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Abstract— Node churn and failures exist as fundamental char- answer. In P2P networks, periodic reporting to central ilogg
acteristics in both peer-to-peer (P2P) and sensor networks. Bes  servers does not scale well to a large number of peers, and
in P2P networks are highly dynamic, whereas sensors are not 5y morph into ale factodistributed denial-of-service attack

dependable. As such, maintaining the persistence of periodically . .
measured data in a scalable fashion has become a critical at the logging server. In sensor networks, it may be too gostl

challenge in such systems, without the use of centralized servers.and unrealistic to periodically maintain routing struesig.g.,

To better cope with node dynamics and failures, we propose aggregation trees) to centralized sinks, again due to émiqu
priority random linear codes, as well as their affiliated pre- sensor failures and energy-conserving measures.

distribution protocols, to maintain measurement data in different In this paper, we study the challenges involved when no

priorities, such that critical data have a higher opportunity to tralized ist i t twork o .
survive node failures than data of less importance. A salient centralized servers exist in autonomous networks, anageri

feature of priority random linear codes is the ability to partially ically measured data must be stonedhin the network itself
recover more important subsets of the original data with higher in a collaborative fashion. This conforms to the peer-tefpe
priorities, when it is not feasible to recover all of them due to mentality, but could be a serious problem when nodes are
node dynamics. We present extensive analytical and experimenta inherently dynamic and failure-prone. The objective ofsthi

results to show the effectiveness of priority random linear codes is t dingtechni inside th twork
Index Terms— Distributed networks, distributed applications, paper IS {0 propose nevodingtechniques inside the network,

distributed priority coding, random linear codes inspired by traditional random linear codes commonly used i
network coding such that data stored in the network can be
efficiently recovered.

|. INTRODUCTION Random linear codes, traditionally used in network coding,

One of the most important challenges in fully autonomouasChleves arfall or nothing” paradigm of decoding. When

networks, including peer-to-peer (P2P) networks and wire! Measured data are segmenteddginal source blockswith

: . random linear codes, we need as many coded blocks as the
sensor networks, has been the dynamic behavior of peer nodes.
. d -~ _-original source blocks to decod@ayuseful data. We argue that
and sensors. Peers in P2P architectures tend to partigipate : : . .
: ) ; . : . such a paradigm is not appropriate for either P2P or sensor
and depart from ongoing sessions in a highly dynamic fashion . . .
. networks, since node departures and failures may easitieren

e remainder of coded blocks useless! Having many more
coded blocks than source blocks certainly helps, but we dvoul
prefer to progress beyond simple over-provisioning of each

. .. Sstorage, especially when cache spaces on nodes are limited.
Nevertheless, in both P2P and sensor networks, penoyhcaﬁf g P y P

measured data are generated on an ongoing basis whic|1n this paper, we proposeriority random linear codes
9 going ' .in"a generic network model that encompasses both P2P and
should be preserved for subsequent analysis at a later time, . L .
o I ) sensor networks. A salient feature of priority random Imnea
In P2P networks, it is critical for operators to monitor the

. . odes is the ability tpartially recovermore important subsets
performance and “health” of live peer-to-peer sessions. FC e y P

L . . o L & the original data with higher priorities, when it is not
example, in live media streaming applications, it is esatd feasible to recover all of them due to node dynamics. In a

monitor the achieved streaming rate, the number of upstre%u hell, we achieve this by making sure that coded blocks
and downstream peers, the latency to neighboring peers, an '

resource usaae such as bandwidth and CPU load. Simila I important data are linear combinations fefver source
. 9 . C YOCks, as compared to those for non-critical data. In essen
in sensor networks, the task of each sensor is to monitor {

. . o we assign lower coding rates for important data, such ttest th
environment, with periodic measurements collected foerlatcan be recovered with fewer coded blocks, and may survive

retrieval. ) ,
- . higher percentages of node departures and failures.
How do we collect such periodically measured data, which In addition to our extensive theoretical analysis of ptiori

may grow to substantial volumes over ime? There are reasoR3, o jinear codes, we also present their affiliated pre-
to believe that centralized servers may not be the apprtaprl%istribution protocols. Utilizing the fact that each codddck

A preliminary version of this paper was presented in IEEE IGDZD07 IS enCOd_ed from a subset of source blocks, OUI.‘ pre-distoibut
[1]. mechanism ensures that only source blocks in such a subset

ilar dynamics, due to their lack of reliability, or the existe
of energy-conserving protocols to periodically put seagor
the standby mode.



are delivered to their designated receivers for storaghera be determined offline if nodes can judge the importance &t dat
than all source blocks. Furthermore, utilizing the preglgu based on locations or historical observations as in somsosen
known result that each coded block only needs to be thetwork applications.

linear combination ofO(In N) random chosen source blocks To disseminate source blocks and perform decentralized
for successful decoding [2] (whe® is the total number of encoding in the network, our protocol uses the characierist
source blocks), our pre-distribution protocol is very éffit. of geometric networkswhere each node is identified with a

The remainder of this paper is organized as follows. Ipointin a geometric space. Such networks include instapices
Sec. Il, we describe the network model. In Sec. Ill, weensor networks and P2P networks. In particular, the sensor
introduce priority random linear codes and partial decgdirusually know their locations since the collected data are
algorithms, with extensive analysis of their properties. Imore useful if their generation locations are known. In P2P
Sec. IV, we describe the pre-distribution protocol. Perfonetworks, Distributed Hash Tables (DHE.g, Chord [3], are
mance evaluation of priority random linear codes is in Sec. Widely used to improve the network scalability, where each
We compare our approach with related work in Sec. Vhode has a unique ID in a one-dimensional geometric space.
Finally, Sec. VIl concludes the paper. We further assume geometric routing protocokan route
source blocks to a random point in the geometric network such
as GPSR [4] in sensor networks, and DHT routing protocols
in P2P networks.

In this paper, we consider a generic network model of au- In this work, we assumestrict priority model for decoding,
tonomous networks with unreliable nodes, which encompassgich that the data at higher priority levels are strictly enor
commonly accepted models of both P2P and sensor netwoiltsferable and are decoded before those at lower priority
We consider such a general model to show that priority randdevels. This model describes a wide range of scenarios in
linear codes can be applied to a wide range of autonomagugictical applications, including multi-resolution sensmage
networks, rather than specific to any particular type. dissemination [5], layered data compression [6], and ahgrot

Our model of an autonomous network consists of a set application that requires sequential decoding based onifyri
nodes and the communication links among them. Each nddés also possible to consider a less stringent priority eipd
produces measurement data over time. There does not exigere obtaining a large amount of low priority data may
centralized servers at our disposal; instead, all measlaital be preferable to obtaining a small amount of high priority
from a particular node must be distributed to other nodelen tdata. However, such a model requires the specification of an
network for peer-to-peer collaborative storage. We asdiuate application-specific utility function over the priority Vels.
each node only has a limited amount of storage space, and Téis is outside the scope of this paper and remains an open
only store a small fraction of the data generated in the né&twoproblem for future research.

At a later time, measured data stored at a random subset of

existing nodes will be retrieved for analysis. All nodes fie t I1l. PRIORITY RANDOM LINEAR CODES

network may depart or fail unpredictably. We partition the
continuously generated measurement data by time slotsewf\ﬁ

a source block refers to the amount of the data generated Memes. termeStacked Linear CoddSLC) andProgressive

one time slot on a node. Clearly, how many time slots of d fnear Codes(PLC). An important outcome of the proposed

can be cached depends on the size of the node cache storglggrysis is to derive feasibility regions for designing the

IT tpartlfcglatr, the Izgrger t?]e dcache stprage IS, dthte morle tqu tribution of coded blocks over different priority lesediven
slots of data can be cached, assuming new data replace the .. decoding constraints.

oldest data when the cache is full. Without loss of gengralit
we focus on caching the source blocks produced in one time
slot on all nodes. A. Stacked and Progressive Linear Codes

We assume thal source blocks are produced in one time Both SLC and PLC are based on Random Linear Codes
slot, which are classified te different priority levels in (RLC), which were used as a distributed implementation for
descending levels of importance — source blocks in priorityetwork coding [7]. GivenN source blocksey, zs, ..., zy,
level i are more important than those in levglif i < j. The RLC generates each coded blaglas a linear combinations of
number of source blocks in priority levelis denoted byu;, all N source blocks in the following forme; = E;.V:l Bi i,
wherel < ¢ < n. To facilitate later derivation, we introducewhere thecoding coefficient$; 1, 5; 2, . . ., 3;,y are randomly
b1,bs,...,b,, Whereb; = 2:2:1 a;, i.e, b; represents the chosen from a Galois field. Such an encoding process for a
total number of source blocks from priority levélto i. In  coded block essentially constructs a linear equation wtiere
this case, the source blocks in priority levelare indexed unknown variables are the source blocks, given the coding
as blocks{z;}, whereb,_; +1 < j < b;. In general, the coefficients 3;; and the coded block; are known. The
methods to segment measurement data to different prioritgcoding process of RLC o/ coded blocks solves th&!
classes are application dependent. Data segmentation enayirtear equations constructed by the encoding process,ewher
implemented in a distributed way assuming that nodes cah > N.
distinguish important observations from unimportant oimes  The priority coding schemes deviate from RLC in that most
a real time fashion. On the other hand, data segmentation ncaygled blocks are not linear combinationsatif source blocks,

II. NETWORK MODEL

We introduce the design and performance analysis frame-
ork for two distributed priority random linear coding



Bi1 Bio Aisl[Bi 0 07181 0 0 following the strict priority model from a set of coded bleck
52’1 /52’2 /52’3 0 Boo Pos 5271 Booa (o] C1.then PLC can at least decode the fikspriority levels
53’1 53’2 53’3 0 53’2 53’3 53’1 53’2 53’3 from Oy, the corresponding set @f;. The reverse is not true.
(@ RLC () stc "(c) PLC ' Proof: We prove the theorem by induction. First, we show
. . . _ . the basis is true. When SLC can decode lavdPLC can also
Fig. 1. A comparison among three coding schenigs. is a nonzero coding d de | I si h di ded blocks in | |
coefficient. Three source blocks belong to two priority lsyevhere the first J€CO _e eV_e » Since the corresponding _CO € _OC S In leve
one is in level 1 and the second and the third source blockratevel 2. 1 are identical. Furthermore, the decoding algorithms e a
identical for both coding schemes in leviehs they reduce to

4 0 0 4 0 0 RLC.
0 12 9 5 12 9 Second, we show the induction step is true. Assume that
0 37 6 7 37 6 the statement is true fdr, we need to show it is also true for
(a) SLC (b) PLC k+1. If SLC can decode the firdt+1 levels, PLC can decode
the firstk levels by the induction hypothesis. Given the fitst

Fig. 2. Three pairs of corresponding coded blocks in SLC &n@, Rvhere . .
the first pair is in level 1 and the remaining two are in level 2. levels are both known in SLC and PLC, and the corresponding

coded blocks at levet + 1 have the same coding coefficients
for the source blocks in thé + 1th level, the linear system
but asubsetof source blocks. In SLC, the source blocks arimduced by the coded blocks in level-1 of SLC and PLC are
encoded in different levels separately. Thus, #ie set of identical. Therefore, since SLC can decode the source lock
coded blocks are created by encoding all the source blodkdevel k + 1, PLC can also decode the source blocks in level
in the kth level, i.e, ¢; = Z?‘;bkﬂﬂ Bijx;, wherep; ; is k4 1. Hence, PLC can decode the source blocks in the first
a nonzero random number uniformly chosen from a Galois+ 1 levels.
field and ¢; denotes the coded block. In PLC, the source We show the reverse is not true by a counter example.
blocks are encoded progressively in descending priority. Assume there are two source blocks such that the first source
particular, thekth level coded blocks are encoded from sourdsiock belongs to level 1 and the second belongs to level 2. The
blocks between levels andk, i.e, ¢; = Z';’;l Bi . Fig. 1 coded blocks in level 2 of PLC are the linear combination of
illustrates these two coding schemes and RLC by simpeth source blocks. Hence, PLC can decode all source blocks
examples, where the matrix form of the coding coefficients @fith high probability, when receiving two linearly indepnt
three coded blocks is shown. Specifically, the figure ilatets coded blocks in level 2. However, SLC cannot decode the first
the setting where three source blocks belong to two prioritpurce block with two corresponding coded blocks in level 2.
levels, where the first one is in level 1 and the second and the O
third source block are in level 2. The implication of Theorem 1 is clear when noting that,
Both SLC and PLC enjoy the advantage of allowing partigfiven the same set of source blocks and a set of coded blocks
recovery of a subset of the source blocks, even when thg encoded by SLC, PLC can encode the corresponding coded
number of accumulated coded blocks is less than the totgdcks C; of C; by choosing the same coding coefficients
number of source blocks. In the examples of Fig. 1, RL&r the kth level source blocks inside thkth level coded
requires at least three coded blocks to decode any usdflcks. This can be achieved by using the same random
information. However, for both PLC and SLC, as long as theeed. Similarly, SLC can also encodg corresponding to
first coded block is received, the first source block can I, encoded by PLC.
decoded.
Furthermore, with SLC, because the source blocks in each ) ) )
level are coded separately, the decoding results of d'rfferé?" Partial Decoding Algorithms
levels in SLC are independent. With PLC, to decode the sourceNext, we describe decoding algorithms that can be used
blocks in levelk, all the source blocks between levels 1 antb partially decode source blocks from a set of coded blocks
k — 1 must be already decoded, or be decoded at the saassumulated in a data collecting server. For SLC, the partia
time. However, we can show that PLC outperforms SLC idecoding algorithm is essentially the decoding algorithin o
terms of the number of required coded blocks to recover tR-C for the coded blocks in each level. Once the accumulated
same set of source blocks, as stated in Theorem 1 below. coded blocks in a level are sufficient to decode all the source
We first define theorresponding coded blockt levelk of  blocks in this level, they are decoded despite the souraskblo
SLC and PLC as the coded blocks that share the same codimg@ther levels may not be decoded.
coefficients for the source blocks at level For example, in  For PLC, we useGauss-Jordan eliminatiorrather than
Fig. 2 (a) and (b), thé x 1 submatrix at the top left corner andusual Gaussian elimination since it is unable to partiadliye
the 2 x 2 submatrix at the bottom right corner are identicalh underdetermined linear system. Gauss-Jordan elimmatio
leading to corresponding coded blocks. Furthermore, we dagnsforms a matrix to itseeduced row-echelon forfRREF)
that a set of coded block€; in SLC is correspondingto [8] (e.g, Fig. 3(3)). The benefit of the RREF is that, given the
another set of coded blocks, in PLC, if each coded block first £ unknown variables can be solved with the fikstows,
in Cy is corresponding to one coded block @y and vice once thesé: rows have been processed, the fitselements
versa. Then, we have the following theorem. of the resulting vector on the right-hand-side of the eaqumsti
Theorem 1:If SLC can decode the first priority levels constitute the partial solution. Therefore, with Gaussido



. N: total number of source blocks
11421 981 ?? %)7 300 139 [1) [1) 8 g 8 8 n:  number of priority levels
71178 0 0 0 0 00 1 0 0 o0 M: number of coded blocks
51 62 88 124 3 0 0 0 0 1 0 239 m:  maximal number of coded blocks that can be decoded
81 59 193 0 0 0 0 0 0 0 1 5 from M coded blocksij.e, arg max;{b; < M}
x;: theith source block
(@) (b) a;:  number of source blocks in level
. ) ) o b;: number of source blocks in the firstevels
Fig. 3. (a) The decoding matrix. (b) The RREF of the decodingimafter pi:  priority distribution, i.e, the probability that a coded
Gauss-Jordan elimination. block belongs to level
D;: number of coded blocks in levél
elimination, the decoding process can pmgressive The D; ;- g;nberDof coded blocks between levednd levely, i.e,,
i i k=i "k
decodmg process starts as soon as the first coded blgc (n.k,p):  binomial term (™)pk (1 — p)—k
has arrived, and decodes coded blocks as soon as they |are  p, 4 sum of priority probabilities from level to level 7, i.e,
decodable, when new coded blocks are accumulated. Thus, > Pk
the data collecting server can stop collecting coded data on TABLE |
the partial decoded data fulfill the application requiretnen TABLE OF NOMENCLATURE

For example, Fig. 3 shows the decoding matrix and its RREF
after Gauss-Jordan elimination. From the RREF, we observe

that the first 3 source blocks are partially decoded from the ?1 :
coded blocks. The expected value oX is then

E(X) =) kP(X = k). (1)
k=1
C. Decoding Performance To compute (1), we derive PX = k). In SLC, each level

corresponds to a RLC and is independent of other levels.
That is,a; source blocks in level can be decoded with high
probability as long as the number of accumulated coded block

Under the strict priority model, it is natural to characteri
the decoding performance of SLC and PLC sy decoding

Er? nitrr]atlntsl n tfh € f?rTh(M“ kl)t’ Whtetrﬁ 1,[ S > mé anld in level i is larger than or equal ta;’. To decode exactly:
eth twple refers to the constraint that givéi; randomly levels of source blocks, we need two sets of conditionst,Firs

accumuklj?tei codedb blgcks, dog ?vgrage, the ﬁ{;llever:s of aﬁr?z source blocks of the firgtlevels can be decoded. Second,
source blocks can be decoded. It is apparent that the sm source blocks in level 4+ 1 cannot be decoded. These

M; is, the more severe node failures that the data in the f'E%nditions are summarized as the following events:
k; levels can survive. ‘

We introduce the protocol parameters that can be controlled A ={Diza;} for i=1,2,... .k
to achieve different decoding performanggiority distribu- A1 = {Dry1 < apg1 — 1}, (2)
tion, which is defined as the percentage of the coded blocsere D, is the number of coded blocks in levielTherefore,
of each level among all coded blocks. The priority distiidat e have PEX = k) =Pr(A; N Ay NN Apgr).
can be attained in a decentralized way by the protocols| et D denote the vector dD1, ..., Dii1, Dryo.n], Where
presented in Sec. IV. By adjusting the priority distributithe D, ; is the number of coded blocks between leveind level
coding schemes can achieve different decoding constr&ats ; e, Zi—’ D,.. The sum of the elements id should be the
example, if we increase the percentage of coded blocks in #aa] number of the coded blockel
first k; levels, the probability to accumulate such coded blocks
is increased. Hence, we can fulfill more stringent decoding M =Di+ ...+ Dip1+ Diyon. (3
constraint(M;, k;) with a smaller);. However, given that the Moreover, Dy, and Dy, should meet the constraints:
total storage space in all nodes is fixed, the consequenkatis t D
the percentage of coded blocks from lekgl 1 to n decreases k1 20,
such that the number of required randomly accumulated coded Dyyon 2 0. (4)

blocks to decode_the source _blocks in these levels will exxe SinceD is a partition ofM, the probability that a given vector
Hence, the priority distribution must be carefully chosen i, appears is a function 0P and the priority distribution

order to meet all decoding constraints. P =[p, ... pist, Posonl:

We then derive the numerical relation between the priority M
distribution and the decoding constraints for SLC and PLG:(D,P) = ( >p{31 ...kaﬁlpﬁﬁin_
With such numerical analysis, we can formulate different Di, .oy Dty Diton ’(5)

optimization problems to search for the feasible priority-d Let B denote the set of vectors satisfying the constraints

tribution for a particular set of decoding constraints. Th hy .
. ) X . nd (4). The pr ili levels i
notations used throughout this section are summarized &lr? (3), and (4) e probability to decodelevels is

Table I. P(X =k)=>_ f(D,P). (6)
1) Decoding Performance of SLGMNe introduce the ran- DeB

dom variableX to denote the number of priority levels that 1ye assume a sufficiently large Galois field such as28F(s used to
can be decoded from/ randomly accumulated coded blocksgenerate coding coefficients.



Then, we can compute the expected number of decoded lewelgnsure that the number of coded blocks to recover all sourc
in (1). We use a similar efficient algorithm in [9] to computéblocks is controlled within a reasonable range:
(6) with a complexity ofO(__MQ(kJrQ) log(k+2)) by dynamic P Xy = 1) > 1—c. (10)
programming instead of simply enumerating the vector8,n
which has complexityD(M*+1). We present the details of thewhere N is the total number of source blocks,is a number
efficient algorithm in Appendix I. greater than 1, and is a small positive number close to 0.
2) Decoding Performance of PLCWe again useX to This constraint guarantees that the number of coded blocks
denote the number of levels that can be decoded ffdm to recover all source blocks is smaller thav with high
random coded blocks. Hence, the expected number of decogesbability. Finally, the priority distribution must safy the
levels EX) can be computed by (1), by first deriving theollowing constraints according to the definition of probidn
probability to decodée: levels of source blocks PK = k),

which is the probability that there is an invertalilge x b ) pi > 0,
submatrix W at the left of the decoding matrix and the - .
elements in the submatrix at the right df are all zero after ij =Lfori=1...,n (1)
row sorting on the decoding matrix as illustrated in SecBllI =1
We then have We emphasize that the constraints defined by in (9), (10),
Theorem 2:PLC decodes the source blocks in the fikst and (11) are fairly general. They can be a building block to
levels if and only if eventsii, ..., A,, all happen, where ~ combine with other constraints and optimization objectite@
determine the priority distribution with a wide range of eligse
Ai = {D“k- 2 bk — bi_l} fOI’Z = 1, ey k7 goals
Aj:{DkH,jgbj—bk—l}forj:k:-i—l,...,m, @)
wherem is the maximal number of coded blocks that can be V. DISTRIBUTED ENCODING ALGORITHMS

decoded from\/ coded blocksj.e, argmax;{b; < M}, and | thig section, we describe a protocol to disseminate the
by = 0. The proof of this theorem follows immediately fromg,,rce plocks and the distributed encoding algorithm togac
the following Iemmas, whose proofs are given in Appendix lam in the network. Fig. 4(b) shows an example. Node 1
and IIl, respectively. _ _ disseminates its source blogk to node 5, 6, and 7. Similarly,

Lemma 3:The source blocks in the first levels can be ,4e 2 3 and 4 disseminate their source blagkses, x4 to
decoded from the coded blocks between level 1 and level 5 gpset of nodes in the network. A node encodes all received
and only if e.ve.ntsAh Az, ..., Ay all happen. _ source blocks to one or more coded blocks by random linear

Lemma 4:Given the source blocks in the first lev-  compination. For example, node 7 produces two coded block,
els are decoded, none of the source blocks between Ieygjm and 6z, + bry + o3 + Tz

k + 1 and levelm can be decoded if and only if events |, 4 nytshell, the protocol should encode source blocks in

Ap+1, A2, -+, A all happen. _ a way such that the coded blocks constitute an erasure code
Thus, the probability that PLC decodédevels is with the priority coding distribution described in Sec.-Dl
P(X = k) = Pr(N", A;). @8) We summarize the protocol requirements in more detailst,Fir

the protocol must satisfy theoding requirementgmposed by
The detailed derivations of (8) is shown in Appendix IV, wherSLC and PLC. For example, for SLC, the protocol must deliver
approximations are used to reduce computational complexidifferent source blocks in the same level to the same set of
caching nodes for encoding and storage. As an illustration,
Fig. 4(a) shows that node 2 and 3 transmit and z3, the
two source blocks in level 2, to the same node, node 6, to
encode them together. Furthermore, the disseminationgwbt

With the analytical result presented above, we formulate geds to ensure the designed priority distribution for thaed
numerical feasibility problem to design the priority dibt-  pjocks in the network. Second, the dissemination protocol
tion, p1, pa, ..., pn, Under a given set of decoding constraintghoyld be efficient, due to the energy constraints in wigeles
defined in Sec. 1lI-C. The obtained feasibility region can bgansor networks, or the bandwidth conservation requirésnen
used to optimize the design of priority coding. Since thg pop networks. The ideal protocol will disseminate a seurc
optimization objectives are application dependent, Bustef pock to a node only if the source block will be encoded with
limiting our analysis on any such particular objective,éh@® ihe coded blocks on that node. For exampte, should be
demonstrate the effectiveness of our general approacheby fant 1o only node 6 and 7 for encoding in Fig. 4(b). Finally,
following feasibility formulation. _ the protocol should be implemented in a fully distributed

Let X, denote the random variable representing the NURYay. Our protocol achieves these requirements by utilitieg
ber of levels that can be decoded fraw} coded blocks. The characteristic of geometric networks (described in Secafid
priority distribution must satisfy the constraints: the sparse coding result from [2].

E(Xa) > ki, for i—=1,2,...,m 9 To meet the coding requirement to encode source blocks
(Xnr,) = © generated from different locations together, all nodesikhbe
where EX),,), derived in (1), is a function of the priority aware of the same subset of nodes to cache coded blocks of the
distribution. In addition, we may impose a special constraisame priority level. Furthermore, this subset of nodes Ishou

D. Designing Priority Distribution under Decoding Con-
straints



by a geometric routing protocol (described in Sec. Il).

Upon receiving a new source blogk the node in charge of
the random location will encode it with the coded blackn
that location, withc = ¢+ Gz, whereg is a coding coefficient
randomly chosen from a Galois field. Fig. 4 illustrates the
destinations of source blocks according to their pricsitieet
p; denote the percentage of coded blocks in lgvélor SLC,
the coded blocks in a particular level are encoded from the
source blocks in the same level. Hence, we divide Me
random locations ton parts, where theth part hasMp;
locations and is used to store the coded blocks forithe
level. The source blocks in levélare only disseminated to
the ith part of random locations. For PLC, the coded blocks
(a) in level i are encoded from the source blocks from level 1

to level i. Therefore, the source blocks in levelare only
11X, disseminated to the set 8 (>_'_, p;) locations from theth
6x1 + 5X2 + X3 + 7X4 to thenth part of random locations. As an example, Fig. 4(b)
shows that the source blocks in level 1 are disseminated to
coded blocks in all priority levels, whereas the source lkdoc
in level 2 are disseminated to the coded blocks in level 2 and
level 3.

Since each node is in charge of a small area in the geometric
space, multiple random locations may fall on the same node
such that each node stores multiple coded blocks, and the
number of coded blocks on each node is generally not equiva-

(b) lent because of different area sizes and randomness. ltlis we
known that “the power of two choices” can be used to achieve
Fig. 4. Distributed encoding with (a) SLC (b) PLC. The redgies and load balance with the maximal lo&(In In M/ 1n 2) [11]. The
circles Ide”f’te datatt:'hoc':; ti”t‘)jlogﬁgﬁy fr‘fjrﬁ’tecltg\’g?’h %Q?W}ei”ic‘;\i’cge basic idea of “the power of two choices” is as follows. To
[I?hcéacrllgtteesdrﬁr?ergsc?enﬁneethe \Jononoi diagram )(gf the nodes.’ P 4 find the node to cache a coded block, two uniformly random
locations are generated first. Afterwards, with a geometric
routing protocol, the two nodes closest to the two random
locations are located and the number of coded blocks already
be randomlydistributed among all nodes to tolerate differentached on them are obtained. The node with fewer coded
failure patterns. To achieve these goals, in our protodbl, &locks is then chosen to cache this coded block. To integrate
nodes memorize the same set of caching nodes. Then thie idea into our system, rather than using the original set
protocol selects the same random subsets from them to caoheV/ random locations, we seek a different set lo&d-
coded blocks in different priority levels. To memorize tlaere  balancedM random locations. Without loss of generality, we
set of caching nodes without actually storing the addresesconsider the process to generateitle random location in the
all of them, all nodes are assigned with a common random sdedd-balanced set. Two random locations are generateckas th
such that each node can use this random seed to generatectimelidates to be theth random location. After locating the
same set of\/ random points in the geometric space. Theswo nodes nearest to these two random locations, the pilotoco
random points are used to identify the nodes to cache thges the random location corresponding to the node with the
coded blocks. In particular, a random point corresponds least load as théth random location in the load-balanced set.
a coded block, and the node closest to the random point idn the above protocol, each source block is disseminated to
used to cache the coded block corresponding to the randathlocations in its corresponding subset of thé random
point. Hence, the source blocks produced in one time slotations. Dimakisel al. [2] have shown that for RLC,
are encoded intd/ coded blocks in the network, amtd is with O(In N) nonzero coding coefficients on each row, the
upper-bounded by the average total storage space allotateddecoding matrix can be inverted with high probability. This
the source blocks produced in one time slot in the netwonleduces the number of source blocks need to be disseminated
In the following, we use random point and coded blockom N locations toO(ln N) locations. Clearly, SLC enjoys
interchangeably. In Fig. 4(a) and (b), the dotted lines @efisuch a result since it is essentially composedioRLC. It
the Vononoi diagram [10] of all nodes such that all points easy to see PLC also benefits from such a result, which is
(coded blocks) in a polygon are cached on the node belongftiother confirmed by simulations in Sec. V-D.
that polygon. For example, the random points correspondingThe asymptotic result in [2] serves as a guideline. However,
to coded blocksllz; and 7x4, are cached on node 4 inwe would like to know the exact number of locations needed
Fig. 4(a). Finally, the protocol disseminates all sourcecké to disseminate a source block to, when implementing real
the nodes closest to th&/ random locations in the network systems. In the following, we compute;, referred to as
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densityhereafter, the lower bound of the fraction of locationg
that a source block needs to be disseminated to among
corresponding random locations. Our computation is based 6,

the following observation. In order to decode a source bloc§<

x; in level ¢ from any M; coded blocks, the data collecting§2

server should accumulate at least a coded block encoded fr@

Jﬁj.
Let ¢; denote the probability that the data collecting serve Numbarof coded blocke Number of coded blocks -
collects a coded block encoded from source blagkwhen (a) Number of priority levels is 5. (b) Number of priority levels is 50.

visiting a coded block. We first calculate in order to obtain . _ _

~;. It is easy to see that the server does not obtain a codél > The analysis of PLC agrees with experiments.

block encoded fromz; with probability (1 — ¢;)™: after .
visiting M; random locations. Hence, the server decodes the| =S
source blockz; with a success probability — (1 — ¢;):.
Finally, since we haveN; source blocks in levek, the
probability (1 — (1 — ¢;)™:)" to decode all of them should
be close to 1, given the fact that the dissemination of\ll
source blocks are independent. Therefore, we have

(1= (1)) >1—¢ (12)

~¢simulation
- --analysis
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wheree is a small positive number close to zero. By solving  (a) Number of priority levels is 5. (b) Number of priority levels is 50.
(12), we have the lower bound gf.

Next, we describe the relation betwegnand ;. We first

notice that theV/; coded blocks that the data collecting server

E?”ekc ts|_r|n ay be any; dOUt of :jh_eM tptai number Ofb(l;Odke(tj perturbation. In particular, each node deviates from iid gr
OCKS. HOWEVEr, a node may disseminate a source block 0 gi,iqn \with a random distance of 0.3 along each axis. We

M coded blocks. Hence, each copy of this source block hﬁplement greedy geographical routing algorithm to delie

probability 3/ to be encoded into any coded block among thgo rce block from the node generating this data fragment to
andom location in network.

M; coded blocks the server visits. Furthermore, as discussae
In all simulations, where GB{) is used, we randomly

previously in this section, a source block in levels only

dlssgmmated .tozj:’ip i fraction of ran_dom locations  for generate a set of coded blocks according to the priority
PLC;]’ Wherﬁ” 'S]\E[t]e toial number of pnontg levels. Therefore’distribution and the encoding algorithms, and use the garti

we haveq; = ;37 (3, pi). Hence, we have decoding algorithms to recover the maximal number of source

o qi (13) blocks from the coded blocks. The number of coded blocks

L 1]‘61 (Z?:i i) is varied in each experiment to observe the decoding curve.

To mitigate randomness in simulations, we show, for each

data point in all figures, the average and the 95% confidence

intervals from 100 independent experiments.

Fig. 6. The analysis of SLC agrees with experiments.

whereg; is derived from (12).

V. PERFORMANCEEVALUATION

In this section, we validate our numerical analysis andystu
the decoding performance of SLC and PLC. In all experi-
ments and numerical results, we measure the differentiatedor both SLC and PLC, we set the number of source blocks
performance of our priority coding schemes in thecoding to 1000 and the priority distribution to uniform. Two sets
curveswhere the expected number of decoded priority levet§ experiments are executed with 5 and 50 levels and 200
are shown against the number of processed coded blogkgd 20 source blocks in each level, respectively. Fig. 5(a)
With an example feasibility problem, we demonstrate thghows that our analysis for PLC agrees with the experiments
effectiveness of our priority coding schemes. We also egplovhen the number of levels is 5. On the other hand, Fig. 5(b)
how much transmission cost can be saved by using a spa#Bews that our analysis deviates slightly from experiments
decoding matrix and study the performance of our priorithen the number of priority is 50. The reason is that our
coding schemes under realistic settings with imperfeairjtyi approximation in Sec. llI-C for PLC is related to the numbkr o
information. levels. In particular, the more priority levels, the lesswaate

To illustrate the communicational encoding cost of ouhe approximation is. Fig. 6 shows the analysis agrees with
coding schemes, we simulate them in a wireless network wigperiments very well for SLC.

1024 nodes in a square with si¥®x 17 units. The radio range
of all nodes is 1. The average number of neighbors of a noge p| Outperforms SLC

is 9.53516. Nodes are placed in a grid network with random )
As we have shown in Theorem 1 of Sec. IlI-A, PLC

2This number isp; for the case of SLC. outperforms SLC under the strict priority model in terms of

. Validating Numerical Analysis



— [ [ Decoding Constraint _ p1 | pz | ps |

1f [==PLC - 10 levels ‘ P AML "
o ||~SLC-10lkevels 7 4 Case 1] (130, 1) (980, 2) | 0.5130] 0.0791 | 0.4079
2 || TPLC-S0levels ] | Case 2| (270, 1) (385, 2) | 0.0739 | 0.5141 | 0.4120
5 | Z=oSLC - S0levels | Case 3| (240, 1) (500, 2) | 0.3304 | 0.2813 | 0.3883
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Fig. 7. PLC outperforms SLC.

the number of coded blocks to recover the same set of source
blocks. In this section, we run experiments to explore the pe
formance gap between them with the following experimental
parameters. The number of source blocks is 1000. The number ‘ ‘ ‘ ‘ i
of levels is 10 and 50, and each level contains 100 and 20 0 I N A

source blocks, respectively. Fig. 7 shows that when the maumb

of levels is 10, the decoding performance gap between SIE(g. 8. The decoding curves from the priority distributiohTable II.

and PLC is modest. However, when the number of levels is

50, the performance gap between SLC and PLC is significant.

Furthermore, the number of levels do not have much impactFig. 8 shows the decoding curve for three priority distri-
on the decoding performance of PLC, but do have significamtitions with the following observations. First, in coman
impact on SLC. In particular, the more priority levels, thavith RLC, which requires at least 512 coded blocks to decode
smaller amount of source blocks can be recovered by Sla@y source block, PLC can decode the first level with only
with the same number of coded blocks. This is becauseli80 coded blocks in “Case 1" and the second level with only
the number of levels is large, the source blocks in SLC a885 coded blocks in “Case 2". Second, all decoding curves
less mixed. In the extreme case where each level contagatisfy their decoding constraints and the decoding of drigh
one source block, SLC degrades to the scheme of no codipgority levels precedes lower priority levels. Finallyffdrent
Hence, the “coupon collector” effect comes into play [12Jdecoding constraints produce significantly different dicg
where recovering allN source blocks require® (N In N) curves, which demonstrates the flexibility of our approach
coded blocks. On the other hand, even if each level contaiasvards a diverse set of differentiated decoding requirdme
one source block, PLC does still mix source blocks togetherSince we are searching for one of the feasible solutions, the
and enjoy the coding advantage. In the following, we onlyroduced decoding curve may not exactly match the decoding

=
T

o
&)
T

Expected number of decoded levels
P
[5))

show the results for PLC. constraints. For example, the decoding curve of “Case 3"
climbs to level 2 with slightly more than 400 coded blocks,
C. Differentiated Decoding whereas the decoding constraint is to decode level 2 with 500

We proceed to show examples using the constrained fég@ded blocks. Moreover, it is possible that no feasibletsmis
sibility framework introduced in Sec. IlI-D to find a prigyit are found given a set of decoding constraints. This implies t
distribution satisfying a given set of decoding constsi@ur decoding constraints cannot be fuffilled.
experimental settings are as follows. 512 source blocks are
divided to three levels with 50, 100, and 362 source bloc
in each level. We perform the experiments for three differe
sets of decoding constraints, in the form (@, k;) in (9),
and are shown in the first column of Table Il. For example, In this section, we investigate the communication cost of
(130, 1) in the first row of Table Il requires that the expectedPLC. We use the same source blocks distribution as in Sec. V-
number of priority levels decoded from 130 coded blocks 18, and the decoding constraints in the third row of Table II.

1. We further enforce the constraint (10) with = 2 and By (13) with ¢ = 0.01, we have the densities for the three

e = 0.01 and (11) in all three sets of experiments. We solveriority levels: 0.1487, 0.0558, and 0.0263. We refer to the
the three numerical feasibility problems with MATLAB, ugin PLC with such densities af).1487,0.0558,0.0263)-sparse
uniform distribution as the initial searching point. MATBA codes and the original PLC aslense codesWe conduct
terminates and produces a feasible solution which is the fitke experiments with the densiti€%0743,0.0279,0.0132) as
solution it finds such that all constraints are satisfied. Theell for comparison. Fig. 9 shows the results. In particular
priority distributions produced by the feasibility probleare the decoding curve 0f0.1487,0.0558,0.0263)-sparse codes
shown in the last three columns in Table II. is almost the same as the dense codes. Hence, reducing code

S . . . . .
iﬁ). Reducing Transmission Cost with Sparse Decoding Matri-



TABLE IV
THE PRIORITY DISTRIBUTION COMPUTED WITH IMPRECISE PRIORITY
INFORMATION. SET 1 AND SET 2 HAVE IMPRECISE PRIORITY
INFORMATION ON THE FIRST TWO AND LAST TWO PRIORITY LEVELS
RESPECTIVELY

w

dense
—=—(0.1487, 0.0558, 0.0263)-sparse
H—=—(0.0743, 0.0279, 0.0132)-sparse

N
3]

N

[ Type [ Priority Information] p1 [ p2 [ p3s |
Precise (70,140,490) 0.2691 | 0.3380 | 0.3929
Set 1 (60,150,490) 0.2396 | 0.3807 | 0.3797
(80,130,490) 0.2817 | 0.3203 | 0.3980
(70,130,500) 0.2906 | 0.3225 | 0.3869
(70,150,480) 0.2634 | 0.3642 | 0.3724

Expected number of decoded levels
P
al

Set 2

0 200 400 600 800 1000
Number of coded blocks

w

(60,150,490)
——(70,140,490)
-=-(80,130,490)

(70,130,500)
——(70,140,490)
-=-(70,150,480)

N
[

Fig. 9. The decoding curves of the dense codes and sparss. code

N

TABLE Ill
THE DISSEMINATION COST IN TRANSMITTING A SOURCE BLOCK

o
o

[ code density[ average] Tevel 1 [ level 2 [ Tevel 3|

dense 72536 | 14702 | 12655 | 4733
sparse 403.4 2196 520.5 1235

Expected number of decoded levels
(4]

Expected number of decoded levels
(]

o

500 1000 500 1000
Number of coded blocks Number of coded blocks

(a) (b)

densities appropriately does not degrade the coding perfbig. 10. (a) Decoding curves of set 1. (b) Decoding curvesed@s The 3-
mance. On the other hand().0743,0.0279,0.0132)-sparse tuples represent priority information used to compute therjtyi distribution.
codes deviate from the dense codes significantly and does not

meet the decoding constraints. Therefore, the code desmsiti . . . . . . Co
computed from (13) are relatively tight. In the followingew priority |nform§t|o_n t_o derlve_ dlﬁerent priority distriltions.
omit the result of(0.0743, 0.0279,0.0132)-sparse codes since | "€ COITECt priority information is always 70, 140, and 490
it does not satisfy the coding requirement, and we simplgrrrefso.urf:e plogks .for_ the three pr|or|ty. levels. Howeve_r, the
to (0.1487,0.0558,0.0263)-sparse codes as sparse codes. priority distribution is computed from different sets ofqmity

We next investigate the communication cost in constru formation with an error of 10 source blocks as shown in

ing PLC using greedy geographic routing in wireless sens ?ble IV. We observe that the priority distributions dedve

networks. The network setup is described in details at t om slightly imprecise priority information is similar tthe
beginning of Sec. V. We define the number of hop tran?—riority distribution derived from precise informationhib fact

missions involved in disseminating one source block as t further confirmed by Fig. 10, where the decoding curves of

e ) . . . o X
communication cost. Table Ill compares the communicati FEe eﬁﬂirgegit:qig'rth precise and imprecise information are
cost between dense codes and sparse codes. As a benchrﬁgﬂw :

the communication cost to transmit a packet to all nodes by
flooding is at least 1024 since the total number of nodes in the VI. RELATED WORK

network is 1024. We observe that the average communication )
cost to deliver one source block in dense codes is muchln sensor networks, extensive research efforts have stud-

higher than flooding since the asymptotic cost@'(sN\/JV) ied various distributed source coding schemes to save data
[2]. On the other hand, the average communication cost f&RnNSmissions by exploring the spatial and temporal data
the sparse codes is significantly lower than flooding as tf@'relations such as in [13]. In contrast, our work alonghwit

cost isO(log Nv/N) [2]. Finally, we notice that the cost to recent_ re;earch work in sensor networks [14], [2], [15],][16
disseminate source blocks in higher priority levels is bigh@nd distributed storage systems [17], [18], [19] belongs to

than the cost in lower priority levels. This is because these diStributed channel codingwhich provides data redundancy

blocks in the higher levels need to be disseminated to matdch that original data can be efficiently recovered whea dat

random locations. Furthermore, the code densities of higH@SS are common due to node failures. However, most existing
priority levels are also higher. distributed channel coding schemes either recover all diata

nothing. To cope with such coding disadvantage, Growth €ode
] o ] [14] have been proposed to maximize partially recovered dat
E. Impact of Imprecise Priority Information on the sink in case not all data can be recovered in sensor
Up until now, all analysis and experiments assume precisetworks. Growth Codes treat all data equivalently despite
knowledge of priority information. In this section, we egp data may have different importance in many applications.
how imprecise priority information affects the performaraf Therefore, if it is used, unimportant data may be recoveted a
our algorithms with two sets of experiments. We use the sarie expense of failing to recover important data. In conti@s
experimental settings as the dense codes in Sec. V-D exarept@rowth Codes, we encode data in different priorities sueth th
assuming that the network nodes use different sets of inggredmportant data always have higher opportunity to be reamler
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Wangel al. [5] introduce alistributed source codingcheme VIIl. A CKNOWLEDGMENT
to support partial decoding where partially decoded daimfr  The authors would like to thank Guanfeng Liang for his
incomplete coded data are an approximation of the true d‘%FF’sights in our extensive discussions.
The more coded data are collected and processed by the data
collecting server, the closer is the decoded data to the true

dat APPENDIX |
ata. ) ) o ) EFFICIENT COMPUTATION OF EQ. (6)
Network coding [20], [21] and its distributed implemen- We compute

tations utilizing random linear codes [7], [22] allow codin P

operations besides replication and forwarding on the -intef,n . N! by hi
. . . . (qla 7QK)_ Z ﬁql gy

mediate nodes and achieve the maximal multicast capacity i TN hy! - hg!

of a network. Chotel al. [22] consider priority encoding in hi>aihi -1 Sag—1—1

network coding to achieve network multicast capacity, \whic fori=1,....K -2 (14)

is different from our problem. Chunked Codes [23] reduce ﬂWhereZK g = 1 andh; > 0. Clearly, PtX = k) in Eq. (6)
complexity of random linear codes by partitioning messaquN(qll':.l' ‘qK) it N :‘M K — k+é Di = hi, Dyson =
to “chunks” and utilizing pre-coding. Although SLC uses, I;_ :’q_ :Pk+2 . ’ e "
similar partitioning, we focus on partial decoding whertrey L’etiQ- " S " Then we define

concentrate on reducing complexity. Furthermore, in Clednk - =i -
Codes, all data have to be pre-encoded in the source node To o — RN qi di+ K (15)
before dissemination, whereas in our work, data are encoded K@ K '

in different nodes in a decentralized way.

The research work on priority encoding of data has be
con5|de_rec_i for m”'“f“eo“a systene.g, Priority Encoding Then it is easy to verify that we have the following recursive
Transmission (PET) in [24]. To the best of our knowledgefOrm to computeT v
there is no known way to implement PET in a distributed way. A
Furthermore, we believe a naive implementation of PET under N O ivie N O i1\ 2
a distributed setting may incur much higher communication Tk n; = Z 'N ' ( Uilas 1—1) <1+H+—1>
cost than our proposal due to the following reason. Eachatode Ny=0 NIN2! \ Qi k-1 Qiitk-1
block in PET consists of the information of all priority ldse Try Ny i Ty Nyivky s (16)
Hence, the data from any priority level are required to be )
disseminated to all nodes caching coded blocks. In coptragfiere Kz = K — Ky and N, = N — Ny, and the constraints
in our schemes, a coded block in most priority levels is n@f i = @i and g1 < ar—1 — 1 in (14) will be integrated
encoded from all priority levels but a part of them. Hencd2€r when computing the initial values. _ _

a source block from one priority level need to be delivered N&Xt, we present the dynamic-programming algorithm to
to only the nodes with theubsetof coded blocks where it fficiently computeTy a1, utilizing (16). The initial values

is required for encoding. Therefore, our schemes incur mugfe computed from (15) with the constraints > «; and
lower communication cost than a naively implemented PEfx-1 < ax—1. FOrN =0,..., M, we have

system. 0 if N< ai,
TN = )
1 if N> a;,

Qiivrk-1  Qiitk—1

With such a definition, it is apparent th&Y (q1,...,qx) =
%nK,N,l, and (6) is equivalent t@'x i 1.

17)

fori=1,...,K —2. Wheni = K — 1,

1 ifN<aK_171,
Ty N Kot = = 18
LKL {0 if N>apg_ | —1. (18)

VIl. CONCLUSION

In this paper, we introduce priority encoding under a dis-
tributed setting, where data are generated in differeniesod
and encoding operations are executed in a decentraliZd¢ithermore, we havé v x =1 for all N.
manner. The proposed priority random linear codes can beAfterwards, we build a table for dynamic programming with
applied to a wide range of autonomous networks, includirfgstandard doubling trick, utilizing (16). We have
P2P and sensor networks with node churn and failure, to | N
partially recover data cached on the network nodes. Ouystud 7, = _ 5 N! (Qz‘,i+2j—11) (Qi+2j—1)i+2il>
is based on extensive mathematical analysis and simulation =" = Ni!No! \ Q1251 Qijit2i—1
experiments. We show that with our priority coding, impatta
data can be recovered with much fewer coded blocks as
compared with random linear codes, hence they are mdoe j = 1,...,|log(K)|, N = 0,...,M, andi = 1,1 +
likely to survive under severe network instability. Furtimere, 27,...,1+2/(1 — 1), wherel = |K/2|.
the proposed theoretical analysis provides insights ih t Finally, we computd’x ;1 based on the table built by (17),
fundamental tradeoffs in priority coding, leading to a fldzi (18), and (19). We decompog¢ as the sum of the powers of
framework for optimal coding design based on applicatioh
requirements. K = 210g(x) 285N + L+ 212 + 20, (20)

N

“Toi-1 Ny iT25-1 Ny igoi-1,  (19)
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where z; is either 0 or 1. LetX’ represent the sum of the There are two types of linearly independent rowsMf ;,
first j items in (20). The initial value§'x, 1 are besides thé; — b, linearly independent rows expanded from
I with the first b; columns. First, the additional linearly
Tx, N1 = Tovosto) vy for N=0,..., M, (21) independent rows may come from the coded blocks in level 1.
and are given in the table built by (17), (18), and (19). Notg that arpbl rows from the goded blocks in level 1.c.an be
ThenTx. x 1 are computed as follows: the linearly independent rows iy ;. Second, the additional
7 linearly independent rows may be expanded from the rows in
Tx; n1=Tx; N1, (22) M,y but not inly ;. The number of théth level rows inls j
is smaller tharb; — by, since otherwise these rows are linearly
dependent i, 5, contradicting with the assumption that any
N | N N, subset of rows iy 5, are linearly independent. Hence, any
Z N! <Q17Xj1> (QleJrLXj) rows in leveli expanded from the rows if/, ; but not in
NiIN!\ @Q1,x; Q1,x; Iy, can be linearly independent rows i, ;. Therefore, it
is easy to find the additional linearly independent rows in
N Ty x, e (23) M , given A; = {D, 5, > b;,} happens. Hence, there dig
where N, = N — Ny, and forj = 2,...,|log(K)|. linearly independent rows in/, j.

Tyx;-x;-1 Ny x._ 11 &F€ given in table built by (19). Conversely, suppose there dnelinearly independent rows
It is easy to see the complexity of the above algorithm fgolumns) in M, ;. Mo, is transformed fromM ;. in two
determined by the four levels of loops (on variabl§s, j, Steps. First, the firdt; columns of)M, ; are removed. Second,
N, and;) in building the table for dynamic programming inany rows with all zero in the submatrix from the previous

(19). Therefore, the computational complexity@f ,; (i.e, Step are also removed. Since the fibst columns of M
(6)) is O(M?K log(K)). can contribute at mog, linearly independent columng(/s
hence contains at least — b; linearly independent columns.
Furthermore, there are onby, — b; columns inM; ;. There-
fore, My ;, consists ob, —b; linearly independent rows. By the
induction hypothesisds, As, ..., Ay all happen. Furthermore,
We introduce two notations to facilitate the prOOfS 01:41 should happen since the fact th@t“near'y |ndependent

if x; = 0. Otherwise,

Tx, N1 =

APPENDIXII
PROOF OFLEMMA 3

Lemma 3 here and Lemma 4 in Appendix Ill. First, letows exist in}, ; implies that there are more thap coded
M, ; denote the submatrix of the decoding matrix with rowg|ocks from level 1 to levelk, i.e, Ay = {Dyy > b}
corresponding to the coded blocks between lé\atd levelj happens. 0

and columns corresponding to the source blocks betweeh leve
i and levelj. For example M, 3 in Fig. 3(b) is [1973 8 8}
Second, let/; ; denote a submatrix composed 0? a maX|maI
set of linearly independent rows if/; ;. For instance, one
I3 in Fig. 3(b) is[ 4% 19, %] and anothed, 5 is [ 1,9, 9]. Proof: Since the source blocks in the firét levels are
Hence, I; ; is a submatrix ofM; ; and bothM; ; and I, ; decoded, we focus oM/ ,,. We use induction to prove
have widthb; — b;_1, assumingb, = 0. Furthermore, it is this with the following basis statement. None of the source
easy to see that the elements of the submatrix at the rightbddcks in levelk+ 1 can be decoded if and only if eveds, .,
M, ; is always zero. Therefore, as long as therebarinearly happens. Sincé/;, ;1 is in the form of a RLC decoding
independent rows i/, ,, we can decode the source blocksnatrix, none of theb,; — b, source blocks in levek + 1
in the firstk levels. We show the detailed proof of Lemma Zan be decoded if and only if the number of coded blocks
in the following. D1 k+1 < bey1 — by — 1 with high probability. Hence, the
Proof of Lemma 3:We prove the following equivalent basis is true.
statement. There arg, linearly independent rows i/, 4, if Assume the statement is true for — 1, i.e, none of
and only if eventsdy, Ao, ..., A, all happen. This equivalent the source blocks in levek + 1 to level m — 1 can be
statement is proved by induction. The basis is the followindecoded if and only if evently, 1, Ag1o,..., Amn—1 happen,
statement. There existg — by_; independent rows i, we need to prove the statement is true far Suppose
if and only if event A, happen. This is true since anyAjii, Akxio,..., A, happen, then none of the source blocks
by, — bi—1 rows in My, are linearly independent with highin level £+ 1 to levelm — 1 can be decoded by the induction
probability given the coding coefficients are randomly @os hypothesis. Sincel,,, = {Dy+1,m < b, — by — 1} happens,
from GF@®). the source blocks in leveh cannot be decoded either, because
Assume the statement is true fér— 1, i.e., there are it requires at leasb,, — b, coded blocks in order to decode
b, — b1 linearly independent rows iff; , if and only if event the b, — by, source blocks from levet + 1 to level m.
As, As, ..., Ay all happen, we prove the statement is true for Conversely, since none of the source blocks from lével
k. Suppose eventd;, Ao, ..., A; all happen, there atlg,—b; to level m — 1 are decoded, eventdy 1, Axt2,..., Am—1
linearly independent rows i/, 5, by the induction hypothesis. happen by the induction hypothesis. We need to show that
We need to prove there atg linearly independent rows in A, happens. We claim the rows in the submatf_, ; ,,, are
M k. linearly independent, given none of source blocks fromlleve

APPENDIX I
PROOF OFLEMMA 4
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k+1 to level m can be decoded. This claim can be proved Let W; denoten*_,,  A;. Hence, PfA; 1| Ni_; A;) =
by induction as well. If the coded blocks in levek-1 cannot Pr(A;_,|A; N W;). By the law of total probability on the
be decoded, the number of rows My, 41 is less than conditional space of evemt; N W;, we have
the number of columns, and the rows are linearly independent o o
with high probability, sincé\lj, ;1 541 is in the form of a RLC P Ai—1[AiNW;) = Pr(A; 1 |CinW)PrH(C;nW; | A;nWi) +
decoding matrix (all coding efficnets are nonzero). Assumebr—bi—1
that the rows inMj1,,,—1 are linearly independent, we need Z Pr(A;_1|C; . N W)PHC; . N WA N W),  (28)
to prove that the rows il ,, are also linearly indepen- z=b,—b;_»
dent. Following the above hyp othe3|_s, any rOWSM’C.“*m sinceC; and C; , are subsets off;. We derive the unknown
expanded from\/;, ,,_1 are linearly independent, given all . ’ )

. o : elements in (28). First, we have
rows in My 1,,—1 are linearly independent. Furthermore, they
are independent from all rows in level because they have Pr(A;_1|C; N W;) = 1. (29)
less nonzero elements than any rows in lexel Finally,
any b,, — by (or less thanb,, — b;) rows in level m are

also linearly independent. Hence, all rows My, ,, are » : f
linearly independent as long @%,., 1 . < b, — by Therefore, Second,A;_; and W; are conditionally independent given
the eventA,, = {Dii1m < b - bk__ 1} should occur; C; .. This is because given the number of coded blocks from

otherwise, all source blocks in leviel-1 to m can be decoded, '€Ve! 7 to levelk, the number of coded blocks from levet- 1
contradicted with the hypothesis. to level k is independent of the number of coded blocks from

level j to level k, wherej > i. Hence, we have

Pr(A;_1|C; . N W;) = Pr(A;1|C;.»)

This follows becaus€; = {D; > by —b;—2} andD;_1 j, =
Di 1 1+Dip > D imply A1 = {D;_1% > br—b;_2}.

APPENDIX IV
DERIVING PR(X = k) IN PLC =Pr(Di—1x = bk — bi—2|Dik = 2)
In this appendix, we show the detailed derivation afPr= = PrDicrio1 2 br = biz = 2|Dik = 2)
k) in (8). This probability can be expanded as follows by the B M B(M j _Pi-1
chain rule: - Z (M =21, 1- P k)’
l:bk—bi,z—z ’
Pr(X = k) = Pr(N%, A;) (30)

= Pr(n%_, A; Pr(Ny™ .1 Aql NF_L A, (29) where the second and the third equality follow from the
definition of A;_y, C; ., and D; ;. The fourth equality holds
Hence, we derive PX = k) in (24) with the following two because given the number of coded blocks from leved
steps: deriving Rn’_, 4;) and deriving PfN™, ., A;| N%_, level k is z, the number of coded blocks in level- 1 in

A;). the remainingM — z coded blocks is a binomial distribution
where the probability to choose a coded block in leivel 1
o is 11171;1
A. Deriving Pr(N_; A;) Third, we derive P{C; . N W;i|A; N W;). We show that
By the chain rule, Rnk_, A;) is the exact derivation of this probability involves recursiand

is computationally extremely complex. Hence, we give an
Pr(NX_, A;) = Pr(A,)Pr(A;_1|Ax) - - Pr(A [N, A;). (25) approximated derivation. We start with the exact derivatio

as follows:
To simply notations, we us@(n, k,p) to denote the bi- PH(Ci. N W)

nomial term (})p*(1 — p)"~*. Since the number of levéi- Pr(Ci . N W;i|A;NW;) = IW(!lZirWVI)’ (31)

coded blocks in thé/ coded blocks conforms to the binomial ¢ ¢

distribution, we have since C; ., C A;. Pr(A; N W;) can be calculated using
intermediately computed result as follows:

Pr(A) = Pr Dy > b, — br—1
( ) ( M ) Pr(AZ N Wz) = Pr(ﬂ;“:ZA])
= Z B(M, z,pg). (26) = Pr(A)Pr(Ag_1|Ag) - - - Pr(A] ﬂ?:iﬂ Aj),
z=br—br_1 (32)

where P(Ay) and PEA[ NF_, ) Aj), I =4,...,k -1, are
derived prior to PfA; N W;) in (26) and (28). RIC; . N W;)
in (31) can be computed as follows:

PT(CZ"Z N Wz) = Pr(Ci’Z)Pr(Wi|Ci’Z)

= Pr(D; ), = 2)Pr(N5_, 1 Aj|D;j = 2)
e = B(M, z, P; x)PHNS_;  Aj| Dy = 2),
=C; U (U5, Cis). (27) (33)

Next, we derive Rid; 1| N%_; A;). DefineC; = {D;
b — bi_g} andﬁC’iyz = {Dz,k = Z}, whereb, — b;_1 < z
by, —bi_o — 1. C; and C; , partition A; as follows:

IN IV

A; ={Dj > b, — bi_1}
= {Dig > be —bi o} U2 YDy = 2))

z=bp—bi_1
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where computing Rﬁ§:i+1Aj|Di7k = z) is the same problem  We proceed to derive the unknown elements in (38). First,
as computing (25), although the former is defined on theecause’; = {D; , > M —b,, +b;+1}, we haveDy_1 ,,, =
conditional space on evefiD; , = z}. Hence, we can use theM — D, ;, < b,, — b, — 1, i.e, A,, happens. Hence, we have

same method in deriving (25) to derive(Rf_, , A;|D;x =

However, since the computation of this probability is
encountered for each and recursively, the computational

P(A[CT N W) = 1. (39)

Second,A,, and W; are conditionally independent given

cost of (25) is too high by this method. Hence, we give th€, .. This is because given the number of coded blocks from

approximated derivation for RE; , NW;|A; NW;) as follows:

Pr(Ci’Z)
Pr(A;)
PI’(DUC = Z)
Pr(D; 5 > br, — bi—1)
B(M, z, Pz,k)

7
Dby —b,, BIM,1, Pi k)

where the first equality follows sindg; . C A; and the second
and third equality follow from the definition oD; ;. The
approximation in (34) is reasonable siridég = mé?:iHAj has
much smaller impact to B¢, ., N W;|4; N W;) thanC; ., and

PT(CZ"Z n WZ|A1 n Wl) S PI’(C@Z|A¢) =

, (34)

level 1 to levelk, the number of coded blocks from+ 1 to
m is independent of the number of coded blocks from lével
to level k, where: > 1. Hence, we have

Pr(Am|Cl,z N Wl) = Pr(Am|CLZ)
= Pr(DkJrl,m < bm - bk - 1|D1,k = Z)

b —br—1
> B(M -z, f"’*};m
=0 — 11k
where the second equality follows from the definitionAf,
and( ., the third equality holds because given the number of
coded blocks from level 1 to levélis z, the number of coded
blocks from levelk + 1 to level m in the remainingM — z

), (40)

A;. However, if & grows larger, the approximation becomesoded blocks is a binomial distribution where the probapili

less accurate. We verify that such approximation is suffttje
accurate with simulations in Section V-A.
Finally, we have

b —bi_2—1

>

z=br—b;—1

Pr(@ﬁ WAAZﬂWZ) =1- Pr(Ci)zﬁWAAiﬁWi),

(35)
sinceC; andC; . partition A;.

By substituting (29), (30), (34), and (35) to (28), and
substituting (26) and (28) into (25), we derive the formula

to compute PN%_, A;).

B. Deriving PN, ., A;| N A;)
Similarly, we derive P(M7™, ., A;|N¥_, 4;). Let H denote
Nk_, A;. By the chain rule, we have

PHT sy A | H) = PHAp | H) -+ Pr(Apya| Ny oy Ay O H).
(36)

First, we derive RiA,,|H). We defineC; = {D; . > M —
bm—‘rbk-i-l}, Cl,z = {Dl,k = Z}, whereb, < z < M —b,, +
bi. C1 and (4, partition A; as follows:

Ay ={D1 > bi}
={D1 x> M — by + b + 1} UUL Dy o = 2}
=Cy UMty (37)

Let W, denoten’_, A;, by the law of total probability on the
conditional space of evemt; N W7y,

Pr(Am|A10W1) = Pr(Am |aﬂW1)Pr(aﬁW1 |A1 le)-l-
M —by +bg

>

2=by,

Pr(A,,|C1 . NW1)PI(Cy . N Wi|A N W), (38)

sinceC; andC; . are subsets ofl;.

k+1,m

to choose a coded block in levkl+ 1 to level m is TP
Third, similar to (34) we have the approximated derivation
of Pr(Cy. N Wy|A; N Wh) in order to avoid the infeasible
computation of exact derivation:
Pr(01 z)

Pr(Ci.c 1 Wi|A1 N Wh) & PCl | A1) = 58

- PI’(DLk = Z)

o PI’(DL]@ > bk)

— JMB(MVZaPl,k’) ’ (41)
>y, BIM, L, Py )

where the first equality holds sin€ey , C A; and the second

and third equality follow from the definition ab; ;. Finally,

we have

M —by, by
> PrCy.NW|ANW),

Z:bk

PI’(CTQW1|A1 ﬂWl) =1-

(42)
sinceC; andC; . partition A;.

By substituting (39), (40), (41), and (42) to (38), we derive
the probability P(A,,|H).

We proceed to derive the probability(Ry; ;[ N72; A; N H)
for i = k + 2 to m. DefineC; = {Dyy14 < bi—1 — b — 1}
andC; , = {Dk+1,i =z}, whereb;_1 —by <z <b;—b,—1.
C; and C; . partition A; as follows:

A; = {Dpg1, < by — b, — 1}
= {Dps1,i < bicy — b — 1 U (UL, {Dpyr = 2})
= G U (U5 1, Cie)- (43)
Let W; denoten}.;  ; A;NH. By the law of total probability
on the conditional space of evedAt N W,;, we have

Pr(Ai,1 |AlﬂW2) = PF(AZ',1 |aﬂWZ)P|’(aﬁWZ |AZﬂWZ)+
b;—br—1

>

z=b;_1—by

Pr(Ai_1|Oi7z N Wi)Pr(Ci,z N W1|A’L N Wl)a (44)



sinceC; andC; ., are subsets off;. [2]
_ We derive the unknown elements in (44). First, because
Ci = {Di41,i < bjim1 — by — 1} and Dyq1,i-1 < Dy, < 3
b;_1 — b — 1, A;_1 happens. Hence, we have

Second,A;_1 andW; are conditionally independent given
C; .. This is because given the number of coded blocks from
level k + 1 to level i, the number of coded blocks from+ 1
to i — 1 is independent of the number of coded blocks fromts]
level 1 to level & and from levelk + 1 to level j, wherej > i.

Hence, we have [7]

PH(Ai_1|Ci N W) = Pr{As_1[Ci.)
=Pr(Drt1,i-1 <bio1 —bx — 1[Dypy1i = 2)
Priz —bi_1 +bp + 1 < Dy < 2[Dyg1 = 2)
P ;
Pkﬂ,i)7

(8]
El

z

>

l=2z—b;_1+bp+1

(10]

B(z,l, (46)

[11]
where the second and third equality follow from the defimitio
of A;_; and( ., the fourth equality holds because given the
number of coded blocks from levél+ 1 to levels is z, the [12]
number of coded blocks in levelin thesez coded blocks is a
binomial distribution where the probability to choose aedd [13]
block in leveli is Pk+1

Third, similar to (34), we have the approximated derivatioa4
of Pr(C; . N W;|A; N W;) in order to avoid the infeasible
computation of exact derivation:

[15]
Pr(CZ z)
Pr(C; ., " W;|A; N W; zprci,z Ai) = 55
(€ WA I = PGl 4) = T "
_ Pr(DkH,i = Z)
Pr(Dyy1, < b; — b — 1) [17]
_ B(Mvzapk-i-l,i)
Voo T B(M, 1, Pra ) [18]

where the first equality holds singg, . ¢ A, and the second

and third equality follow from the definition ab; ;. Finally, [19]
we have
b; —br—1 [20]
P(CiNWiAinWi) =1— Y Pr(C;.NWi|4;n W),
z=b;_1—by [21]

(48)
sinceC; andC; . partition A;.

By substituting (45), (46), (47), and (48) to (44), we deriv&?
Pr(A;—1|H NN7L;Aj). By substituting (38) and (44) to (36),
we derive PN, A;|N¥_; 4;). With (25) and (36), we have 123l
derived P(X = k) in (24).

Due to the approximations in (34), (41), and (47), the sutp]
of P(X = k), wherek = 0,1, ...,m, derived in this appendix
is less than 1. Therefore, we normalize these probabibties
that their sum equals 1.
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