
Passive Loss Inference in Wireless Sensor Networks
Based on Network Coding

Yunfeng Lin, Ben Liang, Baochun Li
Department of Electrical and Computer Engineering

University of Toronto
{ylin, bli}@eecg.toronto.edu, liang@comm.toronto.edu

Abstract—The highly stochastic nature of wireless environ-
ments makes it desirable to monitor link loss rates in wireless
sensor networks. In this paper, we study the loss inference
problem in sensor networks with network coding. Unlike tra-
ditional transmission protocols, network coding offers reliable
communication without using control messages for individual
packets. We show, however, that network coding changes the
fundamental connection between path and link loss probabilities
such that new inference algorithms need to be developed. As end-
to-end data are not sufficient to compute link loss rates precisely,
we propose inference algorithms based on Bayesian principles to
discover the set of highly lossy links in sensor networks. We show
that our algorithms achieve high detection and low false-positive
rates through extensive simulations.

I. I NTRODUCTION

Recent technological advances have made it feasible to de-
ploy large-scale sensor networks using low-cost sensor nodes.
However, as the scale of sensor networks becomes larger, two
key challenges potentially arise. First,node failures. Due to
their inherent instability and energy constraints, sensornodes
are prone to failures. It would thus be useful to determine
which set of nodes or which geographical areas within the
network are experiencing high loss rates. Such informationis
potentially valuable to the design of fault-tolerant protocols
or monitoring mechanisms, so that the problem areas may
be re-deployed, and critical data may be rerouted to avoid
these failure-prone areas suffering high loss rates. Second,
bandwidth constraints. One cannot rely on the use of active
acknowledgments, which are neither scalable nor bandwidth-
efficient, in the design of sensor network protocols. This
renders the direct collection of loss rate data impossible in
sensor networks. Furthermore, it would also be infeasible,due
to limited bandwidth, for individual sensor nodes to collect and
transmit loss rate data to a centralized location for processing
in large-scale sensor networks.

The research on network coding has received tremendous
amount of attention in recent years. By allowing intermediate
nodes to perform coding operations besides simple replication
and forwarding, it has been shown that network coding [1]
achieves the network multicast capacity. Furthermore, network
coding is found to be effective and helpful in lossy wireless
networks, as it naturally offers error recovery and reliable
communication due to its root from erasure coding [2]. In
addition, network coding is also able to utilize the wireless
broadcast advantage while significantly simplifying protocol

design [3]. Finally, network coding can compress spatially
correlated sensing data in a distributed fashion [4].

On one hand, there exists the need of identifying specific
geographical areas where high loss rates are experienced in
large-scale sensor networks. On the other hand, though band-
width constraints prevent centralized loss data collection and
processing, network coding offers inherent resilience to losses
in sensor networks in a decentralized fashion [2], [3]. Would it
be feasible to design new practical algorithms when network
coding is used for data flows in wireless sensor networks, such
that areas with high loss rates areinferred without centralized
collection? In this paper, we study the problem of efficiently
determining highly lossy links in wireless sensor networksby
passively monitoring network coding traffic at the sink.

We believe that existing loss inference solutions in the
literature are not effective in the context of network coding. In
traditional loss inference problems considered in IP networks
and sensor networks, either end-to-end retransmission (TCP)
is employed to ensure reliable communication [5], or no
reliability [6]–[8] is provided in order to avoid the overhead
of acknowledgment messages for individual packets. All these
inference problems use the following fundamental model
between end-to-end observation and network characteristics:
the path successful-transmission probability is the product of
all link successful-transmission probabilities, assuming loss
events occur independently among links. With network coding,
however, this fundamental model is changed. In particular,we
show that the path successful-transmission probability isthe
minimum of all link successful-transmission probabilities on
this path.

Such a simple difference between path observation and
link characteristics has two important consequences on loss
inference.First, the most lossy link on a path essentially
blocks the information of all other links on the same path.
Hence, it is infeasible to determine the exact loss rates of all
links. Therefore, we seek to achieve a less ambitious goal, to
discover the set of highly lossy links in this paper.Second, in
the traditional model, even if all links are good, a long path
may still have high loss rates due to the accumulated effect of
link losses. In fact, it can be shown that it is infeasible to find
a path threshold — a threshold value to separate good and bad
paths — without both false positives and negatives. However,
with data flows using network coding, a high-loss path always
implies that there is at least one poor link on the path. This

fact suggests that a natural path threshold is the link threshold
itself.

With these new insights in mind, in this paper, we propose
Bayesian inference algorithms based on factor graphs [9] and
Gibbs sampling [10]. Both algorithms are able to derive the
posterior distributions of link rates, given the data observed
at the sink. In general, the factor graph based solution offers
the complete numerical posterior distributions, whereas Gibbs
sampling is only able to generate random samples from
these distributions. However, in our inference problem, the
factor graph based algorithm suffers from the “the curse of
dimensionality” [10], and is hence not suitable for large-scale
problems. We also adapt the algorithm in [11], originally
proposed for traditional routing protocols, to our new problem
setting and show that its performance improves under network
coding. Furthermore, this combinatorial algorithm is much
more efficient than the two numerical Bayesian inference
algorithms. However, it is accurate only if there is a sufficiently
large amount of data in the network. In contrast, the Bayesian
inference algorithms demonstrate excellent performance even
with limited data. We evaluate these algorithms through ex-
tensive simulations.

The remainder of the paper is organized as follows. Sec. II
discusses related work in network tomography and wireless
sensor networks. Sec. III presents the network model that
will be used throughout the paper. Sec. IV presents the data
collection protocol utilizing network coding in sensor networks
and its associated inference problem. Sec. V describes the
three inference algorithms to detect the highly lossy links
in wireless sensor networks. Sec. VI evaluates the three
algorithms under different network settings. Finally, Sec. VII
concludes the paper.

II. RELATED WORK

Tomography on the wireline networks has been extensively
studied in recent years [12]. Most tomography algorithms
infer the network characteristics by utilizing inherent corre-
lation among multicast probing packets [13]. However, since
IP multicast is not widely supported by the network, there
have been alternative proposals on loss inferences based on
sending unicast probing packets, where clever protocols (for
example, using back-to-back packets) are incorporated, which
essentially turns the inference problem to a multicast problem
(see, for example, [14]).

Recently, several studies propose to passively monitor wire-
less sensor networks through application data in order to avoid
active monitoring traffic. [6] and [7] perform loss inference
by assuming aggregation of application data packets at each
sensor. On the other hand, Nguyenet al. [8] use uncorrelated
end-to-end data to identify lossy links. These works are not
concerned with the benefit and consequence of network coding
in tomography.

The literature of network coding tomography starts from
[15], where it is shown that the coding coefficients used in
randomized network coding can be used to infer different
failure patterns in a wireline network with the assumption that

Fig. 1. A simple of example of a sensor network, where node 2 and 3
are terminal nodes, and node 0 is the sink. The squares are the coding
coefficients of coded packets. The shaded and empty squares represent the
coding coefficients corresponding to the source packets from node 2 and 3,
respectively. The segment sizeK is 2, and the number of terminal nodesn
is 2.

all links are lossless. In contrast, we study passive tomography
in a wireless sensor network with lossy links.

Subsequently, the advantages ofactive tomography with
network coding have been shown for loss inference in [16]–
[18] and topology inference [19] in wireline networks. Fur-
thermore, Jafarisiavoshani,et al. utilize the subspace property
of randomized network coding to infer topology in wireline
networks [20] and to discover bottleneck in a peer-to-peer
file sharing application [21]. Most of these tomography tech-
niques actively inject probing traffic [16]–[19] to infer network
characteristics such that these solutions are unsuitable for
wireless sensor networks with limited radio bandwidth and
energy budgets. In addition, the work in [20] assumes global
knowledge and lossless environments, which is not the case
in our study. The passive inference techniques in [21] are
integrated closely with the peer-to-peer protocol used in their
system and hence are not applicable to our work.

Shamaet al. [22] discuss passivetopology tomography with
network coding in both wireline and wireless networks. In
contrast, our work proposes algorithms for passive linkloss
tomography, which is fundamentally different from topology
inference. To the best of our knowledge, our paper represents
the first attempt to address loss inference in wireless networks
under network coding traffic.

III. N ETWORK MODEL

We start with a simple example of passive tomography on a
sensor network shown in Fig. 1. The terminal nodes, nodes 2
and 3, continuously obtain sensed data from the environment
and transmit them through node 1 to the sink, node 0. All
wireless links are lossy due to the inherent instability of
wireless ratio. By inspecting the received data packets, node 0
would like to infer the loss characteristics of these wireless
links. More generally, we consider a sensor network as a
directed graph, where each node represents either a terminal
(sensor), a relay node, or the sink (data collecting) node, each
directed edge represents the link between these nodes, and the
direction of an edge indicates the direction of the data flow
on the link.

We will not consider, except for the sink, degree-two nodes
in the graph; that is, if a degree-two node is not the sink, it is
suppressed in the graph representation of the network. In this
way, what we refer to as alink is not necessarily in its physical
sense, since it can be a path consisting of several connected
physical links as long as no other paths are branched from an
intermediate node in the path. It can be verified that such a
notion of links is defined without loss of generality, as far as
loss rates are concerned. In this paper, the termpath refers to
a sequence of links starting from a terminal node and ending
at the sink.

We assume that packets are transmitted over a link indepen-
dently of other links. Such an assumption is supported by the
measurement studies from [23]. Letαe denote the successful-
transmission probability of linke. 1 − αe then refers to the
loss probability of this link. We useE and W to denote the
set of all links and all paths in a sensor network, respec-
tively. In addition, we assume that all sensors have the same
transmission speed. Hence, we can model the packet transmis-
sion synchronously, where a time slot represents the time to
transmit a data packet. Moreover, as the normalized link rate
is equivalent to the successful-transmission probabilityunder
this synchronous model, we will use “successful-transmission
probability” and “rate” interchangeably throughout the paper.

IV. N ETWORK CODING BASED DATA COLLECTING

PROTOCOL AND INFERENCEPROBLEMS

In this section, we describe a data collecting protocol
utilizing network coding and define its inference problem.

A. Network Coding Based Data Collecting Protocol

In order to show the difference of the inference problems
between a protocol with and without network coding, it is
useful to briefly review a typical traditional routing protocol,
MintRoute [23], used in sensor networks without network
coding. MintRoute constructs a reverse multicast rooted at
the sink with all terminal nodes as the leaf nodes. Data
are transmitted through the paths on the tree from terminal
nodes to the sink. With MintRoute, the inference algorithms
proposed for sensor networks in [6]–[8] essentially assume
no reliability in delivering packets such that a packet is lost
if it is lost on one of the links on a path. Assuming inde-
pendence of loss events among different links, the connection
between the path successful-transmission probabilityβi and
link successful-transmission probabilitiesαe is characterized
by βi = Πe∈Pi

αe, wherePi denotes the set of all links on the
ith path.

Network coding, however, demonstrates a different con-
nection between path and link transmission probabilities due
to its inherent capability of reliable communication. Suchan
observation will become clear after we present the details of
the protocol based on network coding. Note that our objective
is not to design the optimal protocol, but a simple one suitable
for sensor networks. In particular, similarly to MintRoute, we
restrict our attention to a unipath protocol. To utilize theresult
of previous research efforts, we rely on MintRoute to selectthe

path from a terminal node to the sink. However, we equip the
data transmission protocol along a path with network coding.

In the protocol design, we assume that each terminal node
produces unlimited data, and partitions its data packets to
segments, where each segment comprises the same number of
data packets1. All terminal nodes attach a sequence number to
each segment. The protocol then transmits the segments with
the same sequence number, sayi, from all terminal nodes to
the sink until all data in these segments are decoded before the
transmission for the next group of segments. Without loss of
generality, we only consider the transmission of the segments
with sequence numberi because the transmission processes
are identical for other segments.

We next describe the encoding and decoding algorithms of
the random linear codes [24] used to transmit theith group
of segments. Assume that there aren terminal nodes in the
network. There are thusKn source packets in theith group
of segments. We refer to theseKn source packets as asuper
segment. In general, a coded packetx is a linear combination
of the Kn source packetsE1, . . . , EKn with the form x =
∑Kn

i=1 γiEi, whereγi are coding coefficients chosen randomly
from a Galois field. At any time slot, if a nodea between a
terminal node to the sink wishes to transmit a coded packet,
a produces a coded packetxa by encoding all coded packets
in its buffer belonging to the same super segment, namely
x1, . . . , xm, wherem is the total number of coded packets in
the buffer that belong to the super segment:

xa =

m
∑

i=1

ηixi, (1)

where all multiplication and addition operations are defined
on a Galois field (such as GF(28) when the operations are
performed on each byte), andηi is randomly chosen from the
field. It is easy to see thatxa is also a linear combination of the
Kn original packets from terminal nodes, and the coefficients
can be derived. Nodea then transmitsxa along with its coding
coefficients over the original packets to the next hop.

Suppose nodeb, the next hop of nodea, successfully
receives the coded packetxa. It first checks whetherxa is
linearly independent with its buffered coded packets within the
same super segment. If so, nodeb insertsxa into its buffer.
Otherwise,xa is discarded. If nodeb is the sink, it recovers all
Kn source packets in theith super segment by the following
algorithm. Since the coding coefficients and the coded packets
are known, each coded packet represents a linear equation
with the Kn source packets as unknown variables. Hence,
decoding theKn source packets is equivalent to solving a
linear system composed of all coded packets received so far.
The decoding matrix represents the coefficient matrix of such
a linear system. When the rank of the decoding matrix isKn,
the linear system can be solved and theKn source packets
are decoded. Otherwise, there exists linear dependence among

1This assumption is made for presentation clarity. It is trivial to extend to
the general case where different terminal nodes have segmentswith different
sizes.

the coded packets, so the sink will continue to receive coded
packets from its neighbors until allKn packets are decoded.
Gaussian elimination is usually used to solve the linear system.

We remark that when multiple nodes transmit coded packets
to a common next hop, all these coded packets are encoded
together. For instance, node 1 encodes the data from node
2 and 3 together in Fig. 1. Furthermore, as the result of a
reverse routing tree, many coded packets are encoded from
only a subset of the source packets. The coding coefficients
corresponding to the absent source packets are zero. As an
example, the coded packets transmitting from node 2 to node
1 have zero coefficients corresponding to the source packets
from node 3.

In this paper, we utilize therateless property of randomized
linear codes for a node to decide when to transmit a coded
packet. A node always produces a coded packet and transmits
it to the next hop until it receives the notification that all
data from its upstream nodes in the current super segment
has been received at the next hop. Such a protocol enjoys the
advantage of being insensitive to the variation of link qualities,
and requiring control messages only per segment. This control
overhead can be ignored if the segment size is sufficiently
large.

B. Inference Problems with Network Coding

In this section, we describe the inference problems associ-
ated with network coding traffic. We first show the connection
between path and link successful-transmission probabilities,
assuming only one data flow is transmitted from a terminal
node to the sink in the network.

Proposition 1: Let β and αe denote the path and link
successful-transmission probabilities, respectively. Assuming
one flow exists, we have

β = min
e∈P

(αe), (2)

whereP is the set comprising all links on this path.
Proof: A wireless link e can be modeled as a binary

erasure channel [25], with a capacityαe. With network coding,
the transmission on each hop is equipped with an erasure code,
which achieves the link capacity when the code lengthK
is sufficiently large. Furthermore, the capacity of any graph
is the mincut [26]. Hence, the capacity of this pathP is
the minimum capacity of any link:mine∈P (αe). Finally, it
is easy to see that the path from the terminal node to the
sink can also be modeled as a binary erasure channel. Hence,
the path successful-transmission probabilityβ is the capacity
mine∈P (αe) [25].

We remark that although Proposition 1 holds for any erasure
codes, network coding enjoys the advantage of significantly
shorter transmission delay. This is because with traditional
erasure codes, a node needs to receive all data to be encoded
together, and decode them before it generates the coded
packets for the next hop. In contrast, the recoding ability of
network coding enables a node to produce new coded packets
for the next hop as soon as the node receives a new coded
packet from one of its upstream nodes.

Despite the strong assumption, that only one flow is allowed
to transmit, is used in Proposition 1, we will show next that
our selected end-to-end observation demonstrates a similar
property even when multiple flows share links in the network.
Specifically, we divide the decoding matrix ton submatrices
such that each individual submatrix, composed ofK columns,
corresponds to the source packets from one terminal node.
For example, in Fig. 1, the shaded and blank columns of the
decoding matrix at the sink represent the two submatrices
corresponding to the source packets from node 2 and 3,
respectively. As coded packets are continuously transmitted
from the terminal node to the sink before successful decoding,
the ranks of all submatrices reach the segment sizeK at
some time. Apparently, if the path successful-transmission
probability of pathi is higher than that of pathj, the rank
of submatrix i reachesK earlier than the time that the
rank of submatrixj reachesK. Hence, such relative timing
contains the information of the path successful-transmission
probabilities, which we use to infer link rates.

More formally, let t̄i denote the time that the rank of
submatrix i reachesK. t̄i is composed of the time used
to traverse pathi and the wasted time due to link losses.
Hence, if we usedi to represent the length of theith path,
ti = t̄i − di is the wasted time due to link losses. We thus
useD = {t1, . . . , tn}, referred to asfull-rank times hereafter,
as inputs into our inference algorithms. We then state the
following observation, which is essential to our decision to
chooseD as the end-to-end input, and will significantly simply
the design of Bayesian inference algorithms in Sec. V-A and
V-B.

Proposition 2: The ranks of the submatrices increase inde-
pendently.

Proof: This observation can be easily justified from the
matrix form of the encoding algorithm (1). Letγ′

j be the
jth coding coefficient in a coded packet generated from
nodea, andγi,j denote thejth coding coefficient in theith
coded packet in the node buffer. Then, the relation of coding
coefficients in (1) can be expanded as follows:







γ′
1
...

γ′
Kn






=

m
∑

i

ηi







γi,1

...
γi,Kn






(3)

where ηi is a coefficient randomly chosen from the Galois
field on which network coding is based. (3) essentially implies
that thejth coding coefficient in a coded packet only depends
on the jth coding coefficient of the coded packets that it is
encoded from. In other words, thejth column in the decoding
matrix are independent from the other columns. Hence, all
columns are independent from one another. Therefore, all
submatrices, composed by columns, are independent from one
another, and their ranks increase independently.

When a terminal node sends out a packet, the path
successful-transmission probabilityβi is essentially the prob-
ability of a rank increase in submatrixi. Hence, Proposition 2
implies that Proposition 1 holds even when multiple flows

a

b c

(a)

a

b c

(b)

a

b c

(c)

Fig. 2. The path rates from node 2 and 3 to the sink are both 0.3 in (a), (b),
and (c).

share links. We thus revise Proposition 1 into the following
corollary:

Corollary 1: In the sense of rank-increase probability of a
submatrix, (2) holds even when multiple flows exist in the
network.

All remaining parts of this paper considerβi in this sense.
In addition, we note thatβi can be estimated byβi = K

ti
. It

is easy to see that the accuracy of this equation increases as
K goes to infinity.

We further remark that Proposition 2 does not violate the
intuition that the transmissions of multiple flows interfere each
other on a shared link. The reason is that even when the ranks
of all submatrices reachK, the sink may still not be able
to decode allKn packets. For instance, in Fig. 1, despite
the two submatrices in the decoding matrix both have rank
K = 2, the sink is unable to decode allKn = 4 packets. In
fact, with network coding, the source packets from different
terminal nodes are decoded at the same time.

Link loss inference essentially attempts to assign link rates
based on a system of constraints induced from all path rates
observed at the sink, where the constraints are given by the
connection between the path rate and the corresponding link
rates. Because the number of paths to the sink are smaller than
the number of links in the network, the number of constraints
are smaller than the number of unknown variables. Therefore,
we are generally unable to determine a set of unique link rates.
Furthermore, in our inference problem, a path rate provides
only the information of the link with the lowest rate because
of (2). For example, the path rates are not sufficient to detect
the difference between Fig. 2(a) and (b). Finally, the same
set of path rates may be due to a different set of bottleneck
links as shown by the difference between Fig. 2(a) and (c).
Therefore, in this paper, we do not seek to obtain the precise
link loss probabilities, but rather attempt to identify thesubset
of highly lossy links.

We are now ready to describe the inference problem in a
more formal way. The inputs of the problem are the full-rank
times D observed at the sink, and the link rate thresholdTl,
whereTl is a threshold value such that a link is defined as
good if its rate is higher thanTl, and bad otherwise. If we
define an indicator variablese assuming the value 1 if linke
is classified as a good link, and 0 otherwise, the output of the
problem is the states of all linksS = {se}, wheree ∈ E.

V. PASSIVE NETWORK TOMOGRAPHY

In this section, we describe three different inference algo-
rithms to discover highly lossy links. We discuss their different
computational complexities and relative performance.

A. Bayesian Inference Using Factor Graphs

The recent notion of factor graphs [9] has attracted intense
research interest, since it was recognized that factor graphs,
and thesum-product algorithm operating on them, unify a
variety of previously discovered well-known algorithms, such
as the Viterbi algorithm, belief propagation, FFT, and so on.
The factor-graph framework, as one example of probabilistic
graphic models [10], essentially uses a graph to represent
the dependency among random variables. With factor graphs,
a “global” function, representing the joint distribution of
all random variables, can be factorized to multiple “local”
functions. Furthermore, by utilizing intermediate computation
results, the sum-product algorithm is able to compute the
marginal distribution of all random variables simultaneously,
hence dramatically reducing the computation complexity in
inference [9]. In this section, we demonstrate how to apply
factor graphs for link loss inference with network coding.

In Bayesian inference, all parameters are considered as
random variables to quantify the belief on their values. It
is easy to see that we can capture the dependency among
link ratesαe and path ratesβ using the following conditional
distribution2 due to (2):

P (βi|{αej
}) =

{

1 if βi = min(αej
),

0 otherwise,
(4)

whereej ∈ Pi, andPi denotes the set of links on pathi. Such
a conditional probability is usually called a factor function.

Next, we consider the dependency between path ratesβi and
the full-rank timeti (described in Sec. IV-B). AnyK coded
packets are equivalently useful for decoding with network
coding. Hence, the rank of a submatrix reachesK if there are
at leastK linearly independent coded packets arriving at the
sink. Hence, the full-rank timeti follows a negative binomial
distribution:

P (ti|βi) =

(

ti − 1

K − 1

)

βK
i (1 − βi)

ti−K . (5)

With (4) and (5), the joint distribution ofβi, αe, andti can
be factorized as follows:

P ({βi}, {αej
}, {ti}) = Πi∈W,ej∈Pi

P (βi|{αej
})P (ti|βi)P (αej

)
(6)

whereW denotes the set of all paths. Fig. 3 shows the factor
graph of the network with the topology shown in Fig. 2,
where each square is a function vertex representing the factors
defined in (4) and (5), and each circle is a variable vertex
representing variablesαe, βi, and ti. Note that we omit the
dummy factor vertices representingP (αej

) in Fig. 3.

2For notation simplicity, in this work we use the short handP (x) to
generally represent either the probability mass,Pr[X = x], or the probability
density,fX(x), depending on the continuity of random variableX.

αa

αb

αc

β1

β2

t1

t2

P (β2 |αa , α c)

P (β1 |αa , α b) P (t1 |β1)

P (t2 |β2)

Fig. 3. The factor graph formulation of the examples in Fig. 2.

After constructing the factor graph, we set the prior distri-
butions of the vertices representing link rates and path rates to
the uniform distribution, assuming noa prior knowledge on
them. We further set the evidence on the vertexti representing
the full-rank times with the observed dataD. Afterwards, the
sum-product algorithm is operated on this graph to compute
the marginal probabilities,i.e., the posterior probabilities, of
link rates.

With all link posterior probabilitiesP (αe|D) given the
observed data, we classify a link to be a bad link if the
probability that the link rate is smaller thanTl is greater
than 1/2, whereTl is the given link rate threshold defined
in Sec. IV-B. We then have

se =

{

1 if
∫ Tl

0
P (αe|D) dαe < 1/2,

0 if
∫ Tl

0
P (αe|D) dαe ≥ 1/2,

(7)

where se is the link state indicator variable as defined in
Sec. IV-B.

For this algorithm, rather than using the path rate calculated
from K/ti, which is accurate only ifK is sufficiently large,
we utilize the observed full-rank timeti directly. Hence, we
expect this algorithm to perform well even with a smallK.

Note that since the factor graph shown in Fig. 3 is a tree,
the sum-product algorithm is able to produce exact inference,
and furthermore, the sum-product algorithm only need to
traverse the graph twice in order to compute all marginal
probabilities. Hence, the complexity of this algorithm is dra-
matically reduced by factorization. However, in reality, the
conditional probabilities (4) still pose challenges. To illustrate
this, we briefly discuss the implementation details. To facil-
itate computer-based numerical calculation, we use discrete
distribution vectors with, say,M elements, to approximate
the continuous distributions of random variablesβi and αej

.
Then, both the space and time complexities to store (4) and
compute (4) grow withMm+1, wherem is the length of path
i. To obtain reliable classification,M is usually chosen to be
greater than 100, and a path length can easily be larger than 5,
rendering this algorithm impractical for large-scale networks.
This type of computational difficulty is usually referred toas
“the curse of dimensionality” [10].

B. Bayesian Inference Using Gibbs Sampling

In this section, we describe a Bayesian formulation based
on Gibbs sampling [10]. Gibbs sampling is a well-known

technique that has also been similarly applied in [5] and [8]
under different system models. LetD represent the observed
data, andα denote the parameters to infer, we have the well-
known Bayesian inference formulation:

P (α|D) =
P (α)P (D|α)

∫

P (α)P (D|α) dα
. (8)

For our problem, the parametersα = {αe} are the set of link
rates, for anye ∈ E, and the observed dataD is the full-rank
times{ti} for all submatrices as described in Sec. IV-B.

We define the likelihood functionP (ti) = αK
i (1−αi)

ti−K

on a path assuming independence among the transmissions
of different coded packets. Furthermore, because the ranks
of different submatrices increase independently according to
Corollary 1, we have the likelihood function

P (D|α) = Πi∈W βK
i (1 − βi)

ti−K , (9)

whereβi = mine∈Pi
(αe) as justified in Corollary 1. The prior

distributionP (α) indicates the prior knowledge about the link
rates. Similar to Sec. V-A, we set the prior to be uniform
assuming noa prior knowledge about link rates.

The Gibbs sampling algorithm belongs to the family of
Markov Chain Monte Carlo (MCMC) algorithms [10]. It is
particularly useful if marginal distributions are very difficult
to compute directly. Rather than doing so, MCMC algorithms
seek to generate samples from these distributions. We describe
the Gibbs sampling algorithm in the context of our problem
as follows. We start with an arbitrary initial assignments of
link rates α. Afterwards, one of the links is picked either
randomly or according to a particular order. Assuming that link
e is chosen, we then compute the posterior distribution ofαe

conditioned on the observed dataD and all currently assigned
other link rates,{ᾱe} = ∪f 6=e{αf}. That is, we compute the
following conditional probability:

P (αe|D, {ᾱe}) =
P (D|{αe}, {ᾱe})P (αe)

∫

αe
P (D|{αe}, {ᾱe})P (αe) dαe

(10)

Since {αe} ∪ {ᾱe} = α, P (D|{αe}, {ᾱe}) is P (D|α).
Furthermore,P (αe) is a constant because of the assumption
of uniform prior probability. Thus, (10) is simplified to

P (αe|D, {ᾱe}) =
P (D|α)

∫

αe
P (D|α) dαe

, (11)

which can then be used to generate a new sampleα′
e for the

rate of linke. In this way, we repeat this procedure for alle in
E such that each link is assigned a new rate. We then iterate
this algorithm until it converges, at which time, by the theory
of Gibbs sampling [10], the samples are produced from the
true posterior distribution of link ratesP (αe|D).

In this work we iterate the above algorithm forM = 2κ
times, whereκ is a sufficiently large number of iterations for
the algorithm to converge. Using the link thresholdTl defined
in Sec. IV-B, we classify linke to be a bad link if more than
half of the samples from the laterM/2 samples are less than
Tl. Hence, this classification rule essentially labels a link as

P i P i

P i
P i

pp

1 − pp 1 − pn

pn

Fig. 4. The definition of false pos-
itive rate pp and false negative rate
pn for a path.

Fig. 5. The SCFS algorithm.g or
b indicates the link is good and bad,
respectively.G or B specifies the
path is good or bad, respectively.

bad if the posterior probability, that the link rate is lowerthan
Tl, is greater than 1/2.

With Gibbs sampling, the infeasible computation task to
compute (8) directly for all link rates is reduced to a numerical
computation of the conditional probability (11) on one link
rate. Hence, this formulation does not suffer from the high
dimensional problem in Sec. V-A.

C. Smallest Consistent Failure Set (SCFS)

In this section, we modify the SCFS approach proposed in
[11], originally to infer lossy links without network coding,
and show its performance under network coding is better than
in the case of traditional routing. As shown in Sec. IV-B,
the constraints from end-to-end observations are not sufficient
to uniquely identify a set of link rate assignments. In fact,
the constraints cannot uniquely determine a set of bad links
either. The basic idea of the SCFS approach is that, if there
are multiple choices to assign whether links are good or bad in
order to satisfy the end-to-end observations, one should select
the smallest set of bad links, under the assumption that a large
fraction of the network is well behaved. In the sensor networks
under consideration, SCFS implies that the links closer to the
sink are more likely to be chosen as bad links, since they
influence more paths than the links closer to the sources.

The SCFS algorithm consists of two steps. First, it obtains
the state, good or bad, of each path from all terminal nodes
to the sink. Second, based on these path states, the algorithm
assigns link states with the principle to assign as few bad
links as possible. For the first step, a proper path threshold
is required to separate good paths from bad paths. We will
show that our setting with network coding make the choice
of an ideal path threshold more natural and straightforward,
compared with the case of tradition routing.

More precisely, due to (2), a good path consists of only
good links, whereas a bad path is one consisting of at least
one bad link. We use a path thresholdTp such that a path is
good if the path rate is higher thanTp; otherwise, it is bad. As
illustrated in Fig. 4, we define the false-detection eventsfalse
positive if the path is good but we classify it as bad, andfalse
negative if a path is in fact bad but we classify it as good3. In

3Note that these false detections are only used to to measure whetherTp

is the right choice, and not the final metrics for link rate assignments, which
are defined in Sec. VI.

our setting, it is clear that we should set the path thresholdTp

as the link thresholdTl, as we can easily draw the following
observation:

Proposition 3: If we set Tp = Tl, both false positive rate
and false negative rate are zero for the network coding based
protocol.

In contrast, we can show that an ideal path threshold does
not exist for traditional routing protocols:

Proposition 4: It is infeasible to select a path threshold such
that both false positive ratepp and false negative ratepn are
zero for traditional routing protocols.

Proof: Recall the path rate is the product of all link rates
in traditional routing protocols. Suppose an ideal path thresh-
old Tp exists such that bothpp and pn are zero. We further
assume that the length of the path ism andm > 1. Suppose
that all links on this path has rateTl + ǫ, whereǫ is a small
positive number. This path is a good path because all links
have rate greater thanTl. The path rate is(Tl + ǫ)m ≈ Tm

l .
Hence, we haveTp < Tm

l to avoid classifying this path as bad,
i.e., to avoid false positive. Furthermore, suppose that there is
one bad link with rateTl− ǫ, whereas all other links have rate
1. This path is a bad path because it consists of a bad link. The
path rate isTl − ǫ. Therefore, we haveTp > Tl − ǫ ≈ Tl, to
avoid classifying this link as good,i.e. to avoid false negative.
Collectively, we then have bothTp < Tm

l andTp > Tl, which
is a contradiction, since0 < Tl < 1 and m > 1. Hence, no
such an ideal path threshold exists.
Proposition 3 and 4 suggest that we should expect SCFS to
perform better under our problem setting.

The second step of the SCFS algorithm in our setting is
identical to that in [11]. For completeness, we briefly review
it using the example shown in Fig. 5. Each link in the tree
belongs to a pair of parent and child, and the child can
uniquely identify this link in a tree. Hence, for brevity, we
use the node ID of the child to name the link (e.g., the link
between node 1 and 2 is referred to as link 2). The input of
the algorithm is the result of the first step of SCFS: the states
of all paths from terminal nodes to the sink. The algorithm
first assigns each link the states of all paths that it belongs
to. For example, link 1 has path states{B,B,G,B}, and link
2 has path state{B,B}, whereG and B represent “good”
and “bad”, respectively. Then, the algorithm traverses thetree
from the root recursively to classify each link according to
these states. If one of the paths consists of the current link
is good, this link is certainly good and classified as good.
For example, link 1 is good. On the other hand, if all paths
comprising this link is bad, there are multiple possibilities.
For an illustration, link 2 has two bad paths across it. Hence,
either link 2 is bad, or both link 5 and 6 are bad. According
to the assumption that the fraction of bad links in the network
is small, the algorithm classifies link 2 as bad, and all links
on the subtree rooted at node 2 as good in order to minimize
the total number of bad links in the network.

This combinatorial algorithm executes much faster than the
two numerical Bayesian algorithms presented in Sec. V-A and
V-B. However, it relies on the estimation of path rates, which

may not be accurate ifK is small. Furthermore, it is clear
that the algorithm produces wrong answers when the smallest
consistent rule is violated. For instance, if{B,B} at link 2 is
due to the fact that link 5 and 6 are both bad, and link 2 is
actually good, then link 2 will be detected as false positive,
where as link 5 and 6 will be detected as false negative.

VI. EVALUATION

In this section, we compare the three proposed inference al-
gorithms under different network settings. For this purpose, we
have developed a customized packet-level network simulator in
C++, with the implementation of randomized network coding,
using GF(28) as the code space. The inference algorithms are
implemented in Matlab.

We use two different loss rate models introduced in our
previous work [6], [7]. In the first model (LRM1) [6], all good
and bad links are assigned rates of 0.7 and 0.3, respectively.
We use a link thresholdTl = 0.5 to partition them. This
simple model is a good approximation of the real sensor link
qualities. With sensor testbeds, [23] and [8] have shown that
a wireless link has either low or high loss probability, but
rarely has intermediate loss rates. Furthermore, the MintRoute
routing algorithm adopted in our protocol rarely uses a link
with intermediate quality [23]. This loss rate model is used
for most of our experiments. The second model (LRM2) [7]
assigns a loss rate to a link from a distribution with density
function f(α) = λα(λ−1), where0 < α ≤ 1. We useλ = 10
andTl = 0.8 in our simulations, such that there are 12% bad
links in the network on average.

We use two metrics to measure algorithm performance.
First, Detection Rate (DR) is defined as the fraction of links
correctly identified as bad among all bad links. Second, False
Positive Rate (FPR) is defined as the percentage of good links
among all links identified as bad.

A. Bayesian Inference on a Simple Topology

In this section, we present the results of the Bayesian
inference algorithms in a simple topology shown in Fig. 2(a)
and (c) with a segment sizeK = 100. Fig. 6 shows that the
algorithms based on factor graphs or Gibbs sampling produce
similar results. This is because, in our factor graph formula-
tion, the tree structure ensures exact inference by the sum-
product algorithm, whereas Gibbs sampling, as a randomized
approximate inference algorithm, always generates random
samples from the correct distribution, even if exact inference is
infeasible [10]. However, factor graph formulation suffers from
intractable computation in large-scale networks as explained in
Sec. V-A. Hence, for the larger topology in the next subsection,
we focus on Gibbs sampling as the representation for Bayesian
inference algorithms.

Furthermore, as shown in Fig. 6(a) and (b), for the network
settings in Fig. 2(a), we observe that the Bayesian algorithms
produce a posterior distribution of linka concentrating on its
true rate 0.3. Furthermore, linka obscures the information on
links b and c, since Fig. 6(a) and (b) show that the posterior
distributions of the rates of linkb and c range approximately

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

Link transmission probability

P
o

s
te

ri
o

r
d

is
tr

ib
u

ti
o

n

Link a
α

a
=0.3

Link b
α

b
=0.7

Link c
α

c
=0.7

(a)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

Link transmission probability

N
o

rm
a

liz
e

d
 h

is
to

rg
ra

m

Link a
α

a
=0.3

Link b
α

b
=0.7

Link c
α

c
=0.7

(b)

Fig. 6. The posterior distributions of the link rates from Bayesian inference
algorithms.αi denotes the true rate of linki. (a) and (b) are the results of
factor graphs and Gibbs sampling under the settings of Fig. 2(a).

uniformly from 0.3 to 1, implying that the link rates are equally
likely from 0.3 to 1. Such observation is consistent with our
intuition that the rates of the two links are unidentifiable due to
the blocking effect of linka. Hence, it is clear, we should not
use the principle of maximum a posterior to assign link rates,
since this method would have chosen a link rate lower than
0.4 to both linksb andc, which is far from the truth. Instead,
we follow the classification rule described in Sec. V-A and
V-B. If we use 0.5 as the threshold to partition good and bad
links, it is highly likely for the algorithm to classify linkb, c
to be good links from the posterior distributions of their rates.
In this way, both algorithms produce the correct results.

B. Effect of Different Network Settings

In this section, we study the effect of different network
settings on a randomly generated network with 100 nodes.
Excluding the sink and terminal nodes, the average number of
children of a node on the tree is 3.0625, and the average length
of a path from a terminal node to the sink is 4.8209. We use
LRM1 unless explicitly pointed out. Furthermore, we repeat
the same experiments for 30 times, with different random
seeds, and show the mean DR and FPR. Since the factor graphs
based algorithm is not scalable, we show only the results of
Gibbs sampling along with SCFS.

We first study the effect of segment sizes. We set the fraction
of bad links to 5%. Fig. 7(a) shows that DR increases with
segment sizes. This is because with a larger segment size, we
inject more data into the network and, hence, obtain more
reliable observations. More importantly, we notice that the
Bayesian algorithm significantly outperforms SCFS, in FPR,
when the segment size is 20 and 30. This is due to the facts that
the Bayesian algorithm uses observed data directly, whereas
SCFS uses estimated path rates, which are not accurate when
given a small amount of data. In the following experiments,
we set segment size to 50.

We next investigate the algorithm performance under differ-
ent fractions of lossy links. From Fig. 7(b), we notice that DR
decreases when the fraction of lossy links increases, whereas
FPR remains low. The lower detection rates occur because
although more and more bad links appear, their information are
blocked by the bad links closer to the root. Furthermore, the
assumption of SCFS is gradually violated with an increasing

20 30 40 50
0

0.2

0.4

0.6

0.8

1

Segment size

D
R

 a
n

d
 F

P
R

Bayesian − DR
Bayesian − FPR
SCFS − DR
SCFS − FPR

(a)

0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

Fractions of bad links

D
R

 a
n

d
 F

P
R

Bayesian − DR
Bayesian − FPR
SCFS − DR
SCFS − FPR

(b)

LRM1 LRM2
0

0.2

0.4

0.6

0.8

1

Loss rate model

D
R

 a
n

d
 F

P
R

Bayesian − DR
Bayesian − FPR
SCFS − DR
SCFS − FPR

(c)

Fig. 7. DR and FPR under different (a) segment sizes, (b) fractions of lossy
links, and (c) loss rate models.

number of lossy links. In the following experiments, we set
the fractions of bad links to 10%.

It is obvious that any inference algorithm would perform
better when the quantities to be inferred are more clearly dis-
tinguishable. Next, we compare the inference results between
LRM1 and LRM2. As shown in Fig. 7(c), we observe that
the performance of both algorithms degrades in LRM2. With
LRM1, the good and bad links are sufficiently separated. On
the other hand, the link rates in LRM2 are generated from a
continuous random variable, and are thus difficult to separate.
Fortunately, we are more interested in the results under LRM1
because it is closer to real-world scenarios [23], [8].

VII. C ONCLUSIONS

This paper represents the first attempt to address passive
link loss inference under network coding traffic in wireless
sensor networks. We show that network coding changes the
fundamental connection between path and link successful-
transmission probabilities. To address this new challenge, we
develop Bayesian inference algorithms based on factor graphs
and Gibbs sampling, and we further demonstrate that network
coding traffic improves the performance of the SCFS heuristic
algorithm. Finally, through analysis and extensive simulations,
we show that these inference algorithms achieve different
performance tradeoffs. In particular, factor graphs offermost
complete and accurate information for all link rates. However,
it is not as scalable as Gibb sampling. Furthermore, Bayesian
algorithms perform well even with limited data, whereas the
heuristic algorithm requires a sufficiently large amount ofdata.
On the other hand, the heuristic algorithm can achieve nearly
optimal results with more efficient operations.

REFERENCES

[1] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung, “Network Information
Flow,” IEEE Transactions on Information Theory, vol. 46, no. 4, pp.
1204–1216, July 2000.

[2] D. S. Lun, M. Medard, and M. Effros, “On Coding for Reliable Com-
munication over Packet Networks,” inProc. of 42rd Allerton Conference
on Communication, Control, and Computing, 2004.

[3] S. Chachulski, M. Jennings, S. Katti, and D. Katabi, “Trading Structure
for Randomness in Wireless Opportunistic Routing,” inProc. of ACM
SIGCOMM, 2007.

[4] T. Ho, M. Medard, M. Effros, and R. Koetter, “Network Coding for
Correlated Sources,” inCISS, 2004.

[5] V. N. Padmanabhan, L. Qiu, and H. J. Wang, “Server-based Inference
of Internet Link Lossiness,” inProc. of IEEE INFOCOM, 2003.

[6] G. Hartl and B. Li, “Loss Inference in Wireless Sensor Networks Based
on Data Aggregation,” inProc. of IPSN, 2004.

[7] Y. Mao, F. R. Kschischang, B. Li, and S. Pasupathy, “A Factor Graph
Approach to Link Loss Monitoring in Wireless Sensor Networks,” IEEE
Journal on Selected Areas in Communications, vol. 23, no. 820–829,
April 2005.

[8] H. X. Nguyen and P. Thiran, “Using End-to-End Data to Infer Lossy
Links in Sensor Networks,” inProc. of IEEE INFOCOM, 2006.

[9] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor Graphs and
the Sum-Product Algorithm,”IEEE Transactions on Information Theory,
vol. 47, no. 2, pp. 498–519, February 2001.

[10] C. M. Bishop,Pattern Recognition and Machine Learning. Springer,
2006.

[11] N. Duffield, “Network Tomography of Binary Network Performance
Characteristics,”IEEE Transactions on Information Theory, vol. 52,
no. 12, pp. 5373–5388, December 2006.

[12] R. Castro, M. Coates, G. Liang, R. Nowak, and B. Yu, “Network
Tomography: Recent Developments,”Statistical Science, vol. 19, no. 3,
pp. 499–517, 2004.

[13] R. Caceres, N. Duffield, J. Horowitz, and D. Towsley, “Multicast-Based
Inference of Network-Internal Loss Characteristics,”IEEE Transactions
on Information Theory, vol. 45, no. 7, pp. 2462–2480, Nov. 1999.

[14] A. Bestavros, K. Harfoush, and J. Byers, “Robust Identification of
Shared Losses Using End-to-end Unicast Probes,” inIEEE ICNP, 2000.

[15] T. Ho, B. Leong, Y.-H. Chang, Y. Wen, and R. Koetter, “Network
Monitoring in Multicast Networks Using Network Coding,” inProc.
of IEEE International Symposium on Information Theory (ISIT), 2005.

[16] C. Fragouli and A. Markopoulou, “A Network Coding Approach to
Overlay Network Monitoring,” inProc. of 43rd Allerton Conference on
Communication, Control, and Computing, 2005.

[17] C. Fragouli, A. Markopoulou, R. Srinivasan, and S. Diggavi, “Network
Monitoring: It Depends on your Points of View,” inProc. of Information
Theory and Applications Workshop (ITA), 2007.

[18] M. Gjoka, C. Fragouli, P. Sattari, and A. Markopoulou, “Loss Tomog-
raphy in General Topologies with Network Coding,” inProc. of IEEE
Globecom, 2007.

[19] C. Fragouli, A. Markopoulou, and S. Diggavi, “TopologyInference
using Network Coding,” inProc. of 44th Annual Allerton Conference
on Communication, Control and Computing, 2006.

[20] M. Jafarisiavoshani, C. Fragouli, and S. Diggavi, “Subspace Properties
of Randomized Network Coding,” inProc. of IEEE Information Theory
Workshop (ITW), 2007.

[21] M. Jafarisiavoshani, C. Fragouli, S. Diggavi, and C. Gkantsidis, “Bot-
tleneck Discovery and Overlay Management in Network Coded Peer-to-
Peer Systems,” inProc. of SIGCOMM Workshop on Internet Network
Management (INM), 2007.

[22] G. Sharma, S. Jaggi, and B. Dey, “Network Tomography via Network
Coding,” in Proc. of Information Theory and Applications (ITA), 2008.

[23] A. Woo, T. Tong, and D. Culler, “Taming the Underlying Challenges
of Reliable Multihop Routing in Sensor Networks,” inProc. of ACM
Sensys, 2003.

[24] T. Ho, R. Koetter, M. Medard, D. R. Karger, and M. Effros,“The
Benefits of Coding over Routing in a Randomized Setting,” inProc.
of IEEE International Symposium on Information Theory, 2003.

[25] T. M. Cover and J. A. Thomas,Elements of Information Theory. Wiley,
1991.

[26] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,Introduction
to Algorithms. The MIT Press, 2001.

