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Abstract—Storage services play an important role in a public
cloud. By outsourcing data to the remote cloud, users do not need
to maintain a local storage infrastructure and can significantly
lower the storage cost. To protect the privacy, documents must
be encrypted before outsourcing. This raises a new challenge for
the document owner: how should the encrypted documents be
securely searched in a public cloud? While many mechanisms
have been proposed to support secure search over the encrypted
documents, most of these mechanisms require secure channels
to transmit the secret information, such as the secret keys and
trapdoors, and is difficult to deploy in cloud systems. Moreover,
some existing mechanisms require an authority to control the
access requests of users, which inevitably increases the complexity
of cloud infrastructure.

This paper considers a more stringent security model where
an eavesdropper exists in the cloud and can eavesdrop on all
transmission channels. We propose a novel mechanism that sup-
ports multi-user keyword search over the encrypted data without
relying on any secure channel or authority. The eavesdropper can
neither forge valid trapdoors from the intercepted information
nor can it directly use the intercepted trapdoors to complete
the keyword search. Security analysis shows that the proposed
mechanism is secure.

Index Terms—keyword search; cloud security; secure channel;

I. INTRODUCTION

The past few years have witnessed an explosive growth of
cloud storage services. Thanks to the economies of scale of
datacenter, cloud storage service provides a more convenient
and cost efficient solution for a data owner than the traditional
solution of maintaining an in-house storage infrastructure.
Despite all these benefits, outsourcing data to a remote public
cloud puts the data privacy at risk. To protect the privacy,
data has to be encrypted before outsourcing [1]. However, this
raises a new challenge of data searching and retrieving.

To answer this challenge, several mechanisms, referred to
as searchable encryption, have been proposed to enable users
to search over the encrypted data to retrieve the requested
documents [2], [3], [4]. These mechanisms allow only the
data owner to perform document search. However, more often
than not, a data owner might want to share its data with
multiple data users who should also be given the permission of
searching over the encrypted data. This requirement is referred
to as the keyword search with multi-user setting. To meet
this requirement, existing mechanisms, such as [5], [6], [7],
require data users to obtain a certain type of secret information
(e.g., trapdoors or secret keys used to generate trapdoors)

from the data owner to generate some valid trapdoors for
certain keywords. However, there are several drawbacks of
these mechanisms, which we elaborate below.

First, to protect the secret information from being revealed,
some secure transmission channels must be established in
the existing mechanisms. This may lead to a potential safety
hazard. If an adversary can eavesdrop on these channels, it
would obtain the secret information, with which it can search
over the encrypted data without the permission of the data
owner, cracking the entire system. Worse, existing multi-user
mechanisms cannot defense against such an eavesdropper.
Moreover, the number of secure channels needed depends on
the number of data users. Establishing such a large number of
secure channels is very expensive for a data owner [8]. This
is true for key management as well, given that the number of
transmitted keys also depends on the number of data users. In
addition, some existing mechanisms (e.g., [9], [10]) require an
authentication authority to guard against unauthorized access
to the encrypted documents. While such an authority helps
the access control, it introduces a significant complexity to
the cloud infrastructure.

In light of the problems above, we consider a more stringent
security scenario where all transmission channels could be
potentially bugged. Specifically, we allow an eavesdropper
who can have access to all the transmitted information by
eavesdropping on all the transmission channels in a cloud. In
the presence of such an eavesdropper, no existing mechanism
is secure any more because data users cannot securely obtain
trapdoors from the data owner. To solve this problem, we pro-
pose a novel mechanism for keyword search without relying on
any secure channel or authentication authority. Our mechanism
utilizes a recently proposed cryptographic primitive called
Non-Interactive Key Exchange based on indistinguishability
obfuscation (i.e., iO-based NIKE) [11] to share secret infor-
mation via insecure transmission channels. We also design a
new search protocol without an authentication authority. Our
contributions are summarized as follows.
• Unlike existing works, the security guarantee of the

proposed multi-user mechanism for keyword search does
not rely on any secure channel. No secret information is
revealed to an eavesdropper.

• We design a new search protocol to deny unauthorized
requests of keyword search. The new protocol does not
require any authentication authority for access control.



This significantly reduces the complexity of the cloud
infrastructure.

• Our mechanism offers a stronger security guarantee than
that of the existing works. Security analysis shows that
our mechanism can guard against an eavesdropper who
intends to search over the encrypted documents without
the permission of the data owner. No matter what kind
of information an eavesdropper collects by eavesdropping
the transmission channels, its search request can never
complete successfully.

The remainder of the paper is organized as follows. In Sec-
tion II, we survey related works. In Section III, we present the
system model, the security model, and the design objectives.
The notations and cryptographic primitives are introduced
in Section IV. Section V gives the details of the proposed
mechanism, followed by the security analysis in Section VI.
Section VII concludes the paper.

II. RELATED WORK

The seminal work by Song et al. [2] is credited with the first
practical searchable encryption mechanism. Since then, many
follow-up mechanisms have been proposed in the literature [3],
[4], [12], [13], [14], [15], [16]. All these mechanisms allow
only the data owner to search over the encrypted documents,
and hence cannot be applied to data sharing services in a
public cloud where the encrypted documents should also be
searchable for authorized users. In light of this problem,
many mechanisms have been proposed to support multi-user
searchable encryption, with which data searching is not limited
to the data owner, but is also enabled to authorized users [5],
[7], [9], [10], [17], [18], [19], [20], [21]. For example, Wang
et al. [6], [19], [21] proposed the ranked keyword search that
ranks the searching results based on the keyword frequency.
The mechanisms proposed in Li et al. [17] and Wang et
al. [18] support fuzzy keyword search and return the closest
possible documents if the searching keywords do not exactly
match those predefined ones. The mechanisms proposed in
[20], [21] combine the techniques of both fuzzy and ranked
search and can search multiple keywords in one request.
Recently, the attribute-based encryption has been used to de-
sign the fine-grained access control mechanisms [9], [10]. All
the aforementioned multi-user keyword search mechanisms
require a secure channel between the data owner and each
data user to transmit secret information. In addition, many
mechanisms, such as [7], [9], [10], manage access control
via an authentication authority, adding more complexity to
the existing cloud infrastructure. Unlike existing works, our
mechanism does not rely on secure channels, and has no
authentication authority for access control.

III. PROBLEM STATEMENT

In this section, we formulate the mechanism design prob-
lem. We shall begin with the system model by presenting the
network architecture, entities, and possible interactions among
these entities. We shall then present the security model with a
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strong adversary who can eavesdrop on all transmission chan-
nels in the cloud. We shall also clarify the design objectives
of our mechanism with four desired security properties.

A. System Model

Fig. 1 gives an overview of the system model. There are
five entities in the system: the data owner, the master user,
the data user, the unauthorized user, and the cloud server. Let
S be the set of authorized users including the data owner,
the master user, and the data users. Each cloud user, no
matter in S or not, generates a key pair consisting of both
a public key and a secret key. It then sends the public key
to the cloud server, who stores it in a table that is publicly
accessible to all cloud users. The master user generates some
public parameters for the authorized users and outsources
them to the cloud server. Each cloud user in the system can
download these parameters from the cloud server, but only
the authorized users can utilize these parameters to generate
the valid shared symmetric keys. Now for the data owner,
let D be the collection of documents it wants to share with
the authorized users. The owner encrypts documents D based
on the shared symmetric keys. The encrypted documents are
denoted by E. The data owner also builds a secure index,
denoted as I , containing all the keywords in the original
documents D. Both the encrypted documents E and the secure
index I are uploaded to the cloud server. To search over
the encrypted documents, each authorized user downloads the
public parameters from the cloud server. Together with its
secret key, the user generates the shared symmetric keys, with
which it can generate a valid trapdoor for a certain keyword.
It can then search that keyword over the encrypted documents
using the corresponding trapdoor. Note that the entire process
does not work for an unauthorized user. While it can have
access to the public parameters and the public keys, it cannot
successfully compute the shared symmetric keys, and cannot
generate a valid trapdoor for keyword search.

B. Security Model

Unlike existing works, we consider a new model of an
adversary that plays two different roles at the same time:
an unauthorized cloud user as well as an eavesdropper who
can eavesdrop on the transmission channels between any two



entities in the cloud. As a cloud user, the adversary has access
to both the public keys of other users and the public parameters
posted by the master user. As an eavesdropper, the adversary
can sniff out information sent through all the transmission
channels. In other words, there is no secure channel in the
considered cloud environment. The purpose of attacking of
the adversary is to successfully search over the encrypted
documents without the permission of the data owner. In this
paper, we consider two attack patterns from the adversary.
The first is to intercept those valid trapdoors submitted by
authorized users in S, with which the adversary tries to
search over the encrypted documents using the intercepted
trapdoors. The second attack pattern of the adversary is to
forge a trapdoor based on the eavesdropped information. The
adversary then sends the forged trapdoor to the cloud server
for keyword search.

Following the existing works, the cloud server is assumed to
be honest-but-curious. In particular, the cloud server honestly
follows the designated protocol. At the same time, it tries to
learn as much additional information about the keyword search
by deducing the received information curiously.

It is worth emphasizing that our security model does not
assume the attack of collusion between the eavesdropper and
an authorized data user. Otherwise, the eavesdropper can
directly obtain the shared symmetric keys from that colluded
user. In our model, each cloud user keeps its own secret keys
in private.

C. Design Objectives

Despite the presence of the strong adversary, we require
the following security properties achieved in the designed
mechanism.

1) Secure Key Sharing.: Despite the insecure transmission
channels, the shared symmetric keys cannot be revealed to the
eavesdropper.

2) No Authority.: The mechanism should not rely on any
authentication authority to perform access control. Without
such an authority, all cloud users can search over the encrypted
documents. However, only those authorized users who hold the
shared symmetric keys can get the correct searching results.

3) Indistinguishable Trapdoors.: The eavesdropper cannot
distinguish two trapdoors of the same keyword even if the two
were generated by the same user. This makes it difficult for
the eavesdropper to build the access pattern.

4) Secure Search.: Only the authorized users can search
over the shared and encrypted documents.

IV. NOTATIONS AND PRELIMINARIES

A. Notations

We introduce the following notations.
• U – the set of all cloud users. The number of users in U

is denoted as numU .
• S – the subset of U that contains the authorized users

including the data owner, the master user, and the data
users. The number of the users in S is denoted as numS .

• KSI ,KSD – the symmetric keys held by the users in
S, where KSI is used to generate the secure index, and
KSD is used to encrypt the documents.

• KCu – the key held between the cloud server and user
u.

• KCO – the key held between the cloud server and the
data owner.

• T – the table that contains the public keys of the users.
The size of T is denoted as numT .

• D – the collection of documents that the data owner wants
to share with authorized users, where the ith document is
denoted as Di. In total, there are numD documents to
share with.

• E – the encrypted documents D.
• KW – the set of keywords in D. The size of KW is

denoted as numKW .
• D(kw) – the subset of D that contains keyword kw. The

encrypted D(kw) is denoted as E(kw).
• id(Di) – the identifier of document Di.
• td – the trapdoor.

B. Preliminaries

The following cryptographic techniques serve as the build-
ing blocks of our mechanism.

Indistinguishability Obfuscation: According to [22], we
say a uniform probabilistic polynomial time (PPT) algorithm
for a circuit class {Cλ} is an indistinguishability obfuscator
(iO) if the following two conditions hold:
• For any C ∈ Cλ, let C ′ = iO(λ,C). We have Pr[C ′(x) =
C(x)]=1 for any input x.

• For any pair of circuits C0, C1 ∈ Cλ, if C0(x) = C1(x)
for all input x, then iO(λ,C0) and iO(λ,C1) are indis-
tinguishable. According to the first condition, we see that
iO(λ,C) and iO(λ,C ′) are indistinguishable.

In this paper, we use iO-based NIKE protocol to share
the symmetric keys with authorized users. The iO-based
NIKE protocol has many advantages [11] over other NIKE
protocols, e.g., no trusted setup and short public values. Since
the protocol does not require trusted setup, no secret key is
exposed [11]. In particular, the iO-based NIKE allows each
authorized user to generate the shared symmetric keys based
on its own secret key and some public parameters. No secret
information is transmitted on channels.

Symmetric Encryption: The Symmetric Key Encryption
(SKE) consists of three polynomial-time algorithms, i.e.,
SKE = (Gen,Enc,Dec). Specifically, SKE.Gen takes a
security parameter λ as input, and outputs a symmetric key
K; SKE.Enc takes a key K and a plaintext m as inputs,
and outputs a ciphertext c; SKE.Dec uses key K to decrypt
c and outputs plaintext m. In our mechanism, SKE is used
to generate the secure index and to encrypt documents. The
functionality of SKE.Gen is replaced by the iO-based NIKE
protocol.

Digital Signature Scheme: The basic digital signa-
ture scheme consists of three algorithms, i.e., DS =
{Gen,Sign,Ver}. In particular, DS.Gen generates a key pair



(sk, pk); DS.Sign takes the secret key sk and a message m
as inputs, and returns a signature σ; DS.Ver takes σ, m, and
public key pk as inputs and returns TRUE if σ is calculated by
the corresponding sk, otherwise, it returns FALSE. As shown
in [11], the digital signature scheme is used to verify user
identities.

Pseudorandom Function: The pseudorandom function
(PRF) is a function F : K × X → Y , where K ∈ {0, 1}∗
is the key space, X ∈ {0, 1}∗ the domain space, and
Y ∈ {0, 1}∗ the range. Given (k, x) ∈ K×X , a deterministic
polynomial algorithm can efficiently compute F (k, x) ∈ Y .
A pseudorandom function is secure if for a randomly chosen
key, no PPT adversary can distinguish the returned value of the
pseudorandom function from the returned value of a random
function with non-negligible probability.

Bilinear Map: Let G1 and G2 be two cyclic groups of a
large prime p. Let g be a generator of G1. The map ê : G1 ×
G1 → G2 is a bilinear map if the following conditions hold.
1) Bilinearity: for any u, v ∈ G1 and any a, b ∈ Zp, map ê is
bilinear if ê(ua, vb) = ê(u, v)ab. 2) Non-degeneracy: ê(g, g) 6=
1. If g is a generator of G1, then ê(g, g) is a generator of
G2. 3) Computability: for any u, v ∈ G1, there is an efficient
algorithm to compute ê(u, v).

The following cryptographic primitives shall be used in the
security analysis.

Constrained Pseudorandom Function: As defined in [23],
a constrained PRF can derive a constrained key k′ corre-
sponding to a subset X1 ⊆ X . The constrained PRF can
only evaluate the pseudorandom function when the input is
(k′, x), where x ∈ X1. A secure constrained PRF [11] is
defined as follows. An adversary A is allowed to request
a constrained pseudorandom function. However, A cannot
distinguish the returned value of PRF from random with non-
negligible probability if the chosen input is not in X1. In our
mechanism, we assume that the constrained PRF is secure.

Constrained Signature: The definition of constrained sig-
nature follows [11]. Given a circuit C, a constrained signature
computes a constrained public key pkC by a constrained key
generation algorithm ConstrainGen. One can only use x such
that C(x) = 1 to generate a valid signature σ = Sign(skC , x),
and to pass verification Ver(pkC , x, σ). We say a constrained
signature is secure if the following condition holds. For any
PPT adversary A that can query on all x such that C(x) = 1,
the probability of distinguishing pkC from a normal public key
generated by DS.Gen is negligible. The constrained signature
is assumed to be secure in our mechanism.

Computational Diffie-Hellman (CDH) Assumption: Let
G be a cyclic group of a large prime p with a generator g.
Given (p, g, ga, gb), where a, b ∈ Zp are randomly chosen, the
probability of computing gab is negligible for a PPT adversary.

Discrete Logarithm Assumption: Let G be a cyclic group
of a large prime p with a generator g. Given (p, g, ga), where
a is randomly chosen, the probability of computing a is
negligible for a PPT adversary.

V. THE PROPOSED MECHANISM

In this section, we present the details of the proposed
mechanism. The iO-based NIKE protocol is used to generate
two shared symmetric keys for the authorized users. Once
these keys have been generated, the data owner can generate
a secure index I for the shared documents D and encrypt D
as well. With these keys, authorized users can generate valid
trapdoors for keywords.

A. Algorithm Definition

In this subsection, we describe seven algorithms which will
be used to construct the mechanism.
• (G1,G2, ê, g, p) ← Init(1λ): This algorithm takes a

security parameter λ as input and returns G1, G2, p, g
and ê. G1, G2 are two cyclic groups of a large prime
p. g is a generator of G1. ê is a bilinear map where
ê : G1 ×G1 → G2.

• strS ← Interpret(S,U): The interpret algorithm takes S
and U as inputs and returns a string strS . strS is the
identifier of S.

• (pk, sk) ← UKeyGen(λ): The user key generation
algorithm takes a secret parameter λ as input and invokes
DS.Gen(λ) to return a key pair (pk, sk).

• K or ⊥ ← SKeyGen(MKs, su): The symmetric key
generation algorithm takes public parameters MKs and
a secret key su as inputs and returns a symmetric key K
or ⊥.

• I ← IndexEnc(D,KSI ,KSO): The index encryption
algorithm takes D and two symmetric keys KSI ,KSO as
inputs and returns an secure index I . The functionality
of two keys will be discussed in next subsection.

• td ← Trapdoor(kw,KSI ,KSO): The trapdoor genera-
tion algorithm takes a keyword kw, two symmetric keys
as inputs and returns a trapdoor.

• id(D(kw)) or ⊥ ← Match(td, I,K, s): The matching
algorithm takes a trapdoor, an index, a symmetric key
and a secret value as inputs, and returns eid if one result
is matched, otherwise returns ⊥.

B. Details of Mechanism

In this subsection, we introduce the details of the proposed
mechanism. Each entity in our network architecture invokes
at least one of the algorithms mentioned above. We divide
our mechanism into seven main stages: Initialization, Publish
and Setup, iO-based NIKE, Index Generation, Outsourcing,
Search and Decryption. The system view of the mechanism
are shown in Fig. 2.

Initialization: To build a global environment for all users in
cloud, the cloud server selects a security parameter λ and runs
Init algorithm to obtain (G1,G2, ê, g, p), where G1, g, and p
are the global parameters for the users. ê and G2 are held by
the cloud server. Then, the cloud server randomly chooses a
number s0 as the secret value and calculates the public value
gs0 . For each user u ∈ U , user u selects a number su by
random and calculates a public value gsu . The cloud server
and user u exchange their public values and generate the key
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KCu = (gs0)su = (gsu)s0 . This protocol is called Diffie-
Hellman key exchange [24]. Note that the key generated by
the cloud server and the data owner is denoted as KCO.

Publish and Setup: The public parameters for the autho-
rized users are generated in this stage. This stage includes two
steps: publish and public parameters setup.

In publish step, each user u ∈ U invokes UKeyGen
algorithm to obtain a key pair (sku, pku). User u holds the
secret key sku in private and posts the public key pku to the
cloud server. The cloud server records pku into T .

In public parameters setup step, the master user sends
identifier request to the cloud server for strS . The cloud
server runs Interpret algorithm and returns strS to the master
user. The master user randomly selects two values to gen-
erate two instances of pseudorandom functions FI and FD,
respectively. As show in Fig. 3 [11], FI and FD are the
necessary components to build the programs PSI and PSD,
respectively. Assume that the indistinguishability obfuscator
iO is already known, the master user generates two obfuscated
programs PiOSI

= iO(PSI) and PiOSD
= iO(PSD), and

sends {strS , PiOSI
, PiOSD

} to the cloud server. The cloud
server looks up T to pick out a public key set {pku}u∈S .
The cloud server then selects a new pseudorandom function
f . Finally, the public parameters are denoted as MKS =
{strS , PiOSI

, PiOSD
, {pku}u∈S , f}. As the security model

mentioned, MKS is also known by the eavesdropper.

Inputs: strS , {pku}u∈S , σ
Constants: F
• If there is no u ∈ S such that

DS.Ver(pku, strS , σ) passes, output ⊥
• Otherwise, output F(strS , {pku}u∈S)

Fig. 3. the Program PS

Non-Interactive Key Exchange In this stage, two shared
symmetric keys KSI and KSD will be calculated by the
authorized users. For any user u ∈ S, user u downloads

MKS from the cloud server and invokes SKeyGen algorithm
to generate the shared symmetric keys. Specifically, user
u computes the signature σu = DS.Sign(sku, strS), and
invokes the obfuscated programs PiOSI

(strS , {pku}u∈S , σu)
and PiOSD

(strS , {pku}u∈S , σu) to obtain the shared symmet-
ric keys KSI and KSD, respectively. During the whole pro-
cess of generating the shared symmetric keys, no interaction
among the authorized users is required. To generate the shared
symmetric keys, each authorized user only needs to download
the public parameters MKS from the cloud server. Note that
the unauthorized users can also download MKS and try to
generate the shared symmetric keys. But without holding any
valid secret key, the unauthorized user fail to pass DS.Ver in
both PiOSI

and PiOSI
. If an unauthorized user tries to pass

DS.Ver, it has to replace one public key in {pku}u∈S with
its own public key and to use its own secret key to generate a
signature. If so, the keys generated by this unauthorized user
will not be equal to the keys generated by the authorized users.

Index Generation: After the shared symmetric keys are
calculated, the data owner invokes IndexEnc(D,KSI ,KCO)
to generate a secure index I for D. Concretely, the data
owner scans D and generates a keyword set KW =
{kwj}1≤j≤numKW

. For security concern, each keyword kwj
in KW is encrypted into ekwj = fKSI

(kwj), where fKSI
is

an instance of the public pseudorandom function f for the key
KSI . For each keyword kwj ∈ KW , the data owner also gen-
erates the identifier set id(D(kwj)) which includes the iden-
tifiers of the documents that contain the keyword kwj . Then,
the data owner executes eidj = SKE.Enc(KCO,id(D(kwj)))
to encrypt id(D(kwj)). Thus, the secure index I can be
constructed as I = {Ikwj , eidj}1≤j≤numKW

, where Ikwj =
gekwj · KCO. Fig. 4 illustrates an example of I for a D
including five keywords and four documents.

Outsourcing: The data owner encrypts each Di ∈ D
through running Ei =SKE.Enc(KSD, Di), and outsources
the secure index I together with {id(Di),Ei}1≤i≤numD

to the
cloud server.

Search: As illustrated in Fig. 5, this stage includes three
steps: trapdoor generation, trapdoor matching and documents



 gekw1∙Kco

 gekw2∙Kco

 gekw3∙Kco

 gekw4∙Kco

 gekw5∙Kco

id(D1),id(D3)

id(D1),id(D4)

id(D2)

id(D1),id(D2),id(D3),id(D4)

id(D2),id(D3)

D1

DI

D2

D3

D4

Kco

Kco

Kco

Kco

Kco

Fig. 4. An example of index I

Trapdoor

KSI,KCu

kw

td

Matchs0

KCu

r,su

I

Selectioneid
KCO

E

Dec

D(kw)

KSD

E(kw)

User u

Cloud

Fig. 5. The process of search and decryption

selection. Assume that an authorized user u intends to search
over the encrypted documents for a keyword kw. And the
keyword kw can perfectly match a corresponding keyword in
the index I . Firstly, user u downloads the public parameters
MKS and calculates KSI and KSD.

In trapdoor generation step, the authorized user u runs
Trapdoor to generate a trapdoor td. Specifically, user u gen-
erates the encrypted keyword ekw = fKSI

(kw) and chooses
a value r by random. Then user u calculates two components
t1 = gekw·r and t2 = (KCu)

r. Finally, user u sends the
trapdoor td = {t1, t2} to the cloud server. The random
value r ensures that the trapdoors for the same keyword are
indistinguishable.

In trapdoor matching step, after receiving td = {t1, t2}
from user u, the cloud server picks out KCu and runs Match
algorithm to find out the encrypted identifiers of the documents
which involve the keyword kw. Specifically, for each Ikwj in
I , where 1 ≤ j ≤ numKW , the cloud server calculates the
following equation. If Equation (1) holds for a certain Ikwj ,
the cloud server outputs the corresponding eidj .

ê(t1,KCu) = ê(t2,
Ikwj
KCO

) (1)

In documents selection step, the cloud server runs
SKE.Dec(KCO, eid) to obtain id(D(kw)) from eid. Then
the cloud server selects the corresponding E(kw) and replies
E(kw) to user u.

Decryption: After receiving the encrypted documents set
E(kw), user u runs SKE.Dec with KSD to decrypt every
document in E(kw), obtaining the documents set D(kw).

VI. SECURITY ANALYSIS

In this section, we analyze the security of the proposed
mechanism. As mentioned above, we consider an adversary A
who can eavesdrop on all the transmission channels. Adversary
A is a valid cloud user, but is not authorized (A /∈ S). The
intention of adversary A is to crack the key exchange protocol
so as to search over the encrypted documents without the
permission of the data owner. In Theorem 1, we prove that
the iO-based NIKE is secure in our mechanism. In particular,
no adversary A /∈ S can compute the shared symmetric
keys with a non-negligible probability. We then prove that
{KCu}1≤u≤numU

and index I are both secure by Theorem 2
and Theorem 3, respectively. Theorem 4 shows that A cannot
search over the encrypted documents without the permission
of the data owner.

Theorem 1. No PPT adversary A (A /∈ S) can compute
the symmetric key shared by users in S with non-negligible
probability, provided that the following three conditions hold.
(1) A constrained pseudorandom function is secure for circuit
predicates; (2) iO is a secure indistinguishability obfuscator;
(3) the constrained signature is secure.

Proof: We prove this theorem by constructing a sequence
of games, namely Game 0, Game 1, and Game 2, based on
[11]. The scenario of Game 0 is equivalent to the security as-
sumptions in the proposed mechanism. We then prove that the
advantage for any adversary to win each game is equivalent.
Finally, an adversary, who is able to win Game 2 with non-
negligible probability, will break the security of a constrained
pseudorandom function, which is assumed to be secure.

Game 0. This is an attack game based on CKS model
in [25]. We simplify the CKS model to satisfy the security
assumptions in our mechanism. We consider a game between
an adversary A and a challenger C. Assume that A commits
to a set S which it plans to challenge. Then, A gets the
obfuscation of PS and makes several queries as follows:
• Register honest user queries (RegH): The challenger
C records a tuple (u, sku, pku, honest), where u ∈ U
presents one user, (sku, pku) is a key pair generated from
UKeyGen and honest is the identity of the user. Then C
returns pku to A. This query indicates that A can obtain
the public keys of all users in the cloud. This satisfies the
assumption in our mechanism that A can look up T and
obtain the public keys of the users.

• Register threat user queries (RegT): A calculates a key
pair and sends public key to C. C records the tuple
(u,⊥, pku, threat). In our mechanism, the user marked
as threat is A, who cannot be in S.

• Test queries (Test): A sends a challenge S to C. C throws
a random coin b ∈ {0, 1}. If b = 0, C picks up a secret
key sk from an honest user in S, runs SKeyGen for KS

and returns KS to A. If b = 1, C generates a random key
and returns this key to A. Briefly, C returns a valid KS

to A if b = 0. Otherwise, C returns a random key.
After receiving the key, A outputs b̂ and wins the game if



b̂ = b. It is worth noting that A should commit to a set S at
first. Moreover, A can only run Test on this set. This notion
is called static security [11]. Game 0 simulates the behaviors
of the adversary in our mechanism. Assume that A can win
this game with a non-negligible advantage ε.

Game 1. This game is identical to Game 0 except for the
following modification. We construct a constrained signature
with a circuit C1 which takes a strS′ to delegate a set S′. C1

outputs 1 if and only if S′ 6⊆ S. Then, for each user u ∈ S,
the challenger C runs ConstrainGen to generate a constrained
key pair (skC1u, pkC1u). When A queries on any user u /∈ S,
the response of RegH is the same as Game 0. When A queries
on the user u ∈ S, the response of RegH is pkC1u instead of
pku.

For an adversary A, the behaviors of Game 0 and Game
1 are the same except for RegH. If A queries on the user u
not in S, Both Game 0 and Game 1 reply the public key pku.
Game 1 is equivalent to Game 0. If A queries on user u in
S, Game 0 returns pku and Game 1 returns the constrained
public key pkC1u.

For adversary A, the probability to distinguish Game 1 from
Game 0 is equivalent to distinguishing pkC1u from pku. The
probability for A to distinguish Game 1 from Game 0 must be
negligible. If not, A has non-negligible advantages to breaks
the security of constrained signature, which is assumed to be
secure. The advantage for A to win Game 1 is ε− negl.

Game 2. This game is identical to Game 1 except the
following modification. In Game 1, every public key pku,
where u ∈ S, is replaced by an constrained public key pkC1u.
According to the definition of C1, pkC1u has no valid signature
related to S. This is equivalent to that F in PS will never be
executed when PS takes S′ ⊆ S and {pku}u∈S′ as the inputs.
Now we construct a circuit C2 which takes strS′ and a set of
public key {pku}u∈S′ as inputs. C2 outputs 1 if and only if
S′ 6⊆ S. Then we generate the constrained function FC2 and
construct P ′S in Fig. 6.

Inputs: strS , {pku}u∈S , σ
Constants: FC2

• If there is no u ∈ S such that
DS.Ver(pku, strS , σ) passes, output ⊥

• Otherwise, output FC2(strS , {pku}u∈S)

Fig. 6. the Program P ′
S

Because the constrained public keys {pku}u∈S have no
valid signature for S, the program PS in Game 1 and P ′S in
Game 2 perform the same functionality. Due to the definition
of iO, the obfuscation of PS and the obfuscation of P ′S are
indistinguishable. The only difference between Game 2 and
Game 1 is that the obfuscation of PS is replaced by the
obfuscation of P ′S , which indicates that Game 2 is equivalent
to Game 1. The advantage for A to break Game 2 is ε−negl.

If there exists an adversary A who is able to win Game 2
with non-negligible probability, then we can use A to construct

a new adversary B to break the security of the constrained
pseudorandom function. AfterA commits to S, B requests FC2

from C, builds the program P ′S and sends P ′iOS
= iO(P ′S) to

A. When A runs RegH, B responds the public key generated
in Game 1. For RegT, B just records the public key from A.
In Test phase, B makes a challenge for F and receives one
key from C. Then B sends the key to A. For A, this adversary
B perfectly plays the role as the challenger C in Game 2.
It indicates that the probability for B to distinguish the key
is equivalent to the probability for A to win Game 2. Thus,
B breaks the security of constrained F with non-negligible
advantage ε−negl, which contradicts the assumption that the
constrained pseudorandom function F is secure. The advantage
for A to break Game 2 must be negligible, same as in Game
1 and Game 0. Proof is completed.

Theorem 2. The key KCu is secure if the CDH problem is
hard in G1.

Proof: As mentioned above, KCu is only shared between
user u and the cloud server. The adversaryA intercepts gs0 and
gsu when the cloud server and user u run Diffie-Hellman key
exchange in Initialization stage. If A calculates KCu = gs0su

with non-negligible probability, it means that A found a way to
solve the CDH problem with non-negligible probability. This
contradicts the CDH assumption. A cannot calculate KCu.
KCu is secure. Proof is completed.

According to Theorem 1, A cannot obtain KSI and KSD

with non-negligible advantage. It proves that the shared sym-
metric keys are secure in our mechanism. Theorem 2 proves
that A cannot generate any key in {KCu}1≤u≤numU

with non-
negligible probability.

Theorem 3. No PPT adversary A can extract any keyword
from index I with non-negligible probability, provided that the
pseudorandom function and the symmetric key encryption are
both secure.

Proof: According to Theorem 2, it is hard for A to
generate KCO. Due to the assumption that the SKE is secure,
A cannot decrypt any eid without owning KCO when I is
intercepted. Therefore, the proof of Theorem 3 is equivalent
to proving that the index I is secure.

Assume that there is an adversary A who can get the
keyword kw from I . Because only ekw involves kw in
I , A must find a solution to obtain kw from fKSI

(kw).
According to the security of pseudorandom function, A cannot
distinguish fKSI

from any random function. If A can obtain
kw from fKSI

(kw), it is equivalent to breaking the security of
pseudorandom function. That contradicts the assumption that
the pseudorandom function is secure. Proof is completed.

Theorem 4. The probability of successful searching is negli-
gible for any PPT adversary A, provided that the DL problem
is hard and that the pseudorandom function is secure.

Proof: As we assumed before, A plays two different
roles: an eavesdropper and an unauthorized user. We consider
that A attempts to search over the encrypted documents via



directly using the intercepted trapdoors from the authorized
users or forging some trapdoors.

Case 1. If A plays the role of an eavesdropper, A can
intercept the trapdoors sent from the authorized users to the
cloud server. Assume that A intercepts a trapdoor td from
user u and directly sends td to the cloud server as its own
search request. Note that KCA is the key generated by A and
the cloud server in Initialization stage. After receiving td, the
cloud server runs Match algorithm and calculates both sides
of Equation 1 for all Ikw ∈ I .

ê(t1,KCA) = ê(gekw·r, gs0·sA) = ê(g, g)ekw·r·s0·sA

ê(t2,
Ikw

KCO
) = ê((KCi)

r, gekw) = ê(g, g)ekw·r·s0·si

The above equations show that if the keyword in td matches
one keyword in I , Equation 1 holds only when A can calculate
a secret value sA such that sA = si. Because g and gsi are
known by A, the solution of DL problem can be found if
A can generate a secret value sA where sA = si. Due to
the hardness of solving DL problem, A cannot generate such
sA, where sA = si, with non-negligible probability. A cannot
directly use trapdoors from the authorized users to complete
the search successfully.

Case 2. If A plays the role of an unauthorized user, A
intends to forge a trapdoor for keyword search. According to
Equation 1, A can find a match in Match algorithm only if it
can calculate a ekw to match one ekw in I . Theorem 1 proves
that A cannot obtain KSI . As long as the pseudorandom
function is secure, A cannot forge a valid ekw without
knowing KSI .

In neither case, A can search over the encrypted documents.
This concludes the proof.

VII. CONCLUSION

In this paper, we have proposed a keyword search mecha-
nism with multi-user setting under a more stringent scenario
where no secure transmission channel exists between the
data owner and the data user. Compared with the existing
mechanisms, our mechanism provides secure keyword search
over encrypted data even in the presence of a stronger
adversary who can eavesdrop on all transmission channels.
Our mechanism does not require any authentication authority
for access control. While all users can perform search in
the mechanism, only those authorized users will get correct
results. Our analysis shows the following security properties
of our mechanism. 1) The shared symmetric keys are secure in
the mechanism and cannot be calculated with non-negligible
probability by the eavesdropper; 2) the index is secure, from
which the eavesdropper cannot extract any information about
the keyword; 3) no authentication authority is needed in the
mechanism – unauthorized users cannot successfully search
over the shared documents, neither by forging the trapdoors
nor using the intercepted trapdoors directly.
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