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Abstract—The highly stochastic nature of wireless environ- design [3]. Finally, network coding can compress spatially
ments makes it desirable to monitor link loss rates in wireless correlated sensing data in a distributed fashion [4].
sensor networks. In this paper, we study the loss inference  on gne hand, there exists the need of identifying specific
problem in sensor networks with network coding. Unlike tra- hical h high | t . di
ditional transmission protocols, network coding offers reliable geographical areas where nhigh 10ss rales are experienced in
communication without using control messages for individual large-scale sensor networks. On the other hand, though band
packets. We show, however, that network coding changes the width constraints prevent centralized loss data collactiad
fundamental connection between path and link loss probabilities processing, network coding offers inherent resiliencenssés
such that new inference algorithms need to be developed. As end-in sensor networks in a decentralized fashion [2], [3]. Vit

to-end data are not sufficient to compute link loss rates precisely, be feasible to desian new bractical algorithms when network
we propose inference algorithms based on Bayesian principles to € leasible 1o design new practical aigo en netwo

discover the set of highly lossy links in sensor networks. We show c0ding is used for data flows in wireless sensor networks) suc
that our algorithms achieve high detection and low false-positive that areas with high loss rates anferred without centralized
rates through extensive simulations. collection? In this paper, we study the problem of efficignt
determining highly lossy links in wireless sensor netwdnls
passively monitoring network coding traffic at the sink.
Recent technological advances have made it feasible to deWe believe that existing loss inference solutions in the
ploy large-scale sensor networks using low-cost sensoesioditerature are not effective in the context of network cagim
However, as the scale of sensor networks becomes larger, tvaglitional loss inference problems considered in IP ndta/o
key challenges potentially arise. Firsipde failures. Due to and sensor networks, either end-to-end retransmissio®TC
their inherent instability and energy constraints, semsmtes is employed to ensure reliable communication [5], or no
are prone to failures. It would thus be useful to determineliability [6]-[8] is provided in order to avoid the overhg
which set of nodes or which geographical areas within thef acknowledgment messages for individual packets. A¢he
network are experiencing high loss rates. Such informatoninference problems use the following fundamental model
potentially valuable to the design of fault-tolerant pauits between end-to-end observation and network characteristi
or monitoring mechanisms, so that the problem areas mine path successful-transmission probability is the pcodd
be re-deployed, and critical data may be rerouted to avadl link successful-transmission probabilities, assugnlass
these failure-prone areas suffering high loss rates. $kcoavents occur independently among links. With network cggdin
bandwidth constraints. One cannot rely on the use of activehowever, this fundamental model is changed. In particwlar,
acknowledgments, which are neither scalable nor bandwidghow that the path successful-transmission probabilitthés
efficient, in the design of sensor network protocols. Thisinimum of all link successful-transmission probabiktien
renders the direct collection of loss rate data impossible this path.
sensor networks. Furthermore, it would also be infeasihle, Such a simple difference between path observation and
to limited bandwidth, for individual sensor nodes to cdileed link characteristics has two important consequences os los
transmit loss rate data to a centralized location for preiogs inference.First, the most lossy link on a path essentially
in large-scale sensor networks. blocks the information of all other links on the same path.
The research on network coding has received tremenddisnce, it is infeasible to determine the exact loss ratedlof a
amount of attention in recent years. By allowing intermeglialinks. Therefore, we seek to achieve a less ambitious goal, t
nodes to perform coding operations besides simple rejaicatdiscover the set of highly lossy links in this papgecond, in
and forwarding, it has been shown that network coding [the traditional model, even if all links are good, a long path
achieves the network multicast capacity. Furthermorayoit may still have high loss rates due to the accumulated effect o
coding is found to be effective and helpful in lossy wireleskink losses. In fact, it can be shown that it is infeasible talfi
networks, as it naturally offers error recovery and rekabla path threshold — a threshold value to separate good and bad
communication due to its root from erasure coding [2]. Ipaths — without both false positives and negatives. However
addition, network coding is also able to utilize the wiraleswith data flows using network coding, a high-loss path always
broadcast advantage while significantly simplifying pomtb implies that there is at least one poor link on the path. This
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fact suggests that a natural path threshold is the link tiulds E’! 0
itself. Q sk — o

With these new insights in mind, in this paper, we propose O
Bayesian inference algorithms based on factor graphs [@] an Q o Ble[iz] O
Gibbs sampling [10]. Both algorithms are able to derive the 1 [7]e[4]8]
posterior distributions of link rates, given the data obeer Eg gg
at the sink. In general, the factor graph based solutiorr®ffe
the complete numerical posterior distributions, wheredbh& OO #Nerminals 3 Q
sampling is only able to generate random samples from O O O

these distributions. However, in our inference probleng th
factor graph based algorithm suffers from the “the curse of .
dimensionality” [10], and is hence not suitable for largale z'rg tle'rmi?a,s'r%ﬂssOfaﬁéamﬁ(g ?siﬁzsg{nﬂet¥”ﬁgk’sw*1ere nOdemZ and 3
y . quares areothegc
problems. We also adapt the algorithm in [11], originallgoefficients of coded packets. The shaded and empty squareseet the
proposed for traditional routing protocols, to our new peot coding _coefficients correspopding to the source packets fnod_e 2 and 3,
. . . respectively. The segment siZ€ is 2, and the number of terminal nodes
setting and show that its performance improves under n&twaol 5
coding. Furthermore, this combinatorial algorithm is much
more efficient than the two numerical Bayesian inferenadl links are lossless. In contrast, we study passive toajigy
algorithms. However, it is accurate only if there is a sudfitly  in a wireless sensor network with lossy links.
large amount of data in the network. In contrast, the Bayesia Subsequently, the advantages auftive tomography with
inference algorithms demonstrate excellent performanea e network coding have been shown for loss inference in [16]-
with limited data. We evaluate these algorithms through eit8] and topology inference [19] in wireline networks. Fur-
tensive simulations. thermore, Jafarisiavoshar, al. utilize the subspace property
The remainder of the paper is organized as follows. Sec.di randomized network coding to infer topology in wireline
discusses related work in network tomography and wirelesstworks [20] and to discover bottleneck in a peer-to-peer
sensor networks. Sec. Il presents the network model tHidg sharing application [21]. Most of these tomography tech
will be used throughout the paper. Sec. IV presents the daigues actively inject probing traffic [16]-[19] to infer meork
collection protocol utilizing network coding in sensorwetks characteristics such that these solutions are unsuitaile f
and its associated inference problem. Sec. V describes thieeless sensor networks with limited radio bandwidth and
three inference algorithms to detect the highly lossy linksnergy budgets. In addition, the work in [20] assumes global
in wireless sensor networks. Sec. VI evaluates the thrkeowledge and lossless environments, which is not the case
algorithms under different network settings. Finally, Séd  in our study. The passive inference techniques in [21] are
concludes the paper. integrated closely with the peer-to-peer protocol usecdairt
system and hence are not applicable to our work.
Shameet al. [22] discuss passiviepol ogy tomography with
Tomography on the wireline networks has been extensivelgétwork coding in both wireline and wireless networks. In
studied in recent years [12]. Most tomography algorithmsontrast, our work proposes algorithms for passive liods
infer the network characteristics by utilizing inherentrres tomography, which is fundamentally different from topofog
lation among multicast probing packets [13]. However, singnference. To the best of our knowledge, our paper represent

IP multicast is not widely supported by the network, therghe first attempt to address loss inference in wireless ré&svo
have been alternative proposals on loss inferences baseduffler network coding traffic.

sending unicast probing packets, where clever protocols (f
example, using back-to-back packets) are incorporatethwh 1
essentially turns the inference problem to a multicast lerab
(see, for example, [14]). We start with a simple example of passive tomography on a
Recently, several studies propose to passively monit@-wisensor network shown in Fig. 1. The terminal nodes, nodes 2
less sensor networks through application data in orderda@avand 3, continuously obtain sensed data from the environment
active monitoring traffic. [6] and [7] perform loss inferenc and transmit them through node 1 to the sink, node 0. All
by assuming aggregation of application data packets at eagheless links are lossy due to the inherent instability of
sensor. On the other hand, Nguyetral. [8] use uncorrelated wireless ratio. By inspecting the received data packetdertb
end-to-end data to identify lossy links. These works are nabuld like to infer the loss characteristics of these wissle
concerned with the benefit and consequence of network codimks. More generally, we consider a sensor network as a
in tomography. directed graph, where each node represents either a términa
The literature of network coding tomography starts frortsensor), a relay node, or the sink (data collecting) nodeh e
[15], where it is shown that the coding coefficients used idirected edge represents the link between these nodeshand t
randomized network coding can be used to infer differedirection of an edge indicates the direction of the data flow
failure patterns in a wireline network with the assumptibatt on the link.

Il. RELATED WORK
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We will not consider, except for the sink, degree-two nodgmth from a terminal node to the sink. However, we equip the
in the graph; that is, if a degree-two node is not the sinks it data transmission protocol along a path with network cading
suppressed in the graph representation of the networkisdn th In the protocol design, we assume that each terminal node
way, what we refer to aslank is not necessarily in its physical produces unlimited data, and partitions its data packets to
sense, since it can be a path consisting of several connecieginents, where each segment comprises the same number of
physical links as long as no other paths are branched from daita packets All terminal nodes attach a sequence number to
intermediate node in the path. It can be verified that sucheach segment. The protocol then transmits the segments with
notion of links is defined without loss of generality, as far athe same sequence number, $ajrom all terminal nodes to
loss rates are concerned. In this paper, the feath refers to the sink until all data in these segments are decoded béfere t
a sequence of links starting from a terminal node and enditransmission for the next group of segments. Without loss of
at the sink. generality, we only consider the transmission of the segsnen

We assume that packets are transmitted over a link indepeith sequence number because the transmission processes
dently of other links. Such an assumption is supported by thee identical for other segments.
measurement studies from [23]. Let denote the successful- We next describe the encoding and decoding algorithms of
transmission probability of link. 1 — «a. then refers to the the random linear codes [24] used to transmit itke group
loss probability of this link. We us& and W to denote the of segments. Assume that there argerminal nodes in the
set of all links and all paths in a sensor network, respegetwork. There are thu&n source packets in thih group
tively. In addition, we assume that all sensors have the sagfesegments. We refer to thegén source packets assaper
transmission speed. Hence, we can model the packet transrgigment. In general, a coded packetis a linear combination
sion synchronously, where a time slot represents the timedbthe Kn source packets,, ..., Ex, with the formaz =
transmit a data packet. Moreover, as the normalized link razfi’; ~; E;, where~; are coding coefficients chosen randomly
is equivalent to the successful-transmission probabilitder from a Galois field. At any time slot, if a node between a
this synchronous model, we will use “successful-transimiss terminal node to the sink wishes to transmit a coded packet,
probability” and “rate” interchangeably throughout theppa ¢ produces a coded packe} by encoding all coded packets
in its buffer belonging to the same super segment, namely
x1,-..,T,m, Wherem is the total number of coded packets in
the buffer that belong to the super segment:

In this section, we describe a data collecting protocol m
utilizing network coding and define its inference problem. Ty = me“ (1)

i=1

IV. NETWORK CODING BASED DATA COLLECTING
PrRoTOCOL ANDINFERENCEPROBLEMS

A. Network Coding Based Data Collecting Protocol o N ) _
where all multiplication and addition operations are define

In order to show the difference of the inference problemdc,n a Galois field (such as GE) when the operations are

between a protocol with and without network coding, it i%erformed on each byte), ang is randomly chosen from the
useful to briefly review a typical traditional routing prot, ; N ; A

. . : ield. It is easy to see that, is also a linear combination of the
MintRoute [23], used in sensor networks without networIi( y at,

coding. MintRoute constructs a reverse multicast rooted At original packets from terminal nodes, and the coefficients
th ! g.k I'th u" termi lIJ q v th Iu If d D c%n be derived. Node then transmits:, along with its coding
€ sink with all terminal nodes -as the jeal- nodes. Daqisients over the original packets to the next hop.
are transmitted through the paths on the tree from terminal
Suppose nodé, the next hop of nodex, successfully

nodes to the sink. With MintRoute, the inference algorithms ~ ; .
X - receives the coded packet,. It first checks whether,, is
proposed for sensor networks in [6]-[8] essentially assunj

e : o .
no reliability in delivering packets such that a packet istlo Inearly independent with its buffered coded packets withie

R . . same super segment. If so, noblénsertsx, into its buffer.
if it is lost on one of the links on a path. Assuming inde: ! .2 . o

. . Otherwisex, is discarded. If nodé is the sink, it recovers all
pendence of loss events among different links, the cororecti

- : Kn source packets in thgh super segment by the following
between the path successful-transmission probabiljtynd : : : -
X h e . algorithm. Since the coding coefficients and the coded packe
link successful-transmission probabilities is characterized

by 8; — T, p.a., where P, denotes the set of all links on thear.e known, each coded packet represents a linear equation
ith path with the K'n source packets as unknown variables. Hence,
NZtW(;rk coding. however. demonstrates a different COd_ecoding theKn source packets is equivalent to solving a
; 9 y o . linear system composed of all coded packets received so far.
nection between path and link transmission probabilities dThe decoding matrix represents the coefficient matrix of such
to its inherent capability of reliable communication. Swah

observation will become clear after we present the detdils 3 linear system. When the rank of the decoding matri i

. A0S Be linear system can be solved and thie source packets
the protocol based on network coding. Note that our objectiv Y . o P
: . . . . are decoded. Otherwise, there exists linear dependencegamo
is not to design the optimal protocol, but a simple one sigtab
for sensor networks. In particular, similarly to MintRoutee N o _ _ N

. . . h t | To utilize tesult This assumption is made for presentation clarity. It is ttiwaextend to
restrict our attention to a unipath protocol. To utiliz Ul the general case where different terminal nodes have segmihtslifierent

of previous research efforts, we rely on MintRoute to seleet sizes.



the coded packets, so the sink will continue to receive codedDespite the strong assumption, that only one flow is allowed
packets from its neighbors until altn packets are decoded.to transmit, is used in Proposition 1, we will show next that
Gaussian elimination is usually used to solve the lineaiesys our selected end-to-end observation demonstrates a simila
We remark that when multiple nodes transmit coded packegioperty even when multiple flows share links in the network.
to a common next hop, all these coded packets are enco&mkcifically, we divide the decoding matrix to submatrices
together. For instance, node 1 encodes the data from nateh that each individual submatrix, composedso€olumns,
2 and 3 together in Fig. 1. Furthermore, as the result ofcarresponds to the source packets from one terminal node.
reverse routing tree, many coded packets are encoded frBar example, in Fig. 1, the shaded and blank columns of the
only a subset of the source packets. The coding coefficiediscoding matrix at the sink represent the two submatrices
corresponding to the absent source packets are zero. Ascarresponding to the source packets from node 2 and 3,
example, the coded packets transmitting from node 2 to nodsspectively. As coded packets are continuously transaitt
1 have zero coefficients corresponding to the source packitsn the terminal node to the sink before successful degpdin
from node 3. the ranks of all submatrices reach the segment gizet
In this paper, we utilize theateless property of randomized some time. Apparently, if the path successful-transmissio
linear codes for a node to decide when to transmit a codptbbability of path: is higher than that of path, the rank
packet. A node always produces a coded packet and transroftssubmatrix i reachesK earlier than the time that the
it to the next hop until it receives the notification that altank of submatrixj reachesk. Hence, such relative timing
data from its upstream nodes in the current super segmeahtains the information of the path successful-transoriss
has been received at the next hop. Such a protocol enjoys phebabilities, which we use to infer link rates.
advantage of being insensitive to the variation of link dies, More formally, let ¢; denote the time that the rank of
and requiring control messages only per segment. This@ont§ubmatrix i reachesk. ¢; is composed of the time used
overhead can be ignored if the segment size is sufficiently traverse pathi and the wasted time due to link losses.
large. Hence, if we usel; to represent the length of thih path,
B. Inference Problems with Network Coding t;, = t; — d; is the wasted time due to link losses. We thus
D = {t1,...,t,}, referred to asull-rank times hereafter,
inputs into our inference algorithms. We then state the
owing observation, which is essential to our decision t
ooseD as the end-to-end input, and will significantly simply
e design of Bayesian inference algorithms in Sec. V-A and

. . . . use

In this section, we describe the inference problems assogl-

ated with network coding traffic. We first show the connectio% I
between path and link successful-transmission probigisilit c

assuming only one data flow is transmitted from a terminﬁr

node to the sink in the network.

Proposition 1: Let 5 and «. denote the path and IinkV_B' " , . .
successful-transmission probabilities, respectivelgsuining Proposition 2: The ranks of the submatrices increase inde-
one flow exists, we have pendently.

Proof: This observation can be easily justified from the
B :ggfr}(ae)a (2)  matrix form of the encoding algorithm (1). Lei§- be the

. - Il link hi h jth coding coefficient in a coded packet generated from
where P is the set comprising all links on this path. nodea, and~; ; denote thejth coding coefficient in theéth

Proof. A wireless _Iink e can _be ”"!Ode'ed as a b_inarycoded packet in the node buffer. Then, the relation of coding
erasure channel [25], with a capacity. With network coding, coefficients in (1) can be expanded as follows:
the transmission on each hop is equipped with an erasure coé)e

which achieves the link capacity when the code length 7 m Vi1
@s sufficie_ntly large. Furthermore, the (_:apacity _of any Qrap L= Z”i ; (3)
is the mincut [26]. Hence, the capacity of this pakhis P
the minimum capacity of any linkmin.cp(c.). Finally, it
is easy to see that the path from the terminal node to tWéeren; is a coefficient randomly chosen from the Galois
sink can also be modeled as a binary erasure channel. Heifi€d on which network coding is based. (3) essentially iepli
the path successful-transmission probabilitys the capacity that thejth coding coefficient in a coded packet only depends
mineep(ae) [25]. m on the jth coding coefficient of the coded packets that it is
We remark that although Proposition 1 holds for any erasuggcoded from. In other words, theh column in the decoding
codes, network coding enjoys the advantage of significanfijatrix are independent from the other columns. Hence, all
shorter transmission delay. This is because with traditiorcolumns are independent from one another. Therefore, all
erasure codes, a node needs to receive all data to be enc&ddunatrices, composed by columns, are independent from one
together, and decode them before it generates the codé@@ther, and their ranks increase independently. ]
packets for the next hop. In contrast, the recoding ability o When a terminal node sends out a packet, the path
network coding enables a node to produce new coded pacl®iscessful-transmission probability is essentially the prob-
for the next hop as soon as the node receives a new coadidlity of a rank increase in submatrixHence, Proposition 2
packet from one of its upstream nodes. implies that Proposition 1 holds even when multiple flows

/
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V. PASSIVE NETWORK TOMOGRAPHY

In this section, we describe three different inference -algo
rithms to discover highly lossy links. We discuss their eliéfint
computational complexities and relative performance.

A. Bayesian Inference Using Factor Graphs

@ (®) © The recent notion of factor graphs [9] has attracted intense
research interest, since it was recognized that factorhgrap
Fig. 2. The path rates from node 2 and 3 to the sink are botn0@)j (b), gnd the sum-product algorithm operating on them, unify a
and (c). variety of previously discovered well-known algorithmsagch
as the Viterbi algorithm, belief propagation, FFT, and so on
The factor-graph framework, as one example of probalailisti
share links. We thus revise Proposition 1 into the followingraphic models [10], essentially uses a graph to represent
corollary: the dependency among random variables. With factor graphs,
Corollary 1: In the sense of rank-increase probability of @ “global” function, representing the joint distributionf o
submatrix, (2) holds even when multiple flows exist in thall random variables, can be factorized to multiple “local”
network. functions. Furthermore, by utilizing intermediate congiign
All remaining parts of this paper considgr in this sense. results, the sum-product algorithm is able to compute the
In addition, we note thag; can be estimated bg; = £. It marginal distribution of all random variables simultansigu

is easy to see that the accuracy of this equation increased!gdce dramatically reducing the computation complexity in
K goes to infinity. inference [9]. In this section, we demonstrate how to apply

We further remark that Proposition 2 does not violate tH‘gctor graphs for link loss inference with network codmg.
In Bayesian inference, all parameters are considered as

intuition that the transmissions of multiple flows intederach ndom variables to quantify the belief on their values. It

other on a shared link. The reason is that even when the ra@seas to see that we can capture the dependency amon
of all submatrices reacli’, the sink may still not be able y P P Y 9

to decode allKn packets. For instance, in Fig. 1, despitgnk Yate.sae and path .rateﬁ using the following conditional
istributior? due to (2):

the two submatrices in the decoding matrix both have ran
K = 2, the sink is unable to decode dlln = 4 packets. In 1 if 3; = min(a,,),
fact, with network coding, the source packets from différen P(Bil{oe; }) = {O otherwise ’ (4)
terminal nodes are decoded at the same time. _

Link loss inference essentially attempts to assign linksatWheree; € P, andP; denotes the set of links on pathSuch

based on a system of constraints induced from all path rafe§onditional probability is usually called a factor furcti
observed at the sink, where the constraints are given by thd'eXt, we consider the dependency between path ratasd
connection between the path rate and the corresponding I full-rank timet; (described in Sec. IV-B). Any{" coded
rates. Because the number of paths to the sink are smalter tﬂac_kets are equivalently useful for _decodmg_ with network
the number of links in the network, the number of constrainf@ding. Hence, the rank of a submatrix reachés there are
are smaller than the number of unknown variables. Thergfofth 1€aSti’ linearly independent coded packets arriving at the
we are generally unable to determine a set of unique linlsrat§ k- Hence, the full-rank time; follows a negative binomial
Furthermore, in our inference problem, a path rate provigdiStribution:

only the information of the link with the lowest rate because ey (i1 ax i ati—K

of (2). For example, the path rates are not sufficient to detec P(til8:) = (K - 1) (1= ’ ®)

the difference between Fig. 2(a) anq (b). Finally, the sameyyith (4) and (5), the joint distribution of;, o, andt; can
set of path rates may bg due to a different set of bottlenegk ¢ ~torized as follows:

links as shown by the difference between Fig. 2(a) and (c).

Therefore, in this paper, we do not seek to obtain the preciBé{si}, {ce, }, {ti}) = Micw,e,ep, P(Bil{cxe, }) P (ti]5:) P(a,)
link loss probabilities, but rather attempt to identify thebset (6)

of highly lossy links. whereW denotes the set of all paths. Fig. 3 shows the factor

We are now ready to describe the inference problem ind4@Ph of the network with the topology shown in Fig. 2,
more formal way. The inputs of the problem are the full-ran¥here each square is a function vertex representing theract
times D observed at the sink, and the link rate threshifjg definéd in (4) and (5), and each circle is a variable vertex
whereT; is a threshold value such that a link is defined d§Presenting variables,, j;, andt;. Note that we omit the
good if its rate is higher thaff}, and bad otherwise. If we dummy factor vertices representitgc; ) in Fig. 3.
define an indicator variable. assuming the value 1 if link 5 L

For notation simplicity, in this work we use the short haf{z) to

is ClaSSiﬁ_ed as a good link, a.-nd 0 otherwise, the output of tB@nerally represent either the probability mals[X = z], or the probability
problem is the states of all link§ = {s.}, wheree € E. density, fx (z), depending on the continuity of random variabie



technique that has also been similarly applied in [5] and [8]
under different system models. L&t represent the observed
data, andx denote the parameters to infer, we have the well-
known Bayesian inference formulation:
P(a)P(D|a)
P(a|D) = . 8
(alD) [ P(a)P(Da) da ®
For our problem, the parametetis= {«.} are the set of link
rates, for any € F, and the observed dafa is the full-rank
times {¢;} for all submatrices as described in Sec. IV-B.
We define the likelihood functio®(t;) = af (1 — ;)%
After constructing the factor graph, we set the prior distrP? @ path assuming independence among the transmissions
butions of the vertices representing link rates and pa¢sra Of different coded packets. Furthermore, because the ranks
the uniform distribution, assuming re prior knowledge on Of different submatrices increase independently accgrdn
them. We further set the evidence on the vertesepresenting Corollary 1, we have the likelihood function
the full-rank times .Wlth 'Fhe observed da@ Afterwards, the P(D|a) = Miew BX (1 - ;)1 X, 9)
sum-product algorithm is operated on this graph to compute S .
the marginal probabilities,e., the posterior probabilities, of Wheres; = min.¢p, (a.) as justified in Corollary 1. The prior
link rates. distribution P(«) indicates the prior knowledge about the link
With all link posterior probabilitiesP(c.|D) given the rates. Similar to Sec. V-A, we set the prior to be uniform
observed data, we classify a link to be a bad link if thassuming na prior knowledge about link rates.
probability that the link rate is smaller thafy is greater  The Gibbs sampling algorithm belongs to the family of
than 1/2, whereT; is the given link rate threshold definedMarkov Chain Monte Carlo (MCMC) algorithms [10]. It is

Fig. 3. The factor graph formulation of the examples in Fig. 2.

in Sec. IV-B. We then have particularly useful if marginal distributions are very fittilt
1 i fOTl P(ae|D)da, < 1/2, to compute directly. Rather than doing so, M(_:MC algc_)rlthms
e = it 17 Plo D) da. > 1/2 (7) seek to generate samples from these distributions. Weildescr
0 if fo' Plac|D)dae > 1/2, the Gibbs sampling algorithm in the context of our problem

where s, is the link state indicator variable as defined ims follows. We start with an arbitrary initial assignments o
Sec. IV-B. link rates «. Afterwards, one of the links is picked either
For this algorithm, rather than using the path rate caledlatrandomly or according to a particular order. Assuming timt |
from K /t;, which is accurate only i< is sufficiently large, € is chosen, we then compute the posterior distribution.of
we utilize the observed full-rank timg directly. Hence, we conditioned on the observed dataand all currently assigned
expect this algorithm to perform well even with a small  other link rates{a.} = Uyx.{ay}. That is, we compute the

Note that since the factor graph shown in Fig. 3 is a tre®llowing conditional probability:
the sum-product algorithm is able to produce exact infexenc - P(Dl{ac}, {@.})P(ae)
and furthermore, the sum-product algorithm only need to P(ae|D,{ac}) = = (10)

i i ; fa P(D‘{ae}v {ae})P(O‘e) dae

traverse the graph twice in order to compute all marginal e
probabilities. Hence, the complexity of this algorithm imd Since {a.} U {a.} = a, P(D{ac},{ac}) is P(D|a).
matically reduced by factorization. However, in realithet Furthermore,P(c.) is a constant because of the assumption
conditional probabilities (4) still pose challenges. Tastrate of uniform prior probability. Thus, (10) is simplified to
this, we briefly discuss the implementation details. Tolfaci B P(D|a)
itate computer-based numerical calculation, we use discre P(ae|D,{ac}) = T P(Dla)da,’ (11)
distribution vectors with, sayM elements, to approximate Qe c
the continuous distributions of random variabjgsand o.,. which can then be used to generate a new sampléor the
Then, both the space and time complexities to store (4) arate of linke. In this way, we repeat this procedure for aln
compute (4) grow withM/™+!, wherem is the length of path FE such that each link is assigned a new rate. We then iterate
1. To obtain reliable classificationy/ is usually chosen to be this algorithm until it converges, at which time, by the theo
greater than 100, and a path length can easily be larger thawftbGibbs sampling [10], the samples are produced from the
rendering this algorithm impractical for large-scale netks. true posterior distribution of link rate®B(a.|D).
This type of computational difficulty is usually referred de In this work we iterate the above algorithm faf = 2x
‘the curse of dimensionality” [10]. times, wherex is a sufficiently large number of iterations for
the algorithm to converge. Using the link thresh@lddefined
in Sec. IV-B, we classify linke to be a bad link if more than

In this section, we describe a Bayesian formulation baskdlf of the samples from the latéi/ /2 samples are less than
on Gibbs sampling [10]. Gibbs sampling is a well-knowrT;. Hence, this classification rule essentially labels a lisk a

B. Bayesian Inference Using Gibbs Sampling



P, is good P; is bad our setting, it is clear that we should set the path thresfipld
Po Pn as the link threshold;, as we can easily draw the following
- by _ observati_qn: N
Proposition 3: If we setT, = T;, both false positive rate
p2 and false negative rate are zero for the network coding based
Pi is identified Pi is identified prOtOCOl.
as good as bad In contrast, we can show that an ideal path threshold does
not exist for traditional routing protocols:
Fig. 4. The definition of false pos+ig. 5. The SCFS algorithny or Proposition 4: It is infeasible to select a path threshold such
itive rate p, and false negative rateb indicates the link is good and bad, " .
pn for a path. respectively. G or B specifies the that both false positive ratg, and false negative rate, are

path is good or bad, respectively. ~ zero for traditional routing protocols.
Proof: Recall the path rate is the product of all link rates
in traditional routing protocols. Suppose an ideal patleshr
bad if the posterior probability, that the link rate is lovikan old Tp exists such that botbp and p, are zero. We further
1), is greater than 1/2. assume that the length of the pathnisandm > 1. Suppose
With Gibbs sampling, the infeasible computation task tat all links on this path has rafg + ¢, wheree is a small
compute (8) directly for all link rates is reduced to a nurc@lri positive number. This path is a good path because all links
computation of the conditional probability (11) on one linkjave rate greater thdfy. The path rate i§7; + €)™ ~ T™.
rate. Hence, this formulation does not suffer from the highence, we ha\/@“p < Tl”” to avoid C|assifying this path as bad,
dimensional problem in Sec. V-A. i.e, to avoid false positive. Furthermore, suppose that there i
: . one bad link with rateél; — ¢, whereas all other links have rate
C. Smallest Consistent Failure Set (SCFS) 1. This path is a bad path because it consists of a bad link. The
In this section, we modify the SCFS approach proposed ﬂi&th rate isT; — . Therefore, we havé, > T} — ¢ ~ Tj, to
[11], originally to infer lossy links without network codin  ayoid classifying this link as good.e. to avoid false negative.
and show its performance under network coding is better thagyectively, we then have both, < 7™ and T, > T;, which
in the case of traditional routing. As shown in Sec. IV-Big g contradiction, sincé < 7, < 1 andm > 1. Hence, no
the constraints from end-to-end observations are not &rtic g,ch an ideal path threshold exists. n

to uniquely identify a set of link rate assignments. In fachroposition 3 and 4 suggest that we should expect SCFS to
the constraints cannot uniquely determine a set of bad linkgrform better under our problem setting.

either. The basic idea of the SCFS approach is that, if thererne second step of the SCFS algorithm in our setting is
are multiple choices to assign whether links are good or badi}jentical to that in [11]. For completeness, we briefly ravie
order to satisfy the end-to-end observations, one sholégtsejt ysing the example shown in Fig. 5. Each link in the tree
the smallest set of bad links, under the assumption thabe lape|ongs to a pair of parent and child, and the child can
fraction of the network is well behaved. In the sensor neksor yniquely identify this link in a tree. Hence, for brevity, we
under consideration, SCFS implies that the links closehéo tse the node ID of the child to name the linkg, the link

sink are more likely to be chosen as bad links, since th@gtween node 1 and 2 is referred to as link 2). The input of
influence more paths than the links closer to the sources. the algorithm is the result of the first step of SCFS: the state

The SCFS algorithm consists of two steps. First, it obtaigg a|| paths from terminal nodes to the sink. The algorithm
the state, good or bad, of each path from all terminal nodefyst assigns each link the states of all paths that it belongs
to the sink. Second, based on these path states, the afgorit§. For example, link 1 has path statgB, B, @, B}, and link
assigns link states with the principle to assign as few badpas path staté B, B}, where G and B represent “good”
links as possible. For the first step, a proper path threshgldq “had”, respectively. Then, the algorithm traversesttae
is required to separate good paths from bad paths. We wilhm the root recursively to classify each link according to
show that our setting with network coding make the choiGfese states. If one of the paths consists of the current link
of an ideal path threshold more natural and straightforward good, this link is certainly good and classified as good.
compared with the case of tradition routing. For example, link 1 is good. On the other hand, if all paths

More precisely, due to (2), a good path consists of onbpmprising this link is bad, there are multiple possitekiti
good links, whereas a bad path is one consisting of at legg} an illustration, link 2 has two bad paths across it. Hence
one bad link. We use a path threshdlgl such that a path is gjther link 2 is bad, or both link 5 and 6 are bad. According
good if the path rate is higher thah; otherwise, itis bad. As tg the assumption that the fraction of bad links in the nekwor
illustrated in Fig. 4, we define the false-detection evéaltse s small, the algorithm classifies link 2 as bad, and all links
positive if the path is good but we classify it as bad, #atse o the subtree rooted at node 2 as good in order to minimize
negative if a path is in fact bad but we classify it as géoth  the total number of bad links in the network.

3 _ This combinatorial algorithm executes much faster than the
 Note that these false detections are only used to to measuthertt, two numerical Bayesian algorithms presented in Sec. V-A and
is the right choice, and not the final metrics for link rate gssients, which
are defined in Sec. VI. V-B. However, it relies on the estimation of path rates, whic
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In this section, we compare the three proposed inference al- @) (b)

gorithms under different network settings. For this pugage
; _ P Fig. 6. The posterior distributions of the link rates fromyBsian inference
have developed a customized packet-level network simufato algorithms.a; denotes the true rate of link (a) and (b) are the results of

C++, with the implementation of randomized network codingactor graphs and Gibbs sampling under the settings of Fa. 2(
using GFe?®) as the code space. The inference algorithms are
implemented in Matlab.

We use two different loss rate models introduced in owmiformly from 0.3 to 1, implying that the link rates are etiya
previous work [6], [7]. In the first model (LRM1) [6], all good likely from 0.3 to 1. Such observation is consistent with our
and bad links are assigned rates of 0.7 and 0.3, respectivaljuition that the rates of the two links are unidentifiableedo
We use a link threshold; = 0.5 to partition them. This the blocking effect of linka. Hence, it is clear, we should not
simple model is a good approximation of the real sensor linlse the principle of maximum a posterior to assign link rates
gualities. With sensor testbeds, [23] and [8] have showh thgince this method would have chosen a link rate lower than
a wireless link has either low or high loss probability, bud.4 to both linksb and ¢, which is far from the truth. Instead,
rarely has intermediate loss rates. Furthermore, the Mint®® we follow the classification rule described in Sec. V-A and
routing algorithm adopted in our protocol rarely uses a ling-B. If we use 0.5 as the threshold to partition good and bad
with intermediate quality [23]. This loss rate model is uselihks, it is highly likely for the algorithm to classify link, ¢
for most of our experiments. The second model (LRM2) [4p be good links from the posterior distributions of theitesa
assigns a loss rate to a link from a distribution with densitiyn this way, both algorithms produce the correct results.
function f(a) = \a*~1), where0 < o < 1. We use\ = 10 _ _
andT, = 0.8 in our simulations, such that there are 12% halg: Effect of Different Network Settings
links in the network on average. In this section, we study the effect of different network

We use two metrics to measure algorithm performancgettings on a randomly generated network with 100 nodes.
First, Detection Rate (DR) is defined as the fraction of linksxcluding the sink and terminal nodes, the average number of
correctly identified as bad among all bad links. Second,g~alshildren of a node on the tree is 3.0625, and the averageiengt
Positive Rate (FPR) is defined as the percentage of good lirisa path from a terminal node to the sink is 4.8209. We use

among all links identified as bad. LRM1 unless explicitly pointed out. Furthermore, we repeat
) the same experiments for 30 times, with different random
A. Bayesian Inference on a Smple Topology seeds, and show the mean DR and FPR. Since the factor graphs

In this section, we present the results of the Bayesidased algorithm is not scalable, we show only the results of
inference algorithms in a simple topology shown in Fig. 2(a&pibbs sampling along with SCFS.
and (c) with a segment siz&€ = 100. Fig. 6 shows that the  We first study the effect of segment sizes. We set the fraction
algorithms based on factor graphs or Gibbs sampling produmfebad links to 5%. Fig. 7(a) shows that DR increases with
similar results. This is because, in our factor graph foemulsegment sizes. This is because with a larger segment size, we
tion, the tree structure ensures exact inference by the sunject more data into the network and, hence, obtain more
product algorithm, whereas Gibbs sampling, as a randomizediable observations. More importantly, we notice tha¢ th
approximate inference algorithm, always generates rand@ayesian algorithm significantly outperforms SCFS, in FPR,
samples from the correct distribution, even if exact infiereis  when the segment size is 20 and 30. This is due to the facts that
infeasible [10]. However, factor graph formulation sufétom the Bayesian algorithm uses observed data directly, wherea
intractable computation in large-scale networks as empthin SCFS uses estimated path rates, which are not accurate when
Sec. V-A. Hence, for the larger topology in the next subsecti given a small amount of data. In the following experiments,
we focus on Gibbs sampling as the representation for Bayesige set segment size to 50.
inference algorithms. We next investigate the algorithm performance under differ

Furthermore, as shown in Fig. 6(a) and (b), for the netwosat fractions of lossy links. From Fig. 7(b), we notice th& D
settings in Fig. 2(a), we observe that the Bayesian algosth decreases when the fraction of lossy links increases, \&kere
produce a posterior distribution of link concentrating on its FPR remains low. The lower detection rates occur because
true rate 0.3. Furthermore, link obscures the information onalthough more and more bad links appear, their informatien a
links b and ¢, since Fig. 6(a) and (b) show that the posteridslocked by the bad links closer to the root. Furthermore, the
distributions of the rates of link and ¢ range approximately assumption of SCFS is gradually violated with an increasing
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