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Abstract—It is typical for enterprises to rely on services
from cloud providers in order to build a scalable platform
with abundant available resources to satisfy user demand, and
for cloud providers to deploy a number of datacenters inter-
connected with high-capacity links, across different geographical
regions. In this paper, we propose that video conferencing, even
with its stringent delay constraints, should also be provided as
a cloud service, taking full advantage of the inter-datacenter
network in the cloud. We design Airlift, a new protocol designed
for the inter-datacenter network, tailored to the needs of a
cloud-based video conferencing service. Airlift delivers packets in
live video conferences to their respective destination datacenters,
with the objective of maximizing the total throughput across all
conferences, yet without violating end-to-end delay constraints.
In order to simplify our protocol design in Airlift, we use intra-
session network coding and the concept of conceptual flows,
such that the optimization problem that can be conveniently
formulated as a linear program. Our real-world implementation
of Airlift has been deployed over the Amazon EC2 cloud. We
show that Airlift delivers a substantial performance advantage
over state-of-the-art peer-to-peer solutions.

I. INTRODUCTION

The gist of cloud computing is to maximize the sharing
of resources with statistical multiplexing, while keeping users
of the cloud satisfied. To provide cloud services with a
higher quality, it is customary for cloud providers to deploy
a number of datacenters across different geographical regions,
inter-connected with high-capacity links. Enterprises, such as
Netflix, are moving their entire platform to the cloud [1] to
take advantage of its abundant resources that are available on
demand.

From the perspective of both bandwidth demand and end-
to-end delay constraints, multi-party video conferencing may
be one of the most demanding multimedia applications. Exist-
ing conferencing solutions in the literature have traditionally
focused on the use of peer-to-peer (P2P) [2], [3] or client-
server architectures (e.g., Microsoft Lync). With abundant
bandwidth between datacenters, one would naturally wonder if
it is feasible to take full advantage of inter-datacenter networks
in the cloud to support higher bit rates in video conferences,
yet still maintaining acceptable delays.

In this paper, we promote the use of inter-datacenter net-
works to support live multi-party video conferencing as a
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Fig. 1. Packets from User 1 in a 5-party conference are being transmitted
in an inter-datacenter network with 5 datacenters, via a combination of direct
paths (e.g., D1→ D4) and relay paths (e.g., D1→ D3→ D5).

cloud service. Our protocol and real-world implementation,
collectively referred to as Airlift, is designed from the ground
up to support multiple live conferences with an inter-datacenter
network operated by a cloud provider. As its name suggests,
the unique advantage of Airlift is to provide low-latency end-
to-end paths among participants in multiple conferences, yet
without the “hustle and bustle” of the public Internet. With
Airlift, packets in conferences can be routed through a high-
capacity inter-datacenter network, as if they are traveling
around the world in chartered private flights with minimal
congestion, rather than cruise ships with long lines waiting
for embarkation.

A highlight of this paper is our design of a new application-
layer protocol for inter-datacenter networks. Its original fea-
tures are two-fold: First, to be more scalable, it aggregates
user-initiated conferences to a smaller number of multicast
sessions among datacenters. Second, it is designed to maximize
the total throughput across all the sessions, while maintaining
basic fairness across different conferences, and making sure
that stringent delay constraints are not violated.

Due to the multicast nature of aggregated sessions, tradi-
tional wisdom resorts to Steiner tree packing [3] in order
to maximize the video flow rate from a single source to
the remaining participants in a video conference. Since the
problem is NP-Complete, existing works [3], [4] pack only
depth-1 and depth-2 trees. With a large number of conferences
served concurrently in an inter-datacenter network, packing
Steiner trees for each source and in each conference is
computationally prohibitive, even with trees of limited depth.
To solve this problem, we use intra-session network coding
as an integral part in both our protocol design and our
real-world implementation. Thinking from the perspective of
conceptual flows [5], the upshot of network coding is its power
of resolving conflicts competing for bandwidth resources in



bottleneck links. With the help of network coding, we are
now able to formulate the problem of maximizing the total
throughput across all aggregated sessions as a linear program,
easily solvable using a standard LP solver. Its optimal solution
serves as the foundation of the Airlift protocol.

Finally, using Airlift as a video conferencing cloud service
is simple. In our design, the cloud service can be treated as
a full-service broker: a participating user with a video source
in a conference only needs to transmit its packets to one of
the datacenters in the cloud, and to process acknowledgments
from the cloud service. Fig. 1 shows an illustrative example
of a 5-party video conference, supported by Airlift.

We evaluate the validity and performance of Airlift as a
cloud service with our real-world implementation, with 17,000
lines of code in C++. Our implementation has been developed
with performance in mind: to maximize packet processing
rates, asynchronous networking has been used; to minimize
the computational overhead of network coding, our network
coding implementation is accelerated with the Intel/AMD
SSE2 instruction set.

Our real-world experimental results over PlanetLab and the
Amazon EC2 cloud have shown substantially (3 to 24 times)
higher throughput as compared to Celerity [3], a state-of-the-
art P2P solution, yet without any disadvantage on end-to-end
delays that can be perceptible to end users. To the best of our
knowledge, this paper presents the first design and implemen-
tation of a cloud-based solution for video conferencing.

The remainder of this paper is organized as follows. In
Sec. II, we motivate the Airlift cloud service and discuss our
design objectives and choices. In Sec. III, we present our
analytical study on maximizing the total throughput in an
inter-datacenter network, which serves as the foundation of our
protocol design. In Sec. IV, we present details of our protocol,
designed based on results from our theoretical analysis. In
Sec. V, we present our real-world implementation of Airlift,
and evaluate its validity and performance in the Amazon EC2
cloud. We discuss related work and conclude the paper in
Sec. VI and Sec. VII, respectively.

II. AIRLIFT: MOTIVATION AND DESIGN OBJECTIVES

A. Conferencing via the Cloud: Motivation

The Achilles’ heel of peer-to-peer video conferencing solu-
tions, such as Celerity [3], is the challenge of computing the
flow rate on each overlay link between users who participate
in the same conference. Such a challenge comes from the fact
that overlay links may compete for the same physical link in
the layer-3 Internet topology; yet due to the lack of complete
knowledge about the underlying layer-3 topology, it would
be infeasible to determine how overlay links share common
physical links.

Such a challenge is present even in a simple “dumbbell”
topology, illustrated in Fig. 2. Without the knowledge that
a physical bottleneck exists between the two user pairs, the
number of overlay links competing for the bottleneck may not
be optimal, if incorrect trees are formed to route packets. To
address such a challenge, Celerity resorts to a complex mix of

algorithms, including decentralized optimization to converge
to optimal overlay link rates based on loss rates and queueing
delays, as well as spanning tree packing at each source to
compute its overlay trees.

In contrast, if we take advantage of the high-capacity
inter-datacenter network in the cloud, the pairs of users on
both sides of the dumbbell topology can each transmit to
their respective datacenters, as Fig. 3 shows, with user 1 as
an example. Each datacenter is responsible for aggregating
incoming video flows from both users, and forwarding them
to the other datacenter. With such aggregation, the number of
video flows sharing the bottleneck, which resides between the
two datacenters in the cloud, is naturally minimized, without
the complexity of Celerity. If the inter-datacenter link has a
higher capacity (e.g., due to private peering relationships), the
gain on the total throughput in the conference is even more
substantial.
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Fig. 2. With P2P conferencing, more
than the minimum number of overlay
links may compete for the same phys-
ical bottleneck.

1 3

42

D1 D2

Fig. 3. Conferencing via the cloud:
flow rates over the physical bottleneck
are aggregated and minimized.

But are end-to-end delays sacrificed by routing packets
through the cloud? We answer this question with results
from real-world experiments, using PlanetLab nodes as video
sources. Table I shows the measured throughput values and
end-to-end delays between three pairs of conference par-
ticipants with diverse geographic locations, comparing the
performance of a P2P overlay link with that of routing through
the Amazon EC2 cloud. In the latter case, each participating
user connects to its closest datacenter in the EC2 cloud,
forming a three-hop path. For example, users in Beijing and
Seoul will connect to the datacenter located in Japan, and
users in Cambridge, UK and Moscow will connect to the
datacenter in Ireland. As is self-explanatory in the table, when
routed through the cloud, all three pairs have enjoyed higher
throughput values (substantially higher in two of the three
pairs), yet this is achieved with similar or even shorter end-to-
end delays, as compared to the overlay link in a P2P solution.

TABLE I
CONFERENCING WITH P2P OVERLAYS OR VIA THE CLOUD? A

COMPARISON OF THROUGHPUT AND END-TO-END DELAY.

Cloud/P2P Throughput (Mbps) Delay (msec)
Toronto-Beijing 2.202/0.179 171.6/148.8

Cambridge-Sao Paulo 1.687/1.432 103.4/204.6
Seoul-Moscow 7.189/1.103 201.7/436.9

We will revisit such a comparison between Airlift and
Celerity with a more elaborate set of experiments in Sec. V.
Suffice it to say, there exists a clear performance advantage to
provide video conferencing as a cloud service.



B. Airlift: Design Objectives and Choices

Towards the design of a new application-layer protocol in
the inter-datacenter network, we target a number of important
objectives.

Performance. The best possible incentive that can be touted
to attract users to establish video conferences using Airlift is
its superior performance, with respect to higher video flow
rates from each of the participants in a live conference, while
still maintaining an acceptable end-to-end delay. Airlift should,
first and foremost, be designed with performance in mind.

Simplicity. As a cloud service, Airlift should be conceptually
simple to use, and work as a full-service broker. A participating
user in a conference should only need to connect to the
“cloud,” and to start transmitting packets from its video source
after a connection is established. The “cloud” should provide
informative feedback to the user as packets arrive, so that the
user can adequately increase or throttle its video flow rate by
varying parameters of its video codec. In this sense, as long as
a packet is acknowledged by the “cloud,” the user will have
complete “peace of mind” that the packet will be delivered
intact and on time to other participants in the conference,
subject to a typical end-to-end delay constraint.

But what is the “cloud” that a participating user should
connect to? Our design in Airlift has intentionally left the
decision open with respect to which datacenter that a user
should connect to, as existing work has already covered this
complementary problem quite well. It is typical to select an
appropriate datacenter by taking advantage of the customized
IP address returned by DNS servers. Alternatively, users
can outsource datacenter selection to third parties [6], with
customizable mapping policies. Since video conferencing is
sensitive to end-to-end delays, the recommended mapping
policy is to choose the “closest” datacenter with respect to
delay, using any of the existing selection protocols that can be
tailored to consider client proximity (e.g., [6]).

Scalability. Datacenters operated by a cloud provider are
often inter-connected with high-capacity links. As such, each
inter-datacenter link may be able to carry thousands of video
flows from different sources and in different conferences
simultaneously. This brings the challenge of scalability to the
spotlight, in that any online algorithm in the Airlift protocol
needs to complete its computation in real-time, so that a
large number of conferences can be routed through the inter-
datacenter network efficiently and without much fanfare.

To be more scalable, we believe that all the video flows
from different participants — in their respective conferences
— need to be aggregated, provided that these participants
connect to the same source datacenter, and are destined to
the same subset of destination datacenters, which, in turn, are
responsible for delivering them to all other participants in each
of the conferences. To put it simply, we wish to aggregate all
the video flows routed through the same source datacenter
and transmitted to the same subset of destination datacenters,
regardless of which conference they belong to. Each of these
aggregated sessions is inherently a multicast session in the

inter-datacenter network.
Considering only aggregated sessions, rather than individual

conferences that use the cloud as a service, makes Airlift
much more scalable. For example, in order to maximize
the total throughput of all conferences routed through the
inter-datacenter network, we only need to maximize the total
throughput across all aggregated sessions in our problem
formulation, with a significantly reduced number of variables
that need to be determined. To be more precise, in an inter-
datacenter network with N datacenters, the maximum number
of aggregated sessions is

∑N
i=2[i ·

(
N
i

)
]. With 7 datacenters in

the Amazon EC2 cloud, the maximum number of simultaneous
aggregated sessions is only 441, which may be an order of
magnitude smaller than the total number of participants in all
the concurrent conferences routed through the Airlift cloud
service.

III. MAXIMIZING TOTAL THROUGHPUT IN THE CLOUD

In a nutshell, a key idea in the design of Airlift is to take
full advantage of the available inter-datacenter capacity in
the cloud, so that the total throughput across all conferences
is maximized, subject to delay and fairness constraints. We
precede our protocol design with a theoretical formulation of
this problem.

A. Feasible Paths Satisfying a Delay Bound

Let us consider an inter-datacenter network with multiple
datacenters that are geographically distributed around the
world, operated by the same cloud provider. These datacenters
form a complete directed graph G = (V, E), where V indicates
the set of datacenters, and E indicates the set of directed
edges inter-connecting them. For each directed edge e ∈ E ,
we use a positive real-valued function C(e) to denote its
available capacity, which is the maximum available rate of
packet transmission on e.

We use Si to denote the source datacenter in an aggregated
session i, and Ri

j , j = 1, 2, . . . , ki to denote the set of ki
destination datacenters in session i. If we overlook fairness
concerns for a moment, our objective is to maximize the total
throughput of all the aggregated sessions in G, as long as the
end-to-end delays from Si to each of Ri

j , j = 1, . . . , ki are
acceptable, i.e., they do not violate a certain delay bound,
Dmax.

Let us now examine such a delay constraint with a micro-
scope. Each directed edge e in E has a corresponding prop-
agation delay, d(e), which is readily measurable in practice.
Assuming that queueing delays on a relaying datacenter are
minimal with the use of small buffers, the end-to-end delay
from Si to each Ri

j can be estimated as the sum of all
propagation delays, on each of the edges along the acyclic path
that packets follow. Considering our objective of maximizing
the total throughput of all aggregated sessions as a variant
of the maximum flow problem, it is conceivable that packets
from Si to each Ri

j may need to follow multiple acyclic paths,
rather than a single one. We need to make sure that the end-
to-end delay on any of these acyclic paths does not violate



the delay bound that we impose; in other words, we need to
exclude paths that violate such a bound, and only consider the
set of feasible paths — denoted by Pi

j — that do not. More
formally:

Pi
j = {p | p is an acyclic path from Si to Ri

j

s.t.
∑
e∈p

d(e) ≤ Dmax}.

Given the inter-datacenter graph G and the delay bound Dmax,
one can easily find the set of all feasible paths Pi

j from Si to
Ri

j using a simple variant of the depth-first search algorithm,
where the search only continues if, with the path obtained so
far, there are no cycles and the delay bound Dmax has not yet
been violated. In our subsequent formulation of the problem,
we have the convenience of only considering the set of feasible
paths Pi

j .

B. The Problem of Maximizing Total Throughput

On the surface, it appears that the problem of maximizing
the total throughput of all aggregated sessions in G corre-
sponds to the traditional multi-commodity maximum flow
problem. Unfortunately, this is not the case, simply because
aggregated sessions1 are aggregated multicast sessions by
nature, rather than unicast sessions between source-destination
pairs as in the multi-commodity maximum flow problem. In
essence, packet transmission in a multicast session is more
efficient than in multiple unicast sessions, due to the ability for
a datacenter to replicate and forward packets to its downstream
datacenters in a multicast tree.

To maximize the throughput of a multicast session in G,
traditional wisdom resorts to Steiner tree packing [3]. As
an NP-Complete problem, Steiner tree packing seeks to find
the maximum number of pairwise edge-disjoint Steiner trees,
in each of which the datacenters involved in the session
remain connected. To reduce its complexity, existing work on
P2P video conferencing [3] packs only depth-1 and depth-2
trees. However, packing Steiner trees within each session is
still computationally prohibitive, due to the large number of
concurrent sessions.

Fortunately, the concept of network coding provides us with
a way out of the woods. Having been studied extensively in
the past decade, network coding [7] extends the capabilities of
nodes in a network session: from basic forwarding (as in the
maximum flow problem) and replication (as in multicast), to
coding in Galois fields. For a multicast session in any directed
acyclic graph, if a rate x can be achieved from the source to
each of the destinations independently, it can also be achieved
for the entire multicast session [7]. In other words, network
coding has the power of resolving the competition among
different source-destination pairs for edge capacities. To take
advantage of such power, Li et al. [5] introduced the concept
of conceptual flows, defined as network flows that co-exist

1When it is clear from the context of our discussions, aggregated sessions
in the inter-datacenter network is simply referred to as sessions from this point
onwards.

in the network without contending for edge capacities if they
are destined to different destinations, each of which is from a
source to a destination, transmitted in a coded form.

To our surprise, inspired by [5], the idea of conceptual
flows allows us to formulate the problem of maximizing total
throughput as the following linear program, which can be
solved by a standard LP solver:

max X
s.t. X ≤

∑
p∈Pi

j

xij(p)/wi, ∀i, j = 1, . . . , ki (1)

∑
p∈Pi

j
(e)

xij(p) ≤ xi(e), ∀i, j = 1, . . . , ki (2)

∑
i

xi(e) ≤ C(e), ∀e ∈ E (3)

xij(p) ≥ 0, xi(e) ≥ 0, X ≥ 0,

∀p ∈ Pi
j , ∀i, j = 1, . . . , ki, ∀e ∈ E . (4)

The objective of this linear program is to maximize the total
throughput, which is the sum of flow rates in all the multicast
sessions, X . In each session, its flow rate is the minimum of
the flow rates that can be independently achieved from the
source to each of the destinations in the session. In constraint
(1), wi is used to provide weighted proportional fairness across
different sessions, and xij(p) represents the conceptual flow
rate from Si to Ri

j , along an acyclic path p in the set of feasible
paths Pi

j . Since the flow rate is specified along a particular
path p, the flow conservation constraint for a conceptual flow
is implicitly satisfied.

Since conceptual flows destined to different destinations
within the same session do not compete with one another
for edge capacity, the effective flow rate within a session i
on edge e is xi(e) = maxj

∑
p∈Pi

j
(e) x

i
j(p), where Pi

j(e)

represents the set of paths in Pi
j that uses edge e. Since

the max function is not linear, this constraint is relaxed to
constraint (2). Finally, constraint (3) reflects the fact that the
summation of the effective flow rates of different sessions
should not exceed the capacity of an edge, as they contend
with one another for edge capacities.

A feasible solution to our linear program provides the
conceptual flow rates xij(p) along all feasible paths for each
destination, within every session. The effective flow routing
scheme xi(e) for each session, as well as the feasible total
throughput X , are all guaranteed to be non-negative, with
constraint (4). Since only feasible paths are considered in our
linear program, the delay constraint is naturally satisfied.

As an example using the inter-datacenter network that we
have shown previously in Fig. 1, Fig. 4 shows the optimal
solution obtained by solving our linear program using a
standard LP solver. To keep such a conceptual example simple,
we assume that all the edge capacities are 10 Mbps. The value
labeled on each edge e in the figure indicates its propagation
delay d(e), which is the same in both directions. Let us now
consider two sessions, S1 and S2. In S1, video flows are
transmitted from D1 to D4 and D5; and in S2, they are
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Fig. 4. Maximizing the total throughput in an inter-datacenter network: an
example of the optimal solution obtained by solving the linear program.

transmitted from D2 to D3 and D5. If the delay constraint
Dmax is set to be 100 milliseconds, some of the paths need
to be excluded from the set of feasible paths. The conceptual
flows along all the feasible paths in each session are shown
in the figure, where their widths indicate the corresponding
conceptual flow rates.

As we can see, the feasible path in S1 to D4 is D1 →
D2→ D4, with a flow rate of 10 Mbps for the corresponding
conceptual flow; the feasible paths in S1 to D5 are D1 →
D2 → D3 → D5 and D1 → D2 → D5, each with 3.9
Mbps and 6.1 Mbps respectively. Similarly, feasible paths in
S2 to D3 are D2 → D3 and D2 → D5 → D3, with 6.1
Mbps and 3.9 Mbps, respectively; and feasible paths in S2
to D5 are D2 → D5 and D2 → D3 → D5, with 3.9 Mbps
and 6.1 Mbps, respectively. In the optimal solution, the total
throughput in both sessions is 20 Mbps in this example, and
edge capacities along the feasible paths have been saturated.

To better illustrate the concept of conceptual flows, we
examine the edge from D2 to D5. Though two conceptual
flows in S2 — each with a rate of 3.9 Mbps — pass through
this edge, the effective flow rate in S2 on this edge remains to
be 3.9 Mbps, since the power of network coding guarantees
that conceptual flows destined to different destinations in the
same session do not compete for edge capacities. On the other
hand, the effective flow rate in S1 on this edge is 6.1 Mbps,
competing with the effective flow in S2 for the edge capacity.

With the use of conceptual flows, the optimal solution of
our linear program is quite expressive. It may impose that an
incoming flow be replicated, be split, or that multiple incoming
flows be merged using network coding, and then forwarded
along outgoing edges. In our example, consider datacenter
D2. Its incoming flow of 10 Mbps in session S1 is not only
forwarded to D4 directly, but also split and forwarded at the
same time to D3 and D5, with an outgoing flow rate of 3.9
Mbps and 6.1 Mbps, respectively. The flexibility and power of
the optimal solution expressing a wide variety of forwarding
strategies at each datacenter have provided a solid foundation
for Airlift, yet they also pose a challenge to our protocol
design, to make sure that the optimal solution can be realized
faithfully in practice.

IV. AIRLIFT: PROTOCOL DESIGN

With the available capacity and propagation delay on each
inter-datacenter edge as input, the optimal solution along the
set of feasible paths provides the complete plan to start actual

packet transmission: In each conceptual flow, the optimal
solution computes its flow rate xij(p), along the path p in a
session i from the source Si to the destination Ri

j that packets
will follow.

The design objective of the Airlift protocol is to faithfully
realize the complete plan that the optimal solution provides in
a real-world implementation, with as little gap between theory
and practice as possible. As we shall soon observe, such a
goal is challenging to achieve; and subsequent experimental
evaluations of our Airlift implementation will focus on how
tradeoffs in our design will contribute to the gap between
theory and reality.

A. Transport with Network Coding

Before we discuss challenges in our design, we first present
a primer on how network coding can be implemented in prac-
tice. With random linear network coding [8], [9], a generation
of live video is divided into n packets (called the generation
size) b = [b1, b2, . . . , bn]

T , where each packet has a fixed
number of bytes, k. To code a new coded packet xj , the
source first independently and randomly chooses a set of
coding coefficients [cj1, cj2, · · · , cjn] in GF (28), one for each
original or coded packet it has buffered. It then produces one
coded packet xj =

∑n
i=1 cji · bi. The destination decodes as

soon as it has received n linearly independent coded packets
x = [x1, x2, . . . , xn]

T . It first forms an n × n coefficient
matrix C, using the coefficients of each packet bi, which
are embedded in the packet. Each row in C corresponds
to the coefficients of one coded packet. It then recovers
the original packets b = [b1, b2, . . . , bn]

T as b = C−1x.
Gauss-Jordan elimination is used in such a decoding process,
performed progressively as coded packets are being received.
The inversion of C is only possible when its rows are linearly
independent, i.e., C is full rank.

Airlift uses UDP as its transport protocol on each inter-
datacenter edge, the rate of which is controlled by an imple-
mentation of TCP-Friendly Rate Control (TFRC) [10] at the
application layer. In such a context, network coding has been
applied extensively in the Airlift protocol design. This is not
only because our problem formulation hinges upon the concept
of conceptual flows made possible by network coding, but
also since random linear codes are rateless erasure codes, and
coded packets — each with its own vector of randomly chosen
coefficients — can be generated ad infinitum. As long as n
linearly independent packets are received, they are sufficient
to recover the original generation. This is a perfect match to
UDP as a transport protocol: losing some coded packets is
no longer a concern, as more from the source will be arriving
soon, provided that the source receives some form of feedback.

Unfortunately, one seemingly trivial question — on an
implementation detail when network coding is used at the
source — puts the very idea of using network coding at risk.

B. Bandwidth Overhead vs. Delay: A Dilemma

It is the question of what an appropriate generation size,
n, is, which the source datacenter should use when it applies



network coding. In other words, shall we use a smaller number
of packets in each generation, or a larger number of them?

Let us consider the outcome of using a smaller number
of (say, 5) packets. In the example illustrated in Fig. 5(a),
we can observe that a small generation size will lead to
significant bandwidth overhead. At the time when the source
finishes sending all 5 packets, the acknowledgement, to be
sent when the entire generation is completely received and
decoded at the destination, has not yet arrived at the source.
Such an acknowledgement may only be received by the source
after a round-trip time since the last coded packet in the
generation has been sent. During such a period of time, the
source will have no choice but to either stop sending, in
which case its instantaneous flow rate is throttled to zero
and outgoing bandwidth is idled; or to keep sending more
coded packets, in which case these packets are redundant and
useless when received by the destination, leading to significant
bandwidth overhead. As the number of packets in a generation
becomes smaller, the overhead of such redundant packets, as
a percentage, will be even more significant.
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Fig. 5. Bandwidth overhead vs. decoding delay: a dilemma over the choice
of the generation size.

Using a much larger generation size (say, a few hundred
packets) would certainly mitigate such overhead, but as the
example in Fig. 5(b) illustrates, it leads to a substantially
longer decoding delay at the destination. Consider the analogy
that the destination holds a “bucket” — the capacity of which
is the generation size — waiting for coded packets to arrive
and fill the bucket. Due to the nature of random linear codes,
the destination will have to wait till the bucket is almost full in
order to recover the first original packet in the generation, even
if Gauss-Jordan elimination is used. Such a waiting period
adds an additional decoding delay, which becomes longer as
the generation size becomes larger. With a generation size of
128 packets, a packet size of 1 KB, and a source flow rate of 64
KB/sec, the decoding delay can be as long as 2 seconds, which
is excessive considering typical end-to-end delay constraints
in a video conference.

An additional piece of bad news is that the sliding win-
dow approach — designed by Sundararajan et al. [11] for
incorporating network coding into TCP as a transport protocol
— does not solve this dilemma. In [11], a TCP source
transmits random linear combinations of packets in its (sliding)
congestion window, and advances the window as it receives
an acknowledgment from the destination. These acknowl-

edgments are in the form of the degree of freedom of the
“bucket” that the destination holds; i.e., an original packet is
acknowledged as it is received in a coded form, even before
decoding is complete. The size of a generation in this approach
is the size of the sliding congestion window, which reflects the
bandwidth-delay product on the end-to-end path, and can lead
to excessively large decoding delays at the destination.

To add insult to injury, the high probability of receiving
linearly dependent packets at the destination is a grave concern
if a small generation size is used. It has been shown in [12]
that the overhead due to linearly dependent packets can be
up to 18% if each generation has 8 packets. Fortunately, as
proposed by [12], the source can use systematic Reed-Solomon
codes rather than random linear codes to mitigate such linear
dependence, and such a change does not affect any theoretical
benefits of network coding.

C. The Protocol at Source and Destination Datacenters

Our design of the Airlift protocol demonstrates that a blend
of valuable elements in existing protocols can go a long way
towards solving the dilemma.

Decoupling the notion of a generation from a sliding
window. First, we must choose to use a small generation size
to reduce decoding delays, as we are not in a position to
compromise on the end-to-end delay constraint in a live video
conference. In order to mitigate the bandwidth overhead, our
design in Airlift decouples the notion of a generation from a
sliding window: coded packets are generated within a gener-
ation, while a sliding window represents all the packets that
have been sent but not yet acknowledged by the destination.
These two windows do not have to be the same, and the sliding
window can contain a large number of generations. Our design
makes it possible to use a sliding window size that corresponds
to the bandwidth-delay product between the source and the
destination, while keeping the generation size small.

With a generation size of n, the source datacenter transmits
n · (1+ δ) coded packets from the current generation by using
systematic Reed-Solomon codes, where δ can be adapted on-
the-fly to reflect the amount of redundancy we wish to add
to combat packet loss2. Afterwards, the source moves onward
and starts to transmit n · (1 + δ) coded packets from the next
generation in the sliding window. The rate at which the source
transmits in session i is minj

∑
p∈Pi

j
xij(p), which is part of

the complete plan stipulated by the optimal solution.
Since packets from multiple generations are in the pipeline,

the destination datacenter will need to hold multiple active
buckets accordingly, each containing packets received so far
within the same generation. Upon receiving each coded packet,
it is placed into its corresponding bucket after performing
Gauss-Jordan elimination, so that the corresponding coding
matrix in each bucket is guaranteed to be in reduced row-
echelon form (RREF). As n linearly independent packets

2In our real-world implementation, δ is adapted by the source periodically,
based on the packet loss rate measured at the source in its TFRC implemen-
tation.



arrive in a bucket, all the original packets will be recovered
and the bucket will no longer be active.

Acknowledging the degrees of freedom in all active
buckets. Upon receiving each coded packet, the destination
immediately sends an acknowledgment to the source. The
acknowledgment contains the degrees of freedom in all active
buckets, corresponding to the number of linearly independent
coded packets received in each generation that has not yet been
fully decoded. As it receives and examines each acknowledg-
ment, the source transmits a sufficient number of additional
coded packets from each of the generations contained in the
acknowledgment, starting from the oldest generation, but not
including the current generation, from which the source is still
in the process of transmitting coded packets.

Source Destination 
Si Ri

j

Time Time

Sliding window
1 2 3 4 

ACK (4,3,2)

ACK (3,2)

ACK (4,2)

ACK (2)RTT 
3 4 5 

Generation 1
Generation 2

Active bucket 

Inactive bucket 

Fig. 6. The Airlift protocol at the source and each destination: an example.

For example, in Fig. 6 with a generation size of 5, once the
source observes that the destination has received 4 packets
from generation 1, 3 packets from generation 2, and 2 packets
from generation 3 (the current generation at the source), it will
immediately transmit one new coded packet from generation 1
and two new packets from generation 2, before it resumes the
process of transmitting packets from the current generation.

Since an aggregated session is a multicast session from a
source to multiple destinations, the source will only remove
the oldest existing generation and advance its sliding window
once all the destinations in the session have indicated that
they have successfully decoded the generation (in that it is
not included in their acknowledgments).

D. Realizing Conceptual Flows with Source Routing

The optimal solution to our linear program contains a
number of conceptual flows in each session, each consisting
of a flow rate and a path from the source to one of the
destinations. From the perspective of how packets in an actual
flow are processed in reality, there are three distinct cases
when multiple conceptual flows pass through an intermediate
datacenter: (1) Packets in an actual flow are to be replicated
and forwarded to multiple outgoing edges; (2) an actual
flow is to be split and forwarded, with different portions
of its packets destined to different outgoing edges; and (3)
packets in multiple actual flows — from the same source and
destined to different destinations — are to be merged with
random network coding. These cases are illustrated in Fig. 7.
An intermediate datacenter may be responsible for handling
multiple cases concurrently, as in the example of datacenter
D2 in Fig. 4.

(1) Replicate (2) Split (3) Merge

... ...
...

...
+

Conceptual flow
from     to  
Conceptual flow
from     to  

Si Ri
j1

Ri
j2Si

Fig. 7. Three cases of realizing conceptual flows passing through an
intermediate datacenter.

Since the first two cases do not require network coding on
the intermediate datacenter, they are realized in Airlift with the
use of source routing. The source has full knowledge of all
its conceptual flows in the optimal solution, and by allocating
outgoing packets to each of the conceptual flows based on
their flow rates, it is able to compute the complete tree that an
outgoing packet should follow to reach its destination(s), and
include the tree in the packet header3. A packet then becomes
self-routing, in that an intermediate datacenter only needs to
examine its header, extract its next-hop datacenters in the tree,
and then forward it to its next hop, making copies as needed.

To realize the third case, all datacenters in Airlift finds
path overlaps between different conceptual flows if they are
destined to different destinations in the same session, by
examining the complete plan given by the optimal solution. If
such an overlap exists, as shown in Fig. 7(3), the corresponding
datacenter will produce random linear combinations of packets
from actual incoming flows, and transmit a merged outgoing
flow according to the rate on the outgoing edge, given by the
optimal solution.

All such random linear combinations are only performed
on packets from the same generation at the source. If packets
from the same generation are not readily received from all the
incoming flows, the merging process will wait for a timeout
period with a buffer of recently received packets. After the
timeout expires, it simply merges packets that it was able to
receive so far. Since such a timeout period adds to the end-
to-end delay, it is not feasible to use a long timeout value.

E. A Full-Service Broker to Conference Participants

With simplicity in mind, Airlift is designed to serve as a
full-service broker: a participant in a conference would simply
select a datacenter to connect to, and start transmitting to this
datacenter using an adaptive video source rate, coupled with
an adaptive video codec. The datacenter adds this new video
source to one of its aggregated sessions that share the same
subset of destination datacenters. As a full-service broker,
any datacenter in Airlift maintains full knowledge about all
active conferences, including the list of participants and the
datacenter each of them connects to. Updates are simply
broadcast to all other datacenters in the cloud.

Original video packets from each participant are transmitted
to the datacenter over UDP and TFRC, and with the same
Airlift protocol in Sec. IV. The only revision in the protocol is
an additional form of periodic acknowledgment: the datacenter

3It is a tree — rather than a path — that a packet should follow when
being routed, since conceptual flows to different destinations may share the
same outgoing edge from the source.



suggests a new video source rate to the participant, who then
adapts its sending rate to be the minimum of the suggested
rate and what TFRC imposes.

How does Airlift compute the video source rate that a
datacenter suggests to each connected participant? Since the
source rate of the aggregated session, minj

∑
p∈Pi

j
xij(p),

is specified by the optimal solution of our linear program,
the datacenter simply allocates such a source rate to all
participants in the aggregated session. The allocation is to
be max-min fair, in that if a participant transmits at a lower
rate than its fair allocation due to its last-mile bottleneck,
it will be allocated what it needs, plus a certain margin to
allow upward allocation adjustments if the last-mile bottleneck
bandwidth improves; otherwise, it will be allocated its fair
share. With our design, the source rate of the session may not
be fully allocated to current participants — in the case that the
bottleneck for all of them resides in the last-mile link. Such a
residual source rate makes it straightforward to accommodate
newly arriving participants, without the need to re-optimize
globally by solving a revised linear program.

One remaining challenge is to determine the weight, wi,
of aggregated session i, which is used as input in our lin-
ear program. Again, to keep the design simple, wi will be
proportional to the number of participants in session i, and∑

i wi = 1. This guarantees basic fairness across participants
in all the conferences, when their video sources share the inter-
datacenter capacity.

V. REAL-WORLD IMPLEMENTATION AND EVALUATION

Airlift is the name for not only our application-layer proto-
col, but also its real-world implementation. The basic unit for
our Airlift implementation is a broker, which runs in a VM
in one of the datacenters. Beyond its role as a full-service
broker to conference participants (Sec. IV-E), a broker is also
responsible for two core features in the protocol.

Multi-generation sliding window with network coding. A
broker is responsible for implementing the Airlift protocol at
the source and destination datacenters, which involves sending
and acknowledging packets in multiple generations within the
source sliding window, coded with random linear codes. Since
random network coding lies at the core of the Airlift protocol,
our implementation of network coding is optimized with Intel
SSE2 acceleration, which offers a five-fold performance gain
on average, as compared to a vanilla implementation.

Packet processing and forwarding. As an intermediate dat-
acenter in a multi-hop path, a broker is capable of replicating,
splitting, and merging incoming flows, and of forwarding
packets based on source routing information embedded in their
headers. Using asynchronous event-driven networking, our
implementation is highly efficient, designed with performance
in mind. It supports major UNIX variants and Windows (both
are typical in cloud VMs), and incurs less memory and CPU
overhead compared to the traditional thread pool concurrency
model, especially at high packet processing rates.

A centralized optimizer in our implementation receives
periodic reports from all the brokers with respect to measured

capacities and propagation delays on inter-datacenter edges. It
then generates the set of feasible paths, and solves the linear
program that maximizes the total throughput across all the
aggregated sessions. The optimal solution is then transmitted
back to all the brokers for them to route outgoing packets
using source routing.

We choose to use the Amazon EC2 inter-datacenter net-
work in our experiments, which is one of the predominant
Infrastructure-as-a-Service (IaaS) cloud providers. We have
launched 7 standard on-demand small VM instances on all
7 EC2 datacenters4, with a broker in each. We used a large
VM instance located in the Virginia EC2 datacenter to host
our centralized optimizer.

A. Airlift vs. Celerity: A Performance Comparison

With our new implementation of Airlift, our first set of
experiments is to compare its performance with Celerity [3], in
a comparable real-world conference. Since Celerity is designed
to maximize the total throughput within a single conference
only, we initiated only one conference with Airlift for a
fair comparison. The challenging dumbbell topology, shown
in Fig. 2 and used extensively in [3], was adopted in our
comparison studies. As an example, in the Toronto-Beijing
topology, we used two PlanetLab nodes in Toronto and two
more in Beijing as conference participants, forming 4 sessions,
each corresponding to a video source at one of the participants.
In Airlift, users in Toronto were connected to their nearest
datacenter in Virginia, and users in Beijing were connected to
their nearest datacenter in Tokyo, leading to two aggregated
sessions in the EC2 inter-datacenter network.

Our experimental results with both Celerity and Airlift have
been summarized in Table II, over three different pairs of
geographic locations: Toronto – Beijing, Vancouver – Berlin,
and Seoul – Rio de Janeiro. As we can easily observe, with
respect to the total throughput of all the sessions in the
conference, Airlift was able to offer a substantial performance
advantage, on the order of 325% – 2387% (i.e., 24 times better
than Celerity). Yet, Airlift did not suffer from a noticeable
disadvantage with respect to end-to-end delays: it typically
incurred a similar end-to-end delay as compared to Celerity,
which uses overlay links. The substantial throughput advantage
with similar delays have made Airlift a clear winner with
respect to performance in our experiments.

Airlift’s throughput advantage can be explained by abundant
inter-datacenter network capacities, and the excellent perfor-
mance on end-to-end delays can be attributed to design and
implementation choices in our protocol, which have collec-
tively minimized queueing delays as packets were forwarded
through the two intermediate datacenters. Our measurements,
not presented in the table, have shown that the queues on these
datacenters have remained empty at most times throughout our
experiments.

During the startup phase of a conference, another important
disadvantage of Celerity is the longer period of time for it

4Amazon EC2 datacenters are located at Oregon, Northern California,
Virginia, Ireland, Tokyo, Singapore, and San Paulo.



TABLE II
AIRLIFT VS. CELERITY: A COMPARISON WITH RESPECT TO THE TOTAL
THROUGHPUT AND THE MAXIMUM END-TO-END DELAY ACROSS ALL 4

SESSIONS IN THE SAME CONFERENCE.

Airlift/Celerity Total throughput (Mbps) End-to-end delay (msec)
Toronto-Beijing 14.11/4.04 169.8/142.3

Vancouver-Berlin 34.32/1.38 137.2/104.9
Seoul-Rio 20.32/2.32 228.6/203.5

to ramp up its throughput in each session to the steady state.
Fig. 8 and 9 have shown the per-session throughput over time
for Celerity and Airlift, respectively, as a conference started up.
we note that it took Celerity three times longer to ramp up to
a steady-state throughput of three times lower. Such subpar
performance is due to the nature of the Celerity protocol
design: its rate control algorithm that governs overlay link
rates does not have any knowledge of the underlying physical
topology, and would have to take some time to converge to
optimality based on online measurements. Such a challenge is
nonexistent in Airlift, as it simply routes packets through the
nearest datacenter over the cloud.
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Fig. 8. Celerity takes 15 seconds
to ramp up its per-session throughput
to the steady state of 0.9 Mbps on
average.
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Fig. 9. Airlift takes less than 5
seconds to ramp up its per-session
throughput to the steady state of 3.5
Mbps on average, a three-fold im-
provement.

B. Airlift: Performance with Multiple Aggregated Sessions

We now proceed to evaluate Airlift’s performance with mul-
tiple aggregated sessions in the EC2 inter-datacenter network.
For this purpose, we launched 10 actual conferences, with
participants connecting to their nearest datacenters. In order to
simulate the geographic diversity of conference participants,
the number of datacenters involved in each conference is
generated with a discrete uniform distribution in the range
of [2, 7], resulting in a total of 35 sessions.

As measured by the brokers every 3 minutes on their re-
spective datacenters and reported to the centralized optimizer,
the edge capacities ranged from 20.9 to 130.8 Mbps, while
their propagation delays ranged from 11.3 to 441.7 msec.
These capacity and delay values were used as input to our
linear program, which the optimizer used to obtain the optimal
solution. With 10 conferences and 35 aggregated sessions,
we imposed an end-to-end delay constraint, Dmax, of 300
milliseconds. As a result, the optimal solution, as computed
by the optimizer, involved a total of 1869 feasible paths, with
54 feasible paths per session on average, and a maximum of
5 hops in a feasible path. With a reasonable Dmax, the large

number of feasible paths is indeed a piece of good news, in
that the optimizer would have the freedom of using all of these
paths to deliver packets, saturating edge capacities as much as
possible to improve the total throughput.

Again, as a conferencing cloud service, we are most con-
cerned with the achievable throughput and end-to-end delays
in our aggregated sessions, both to be measured in actual
experiments. Fig. 10 shows the throughput observed in each
of the aggregated sessions, while Fig. 11 shows the maximum
end-to-end delays observed from the source to the destinations
in 10 sessions in EC2. With stable edge capacities in EC2 over
the short term, the observed throughput values in Fig. 10 were
exactly the same as what the optimizer has computed, thanks
to Airlift capability of transmitting, coding, forwarding, and
decoding packets at the designated flow rates computed by
the optimizer. The end-to-end delays are well controlled, again
thanks to the ability of our implementation to keep queueing
delays to the minimum while packets traverse through inter-
mediate datacenters on their paths.
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Fig. 10. Observed throughput values
in 10 of the aggregated sessions.

1 2 3 4 5 6 7 8 9 10
0

100

200

300

Session Index

En
dï

to
ïE

nd
 D

el
ay

 (m
se

c)

Fig. 11. Observed maximum end-
to-end delays from the source to the
destinations in 10 of the aggregated
sessions.

C. A Packet’s Life: A Microscopic View

Our readers may be left wondering: What had contributed
to Airlift’s substantial performance advantage against Celer-
ity, as well as its superior inter-datacenter performance with
multiple aggregated sessions? To best answer this question,
we decided to delineate the process of sending, processing,
and acknowledging packets, showing fine-granularity details
within a single aggregated session involving two destination
datacenters. Our experiments ran for a period of 3 minutes.

To saturate inter-datacenter edge capacities on the order of
100 Mbps, let us first examine the transport protocol with
multi-generation network coding from the source to a desti-
nation. In our experiments, we used a generation size of 10
packets and a packet size of 4 KB. Thanks to our accelerated
network coding implementation, we could comfortably reach a
session throughput of 59.1 Mbps with a CPU load of just 78%
at the source, within a small EC2 VM instance. On the other
hand, since the size of the sliding window is decoupled from
the generation size, we were able to achieve such a throughput
with an average of 36 outstanding generations at the source
that are not yet acknowledged by both destinations. Thanks
to our application-layer TFRC implementation (based on RFC



3448) and the stability of the EC2 cloud, a negligible packet
loss event rate of 4.5× 10−5 was observed. As a result, there
were no more than 4 active buckets used concurrently for
decoding at both destinations. This minimized the bandwidth
overhead of acknowledgments from both destinations back to
the source: an average of 1.65 Mbps was used for acknowledg-
ments (with 3905 packets per second and 54 bytes per packet
on average), reflecting an overhead of only 2.8%.

The negligible packet loss event rates that we observed
have also had a positive effect when it comes to minimizing
the bandwidth overhead of using network coding. In our
experiments, the number of outdated packets — defined as
redundant packets who arrived after their generations have
already been decoded — remained in the range of [1%, 4%],
as a percentage of all coded packets transmitted. With a low
percentage of outdated packets transmitted, the number of
linearly dependent packets due to a small generation size was
also negligibly small, accounting for only 0.00004% of all the
coded packets in the session.

Under our control in the Airlift protocol, there are two
factors that affect one-way end-to-end delays in our experi-
ments: (1) the queue lengths on intermediate datacenters along
a path that packets traversed; and (2) the decoding delays at a
destination. It turns out that, in terms of the number of packets,
the queue lengths we observed on each of the outgoing edges
involved in the session were zero most of the time, and were no
more than 18 packets in the worse case, as shown in Fig. 12.
Further, Fig. 13 shows the maximum decoding delays observed
at runtime every 15 seconds, which represented the time from
when a new active bucket was created at a destination to when
it was completed decoded. As the figure shows, the decoding
delays remained in the range of [10, 27] milliseconds. On
average, our measurements have indicated that the queueing
and decoding delays combined had accounted for only 23% of
one-way end-to-end delays, the bulk of which was attributed
to propagation delays on inter-datacenter edges in EC2.
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Fig. 12. Observed queue lengths on
each hop along a path (Sao Paulo →
Ireland → Virginia → Oregon).
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Fig. 13. Observed decoding delays at
both destinations (Oregon and Ireland)
over time, measured every 15 seconds.

Finally, Fig. 14 shows a microscopic view of a packet’s
lifetime in our experiment with two destination datacenters.
The figure has been annotated by propagation, queueing, and
decoding delays that we measured, from the moment the
packet was sent by the source datacenter (and acknowledged
to the conference participant), to the time it was received by
all its destination datacenters (and relayed to the rest of the

participants).
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Fig. 14. A packet’s life as measured from the source datacenter (Sao Paulo)
to both destination datacenters (Oregon and Ireland).

VI. RELATED WORK

The most recent P2P conferencing solution is Celerity [3],
which held the view that bandwidth bottlenecks may not be
limited to the last-mile uplink bandwidth, and instead may
reside in the core of the Internet. In this spirit, Celerity
represented an advance as compared to other existing works
on P2P conferencing protocols in the literature [2], [4], [13],
[14], which sought to optimize the aggregated utility of
conference participants, as well as the utilization of peer uplink
bandwidth.

The essence of Airlift is to provide video conferencing as
a cloud service that routes video flows through the inter-
datacenter network in the cloud. In contrast to Celerity that fo-
cuses on one conference, Airlift supports multiple conferences
by aggregating video flows to aggregated sessions (each with
its own subset of datacenters). Liang et al. [4] did consider
multiple conferences (called swarms in the paper) in a P2P
system; and focused on optimal bandwidth sharing of re-
sources at both peers and helpers, using a utility maximization
framework. Since Airlift handles aggregated video traffic, it
is designed to maintain basic fairness among all the video
sources with respect to their flow rates, without the use of
utility functions.

Network coding was used as a rateless erasure code in Celer-
ity [3], and detailed implementation hurdles have not been
addressed. In Airlift, network coding serves as the foundation
throughout our problem formulation and our protocol design.
Only with network coding can we design a new protocol that
achieves throughput optimality in theory, yet lends itself to a
feasible real-world implementation.

VII. CONCLUDING REMARKS

With Google+ Hangouts implemented as a cloud-based
client-server video conferencing solution [15], we believe that
designing a high-performance cloud service to serve enterprise
video conferencing needs is an industry trend that should not
be overlooked. In this paper, we part with the traditional
wisdom of a peer-to-peer design; rather, we motivate and
present Airlift, a new protocol and real-world implementation
that provide video conferencing as a cloud service, by routing
video flows through the inter-datacenter network in the cloud,
with higher capacities than the public Internet. The design
of Airlift is driven by our objective of maximizing the total



throughput of all conferences, yet without compromising on
end-to-end delays. Intra-session network coding lies at the
heart of the Airlift protocol, which is designed with attention
to detail and with no stone left unturned. With real-world
experiments using PlanetLab nodes and the Amazon EC2
cloud, we show that Airlift is able to deliver on its promises: it
is capable of supporting substantially higher video bit rates, yet
with similar end-to-end delays as compared to P2P solutions.
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