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Abstract of upstream and downstream peers, the latency to neighbor-
ing peers, and resource usage such as bandwidth and CPU
Both peer-to-peer and sensor networks have the funda-load. Similarly, in sensor networks, the task of each sensor
mental characteristics of node churn and failures. Peers is to monitor the environment, with periodic measurements
in P2P networks are highly dynamic, whereas sensors arecollected for later retrieval.
not dependable. As such, maintaining the persistence of How do we collect such periodically measured data,
periodically measured data in a scalable fashion has be- which may grow to substantial volumes over time? There
come a critical challenge in such systems, without the useare reasons to believe that centralized servers may noebe th
of centralized servers. To better cope with node dynamicsappropriate answer. In P2P networks, periodic reporting to
and failures, we propose priority random linear codes, as central logging servers does not scale well to a large number
well as their affiliated pre-distribution protocols, to nmai of peers, and may morph intode factodistributed denial-
tain measurement data in different priorities, such that-cr  of-service attack at the logging server. In sensor networks
ical data have a higher opportunity to survive node failures it may be too costly and unrealistic to periodically main-
than data of less importance. A salient feature of priority tain routing structurese(g., aggregation trees) to central-
random linear codes is the ability to partially recover more ized sinks, again due to frequent sensor failures and energy
important subsets of the original data with higher priogsi conserving measures.
when it is not feasible to recover all of them due to node dy-  |n this paper, we study the challenges involved when no
namics. We present extensive analytical and experimentakentralized servers exist in autonomous networks, ane peri
results to show the effectiveness of priority random linear odically measured data must be stowéthin the network it-
codes. selfin a collaborative fashion. This conforms to the peer-to-
peer mentality, but could be a serious problem when nodes
are inherently dynamic and failure-prone. The objective of
1 Introduction this paper is to propose negodingtechniques inside the
network, inspired by traditional random linear codes com-
One of the most important challenges in fully au- monly used imetwork codingsuch that data stored in the

tonomous networks, including peer-to-peer (P2P) networkshetwork can be efficiently recovered.
and wireless sensor networks, has been the dynamic be- Random linear codes, traditionally used in network cod-
havior of peer nodes and sensors. Peers in P2P architedng, achieves arfiall or nothing” paradigm of decoding.
tures tend to participate in and depart from ongoing ses-When measured data are segmentedoaginal source
sions in a highly dynamic fashion, and sensors are widely blocks with random linear codes, we need as many coded
acknowledged to show strikingly similar dynamics, due to blocks as the original source blocks to deceafy useful
their unreliability and energy-conservation protocots(é- data. We argue that such a paradigm is not appropriate for
riodically go to energy-conserving hibernation modes). either P2P or sensor networks, since node departures and
Nevertheless, in both P2P and sensor networks, periodfailures may easily render the remainder of coded blocks
ically measured data are generated on an ongoing basisyseless! Having many more coded blocks than source
which should be preserved for subsequent analysis at a lateblocks certainly helps, but we would prefer to progress be-
time. In P2P networks, it is critical for operators to monito  yond simple over-provisioning of cache storage, espggciall
the performance and “health” of live peer-to-peer sessions when cache spaces on nodes are limited.

For example, in live media streaming applications, it is es-  In this paper, we proposgriority random linear codes
sential to monitor the achieved streaming rate, the numberin a generic network model that encompasses both P2P and
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puter Engineering, University of Toronto. Their email addes are ~ €ar codes is the ability tpartially recovermore important
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is not feasible to recover all of them due to node dynamics. els, in descending levels of importance — source blocks in
In a nutshell, we achieve this by making sure that coded priority level : are more important than those in leyelif
blocks for important data are linear combinationdeyfer 1 < 7. The number of source blocks in priority levidk de-
source blocks, as compared to those for non-critical data.noted bya;, wherel < i < n. To facilitate later derivation,

In essence, we assign lower coding rates for important datawe introduceb,, bo, ..., b,, whereb; = Z;zl aj, i.e, b;
such that they can be recovered with fewer coded blocks,represents the total number of source blocks from priority
and may survive higher percentages of node departures antevel 1 toi. In this case, the source blocks in priority level
failures. are indexed as blocKse, }, whereb,_; +1 < j <b,.

In addition to our extensive theoretical analysis of pri- To disseminate source blocks and perform decentralized
ority random linear codes, we also present their affiliated encoding in the network, our protocol uses the characierist
pre-distribution protocols. Utilizing the fact that eaaided of geometric networksvhere each node is identified with a
block are encoded from a subset of source blocks, our prepointin a geometric space. Such networks include instances
distribution mechanism ensures that only source blocks inof sensor networks and P2P networks. In particular, the sen-
such a subset are delivered to their designated receivers fosors usually know their locations since the collected data a
storage, rather than all source blocks. Furthermorezutili more useful if their generation locations are known. In P2P
ing the previously known result that each coded block only networks, Distributed Hash Tables (DHE)g, Chord [20],
needs to be the linear combination®fln N) random cho-  are widely used to improve the network scalability, where

sen source blocks for successful decoding [7] (WhEris each node has a unique ID in a one-dimensional geomet-
the total number of source blocks), our pre-distributioo-pr  ric space. We further assumegaometric routing protocol
tocol is very efficient. can route source blocks to a random point in the geometric

The remainder of this paper is organized as follows. In network such as GPSR [11] in sensor networks, and DHT
Sec. 2, we describe the network model. In Sec. 3, werouting protocols in P2P networks.
introduce priority random linear codes and partial decod-  In this work, we assume strict priority model for de-
ing algorithms, with extensive analysis of their propertie coding, such that the data at higher priority levels aretbjri
In Sec. 4, we describe the pre-distribution protocol. Per- more preferable and are decoded before those at lower prior-
formance evaluation of priority random linear codes is in ity levels. This model describes a wide range of scenarios in
Sec. 5. We compare our approach with related work in practical applications, including multi-resolution senin-

Sec. 6. Finally, Sec. 7 concludes the paper. age dissemination [22], layered data compression [19], and
any other application which requires sequential decoding
2 Network Mode based on priority. It is also possible to consider a lesa-stri

gent priority model, where obtaining a large amount of low
In this paper. we consider a aeneric network model of priority data may be preferable to obtaining a small amount
Paper, 9 of high priority data. However, such a model requires the

g:g;%ﬂg?:gg%iﬁgﬁggr;i!i?;eo?%%?ﬁ ,I;Nzhlgcgnedn(s:grr?s- (%Sﬁecification of an application-specific utility functiones
. riority levels. This i i h f thi r
networks. We consider such a general model to show that e priority levels S Is outside the scope of this pape

o ) . ; and remains an open problem for future research.
priority random linear codes can be applied to a wide range
of autonomous networks, rather than specific to any partic-
ular type. 3 Priority Random Linear Codes
Our model of an autonomous network consists of a set
of nodes and the communication links among them. Each We introduce the design and performance analysis
node produces measurement data over time. There doegamework for two distributed priority random linear cod-
not exist centralized servers at our disposal; instead, alling schemes, termestacked Linear CodgSLC) andPro-
measured data from a particular node must be distributedgressive Linear Codg$LC).
to other nodes in the network for peer-to-peer collabora-
tive storage. We assume that each node only has a limited3.1 Stacked and Progressive Linear Codes
amount of storage space, and can only store a small frac-
tion of the data generated in the network. At a later time, Both SLC and PLC are based on Random Linear
measured data stored at a random subset of existing node€odes (RLC) [8]. GivenV source blocks:, s, ..., x N,
will be retrieved for analysis. All nodes in the network may RLC generates each coded bloeck as a linear com-
depart or fail unpredictably. binations of all N source blocks in the following
The measured data (possibly by multiple nodes) are segform: ¢; = Zjv:l B;.jz4, where thecoding coefficients
mented into source blocks. We assume fiaource blocks 3,1, 8i2,...,0;, v are randomly chosen from a Galois
are produced, which are classifieditdifferentpriority lev- field. Such an encoding process for a coded block essen-
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Figure 1. Example of three coding schemes.
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cess of RLC on\/ coded blocks solves th&/ linear equa-
tions constructed by the encoding process, whidre> N
in order to decodéV source blocks.

The priority coding schemes deviate from RLC in that
most coded blocks are not linear combinationalbSource
blocks, but asubsetof source blocks. In SLC, the source
blocks are encoded in different levels separately. Thus,

. decoding algorithm is essentially the decoding algoritim o
the kth set of c.oded blocks gre createdbby encoding all theRLC for the coded blocks in each level. Once the accu-
source blocks in théth level,i.e, ¢; = > °*

J=br_1+1 Bijj, mulated coded blocks in a level are sufficient to decode all

wheref; ; is_ a nNonzero random number uniformly chosen the source blocks in this level, they are decoded despite the
from a Galois field and; denotes the coded block. In PLC, source blocks in other levels may not be decoded.

the source blocks are encoded in descending priority.  par q liminati
ticular, thekth level coded blocks are encoded from source O PLC, we propose to uggauss-Jordan elimination
rather than usual Gaussian elimination since it is unable to

blocks between level$ and k, ie, ¢; = Z?’;lﬁi,jxj. _ ) _
Fig. 1 illustrates these two coding schemes and RLC by sim-Partially solve a underdetermined linear system. Gauss-
Jordan elimination is a variant of Gaussian elimination.

ple examples, where the matrix forms of the coding coeffi- : )

cients are shown. Each row in the figure shows the coding't transforms_ a matrix to itgeduced _row-echelon form_
coefficients of a coded block, and titb column of coding (RREF) [91, in which each row contains only zeros u_ntll
coefficients is multiplied by théth source block. The ex- the first nonzero eIemgnt, Wh'Ch, must be The bgneflt
ample in Fig. 1 represents that three source blocks belongOf the RREF is that, given the firdt unknown variables

to two levels, where the first one is in level 1 and the second can be solved with the_ first rows, once thes rows have
and the third source block are in level 2. been processed, the fifstelements of the resulting vector

Both SLC and PLC allow partial recovery of a subset of on the right-hand-side of the equations constitute theglart

the source blocks. even when the number of accumulateoS°|Uti°”' Therefore, with Gauss-Jordan elimination, tee d
coded blocks is less than the total number of source bIocks.COdIng process can krogressive The decoding process

In the examples of Fig. 1, RLC requires at least three codegStarts as soon as the first coded block has arrived. There-
blocks to decode any useful information. However, for both after, the decoding process decodes coded blocks as soon
PLC and SLC, as long as the first coded block is received, 25 they are decodable, when new coded blocks are accumu-

the first source block is decoded. lated. Thus, the data collecting server can stop collecting

Furthermore. with SLC. because the source blocks in coded data once the partial decoded data fulfill the applica-

each level are coded separately, the decoding results-of gifion requirement. More precisely, the decodlpg process pro
ferent levels in SLC are independent. With PLC, to decode ceeds as follows. As each new coded block is accumulated,

the source blocks in levdl, all the source blocks between :Ee codingt Zoeffié:_ients OI _the:Oded bfkéck areJapgendel_d t_o
levels 1 and: — 1 must be already decoded, or be decoded € current decoding matrix. A pass ot auss-Jordan elimi-

at the same time. However. we can show that PLC outper_nation is performed on the existing decoding matrix — with
forms SLC in terms of the nl’meer of required coded blocks identical operation.s performed on the data blocks as well —
to recover the same set of source blocks, as stated in Theo§uch that the matrix is reduced to RREF.

rem 1 in [14], which is omitted here due to space constraint. ~ In the following, we illustrate how Gauss-Jordan elimi-
nation is used in the partial decoding for PLC. To facilitate

3.2 Partial Decoding Algorithms the presentation, we first sort the rows of the decoding ma-
trix according to the number of nonzero coefficients in each
Next, we describe decoding algorithms that can be usedrow such that the decoding matrix is approximately a lower

to partially decode source blocks from a set of coded blockstriangular matrixe.g, Fig. 2(b). In Fig. 2(b), the first three

(b) (©

Figure 2. (a) The decoding matrix. (b) The de-
coding matrix with sorted rows. (c) RREF.

accumulated in a data collecting server. For SLC, the partia



source blocks can be decoded since3he3 submatrix at  coded blocks in levelis larger thar;*. To decode exactly

the top left corner can be inverted and the elements of thek levels of source blocks, we need two sets of conditions.

submatrix at the right of it are all zero. This is further con- First, the source blocks of the firstlevels can be decoded.

firmed by the identity submatrix in the first three rows in Second, the source blocks in levet 1 cannot be decoded.

the RREF of the decoding matrix, Fig. 2(c), which is the These conditions are summarized as the following events:

result of Gauss-Jordan elimination on five rows. Since the

RREFs of two matrices are identical, if they differ only in Ai={D;>a;} for i=1,2,...k

row orders [9], we conclude Gauss-Jordan elimination can Apir = {Dpy1 < apg1 — 1} )

partially decode the first three source blocks after process

ing five coded blocks, even without row pre-sorting. whereD; is the number of coded blocks in leviel There-
fore, we have RIX = k) = Pr(41 N As N+ N Agqq).

3.3 Decoding Performance Let D denote the vector ofD;, ..., Diy1, Diyonl,
where D; ; is the number of coded blocks between level

We study the decoding performance of SLC and PLC ; and levelj, i.e.,, Zf;:i Dy,. The sum of the elements ID
characterized bym’ decoding constrain{sin the form should be the total number of the coded blodks
(M;, k;), wherel < i < m/, and theith tuple refers to
the constraint that given/; randomly accumulated coded M=Di+...4 Diy1+ Diyon- 3)
blocks, on average, the firgt levels of source blocks can
be decoded. Clearly, the smallf; is, the more severe Moreover,Dj. 1 and Dy 2, should meet the constraints:
node failures that the data in the fikstlevels can survive.

We further define the percentage of the coded blocks of D1 20, Dyy2n > 0. (4)
each level among all coded blocks @ority distribution,
which can be achieved in a decentralized way by the pro-
tocols presented in Sec. 4. By adjusting the priority dis-
tribution, the coding schemes can achieve different decod-P = P15 s Pk Pronl:
ing constraints. For example, if we increase the percentage

SinceD is a partition ofM, the probability that a given vec-
tor D appears is a function @ and the priority distribution

of coded blocks in the first; levels, the probability to ac- (D, P) = ( M >p{31 . 'PkDﬁIPzgf;f{"-
cumulate such coded blocks is increased. Hence, we can D1, ... Di+1; Diton 5’
fulfill more stringent decoding constraiiif\f;, k;) with a ©)

Let B denote the set of vectors satisfying the constraints

llerM;. H , th is that th t- i .
smafier owever, the consequence 13 that the percen (2), (3), and (4). The probability to decoddevels is

age of coded blocks from levél + 1 to n decreases such
that the number of required randomly accumulated coded

blocks to decode the source blocks in these levels will in- PriX = k) = Z f(D,P). )
crease. Hence, the priority distribution must be carefully DeB
chosen in order to meet all decoding constraints. Then, we can compute the expected number of decoded lev-

‘We then derive the numerical relation between the pri- g5 in (1). We use an efficient algorithm in [13] to compute
ority distribution and the decoding constraints for SLC and (g) \ith a complexityO(M log M (k + 2)log(k + 2)) by
PLC. With such numerical analysis, we can formulate dif- §ynamic programming and FFT, instead of simply enumer-

ferent optimization problems to search for the feasible pri ating the vectors i, which has complexity) (M*+1).
ority distribution for a particular set of decoding constts.

331 Decoding Performance of SLC 3.3.2 Decoding Performance of PLC

We again useX to denote the number of levels that can
be decoded fromd/ random coded blocks. Hence, the ex-
pected number of decoded level$XE) can be computed
by (1), by first deriving the probability to decodelevels
n of source blocks RFX = k), which is the probability that
E(X) =) kP(X =k). (1) there is an invertiblé, x b, submatrixi¥ at the left of the
k=1 decoding matrix and the elements in the submatrix at the
To compute (1), we derive PK = k). In SLC, each  right of W are all zero after row sorting on the decoding
level corresponds to a RLC and is independent of other lev-matrix as illustrated in Sec. 3.2. We then have
els. That is,a; source blocks in level can be decoded Iwe assume a sufficiently large Galois field such as28is used to
with high probability as long as the number of accumulated generate coding coefficients.

We introduce the random variahlé to denote the number
of priority levels that can be decoded frofd randomly
accumulated coded blocks. The expected valug & then




Theorem 1 PLC decodes the source blocks in the fiest  constraint guarantees that the number of coded blocks to re-

levels if and only if eventdy, ..., A,, all happen, where cover all source blocks is smaller tha@v with high prob-
ability. Finally, the priority distribution must satisfir¢ fol-
Ai={Dip > by —bi1} fori=1,....k lowing constraints according to the definition of probdili

Aj:{Dk_FLjSbj*bk-fl}forj:k‘i’l,...,m (7) n
wherem is the maximal number of coded blocks that can pi 20, ;pj Lfori=1,..,n (1)
be decoded froml/ coded blocksi.e., arg max;{b; < M},
andby = 0. The proof of this theorem follows immediately We emphasize that the constraints defined by in (9), (10),
from the following lemmas, whose proofs are given in [14]. and (11) are fairly general. They can be a building block to

combine with other constraints and optimization objedtive

Lemma 2 The source blocks in the firktlevels can be de-  to determine the priority distribution with diverse goals.
coded from the coded blocks between level 1 and leviel

and only if eventsly, A,, ..., A, all happen. 4 Digributed Encoding Algorithms

Lemma 3 Given the source blocks in the firgt levels
are decoded, none of the source blocks between Ieve!sO
k 4+ 1 and levelm can be decoded if and only if events
Agy1, Akyo, ..., Ay all happen.

In this section, we describe a protocol to distribute the
urce blocks in the network and the distributed encoding
algorithm. There are three requirements for such protocol.
First, the protocol must satisfy tleeding requirementsn-
posed by SLC and PLC. For example, for SLC, the proto-
col must deliver different source blocks in the same level
to the same random set ochingnodes for encoding and
storage. Second, the dissemination protocol needs to en-
sure the designed priority distribution for the coded b&ck
in the network. Third, the dissemination protocol should
be bandwidth efficient. The ideal protocol will disseminate
a source block to a node only if the source block will be
3.4 Designing Priority Distribution encoded with the coded blocks on that node. Our protocol
achieves all three requirements by utilizing characterist

With the analytical result presented above, we formulate geometric networks, which are described in Sec. 2.
a numerical feasibility problem to design the priority dist In our protocol, to memorize the same set of caching
bution, p1, ps, . .., pn, under a given set of decoding con- nodes without actually storing the addresses of all of them,
straints, defined in Sec. 3.3. The obtained feasibilityaegi  all nodes are assigned with a common random seed such
can be used to optimize the design of priority coding. Since that each node can use this random seed to generate the
the optimization objectives are application dependent, in same set of\/ random points in the geometric space. All
stead of limiting our analysis on any such particular objec- source blocks will be disseminated to the nodes that are
tive, here we demonstrate the effectiveness of our generaklosestto a subset of thié random locations in the network
approach by the following feasibility formulation. by a geometric routing protocol, depending on they priori-

Let X,;, denote the random variable representing the ties. We enforce each random location stores one coded
number of levels that can be decoded frawy coded  block. Therefore)M is a parameter upper-bounded by the

blocks. The priority distribution must satisfy the consita  total storage space in the network. If there Hfenodes in
the network, and each node can stdreoded blocks M

E(Xar) > ki, for i=1,2,...,m 9) should be smaller thad. Since each node is in charge of
a small area in the geometric space, multiple random loca-
where EX),,), derived in (1), is a function of the prior- tions may fall on the same node such that each node stores
ity distribution. In addition, we may impose a special con- multiple coded blocks, and the number of coded blocks on
straint to ensure that the number of coded blocks to recovereach node is generally not equivalent because of the ran-
all source blocks is controlled within a reasonable range: domness. We can utilize “the power of two choices” to bal-
ance the load on nodes [4], where the maximal load on all

Thus, the probability that PLC decodesevels is
Pr(X =k) =Pr(N2,A;). 8)

The detailed derivations of (8) is shown in [14], where ap-
proximations are used to reduce computation complexity.

P Xoan =n)>1—¢, (10) nodes iD(Inln M/1n 2).
After all source blocks are disseminated, upon receiving
whereN is the total number of source blocks,is a num- a new source block, the node in charge of the random lo-

ber greater than 1, ands a small number close to 0. This cation will encode it with the coded bloekin that location,
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with ¢ = ¢ + Bz, whereg is a coding coefficient randomly
chosen from a Galois field. Fig. 3 illustrates the destina-
tions of source blocks according to their priorities. gt
denote the percentage of coded blocks in lévéior SLC, oo oo
the coded blocks in a particular level are encoded from the Number of coded blocks
source blocks in the same level. Hence, we divide Xhe (a) Number of priority levels is 5. (b) Number of priority levels is 50.
random locations tav parts, where théth part hasM p;
locations and is used to store the coded blocks forithe Figure 5. Analysis vs. simulations for SLC.
level. The source blocks in leveélareonly disseminated to
theith part of random locations. For PLC, the coded blocks source blocks from the coded blocks. The number of coded
in level i are encoded from the source blocks from level 1 blocks is varied in each experiment to observe the decoding
to leveli. Therefore, the source blocks in leviehre only curve. To mitigate randomness in simulations, we show, for
disseminated to the set M(Z;}:ipj) locations from the  each data point in all figures, the average and the 95% con-
ith to thenth part of random locations. fidence intervals from 100 independent experiments.
In the above protocols, each source block is disseminated
to all locations in its corresponding subset of filerandom 5.1 Validating Numerical Analysis
locations. Dimaki®l a!. [7] havg §hown that for RLC, with For both SLC and PLC, we set the number of source
O(In N) nonzero coding coefficients on each row, the de- piocks to 1000 and the priority distribution to uniform.
coding matrix can be inverted with high probability. _Thls “Two sets of experiments are executed with 5 and 50 lev-
reduces the number of source blocks need to be dissemigs and 200 and 20 source blocks in each level, respectively.
nated fromV locations toO(In N) locations. Clearly, SLC g 4(a) shows that our analysis for PLC agrees with the
enjoys such results since it is essentially composed of gyneriments when the number of levels is 5. On the other
RLC. Itis easy to see PLC also benefits from such result, nang, Fig. 4(b) shows that our analysis deviates slightly
which is further confirmed by simulations [14]. from experiments when the number of priority is 50. The
reason is that our approximation in Sec. 3.3 for PLC is re-
5 Performance Evaluation lated to the number of levels. In particular, the more ptyori
levels, the less accurate the approximation is. Fig. 5 shows
In this section, we validate our numerical analysis and the analysis agrees with experiments very well for SLC.
study the decoding performance of SLC and PLC. In all ex-
periments and numerical results, we measure the differenti 5.2 PLC Outperforms SLC
ated performance of our priority coding schemes indae
coding curvesvhere the expected number of decoded prior-  As we have shown in Theorem 1 of [14], PLC outper-
ity levels are shown against the number of processed codedorms SLC under the strict priority model in terms of the
blocks. With an example feasibility problem, we demon- number of coded blocks to recover the same set of source
strate the effectiveness of our priority coding schemes. blocks. In this section, we run experiments to explore the
In all simulations, where GE{) is used, we randomly  performance gap between them with the following experi-
generate a set of coded blocks according to the priority mental parameters. The number of source blocks is 1000.
distribution and the encoding algorithms, and use the par-The number of levels are 10 and 50 and each level contains
tial decoding algorithms to recover the maximal number of 100 and 20 source blocks, respectively. Fig. 6 show that
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| | Decoding Constrainty p1 | p2 | ps |
Case 1| (130, 1)(950,2) | 0.5138] 0.0768] 0.4094
Case 2| (265,1) (287, 2) 0 | 0.6149] 0.3851
Case 3| (240, 1) (450, 2) | 0.2894 0.3246 0.3860
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Table 1. The priority distribution solved from
the optimization problem.
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Figure 6. SLC vs. PLC.
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when the number of levels is 10, the decoding performance
gap between SLC and PLC is modest. However, when the
number of levels is 50, the performance gap between SLC
and PLC is significant. Furthermore, the number of lev- 0 e e B 1000
els do not have much impact on the decoding performance Number of coded blocks

of PLC, but do have significant impact on SLC. In partic-

ular, the more priority levels, the less source blocks can be  Figure 7. The decoding curves from the prior-
recovered by SLC with the same number of coded blocks. ity distribution of Table 1.

This is because if the number of levels is large, the source

blocks in SLC is less mixed. In the extreme case where tributions with the following observations. First, in com-
each level contains one source block, SLC degrades to theparison with RLC, which requires at least 500 coded blocks
scheme of no coding. Hence, the “coupon collector” effect to decode any source block, PLC can decode the first level
comes into play [18], where recovering all source blocks  with only 130 coded blocks in “Case 1” and the second level
requireO(N In V') coded blocks. On the other hand, even with only 287 coded blocks in “Case 2”. Second, all decod-
if each level contains one source block, PLC do still mix ing curves satisfy their decoding constraints and the decod
source blocks together and enjoy the coding advantage. Iring of higher priority levels precedes lower priority lesel

1

Expected number of decoded levels

0.5

the following, we only show the results for PLC. Finally, different decoding constraints produce signiiity
different decoding curves, which demonstrates the flexibil
5.3 Differentiated Decoding ity of our approach towards a diverse set of differentiated

decoding requirements.

We proceed to show examples using the constrained fea- Since we are searphing for one of the feasible solutions,
sibility framework introduced in Sec. 3.4 to find a priority € Produced decoding curve may not exactly match the

distribution satisfying a given set of decoding constsint ~ d€coding constraints. For example, the decoding curve of
Our experimental settings are as follows. 500 source Case 3" climbs to level 2 V\.”th slightly !es; than 400 coded
blocks are divided to three levels with 50, 100, and 350 bl.OCkS’ whereas the decoding CO”?‘Ya'”t 'SFO decode level 2
with 450 coded blocks. Moreover, it is possible that no fea-
sible solutions are found given a set of decoding conssaint
This implies the decoding constraints cannot be fulfilled.

source blocks in each level. We perform the experiments
for three different sets of decoding constraints, in thenfor
of (M;, k;) in (9), and are shown in the first column of Ta-
ble 1. For example(130,1) in the first row of Table 1 re-
quires that the expected number of priority levels decoded6 ~Related Work
from 130 coded blocks is 1. We further enforce the con-
straint (10) witha = 2 ande = 0.01 and (11) in all three In sensor networks, extensive research efforts have stud-
sets of experiments. We solve the three numerical feasibil-ied various distributed source coding schemes to save data
ity problems with MATLAB, using uniform distribution as  transmissions by exploring the spatial and temporal data
the initial searching point. MATLAB terminates and pro- correlations such as in [16]. In contrast, our work along
duces a feasible solution which is the first solution it finds with recent research work in sensor networks [10, 7, 21, 15]
such that all constraints are satisfied. The priority distri  and distributed storage systems [1, 23, 6] belongdise
tions produced by the feasibility problem are shown in the tributed channel codingwhich provides data redundancy
last three columns in Table 1. such that original data can be efficiently recovered when
Fig. 7 shows the decoding curve for three priority dis- data loss are common due to node failures. However, most
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