globally re-route
the sessions that already exist in the network according to their
delay-sensitivities. Second, we compare different versions of
delay-sensitive Sparse Traffic Routing solutions, i.e., problems
(1), (6) and (7). Third, under the rare case of insufficient
bandwidth, we evaluate the throughput and delay performance
of our system under flow competition, as compared to Shortest
Path Routing and MCF.

C. Sparse Traffic Routing vs. Shortest Path Routing

In this experiment, we consider the common case of over-
provisioned inter-DC networks, where the total inter-DC ca-
pacity is able to support all the sessions. However, due to
Shortest Path Routing, some direct links may be locally
occupied by background flows or delay-insensitive sessions
which have arrived earlier. This may influence the performance
of subsequently arrived delay-sensitive sessions.

We conduct our experiment with 40 unicast/multicast ses-
sions randomly joining the network within a 10-minute period.
The weight wi of each session takes one value out of 10
predetermined values, which are randomly drawn between 1
and 39 from an exponential distribution. The target request
rate Ri for each session is chosen uniformly at random from
4 − 10 Mbps. When a session comes, it will be immediately
directed onto the shortest path with available bandwidth, using
Shortest Path Routing. Delay-sensitive Sparse Traffic Routing
will be triggered under two situations, i.e., either when 10 new
sessions have joined after the last optimization, or when 2
minutes have past since the last optimization. After re-routing
decisions are made by the optimization, the controller will
update the new forwarding rules for all the existing sessions
to be installed in the forwarding devices instantly. Under this
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(a) Sessions 1-20 right after the 2nd optimization.
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(b) Sessions 11-20 before/after the 2nd optimization.
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(c) Sessions 1-30 right after the 3rd optimization.
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(d) Sessions 21-30 before/after the 3rd optimization.
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(e) Sessions 1-40 right after the 4th optimization.
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(f) Sessions 31-40 before/after the 4th optimization.

Fig. 6. A dynamic comparison of Shortest Path Routing and Sparse Traffic Routing (1), as 40 sessions join progressively over time.

scenario, Sparse Traffic Routing has been triggered 4 times
during the entire experiment.

Fig. 6(a), 6(c) and 6(e) show the average packet delays
for sessions with different weights, right after the 2nd, 3rd
and 4th Sparse Traffic Routing, respectively, as compared to
always using Shortest Path Routing. From these figures, it is
obvious that for sessions with higher weights wi, our algorithm
can effectively reduce their average packet delays compared
to Shortest Path Routing. In Fig. 6(a), the delay benefit of
Sparse Traffic Routing is relatively less significant, since at
this early point the shortest links are not fully occupied yet,
and most sessions can still go onto their desired paths. In
Fig. 6(c), the advantages of Sparse Traffic Routing becomes
more salient, especially for delay-sensitive video sessions with
higher wis. Fig. 6(e) evidently shows that our solution results

in considerably lower average packet delays than Shortest Path
Routing for delay-sensitive sessions with high wis. It is worth
noting that some low-weight sessions actually have longer
delays under our scheme. This conforms to our intention of
service differentiation, as background delay-insensitive flows
have been placed on alternative longer paths to yield way to
delay-sensitive sessions. Such a fine-grained service differen-
tiation dictated by session weights is not possible with MLPS
TE using Shortest Path Routing.

Fig. 6(b), 6(d) and 6(f) compare the average packet delays
of the newly joined sessions before and after the next re-
routing decisions made by Sparse Traffic Routing. Clearly,
after each optimization, the average packet delays of high-
weight sessions decrease significantly. Similarly, the benefit of
our solution becomes more significant as time passes, which



11

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

End−to−End Delay

C
D

F

 

 

Shortest Path Routing
Sparse Traffic Routing

(a) Sessions with wi ≥ 26
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(b) Sessions with wi ≤ 7
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Fig. 7. End-to-end packet delays for Sparse Traffic Routing (1) and Shortest
Path Routing.

complies with the observations in Fig. 6(a), 6(c) and 6(e).
Meanwhile, the sessions that join between two optimizations
only need to suffer a relatively high delay for a short period
of time. As soon as the next optimization has been executed,
delay-sensitive sessions will be directed to shorter paths.

Fig. 7 plots the CDF of measured end-to-end packet delays
for sessions with different weights. Fig. 7(a) shows that the
packet delays of delay-sensitive sessions with wi ≥ 26, are
much reduced due to the prioritization effect of our scheme.
In contrast, Fig. 7(b) confirms our expectation that for delay-
insensitive sessions with wi ≤ 7, our algorithm has a greater
chance to incur a larger packet delay than Shortest Path
Routing to make direct paths available for delay-sensitive
sessions. And Fig. 7(c) illustrates that our algorithm evidently
outperforms Shortest Path Routing.

To evaluate the sparsity of our solution in terms of path
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Fig. 8. Comparison among different Sparse Traffic Routing schemes (1), (6)
and (7).
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Fig. 9. Packet delays of different Sparse Traffic Routing schemes (1), (6)
and (7).

selection, Table II lists the number of sessions with traffic
splitting, i.e., the sessions that have been routed on multiple
paths/trees by the optimization. Recall that traffic splitting not
only incurs overhead for traffic engineering and routing, but
can also lead to additional packet reordering latency in live
video streaming sessions. Therefore, it is desirable to select a
single path/tree for each delay-sensitive session. From Table II,
we can see that at most 5 out of all the 40 sessions have traffic
splitting, while most sessions are still routed on a single path or
tree. Furthermore, in each optimization, Sparse Traffic Routing
does not choose the same sessions to routed on multiple paths.
In other words, all the sessions are treated fairly, taking turns
in terms of traffic splitting. In general, the results in Table II
have demonstrated the effectiveness of using {0, 1} sparsity
regularizers φ(·) in our optimization formulation.

D. Latency-Based vs. Hop-Based Optimizations

In this experiment, we have randomly generated all the
parameters including requested target rates and weights of the
sessions. We also have 40 sessions coexisting in the Amazon
EC2 inter-DC network. However, we only focus on the results
from one optimization this time, since we aim to compare the
performance of different Sparse Traffic Routing solutions (1),
(6) and (7) with different objective functions.
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(a) Delay performance
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Fig. 10. Performance comparison among Shortest Path Routing, MCF and Sparse Traffic Routing (8).

TABLE II
NUMBER OF TREES/PATHS SELECTED IN EXPERIMENT 1 WITH SPARSE TRAFFIC ROUTING (1).

Weight 1 4 7 8 13 18 21 26 29 39 total
Optimization 1 0/1/1 0/3/3 0/0/0 0/0/0 0/1/1 0/3/3 0/1/1 0/0/0 0/1/1 0/0/0 0/10/10
Optimization 2 0/2/2 1/6/7 0/0/0 0/1/1 0/2/2 0/5/5 0/3/3 0/0/0 0/1/1 0/0/0 1/20/21
Optimization 3 0/3/3 0/6/6 0/1/1 0/2/2 1/3/5 0/5/5 0/4/4 0/1/1 0/4/4 0/1/1 1/30/32
Optimization 4 0/3/3 1/7/8 1/3/4 0/3/3 0/3/3 1/7/8 2/6/8 0/2/2 0/4/4 0/2/2 5/40/45

Note: the values 1)/2)/3) are: 1) the number of sessions with traffic splitting, 2) the number of sessions
in this weight range, 3) the total number of paths/trees adopted by these sessions.

TABLE III
NUMBER OF TREES/PATHS SELECTED IN EXPERIMENT 2 WITH SPARSE TRAFFIC ROUTING (1), (6) AND (7).

Weight 1 2 3 4 5 6 7 8 9 10 total
Sparse Traffic Routing (1) 0/3/3 0/3/3 0/4/4 0/2/2 0/5/5 0/3/3 0/2/2 3/6/9 0/4/4 0/8/8 3/40/43
Sparse Traffic Routing (6) 0/3/3 0/3/3 0/4/4 0/2/2 0/5/5 0/3/3 1/2/3 0/6/6 0/4/4 0/8/8 1/40/41
Sparse Traffic Routing (7) 0/3/3 0/3/3 0/4/4 0/2/2 1/5/6 1/3/4 0/2/2 0/6/6 0/4/4 0/8/8 2/40/42

Note: the values 1)/2)/3) are: 1) the number of sessions with traffic splitting, 2) the number of sessions in this
weight range, 3) the total number of paths/trees adopted by these sessions.

Fig. 8 shows a similarity of the formulations (1), (6) and (7)
in terms of the measured average packet delays. From Fig. 8,
we can easily tell that packet delays achieved by (1) mostly lie
very close to those achieved by (6) and (7). It is worth noting
that the tree-depth-based formulation (7), although only based
on counting hops without measuring link latencies, can yield
good performance as compared to formulations (1) and (6)
which require latency measurements, verifying the usefulness
of hop-based formulation (7). This is because the latency on
each path is highly correlated to the number of hops along
the path, especially in inter-DC networks. Fig. 9 further plots
the CDF of packet delays under formulations (1), (6) and (7).
The formulation (6) performs better at the lower end of packet
delays, while (7) outperforms the other two schemes at the
higher end. Generally speaking, their performance is similar.

Table III shows that all three formulations (1), (6) and (7)
have the ability to generate sparse path selection, yielding only
a small number of sessions with traffic splitting, while most
sessions have only adopted one tree/path.

E. Flow Competition under Insufficient Bandwidth

In the third experiment, we consider the rare scenario of
insufficient bandwidth and aim to maximize the total allocated

rates according to session priorities while minimizing packet
delays for high-weight sessions. In order to simulate insuffi-
cient bandwidth (which rarely happens in the Amazon EC2
inter-DC network), we assume that the available bandwidth
on each link in the Amazon EC2 inter-DC is capped by half
of its actual available bandwidth. We assume that there exist
some bandwidth-hungry sessions, which are large in size, but
have little requirements on latency performance. Therefore,
their weights are set close to 0, which means that they are
delay insensitive.

We test three routing algorithms, Shortest Path Routing,
Sparse Traffic Routing (8) and MCF, when 40 sessions are
transferring data in the network at the same time. Here, we
want to compare delay, throughput, and path sparsity of these
three schemes.

Fig. 10(a) clearly shows that the routing decision made by
Sparse Traffic Routing (8) performs the best for high-weight
sessions (with wi ≥ 1) in terms of packet latency. It is worth
noting that some background flows, with wi close to 0, actually
suffer longer packet delays under Sparse Traffic Routing (8)
and MCF. The reason is that, even if background sessions
come into the network first and use up direct paths, Sparse
Traffic Routing and MCF algorithm will re-route background
sessions to other paths, so that the shortest path is reserved
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TABLE IV
NUMBER OF TREES/PATHS SELECTED IN EXPERIMENT 3 WITH SPARSE TRAFFIC ROUTING (8) AS COMPARED TO MULTI-COMMODITY FLOW (MCF).

Weight close to 0 1 2 3 4 5 6 7 8 9 10 total
Sparse Traffic Routing (8) 6/10/16 0/3/3 0/4/4 0/4/4 0/1/1 1/3/4 0/4/4 0/2/2 0/3/3 0/3/3 0/3/3 7/40/47

MCF 10/10/30 3/3/6 0/4/4 0/4/4 0/1/1 3/3/6 0/4/4 0/2/2 0/3/3 0/3/3 0/3/3 16/40/66

Note: the values 1)/2)/3) are: 1) the number of sessions with traffic splitting, 2) the number of sessions in this weight range,
3) the total number of paths/trees adopted by these sessions.

for delay sensitive sessions.
A similar prioritization phenomenon is observed for the

allocated rates. Fig. 10(b) shows the rate allocated to each
session when they compete for bandwidth. While Shortest
Path Routing may allocate 0 rates to some delay-sensitive
sessions with high wis that arrive later than background flows,
Sparse Traffic Routing (8) and MCF will always satisfy high-
weight sessions first and then allocate the remaining capacity
to accommodate low-weight background flows as much as
possible.

Though there are not too much differences between Sparse
Traffic Routing (8) and MCF in terms of the average packet
delay and rate allocation, Sparse Traffic Routing (8) greatly
outperforms MCF in terms of path sparsity. As shown in
Table IV, for all the 40 sessions, Sparse Traffic Routing (8)
only splits traffic onto 2 paths for 7 sessions, while 6 of
them are background flows. This is reasonable since wherever
there is available bandwidth, we would split background flows
onto different paths to maximize their throughput and fully
utilize network resource. In contrast, MCF splits 16 sessions
onto multiple paths, while only 8 of them are background
flows. In other words, MCF does not minimize the number
of paths assigned for each session; 8 delay-sensitive sessions
have experienced traffic splitting and had to suffer from packet
reordering. This demonstrates the unique strength of our solu-
tion to generate sparse routing solutions, while achieving even
lower packet delays than MCF (for delay-sensitive sessions)
and the same rate allocation as MCF, as shown in Fig. 10.

VII. CONCLUDING REMARKS

In this paper, we study the problem of optimal inter-DC
traffic routing, targeting a large volume of delay-sensitive
video traffic with stringent yet diverse latency requirements,
transmitted among other types of flows between datacenters.
Since inter-DC networks are usually over-provisioned to ac-
commodate the aggregate requested flow rates at most times,
we explicitly focus on minimizing the packet delays according
to the diverse delay-sensitivity levels of different sessions,
which can prioritize and improve the performance of delay-
sensitive video streaming traffic. We propose a sparse traffic
routing solution that selects a single path for most delay-
sensitive sessions to limit the overhead of fine-grained traffic
splitting and packet reordering at the destination.

We have implemented our proposed delay-optimized sparse
routing technique in an application-layer software-defined net-
work, which enables traffic engineering from a global point
of view without modifying the current network infrastructure.
Unlike switch-level SDN, our system can scale to a large num-
ber of forwarding rules and thus accommodates a large number

of sessions. Extensive experiments performed on Amazon EC2
datacenters have shown that our solution can effectively reduce
packet delays for time-sensitive video sessions according to
various urgency levels, even when they are transmitted among
a diverse range of other types of flows, with little overhead.
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