
Peer-assisted Media Streaming: a Holistic
Review

Yuan Feng1 and Baochun Li1

Department of Electrical and Computer Engineering
University of Toronto
10 King’s College Road
Toronto, ON, M5S 3G4
Canada
{yfeng,bli}@eecg.toronto.edu

Summary. This chapter presents a holistic review of recent research advances in
peer-assisted streaming systems, including both live and on-demand streaming. We
approach this task by first presenting design objectives of streaming systems in gen-
eral, and then discuss differences between live and on-demand streaming. These com-
mon and different design objectives motivate the protocol design space in streaming
systems, in categories of peer selection, segment scheduling, and distributed caching
protocols. We present main results from the existing literature in each of these di-
mensions, with a particular focus on the pivotal role of network coding within such
a protocol design space. We conclude the chapter with an outlook towards future
research directions, especially in the application of network coding in peer-assisted
streaming systems.

1 Introduction

To meet the demand of explosively growing multimedia applications, media
streaming over the Internet has been a research topic attracting substantial
interests in the literature over the past two decades. The “holy grail” of Inter-
net media streaming is to satisfy the media streaming needs of as many end
users as possible, with sustainable server bandwidth costs. The traditional
client/server architecture advocates the use of large data centers to sustain
streaming to end users at a large scale.

To maintain a satisfactory user experience, the bandwidth costs on servers
grow rapidly as the user population scales up, and may not be bearable in
corporations with limited resources. New architectural designs in the past
two decades, such as IP multicast and content delivery networks (CDNs),
attempted to address the problem by conserving resources in the edge or core
routers, or by load balancing across a large number of edge servers that are
geographically distributed. However, the problem of scalability to a large user

2 Yuan Feng and Baochun Li

population in media streaming systems is only mitigated to a certain degree,
not solved.

Peer-to-peer (P2P) networks propose a different architectural design per-
spective: it offloads part of the bandwidth burden from dedicated streaming
servers hosted by the content providers, and shifts them to end hosts them-
selves when they serve content to each other. The total volume of bandwidth
consumed is not reduced, and in most cases, is even increased due to over-
head of protocol-induced messaging and redundancy. Peer-to-peer networks
are not panacea: the architecture does not replace streaming servers — they
simply complement them. Such an architectural paradigm is referred to as
peer-assisted media streaming in this chapter, to highlight the complementary
nature of peer-to-peer networks.

Existing peer-assisted media streaming systems can be further divided into
two categories, live and on-demand media streaming, with the latter often
referred to as video-on-demand (VoD) in the literature. At a high level, a
peer-assisted media streaming system typically contains three elements: (1) a
number of dedicated streaming servers that serve media content, and can be
treated in an aggregate fashion as a single dedicated media source; (2) one
or a small number of index servers that keeps track of state information of
the system, such as existing end users (or peers); and (3) a web portal that
provides information about media channels. An example of such a system is
shown in Fig. 1.

Dedicated servers

P2P overlay

Media information

Web portal

Media content

Index server(s)

Node information

Peers

Fig. 1. The architecture of peer-assisted streaming systems.

Fundamentally, architectural and protocol designs in peer-assisted media
streaming systems need to successfully address three characteristics observed
in real-world streaming systems:

. Scale: A real-world peer-assisted streaming system needs to support at
least hundreds of thousands of users and thousands of media channels
simultaneously, with a reasonable playback quality to each of the end users.
The CBS broadcast of NCAA tournament in March 2006 [26] has peaked

Peer-assisted Media Streaming: a Holistic Review 3

at 268,000 simultaneous viewers. UUSee Inc. experienced a flash crowd of
871,000 peers on the Chinese New Year Eve in 2007 [35].

. Dynamics: Real-world peer-assisted streaming systems have shown a high
level of dynamics. End users, as peers who serve media content to one
another, may join or leave a media channel or the system at any time.
Network bandwidth between a pair of peers vary over time, sometimes
quite drastically due to the shifting of bandwidth bottlenecks. Such dy-
namics challenge the design of any system architecture or protocol. Recent
measurement studies have clearly shown that peer dynamics represent one
of the most influential factors that affect the overall performance of peer-
assisted streaming systems [22].

. Heterogeneity: According to a large set of live streaming traces obtained
from the Coolstreaming system, it has been discovered that there exists
a highly skewed distribution with respect to upload bandwidth contribu-
tions from peers. Such heterogeneity may have significant implications on
resource allocation in peer-assisted streaming systems.

This chapter provides a taxonomy of recent research achievements in peer-
assisted media streaming systems, with a special focus on on-demand stream-
ing systems (VoD). We start our discussion with an in-depth coverage of
common challenges in both live and on-demand media streaming systems. We
then shift our focus to specific challenges and their corresponding solutions in
on-demand streaming systems. In particular, we point out that network coding
may be a feasible and practical solution to improve streaming performance
in peer-assisted streaming systems. Finally, we present an outlook to future
research directions in peer-assisted streaming systems.

2 Fundamental Challenges in
Peer-Assisted Streaming Systems

In peer-assisted streaming systems that include both live and on-demand
streaming, dedicated streaming servers and end users (peers) are organized
into a topology at any given time, so that media content can be broadcast
from the servers to all the participating peers in a streaming channel. In such a
topology, a peer is directly connected with a subset of other peers in the same
channel, referred to as its neighbors. The topology that peers and servers or-
ganize into is sometimes referred to as a streaming overlay. In this section, we
present two fundamental challenges and their corresponding solutions in such
a streaming overlay for a media channel, common to both live and on-demand
streaming systems.

In order to allow peers to serve one another and to maximize its effi-
ciency, the following challenges naturally arise. First, which subset of peers
should become neighbors of a participating peer? Second, when being served
by neighbors, which segment of the media stream should be served first, and

4 Yuan Feng and Baochun Li

thus be given priority? Solutions to the first question are referred to as neigh-
bor selection (or overlay construction) algorithms, and those to the second are
referred to as segment scheduling algorithms.

2.1 Neighbor Selection Algorithms

One of the important design goals in peer-assisted media streaming systems
is load balancing, i.e., the redistribution of content should be balanced on the
participating peers so that the costs for the system are shared, much of the
existing research literature focused on designing suitable neighbor selection
algorithms. We present several examples of this category of algorithms.

With an inter-overlay optimization scheme, Anysee, proposed by Liao et
al. [25], uses an inter-overlay manager to find appropriate streaming paths
with low delays in the peer-assisted streaming system. The main task of the
inter-overlay manager is to maintain a backup streaming path set and an
active streaming path set, using a reverse tracking algorithm. When the size
of the backup set is less than a threshold, the peer will send out a message
to some of its neighbors, which will be relayed till the receiver finds the delay
from the initial peer to the current peer is greater than the minimum of
all source-to-end delays from the current peer to the streaming source on
different paths. Using such an algorithm, a peer is able to construct the best
overlay path accordingly. When the total bit rates from active streaming paths
are lower than a certain threshold, the manager will check whether a better
path should be activated to replace the current one, selected from the backup
streaming path set.

An alternative approach is to use a score-based neighbor selection algo-
rithm, where a score is assigned as the criteria to decide which set of peers
are selected as neighbors. OCTOPUS [24], for example, adopts a score that
represents the degree of data overlapping between any two neighbors, i.e., the
amount of time slots it can provide to its neighbor and the amount of time
slots the neighbor can provide to the peer. Under the assumption that un-
derlying media streaming system provides the functionality of a Distributed
Hash Table (DHT), Graffi et al. [17] propose another scoring function that
calculates the costs for choosing a specific peer by taking into account of peer
characteristics such as the uptime, network condition, and the number of tasks
already performed for the system. As identified peers for a specific block may
randomly leave the system, peer churn may become a critical challenge for
this partner selection algorithm.

All of the aforementioned algorithms are under the assumption that users
can and are willing to collaborate, which is not always the case realistically.
Measurement studies have shown that, in some peer-to-peer streaming sys-
tems, a small set of nodes are requested to contribute 10 to 35 times more
uploading bandwidth than downloading bandwidth [2]. As a result, peers are
not willing to voluntarily contribute their own upload bandwidth, which may
seriously affect the overall performance of peer-assisted streaming systems.

Peer-assisted Media Streaming: a Holistic Review 5

Therefore, an appropriate incentive mechanism is critical to the performance
of a peer-assisted streaming system, and the design of neighbor selection al-
gorithms offers an opportunity to tackle this challenge.

Silverston et al. [30] discovers that the incentive mechanism in BitTor-
rent file sharing systems, called tit-for-tat, is not well suited to peer-assisted
streaming systems. Media flows impose temporal constraints that do not exist
in bulk content distribution. Sometimes peers cannot serve data in return, not
because they are non-cooperative, but because the temporal constraints make
it pointless. As such, the temporal nature of the content makes the incentive
mechanisms of BitTorrent obsolete. Existing solutions are mainly score-based,
in which each peer is a credit entity, and peers will allocate resources accord-
ing to the credits of requesting peers to maximize their own credits. However,
these mechanisms suffer from a high computational complexity that prevent
their real-world implementation. The design of a scalable, light-weighted in-
centive mechanism that can be incorporated into peer-assisted streaming sys-
tems remains to be an open problem.

Finally, recent measurement studies have unveiled that there is a highly
unbalanced distribution with respect to uploading contributions from peers,
which has significant implications on the resource allocation in such a sys-
tem [22]. Further, by investigating the distribution of inter-peer bandwidth
in various peer ISP categories, Wu et al. [35] shows that the ISPs that peers
belong to are more correlated to inter-peer bandwidth than their geographic
locations. In addition, there exist excellent linear correlations between peer
last-mile bandwidth availability and inter-peer bandwidth within the same
ISP, or between a subset of ISPs. The joint consideration of highly skewed
resource distribution, incentive awareness and inter-peer bandwidth interfer-
ence may lead to more appropriate neighbor selection algorithms in future
research.

2.2 Segment Scheduling Algorithms

Different from other P2P applications such as file sharing, peer-assisted
streaming systems need to consider timeliness requirements of streaming me-
dia. If media segments do not arrive in a timely fashion, they have to be
skipped at playback, which degrades the playback quality, which is one of the
most important performance metrics in streaming systems. Experiments show
that peer-assisted streaming systems do not perform congestion control cor-
rectly, in scenarios where peer access links get congested [1]. Their response
is to increase the level of redundancy, which further increases the download
rate, and further exacerbate the congestion situation. These observations call
for a judicious design of segment scheduling algorithms.

The first strategy for segment scheduling in peer-assisted streaming sys-
tems is a tree-based per-slice push strategy, in which a media stream is first
divided into substreams as its slices, and then each of these slices is pushed
to downstream peers in a tree. Though tree-based strategies offer minimal

6 Yuan Feng and Baochun Li

source-to-peer delays (the delay between the occurrence of a live event in
a live stream and its playback at a peer), it suffers from the complexity in
maintaining such tree structures when peers arrive and depart frequently. In
contrast, a mesh-based per-segment pull strategy, first proposed in Zhang et
al. [39], has been implemented in most real-world streaming systems. In such
a strategy, the media stream is divided into segments in the time domain, and
peers make explicit requests for the desired media segment from its neighbor-
ing peers. Neighboring peers exchange buffer availability bitmaps periodically.
This strategy is simple to implement, but increases the source-to-peer delay
in live streaming systems, due to the need for periodic buffer availability ex-
changes. The source-to-peer delay, however, is not an issue for on-demand
streaming systems.

Zhang et al. [38] has proposed that push and pull strategies be combined,
so that a hybrid strategy can be designed to be both robust to peer departures,
and to support smaller source-to-peer delays. In the proposed push-pull hybrid
strategy, segments are pulled in the first time slot when a peer first joins the
system, and then pushed directly by the neighbors afterwards. To achieve this,
the stream is evenly partitioned into n sub-streams, and each sub-stream is
composed of the packets whose sequence numbers are congruent to the same
value modulo n. Every continuous n packets belong to different sub-streams
separately are grouped into a packet group and every continuous g packet
groups are further clustered into a packet party. Each packet group in a packet
party is numbered from 0 to g − 1 and hence the packet group number can
be computed by bs/nc mod g, where s is the packet sequence number. An
example is shown in Fig. 2, where the stream is partitioned into 3 sub-streams
and n = 3, g = 3.

Sub-stream 0 Sub-stream 1 Sub-stream 2

Packet party

0 1 2 3 4 5 6 7 8 9

Packet group 0 Packet group 1 Packet group 2 Packet group 0

...10 11

Fig. 2. Sub-streams in a push-pull hybrid strategy.

Once a packet in packet group 0 in one packet party is requested success-
fully from a neighbor, the peer will sent this neighbor a sub stream subscription
to let it directly push the remaining packets in the same sub-stream. There are
two types of streaming packets — the pulled packets and the pushed packets.
When over 95% packets are pushed directly from the neighbors, the node will
stop requesting buffer maps. And once the delivery ratio drops below 95% or
a neighbor who provides over 5% streaming data quits, the peer will start to

Peer-assisted Media Streaming: a Holistic Review 7

request buffer maps and pull streaming packets from its neighbors. Thus, most
of the packets received will be pushed packets from the second time interval.

Zhou et al. [40] form a stochastic model to analyze some widely used seg-
ment selection strategies, including the greedy, rarest first, and mixed strate-
gies. With M peers in the system, each peer maintains a buffer B that can
cache up to n segments received from the system, as shown in Fig. 3.

Playback

time t

n ... 2 1

Sliding Window

n-1 time slot

n ... 2 1

Sliding Window

Fig. 3. The sliding window of buffer B.

The greedy strategy intends to fill the empty buffer locations closest to the
playback point first. The segment selection function for the greedy strategy,
s(i), which is the probability of selecting B(i), can be expressed as follows:

s(i) = 1− (p(n)− p(i + 1))− p(1), i = 1, ..., n− 1, (1)

where the term p(n)−p(i+1) is the probability that any particular segment is
downloaded into buffer positions between B(n) to B(i+1); and the term p(1)
is the probability that any particular segment is downloaded directly from
the server. The rarest first strategy will select a segment that has the fewest
number of replicas in the system, for which the segment selection function is:

s(i) = 1− p(i), (2)

where p(i) represents the probability that any particular segment is down-
loaded into buffer positions between B(1) to B(i − 1). A mixed strategy
implies that the the rarest first strategy is used for a portion of the buffer
B(1), ..., B(m), 1 ≤ m ≤ n. If no segment can be downloaded using the rarest
first strategy, the greedy strategy is then used for the remainder of the buffer
B(m + 1), ..., B(n). In this case, the segment selection function for the mixed
strategy can be expressed as:

p(1) = 1/M (3)
p(i + 1) = p(i) + p(i)(1− p(i))2, i = 1, ...,m− 1. (4)

Simulation results in [40] have shown that the rarest first strategy is much bet-
ter with respect to scalability, whereas the greedy strategy is able to produce
better playback performance (continuity) in small scale systems.

8 Yuan Feng and Baochun Li

While analytical results have indicated that a sequential selection strategy
is well-suited for use in peer-assisted media streaming systems, many choose
to implement a hybrid segment selection algorithm, which divides the cache
into a high-priority set and the remaining set according to their time to the
playback deadline, as indicated in Fig. 4. Intuitively, a peer is likely to choose
segments in the high-priority set with higher probability for downloading [28,
14]. Much effort has been devoted to design the appropriate distribution in
these two sets. For example, the piece picking policy in Toast performs in-
order selection in high-priority set and Beta random selection in remaining
set, which is implemented using Python’s generator for a beta distribution in
remaining set. It adds a given-up area between the current streaming position
and high-priority region, which corresponds to pieces that are too close to the
current stream position to download on time. Simulation results show that
the performance beats rarest-first and in-order; however, the simulation is
only conducted in static case in which peers all are assumed to stay until the
end of a video, which is less likely to happen in the real world. Then in R2,
an uniform distribution is used in high-priority set and a randomized choice
subjected to Weibull distribution is adopted in the remaining set.

Playback

Played segments Skipped segments
(optional)

High-priority set Remaining set

Fig. 4. Hybrid segment scheduling algorithms

Combined with network coding, Annapureddy et al. propose a worst-
seeded-policy, which is to upload a block from a lesser represented segment
whenever possible [5, 4]. Compared with greedy approach that peers greedily
request blocks from their earliest incomplete segments, system throughput in-
creases significantly. However, the assumption of source node has knowledge
of the rarity of segments aggregated across the other nodes in the network is
not realistic for the real world. They also examine the effect of pre-fetching,
i.e. fetching a block that is needed later than the first segment of interest. By
evaluating probabilistic-first-range-random-second-range-rarest policy, which
performs consistently well in pre-fetching policies, it is shown that pre-fetching
provides easy access to blocks when they are needed by creating additional
sources for the blocks.

However, most papers discuss the situation of only one or two channels
exist, which is definitely an over-simplified case. The peer-assisted streaming
systems in nowadays like PPStream, PPLive and so on have hundreds of

Peer-assisted Media Streaming: a Holistic Review 9

channels available. From the server’s point of view, we have to consider how
to allocate bandwidth in multi-channel streaming systems. In a server capacity
provisioning algorithm—Ration, which is proposed by Wu et al. [36], server
capacity allocated to each channel in next time slot is proactively computed
by an optimization problem Provision(t + 1), as follows (∀t = 1, 2, ...):

maximize
∑
c∈C

pcnc
t+1q

c
t+1 (5)

subject to
∑
c∈C

sc
t+1 ≤ U,

qc
t+1 = F c

t+1(s
c
t+1, n

c
t+1),∀c ∈ C,

0 ≤ qc
t+1 ≤ 1, sc

t+1 ≥ 0,∀c ∈ C

where pc denotes the assigned priority level, nc represents the estimated pop-
ulation and qc the streaming quality for each channel c. At each time t, Ration
proactively computes the amount of server capacity sc

t+1 to be allocated to
each channel c for time t + 1. With full ISP awareness, Ration is carried
out on a per-ISP base, and is able to guide the deployment of server capaci-
ties and channels in each ISP to maximally constrain P2P traffic inside ISP
boundaries. Cheng et al. also evaluate the improvement of multi-video caching
(MVC) [12]. They show that for any given number of peers, MVC further re-
duces the aggregate load on the sources and MVC has lower chunk cost for the
same concurrency compared with single-video caching. Further, it is presented
that MVC increases chunk replica counts across the system which improves
the continuity by decreasing jitter and seek latencies. In general, designing
peer-assisted streaming systems with multiple channels is more complicated
and challenging, which may raise the interests of researchers in the future.

3 Special Challenges in P2P VoD streaming systems

While peer-assisted live streaming appears to be evolving towards a mature
stage, VoD services based on P2P overlays have appeared as a more attrac-
tive area to most researchers. A peer-assisted VoD service is more challenging
to design than a live streaming system because the peers in a live streaming
scenario have a shared temporal focus, while in VoD case they have greater
temporal diversity of requests. The peer dynamics resemble those of file down-
loading, while still requiring low startup delays for the sequential playback of
large media objects. Besides, equipped with larger storage space—cache—
than the limited buffer in live streaming scenario, peers in VoD case can store
and further upload more content. Intuitively, questions will arise as in case of
larger cache, what content should be chosen to store in each peer. The fact
that different users may be watching different parts of the video at any time
can greatly impact the efficiency of a swarming protocol. The lack of synchro-
nization among users reduces the block sharing opportunities and increases

10 Yuan Feng and Baochun Li

the complexity of the block transmission algorithms. This naturally bring the
problem of how to search for the desired content efficiently, which results in
numerous searching algorithms.

3.1 Cache Management

With larger storage capacities, peers can store redundant copies of a file near
the end user and it has been proven to be extremely effective in many P2P
VoD applications. Recent measurement results show that a simple static cache
that stores the top long-term popular files uses 84% less space than a dynamic
infinite cache solution which stores all videos, and still manages to save about
75% of the load in the server [9]. As a result, a number of algorithms that
intend to choose the most “popular” content wisely to store in a finite storage
space are proposed, a summary of which is shown in Table 1.

Table 1. Cache management in peer-assisted VoD systems

Topics [31] [3] [11] [27] [21] [18] [37]

Popularity × × ×
√ √ √ √

Prediction

Peer
× × ×

√
× × ×Availability

Detection

Replication √ √ √
× ×

√ √
Mechanism

Bandwidth × × × ×
√

× ×
Allocation

Dynamic × ×
√

× × × ×
Repair

Popularity Prediction

In order to minimize VoD request rejection rates for a very large content
library, one of the key question is how to translate the popularity distribution
into content availability in the network. The common way of doing so is to
use number of requests for a specific video content to represent its popularity
and the number of replicas in the system to reflect its availability. Through
numerical simulations and empirical validations, the popularity distribution of
relatively popular video categories exhibits power-law behavior (a strait line
in a log-log plot) with a tail truncation, which is affected by both the average
requests per user and the number of videos in a category. While the popularity
distribution of the unpopular content behaves more like a Zipf’s law, later
research shows that despite the traffic variation among different days, the
popularity distributions are quite similar and the distribution is more skewed

Peer-assisted Media Streaming: a Holistic Review 11

than a Zipf distribution [9], which may due to the fact that on any given day,
there are several highly popular news and business clips, with each of these
clips having roughly the same popularity. Using these distributions, we can
use the video’s past behavior to predict their future more precisely.

Since the popularity of a video changes during a typical day and the change
between two continuous short intervals is smooth, the popularity in the most
recent interval is useful to predict the future requests. In addition, chunks
requested recently are more likely to be requested later. Based on these obser-
vations, a chunk request predictor is constructed weighting the contribution of
recent requests to decay with time. Then by discovering the fact that for the
same popularity level and content availability, the VoD rejection rate for short
content will be much lower than that for long content, a popularity correction
method is proposed for that based on Zipf distribution, it further takes into
consideration of the expected average number of simultaneous sessions (ESS)
per content, which depends on both content duration and average number
of requests received for this content. Thus the corrected popularity can be
expressed as P ′

i = Pi · (1 + ESSi · α), where α in introduced to study how
much weight the ESS parameter should be given as a large α means popular
titles would be more available in the network with more copies spread around
the network [27]. Guo et al. define the popularity of a segment as

p =
Ssum

S0

Tr − T0
×min

(
1,

Tr−T0
n

t− Tr

)
, (6)

where t is the current time instant,
Ssum

S0
Tr−T0

represents the average access rate

of the segment in the past, normalized by the segment size, and min(1,
Tr−T0

n

t−Tr
)

reflects the probability of future access: Tr−T0
n is the average time interval of

accesses in the past; if t − Tr > Tr−T0
n , the possibility that a new request

arrives is small; otherwise, it is highly possible a request is coming soon [18].

Peer Availability Detection

To ensure the maintenance of desired number of replicas of a video in the
system, we should detect the availability of the peers. Due to the extensive
influence of user interaction, the detection faces two requirements. First, the
system must empirically measure the short-term availability distribution of
its host population on an ongoing basis. Second is the non-transient failures
that take stored data out of the system for infinite periods [27]. The availabil-
ity monitor (AM) tracks host availability, maintains host availability metrics
which are short-term host availability and long-term decay rate, and notifies
the redundancy engine when the system reaches availability thresholds that
trigger repair. Through observation of real systems, it is shown that online
time is a predictor of peer departure, which can be used for a simple peer

12 Yuan Feng and Baochun Li

departure predictor. A peer is predicted to leave if it has been online for fewer
than a certain period of time. Otherwise, it is predicted to stay in the system.

Replication Mechanism

The Replication mechanisms consists of redundancy computation and replace
algorithm, which we will discuss below consequently.

. Redundancy computation: With sufficient redundancy across many peers,
at any moment enough peers will be in the system to make a given data item
available with high probability. However, it is not trivially clear how much
redundancy is necessary for a given level of availability or what redundancy
mechanism is mot appropriate for a given context. The simplest form of re-
dundancy is pure replication. Given a target level of availability A and a mean
host availability of µH , the number of required replicas c can be calculated
directly.

A = 1− (1− µH)c (7)

c =
log(1−A)
log(1− µH)

(8)

However, it can be highly inefficient in low-availability environments caused
by peer churn since many storage replicas are required to tolerate potential
transient failures. An alternative way is to use erasure coding. Given the
number of blocks in a file b, and the stretch factor c specifying the erasure
code’s redundancy, the delivered availability can be expressed as:

A =
cb∑

j=b

(
cb

j

)
µHj (1− µH)(cb−j) (9)

c =

k
√

µH(1−µH)
b +

√
k2µH(1−µH)

b + 4µH

2µH

2

(10)

However, the price for this efficiency is a quadratic coding time and a require-
ment that reads and writes require an operation on the entire object [7].

. Replace algorithm: We then look at the different cache strategies to man-
age the cached content. In general, instead of depending on peers to manually
decide how much cache space is shared and which video to be kept to share or
not, peer-assisted VoD systems require peers provide cache space and let the
cache management algorithm to manage cache. Peers may be asked to cache
media content they are not watching at the moment or even not planning to
watch in the future but will be beneficial from the global point of view. The
simplest one is Least Recently Used (LRU) strategy [3], which maintains a
queue of each file sorted by when it was last accessed. When a file is accessed,
it is located in the queue, updated, and moved to the front. If it is not in the

Peer-assisted Media Streaming: a Holistic Review 13

cache already, it is added immediately. When the cache is full the program at
the end of the queue is discarded. Another one is Least Frequently Used (LFU)
strategy. To compute the cache contents, the index server keeps a history of
all events that occur within the last N hours (where N is a parameter to
the algorithm). It calculates the number of accesses for each program in this
history. Items that are accessed the most frequently are stored in the cache,
with ties being resolved using an LRU strategy.

Under the belief of the greater the number of peers with video cache, the
higher the probability that the video is available, and the higher the effective
bandwidth, Ying et al. propose a cache replacement strategy by introducing
cache needed rank [37] by taking account both the video popularity and the
number of peers that currently are caching that video, which can be expressed
as:

cache needed rank =
the number of peers demanding

the number of online peers with cache
. (11)

This cache replacement strategy is based on the this evaluation metric, where
stream with a lower cache needed rank is replaced by one with a higher
cache needed rank.

To replace both those media segments with diminishing popularities as
they rarely get accessed and those popular media segments with too many
copies being cached, Guo et al. [18] introduce another cache replacement pol-
icy. To achieve the optimal distribution, they define the utility function of a
segment as

u =
(f(p)− f(pmin))× (f(pmax)− f(p))

rα+β
, (12)

where p represents the popularity of the segment, pmin and pmax estimate the
minimum and maximum of segment popularities in the system respectively. r
is the number of replicas of this segment and f(p) is a monotonic nondecreas-
ing function, which is called the adjustment factor of the utility function. The
term (f(p)−f(pmin)

rα captures the segments with small popularities and large
number of replicas while f(pmax)−f(p)

rβ captures the segments with large pop-
ularities and large number of replicas. These two kinds of segment replicas
should be replaced by the replicas of segments with moderate popularities
but a small number of copies. As a result, segments with the smallest utility
value are chosen to be replaced when a peer’s cache is full.

Vratonjić et al. present another cache management algorithm, which is
used in their newly proposed system—BulletMedia [31]. This algorithm ex-
amines the problem to ensure all content blocks are replicated at least k times
system-wide, where a typical value of k is 4. To achieve this, a peer examines
its local content cache and determines the set of chunkIds for chunks it is
currently not replicating. It then selects chunkIds at random from this set,
and performs a lookup in the DHT. The DHT simply includes a count of the
number of peers replicating the chunk in the response. If the number of repli-
cas is below a per-defined level (e.g. 4), then the peer begins to retrieve the

14 Yuan Feng and Baochun Li

blocks associated with the chunk. If not, the peer chooses another chunkId
at random and queries it. This process proceeds until a chunk is found that
requires more replications.

Bandwidth Allocation Policy for Prefetching

When peers have surplus upload capacity, it can be used to prefetch content
for the future use, which has been proved to leverage the server load dramat-
ically [21]. Then how to allocate the instantaneous surplus upload capacity
among the peers in the system becomes a critical question. One of the al-
location scheme is water-leveling policy, which aims to equalize the reservoir
levels of perfected content across all the peers. Once the reservoir level of all
the peers reach the same level, an attempt is made to equally distribute the
surplus capacity among all the peers. Another one being considered is greedy
policy, where each user simply dedicates its remaining upload bandwidth to
the next user right after itself. Through simulation, it is observed that the
greedy policy does slightly better than the water-leveling policy and both of
them are near optimal.

Dynamic Repair Policy

Over longer periods, peers leave the system permanently, which requests the
system to “repair” this lost redundancy by continuously writing additional
redundant data onto new peers [7]. The two key parameters in repairing file
data are the degree of redundancy used to tolerate availability transients and
how quickly the system reacts to peer departures. In general, the more redun-
dancy used to store file data, the longer the system can delay before reacting
to peer departures. The repair policy spectrum can be defined in terms of two
categories: eager and lazy.

Eager repair means the system immediately repairs the loss of redundant
data when a peer fails. Using this policy, data only becomes unavailable when
peers fail more quickly than they can be detected and repaired. The primary
advantage of eager repair is its simplicity. Every time a peer departs, the
system only needs to place redundant data on another peer in reaction. More-
over, detecting peer failure can be implemented in a completely distributed
fashion since it isn’t necessary to coordinate information about which peers
have failed. However, the eager policy makes no distinction between perma-
nent departures that require repair and transient disconnections that do not.
Consequently, in public peer-to-peer environments, many repair actions may
be redundant and wasteful.

Lazy repair tries to defer immediate repair and use additional redundancy
to mask and tolerate peer departures for an extended period. The key advan-
tage of lazy repair is that, by delaying action, it can eliminate the overhead of
redundant repairs and only introduce new redundant blocks when availability
is threatened. However, lazy repair also has disadvantages. In particular, it

Peer-assisted Media Streaming: a Holistic Review 15

must explicitly track the availability of individual peers and what data they
carry. This is necessary to determine when an object’s availability is threat-
ened and a repair should be initiated. Consequently, the system must maintain
explicit metadata about which peers hold what data.

Cheng et al. propose and evaluate a framework for lazy replication in
GridCast, a P2P VoD system [11]. Their algorithm uses a peer departure
predictor to choose when to replicate (just before a peer leaves) and to whom
(peers that are predicted to be most unlikely to leave) and uses a chunk request
predictor to choose what to replicate (the chunks that will be most popular
in the coming sessions). They use a lazy factor α to control the upload used
for replication. Then through simulation evaluation, though eager replication
reduces more departure missed than lazy replication, the total number of
replicated chunks in lazy case is 45% of that in eager algorithm and the cost
is much lower. Further, the efficiency of lazy algorithm more than three times
that of eager replication, which suggests that lazy replication can replicate
more efficiently than eager replication.

Interestingly, almost all the existing articles on peer-assisted VoD systems
are under the assumption of small cache or even no cache. Each peer in the
network is only equipped with a larger buffer that is able to store a part of the
media the user is watching currently, which requires a wise cache management
mechanism to make better use of the limited storage space. With the devel-
opment of hard devices, every peer can have a large storage space that is able
to store not only the current media, but also the other media it has watched a
certain time ago, at a reasonable price. With the consideration of large cache,
the desired content can be found either on the peers who are watching the
same media stream at this time or some “offline” peers who are watching
something else at the moment. Then the challenging task of designing more
efficient content lookup algorithms that are capable of detecting offline peers
with the interested content is desired. What is more, from peers’ point of view,
how to allocate the limited upload bandwidth to contribute to both the cur-
rently watching media and the stored content might be an interesting research
topic in the future. Till now, to the best of our knowledge, only [20] considers
the hybrid-forwarding architecture which integrates both buffer-forwarding
approach and storage-forwarding approach, as shown in Fig. 5. And they try
to maximize the throughput by solving an optimization problem.

3.2 Content Searching Algorithm

For peer-assisted VoD systems, one salient additional characteristic is the
allowance of user interaction with video streams. Examples include pause,
fast-forward, back-forward, random seek operations and so on, which further
lead to more complicated system design. To address the issue of the unpre-
dictability of these user interactions, different kinds of searching algorithms

16 Yuan Feng and Baochun Li

Buffer-forwarding link
Storage-forwarding link

P 1
1

P 1
4

P 2
2

P 5
1

P 1
2 P 3

7

P j
i The i th peer who is watching video j

Fig. 5. A hybrid-forwarding P2P VoD system

aiming at finding the desired content efficiently with shorter initial buffering
delay have been proposed.

Used to get the optimal match between clients and servers, Shaking is a
searching algorithm proposed to find the server that can provide the fastest
service [8]. Since the server schedules the pending requests in a FIFO manner,
a shorter waiting time can be achieved by trying to move the requests that
arrived earlier at the server to other servers. That is, given a set of server
candidates, a client can contact them for their pending requests and try to
find each of them a new server. The key idea can be found in Fig. 6.

S1

S2

S3

V1 V2

V2 V3

V3

C1 C2 C3

V2 V1 V2

C4 C5

V2 V3

Fig. 6. Shaking algorithm

A client C trying to shake request [C3, V2] out of server S1 may find server, S2

has V2. Although this server cannot serve [C3, V2] earlier than S1, the client
can try to see if it can shake any pending requests out of S2. For example, it
may launch a search for V3 and find server S3, which is free of workload at this
moment. It shows that in order to successfully move out a request, a client
may need to shake a chain of servers. To address the challenge of chaining
effect, Shaking uses a 3-step solution, building closure set, shaking closure set
and executing shaking plan. Further, Shaking makes it possible to for a client
to be served by a server that is beyond the client’s search scope.

RINDY, which is proposed by Cheng et al., is a ring-assisted overlay topol-
ogy in P2P VoD systems for efficient content lookup [10]. Under this scheme,
a peer only needs O(log(T/w)) hops (where T is the total time length of the
video stream and w is the buffer window size of peers) to identify and con-
nect to a new group of peers close to the destination playing positions when

Peer-assisted Media Streaming: a Holistic Review 17

a random seek occurs. In RINDY, each peer organizes all its neighbors into
a series of concentric and non-overlapping logical rings according to their rel-
ative distances calculated from the current playing positions. The rings are
separated into two types, gossip-ring and skip-ring. A gossip-ring is a peer’s
innermost ring, which is mainly responsible for collecting some near neigh-
bors with close playing positions and overlapped buffer windows. And all the
outer rings, which are mainly used to improve the speed of lookup operations
and reduce the load of the tracker server are called skip-ring. When a peer
seeks to a target position d, it first checks whether d is within its gossip-ring.
If so, it performs a local search to find enough near-neighbors (neighbors in
the gossip-ring) and far-neighbors (neighbors in the skip-ring). Otherwise, it
finds the closest neighbor to d as its next hop, pushes its address into the
routing path and result set fields of the query message, and finally forwards
this query to that nest hop neighbor. Upon receipt of this query, the next-hop
neighbor executes the same procedure, which will be iterated until this re-
quest arrives at some peer whose gossip-ring covers d. The final peer adds all
of its near-neighbors into the result set field of the query message and returns
the message to the source peer along the routing path. Then the source peer
adds all the members of result set into its mCache and then change its current
playing position to d.

Inspired by the fact that if a peer’s buffer range is fully covered by other
peers, removing it from the index structure will not cause much trouble as
the peers who use this removed peer as a partner can still find other possible
partners, Chi et al. introduce Buffer Assisted Search (BAS) to select as few
index peers as possible without reducing search effectiveness, i.e., the total
buffer coverage [13]. The problem can be formulated as the Minimum Buffer
Cover (MBC) problem that can be solved using a distributed algorithm. The
basic flow is to divide the existing index peers into two groups according
to whether they overlap with the newcomer, and then apply the dynamic
programming algorithm to the newcomer plus the group overlapping with the
newcomer. When a first-join-peer tries to find the index peers with buffer
overlapping by tracing backward and forward along the closest index peer’s
predecessor and successor, the expected number of hops to be traced is a
constant. Then the dynamic programming algorithm is applied to the found
peers plus the new peer to figure out which peers should be pruned from the
index overlay. The expected number of nodes a new client should contact is
also a constant.

Wang et al. introduce the Dynamic Skip List (DSL) to inherently accom-
modates dynamic and asynchronous peers [32]. A skip list is an ordered list
of keys with additional parallel links. The key here is chosen to be the play-
back offset of each node. Assume that there are N keys in the list, indexed
from 1 to N . The (i × 2l)th key, i = 1, 2, ..., l = 0, 1, ..., will have links to
the ((i− 1)× 2l)th keys respectively. Besides, DSL is built with no MaxLayer
limit and a newly inserted key will stop promoting itself only when it fails.
As unnecessary neighbor information has to be maintained, which reduces the

18 Yuan Feng and Baochun Li

search efficiency, DSL compresses all the layers above L into a single top layer,
where L = log(N

log N). Its structure is shown in Fig. 7.

3
7

15 23
25

29
43

7

15 23
25

29
43

7
23

25
43

23 43

Top Layer

Layer 1

Layer 0

Layer 2

Layer 3

Fig. 7. A DSL of 7 nodes. The number in each node represents the key of this node.

In this layered representation, a single key in the list is mapped into mul-
tiple logical nodes along the same column. Since the parallel links in higher
layers skip geometrically more than those in lower layers, a key search can be
started from the highest layer so as to quickly skip unnecessary parts and then
progressively move to lower layers until it hits a logical node having the key.
The complexity of this top-down search is O(log N) [29]. The key is updated
over time according to the playback progress. The server periodically checks
the size of a randomly selected layer, estimates the overlay size N , and then
accordingly releases or merges layers to ensure that there are O(log N) logi-
cal nodes in the top layer. It is shown that each overlay node in the system,
including the server, maintains at most O(log N) extra information.

In a new distributed cache management model (DCMM) proposed by
Liang et al., peers are assigned fixed segments in turn according to the order
peer join the system and all the peers whose cache content compose an inte-
grated program into some chord-like rings [23]. The size of each ring equals
the number of segments of a media file, i.e., if the media file is divided into M
segments, then the ring consists of M peers. All segments have a number from
1 to M according to the playback time. Each peer in ring caches the corre-
sponding media segment according to the time when peers join the system in
turn. Segments of a program can be quickly located within these rings. When
searching a specific segment, peer tries to find peers caching this segment in
its own ring. If it fails, the requests will be transfered to the lower ring. This
process is repeated until the peer is found or the message arrives at the ring
0.

GridCast uses two content proximity metrics playhead and playcache to
estimate the sharing potential between pairs of peers [12], which can be de-

Peer-assisted Media Streaming: a Holistic Review 19

scribed as follows:

playhead(B→A) = |offsetB − offsetA| (13)

playcache(B→A) =
Pmax

i=min chunkmap(B)[i]

max−min +1 . (14)

Playhead proximity roughly estimates the potential for sharing using only the
current locations of the peers’ playheads. Two peers are considered to have
better sharing potential if their playheads are closer. On the other hand, play-
cache measures how many chunks can be provided by the other peer by com-
paring the contents of two caches directly. The more chunks B caches within
the prefetch window of A, the better sharing it has. Neighbors who share the
metadata but do not share chunks are selected using playhead proximity while
partners used for chunk sharing are promoted by playcache proximity when
the number of them fails below a certain degree, 50 for neighbors and 25 for
partners in this case.

While most of content searching algorithms in the peer-assisted VoD sys-
tems support random seek, few of them consider the problem of enabling
advanced VCR functions such as fast forward or fast rewind. Offering more
freely user interactivity that is lacking in the traditional video broadcasting
services, advanced VCR operations are highly desirable, yet, challenging to
implement in online streaming environment as they change the playback speed
of the media and require the extra bandwidth at the server and the underlying
network.

To the best of our knowledge, only two papers discuss this problem. In [19],
Guo et al. try to solve the fast forward and fast rewind problem by adjusting
segment deadlines to reflect the change of playback speed, so that the new
deadlines can be used for the proposed real-time scheduling based peer selec-
tion algorithm to recompute the uploading urgency metrics. Inspired by the
idea of realizing these two functions by playing one segment out of v segments,
where v is the speed of fast forward or rewind, Wang et al. present the num-
ber of logical nodes to be skipped ahead is n(v−1)

d for each jump operation
for fast forward, where d is the average difference between two consecutive
nodes, and it needs O(1) time [32]. Further, they obtain the upper bound of
the speed a system can provide. Under simplified assumptions and through
roughly evaluation, the ability of solving the fast forward or rewind problem
of these mechanisms are not that convincing. Thus, designing peer-assisted
VoD systems that can better support advanced VCR functions is still in its
infancy.

20 Yuan Feng and Baochun Li

4 Network Coding in Peer-Assisted Streaming Systems

In this section, we illustrate the role of network coding in peer-assisted stream-
ing systems. Due to the ability of making optimal use of bandwidth resources,
network coding is proposed to be used in segment scheduling algorithms in
peer-assisted streaming systems. By using random network coding, peers are
allowed to retrieve fractionalized segments in the parallel machine scheduling
context and any received segment is useful with high probability. An excellent
property of network-coding based segment scheduling algorithm is that the
missing segment on a downstream peer can be served by multiple seeds, as
each uses its randomized selection algorithm to select a segment to send coded
blocks, which is illustrated in Fig. 8.

seeds of peer p

downstream peers
served by peer p

1 3 4

1 2 4

3 7 15

10on peer p

1 1

7

10 10

Fig. 8. An illustration of network-coding based segment scheduling algorithm

However, the limit lies in that peers have to wait to download the com-
plete file before they can start decoding. This problem is solved by restricting
network coding into one segment, which reduces the start-up delay into one
segment size. What is more, coding prevents the occurrence of rare blocks
within a segment, and ensures that the bandwidth is not wasted in distribut-
ing the same block multiple times. In essence, coding minimizes the risk of
making the wrong uploading decision.

4.1 Core Idea

Here we introduce the core idea of network-coding based segment scheduling
algorithm. In it, each segment of the media streaming is further divided into n
blocks [b1, b2, ..., bn], with each bi a fixed number of bytes k (refereed to as the
block size). When a segment is selected by a seed p to code for its downstream
peer, the seed independently and randomly chooses a set of coding coefficients
[cp

1, c
p
2, ..., c

p
m](m ≤ n) in a finite field Fq for each coded block. It then randomly

chooses m blocks —[bp
1, b

p
2, ..., b

p
m] —out of all the blocks in the segment is has

received so far, and produces one coded block x of k bytes, as shown in Fig. 9

Peer-assisted Media Streaming: a Holistic Review 21

x =
m∑

i=1

cp
i · b

p
i (15)

...

segment

x1 x2

s2s1 segment

Fig. 9. An example of coding operation on peer p, where m=3, n=6

As soon as a peer receives the first coded block of this segment, it starts
to progressively decode using Gauss-Jordan elimination. As a total of n coded
blocks x = [x1, x2, ..., xn] have been received, the original blocks can be im-
mediately recovered as Gauss-Jordan elimination computes:

b = A−1xT , (16)

where A is the matrix formed by coding coefficients of x.
. Coding window optimization: The key difference of network-coding based

segment scheduling algorithms lies in the way of choosing m, which is also
called the coding window. In Wang et al.’s algorithm [32], m is simply chosen
to be the length of the segment, which means the coding range covers all the
expected segment. Though a larger coding window makes better utilization
of resource, it causes a higher probability of segments being missing upon the
playback deadline due to the longer waiting time before decoding. R2 [34],
which is proposed by Wang et al., refers the ratio m/n to as density, and a
low ratio leads to a sparse decoding matrices. Their previous work [33] has
experimentally shown that the density can be as low as 6% without leading
to linear dependency among coded blocks. Then in deadline-aware network
coding scheduling introduced by Chi et al. [13], it tries to find the as large
an m as possible for better coding efficiency while controlling m so that no
segment will miss its playback deadline by transforming the formulated coding
window assignment problem in to a max-flow problem.

4.2 Analytical Study of the Basic Model

Other than protocol designs, Feng et al. seek to mathematically analyze peer-
assisted streaming systems with network coding, with a focus on playback
quality, initial buffering delays, server bandwidth costs, as well as extreme
peer dynamics [15]. They consider the coding performance in flash crowd
scenarios when most peers join the system approximately at the same time
and highly dynamic scenarios in which peer join and leave the system in a
highly volatile fashion.

22 Yuan Feng and Baochun Li

In particular, the server strength δ is defined as δ = Us

NUp
, where Up is the

average upload capacity of participating peers, and Us is the server upload
capacity. It is proved that the sufficient conditions on smooth playback at a
streaming rate R during any flash crowd with scale N is as follows:

Us + NUp = (1 + ε)NR, (17)

ε = α +
ln(1 + δ)− ln δ

m
.

where m is the number of coded blocks in each segment and α denotes the
fraction of linearly dependent coded blocks induced by network coding. This
demonstrates that using network coding can achieve near-optimal perfor-
mance in term of sustainable streaming rate during a flash crowd. Also, they
show that in terms of initial buffering delay, algorithms using coding are within
a factor of 2(1+ ε) of the optimal streaming scheme, which reflects the ability
of guarantee very short initial buffering delays during a flash crowd of network
coding. Besides, an upper bound of the additional server capacity to handle
peer dynamics in current time slot is given to be W1U1 − (1 + ε)W1R, where
W1 denotes the number of departures of high-bandwidth peers in current time
slot.

In general, network-coding based segment scheduling algorithms are shown
sufficient to achieve provably good overall performance in realistic settings.

4.3 Implementation Results

Annapureddy et al. evaluate the efficiency of network-coding based segment
scheduling protocols through simulation [5, 6]. Considering a flash crowd
where 20 peers join the network, by comparing with an optimal scheme with-
out network coding—global-rarest first policy, where peer requests the globally
rarest block in the target segment of its interest, it is shown that with network
coding, the segment scheduling protocol provides a greater throughput than
the global-rarest policy (about 14% times better) and results in significantly
less variance and more predictable download times.

5 Conclusion

The study of peer-assisted media streaming systems has boomed for recent
years as videos has become the dominant type of traffic over the internet,
dwarfing other types of traffic. On one hand, peer-to-peer solutions have shown
great promise in supporting media broadcast, which is witnessed by their
increasingly widespread deployments. On the other hand, there still exists
some technical challenges that might be the hurdles need to be overcome,
or otherwise they may obstacle the development of peer-assisted streaming
systems.

Peer-assisted Media Streaming: a Holistic Review 23

In the analytical works that try to model and characterize the behavior
of such peer-assisted systems, the majority of them are under the assumption
that all the peers are homogeneously, which means most of them model the
peers with same upload and download capacities. The problem is that het-
erogeneity exists among peers in the real world. For example, peers behind
Ethernet can have an upload and download bandwidth of up to 1Mbps to
10Mbps, while in contrast, peers behind ADSL only have an upload band-
width of 256Kbps to 512Kbps and their download capacity is about 1Mbps
to 2Mbps. Treating them all equally is obviously not a good idea.

The conventional method of proving the accuracy of analysis is by simu-
lation. While most of the existing empirical studies only have a few hundred
peers involved typically, with the only exception of [15, 16], which have a scale
of more than 200, 000 peers at times throughout their simulations. By stat-
ing characterizing the large scale property of peer-assisted streaming systems,
only a few hundred of peers can definitely affect the accuracy of their analysis.

By implementing real peer-assisted media streaming systems over the In-
ternet, NATs and firewalls impose fundamental restrictions on pair-wise con-
nectivity of nodes on an overlay, and may prohibit direct communication with
one another. Whether communication is possible between two nodes depends
on several factors such as the transport protocol(UDP or TCP), the particular
kind of NAT/firewall, and whether the nodes are located behind the same pri-
vate network. For example, under UDP protocol, the connectivity form NAT
to firewall is only possible for some cases. When under TCP protocol, the
connectivity from NAT to firewall is not possible [26].

In this chapter, we reviewed the state-of-art of peer-assisted media stream-
ing systems, paying special attention to peer-assisted VoD systems. Bedsides,
we also present the implementation of network coding in peer-assisted media
streaming systems and the benefits it brought. While networking researchers
have achieved substantial progress in this area over the past years, there are
still several open problems, such as incentive-based mechanism, multichannel
consideration, lager storage space in VoD systems, advanced VCR functions
supporting and so on, which may present some areas of future research.

References

[1] Alessandria E, Gallo M, Leonardi E, Mellia M, Meo M (2009)
P2P-TV Systems under Adverse Network Conditions: A Measure-
ment Study. In: Proc. IEEE INFOCOM, pp 100–108, DOI
10.1109/INFCOM.2009.5061911

[2] Ali S, Mathur A, Zhang H (2006) Measurement of Commercial Peer-
To-Peer Live Video Streaming. In: Proc. of ICST Workshop on Recent
Advances in Peer-to-Peer Streaming

[3] Allen MS, Zhao BY, Wolski R (2007) Deploying Video-on-Demand
Services on Cable Networks. In: Proc. 27th International Confer-

24 Yuan Feng and Baochun Li

ence on Distributed Computing Systems (ICDCS), p 63, DOI
http://dx.doi.org/10.1109/ICDCS.2007.98

[4] Annapureddy S, Gkantsidis C, Rodriguez P, Massoulie L (2006) Provid-
ing Video-on-Demand using Peer-to-Peer Networks. In: Proc. Internet
Protocol TeleVision Workshop (IPTV), vol 6

[5] Annapureddy S, Guha S, Gkantsidis C, Gunawardena D, Rodriguez P
(2007) Exploring VoD in P2P Swarming Systems. In: Proc. IEEE INFO-
COM, pp 2571–2575, DOI 10.1109/INFCOM.2007.323

[6] Annapureddy S, Guha S, Gkantsidis C, Gunawardena D, Rodriguez PR
(2007) Is High-quality VoD Feasible using P2P Swarming? In: Proc. 16th
International Conference on World Wide Web (WWW), pp 903–912,
DOI 10.1145/1242572.1242694

[7] Bhagwan R, Tati K, Cheng YC, Savage S, Voelker GM (2004) Total
Recall: System Support for Automated Availability Management. In:
Proc. 2nd Symposium on Networked Systems Design and Implementation
(NSDI), pp 337–350

[8] Cai Y, Natarajan A, Wong J (2007) On Scheduling of Peer-to-Peer Video
Services. IEEE Journal on Selected Areas in Communications 25(1):140–
145

[9] Cha M, Kwak H, Rodriguez P, Ahn YY, Moon S (2007) I Tube, You
Tube, Everybody Tubes: Analyzing the World’s Largest User Generated
Content Video System. In: Proc. 7th SIGCOMM Conference on Internet
Measurement (IMC), pp 1–14, DOI 10.1145/1298306.1298309

[10] Cheng B, Jin H, Liao X (2007) Supporting VCR Functions in P2P
VoD Services Using Ring-Assisted Overlays. In: Proc. 16th IEEE In-
ternational Conference on Communications (ICC), pp 1698–1703, DOI
10.1109/ICC.2007.284

[11] Cheng B, Stein L, Jin H, Zhang Z (2008) A Framework for Lazy Replica-
tion in P2P VoD. In: Proc. 18th International Workshop on Network and
Operating Systems Support for Digital Audio and Video (NOSSDAV),
pp 93–98, DOI 10.1145/1496046.1496068

[12] Cheng B, Stein L, Jin H, Zhang Z (2008) Towards Cinematic Internet
Video-on-Demand. In: Proc. of the 3rd European Conference on Com-
puter Systems (EuroSys), pp 109–122, DOI 10.1145/1352592.1352605

[13] Chi H, Zhang Q, Jia J, Shen X (2007) Efficient Search and Schedul-
ing in P2P-based Media-on-Demand Streaming Service. IEEE Jour-
nal on Selected Areas in Communications 25(1):119–130, DOI
10.1109/JSAC.2007.070112

[14] Choe YR, Schuff DL, Dyaberi JM, Pai VS (2007) Improving VoD Server
Efficiency with BitTorrent. In: Proc. 15th ACM International Conference
on Multimedia, pp 117–126, DOI 10.1145/1291233.1291258

[15] Feng C, Li B (2008) On Large-Scale Peer-to-Peer Streaming Systems
with Network Coding. In: Proc. 16th ACM International Conference on
Multimedia, pp 269–278, DOI 10.1145/1459359.1459396

Peer-assisted Media Streaming: a Holistic Review 25

[16] Feng C, Li B, Li B (2009) Understanding the Performance Gap between
Pull-based Mesh Streaming Protocols and Fundamental Limits. In: Proc.
IEEE INFOCOM

[17] Graffi K, Kaune S, Pussep K, Kovacevic A, Steinmetz R (2008) Load
Balancing for Multimedia Streaming in Heterogeneous Peer-to-Peer Sys-
tems. In: Proc. 18th International Workshop on Network and Operating
Systems Support for Digital Audio and Video (NOSSDAV), pp 99–104,
DOI 10.1145/1496046.1496069

[18] Guo L, Chen S, Zhang X (2006) Design and Evaluation of a Scalable and
Reliable P2P Assisted Proxy for On-Demand Streaming Media Delivery.
IEEE Transanctions on Knowledge and Data Engineering 18(5):669–682,
DOI http://dx.doi.org/10.1109/TKDE.2006.79

[19] Guo Y, Yu S, Liu H, Mathur S, Ramaswamy K (2008) Supporting VCR
Operation in a Mesh-Based P2P VoD System. In: Proc. 5th Consumer
Communications and Networking Conference (CCNC), pp 452–457, DOI
10.1109/ccnc08.2007.107

[20] He Y, Lee I, Guan L (2008) Distributed Throughput Maximization in
Hybrid-Forwarding P2P VoD Applications. In: Proc. International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), pp 2165–
2168, DOI 10.1109/ICASSP.2008.4518072

[21] Huang C, Li J, Ross KW (2007) Can Internet Video-on-Demand be
Profitable? In: Proc. ACM SIGCOMM, vol 37, pp 133–144, DOI
10.1145/1282427.1282396

[22] Li B, Xie S, Keung G, Liu J, Stoica I, Zhang H, Zhang X (2007)
An Empirical Study of the Coolstreaming+ System. IEEE Jour-
nal on Selected Areas in Communications 25(9):1627–1639, DOI
10.1109/JSAC.2007.071203

[23] Liang W, Huang J, Huang J (2008) A Distributed Cache Management
Model for P2P VoD System. In: Proc. International Conference on Com-
puter Science and Software Engineering (ICCSSE), vol 3, pp 5–8, DOI
10.1109/CSSE.2008.1059

[24] Liao X, Jin H (2007) OCTOPUS: A Hybrid Scheduling Strategy for P2P
VoD Services. In: Proc. 6th International Conference on Grid and Coop-
erative Computing (GCC), pp 26–33, DOI 10.1109/GCC.2007.89

[25] Liao X, Jin H, Liu Y, Ni LM, Deng D (2006) AnySee: Peer-to-
Peer Live Streaming. In: Proc. IEEE INFOCOM, pp 1–10, DOI
10.1109/INFOCOM.2006.288

[26] Liu J, Rao SG, Li B, Zhang H (2008) Opportunities and Challenges
of Peer-to-Peer Internet Video Broadcast. In: Proceedings of the IEEE,
vol 96, pp 11–24, DOI 10.1109/JPROC.2007.909921

[27] Nafaa A, Murphy S, Murphy L (2008) Analysis of a Large-Scale VoD Ar-
chitecture for Broadband Operators: A P2P-Based Solution. IEEE Com-
munications Magazine 46(12):47–55, DOI 10.1109/MCOM.2008.4689207

[28] Parvez N, Williamson C, Mahanti A, Carlsson N (2008) Analysis
of Bittorrent-like Protocols for On-Demand Stored Media Streaming.

26 Yuan Feng and Baochun Li

SIGMETRICS Performance Evaluation Review 36(1):301–312, DOI
10.1145/1384529.1375492

[29] Pugh W (1990) Skip Lists: A Probabilistic Alternative to Balanced Trees.
Communications of the ACM 33:668–676

[30] Silverston T, Fourmaux O, Crowcroft J (2008) Towards an Incentive
Mechanism for Peer-to-Peer Multimedia Live Streaming Systems. In:
Proc. 8th International Conference on Peer-to-Peer Computing (P2P),
pp 125–128, DOI http://dx.doi.org/10.1109/P2P.2008.25

[31] Vratonjić N, Gupta P, Knežević N, Kostić D, Rowstron A (2007) En-
abling DVD-like Features in P2P Video-on-Demand Systems. In: Proc.
Workshop on Peer-to-Peer Streaming and IP-TV (P2P-TV), pp 329–334,
DOI 10.1145/1326320.1326326

[32] Wang D, Liu J (2008) A Dynamic Skip List-Based Overlay for
On-Demand Media Streaming with VCR Interactions. IEEE Trans-
actions on Parallel and Distributed Systems 19(4):503–514, DOI
http://dx.doi.org/10.1109/TPDS.2007.70748

[33] Wang M, Li B (2006) How Practical is Network Coding? In: Proc. 14th
International Workshop on Quality of Service (IWQoS), pp 274–278, DOI
10.1109/IWQOS.2006.250480

[34] Wang M, Li B (2007) R2: Random Push with Random Network Cod-
ing in Live Peer-to-Peer Streaming. IEEE Journal on Selected Areas in
Communications 25(9):1655–1666, DOI 10.1109/JSAC.2007.071205

[35] Wu C, Li B, Zhao S (2007) Characterizing Peer-to-Peer Streaming Flows.
IEEE Journal on Selected Areas in Communications 25(9):1612–1626,
DOI 10.1109/JSAC.2007.071202

[36] Wu C, Li B, Zhao S (2008) Multi-Channel Live P2P Streaming: Refocus-
ing on Servers. In: Proc. of IEEE INFOCOM, pp 1355–1363

[37] Ying L, Basu A (2005) pcVOD: Internet Peer-to-Peer Video-On-Demand
with Storage Caching on Peers. In: Proc. 11th International Coference
on Distributed Multimedia Systems (DMS), pp 218–223

[38] Zhang M, Luo JG, Zhao L, Yang SQ (2005) A Peer-to-Peer Net-
work for Live Media Streaming Using a Push-Pull Approach. In: Proc.
13th ACM International Conference on Multimedia, pp 287–290, DOI
10.1145/1101149.1101206

[39] Zhang X, Liu J, Li B, Yum YS (2005) CoolStreaming/DONet: A
Data-Driven Overlay Network for Peer-to-Peer Live Media Stream-
ing. In: Proc. IEEE INFOCOM, vol 3, pp 2102–2111, DOI
10.1109/INFCOM.2005.1498486

[40] Zhou Y, Chiu DM, Lui J (2007) A Simple Model for Analyzing P2P
Streaming Protocols. In: Proc. 15th International Conference on Network
Protocols (ICNP), pp 226–235, DOI 10.1109/ICNP.2007.4375853

