1702

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 7, JULY 2020

Razor. Scaling Backend Capacity
for Mobile Applications

Yanijiao Chen

, Member, IEEE, Long Lin, Student Member, IEEE, and Baochun Li

, Fellow, IEEE

Abstract—The dramatic growth of mobile application usage has posed great pressure on application developers to better manage
their backend capacity. Rule-based or schedule-based auto-scaling mechanisms have been proposed, but it is difficult or expensive

to frequently adjust the backend capacity to track the burstiness of mobile traffic. In this paper, we explore a fundamentally different
approach. Instead of scaling the backend in line with the mobile traffic, we smooth out traffic profiles to reduce the required backend
capacity and increase its utilization. Our proposed solution, called Razor, is inspired by two key insights on mobile traffic. First, mobile
traffic exhibits high short-term fluctuations but steady long-term trend, so that we may temporarily delay user requests and periodically
adapt backend capacity based on the predicted traffic volume. Second, user requests have different priorities: while some requests are
urgent (e.g., sending a message), some are delay-tolerant (e.g., changing the profile photo) and can be postponed without much
influence on the user experience. Based on these observations, our design features a two-tier architecture: on a long timescale, Razor
predicts future traffic using machine learning algorithms and plans the optimal backend capacity to minimize the budget with performance
guarantee; on a short timescale, Razor schedules which requests to delay and by how much time to delay according to their delay
tolerance. We implement a fully-functional prototype of Razor, and evaluate its performance with both real and synthetic traces.
Extensive experimental results show that Razor can effectively help mobile application developers reduce their backend cost while

guaranteeing the user experience.

Index Terms—Mobile application, backend management, dynamic request scheduling

1 INTRODUCTION

CONSUMERS worldwide downloaded 149 billion mobile
applications to their connected devices in 2016, and it is
projected that 353 billion will be downloaded per year by
2021 [1]. For mobile application developers, there are mainly
two concerns: frontend design and backend support. As
shown in Fig. 1, users interact with the frontend, a user-
friendly interface, and the operations will be sent via applica-
tion programming interface (API) requests to the backend for
processing.

Managing the backend is of significant importance to
mobile application developers, whose objective is to main-
tain service quality at the lowest possible budget. Normally,
the backend of mobile applications can be built on ready-
made and customizable Infrastructure-as-a-Service (IaaS)
cloud platforms (e.g., Amazon EC2 [2], Google Compute
Engine [3]) or Mobile-backend-as-a-Service (MBaaS) cloud
platforms. These cloud platforms provide on-demand cap-
acities and adopt the pay-as-you-go model. For example,
Amazon EC2 charges users for compute capacity by the hour
or second. In addition, it takes several minutes to start or ter-
minate an instance, making it difficult or impossible to adjust

o Y. Chen and L. Lin are with the School of Computer Science, Wuhan
University, Wuhan, Hubei 430072, P.R. China.
E-mail: {chenyanjiao, william_lin}@whu.edu.cn.

e B. Li is with the Department of Electrical and Computer Engineering,
University of Toronto, Toronto, ON M5S 3G4, Canada.
E-mail: bli@ece.toronto.edu.

Manuscript received 11 Mar. 2018; revised 1 Apr. 2019; accepted 11 Apr.
2019. Date of publication 17 Apr. 2019; date of current version 3 June 2020.
(Corresponding author: Yanjiao Chen.)

Digital Object Identifier no. 10.1109/TMC.2019.2911935

the backend capacity quickly, enough to track real-time fluc-
tuations in user request demand [4]. All these factors make it
challenging for mobile application developers to manage the
backend in a cost-effective way.

Several solutions have been proposed to address the
mismatch between fluctuated user traffic and capacity pro-
visioning. These solutions can be broadly classified into
two categories: dynamic resource adaptation and user
traffic scheduling. However, existing approaches in the
literature have some limitations. Most academic solutions
related to dynamic resource adaptation fail to consider the
latency in adjusting backend capacities. Solutions from the
industry, on the other hand, are usually heuristic but
inefficient. For example, Autoscaling in Amazon EC2
allows developers to define policies to specify when and
how much to scale up or down the number of instances
(e.g., add one instance when the CPU utilization is greater
than 60 percent).

In contrast, an ideal autoscaling policy requires develop-
ers to have a much deeper understanding on the relationship
between user traffic and the required number of instances,
which is not available in most cases. Meanwhile, it is not
always beneficial (or economical) for developers to fre-
quently start or terminate instances, since the traffic peaks
are usually short-lived, and the instances are charged on an
hourly basis. Existing user traffic scheduling mechanisms
are mostly designed for jobs that would last for several
minutes with deadlines, but not mobile user requests that
have large volumes but short processing times.

In this paper, we take a different perspective to tackle this
problem. Instead of frequently altering backend configurations,

1536-1233 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The University of Toronto. Downloaded on May 19,2021 at 07:28:16 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-1382-0679
https://orcid.org/0000-0002-1382-0679
https://orcid.org/0000-0002-1382-0679
https://orcid.org/0000-0002-1382-0679
https://orcid.org/0000-0002-1382-0679
https://orcid.org/0000-0003-2404-0974
https://orcid.org/0000-0003-2404-0974
https://orcid.org/0000-0003-2404-0974
https://orcid.org/0000-0003-2404-0974
https://orcid.org/0000-0003-2404-0974
mailto:
mailto:

CHEN ET AL.: RAZOR: SCALING BACKEND CAPACITY FOR MOBILE APPLICATIONS

Mobile Device

Fig. 1. Application development: Frontend and backend.

we choose to smooth out mobile traffic to reduce the required
backend capacity and increase its utilization. We are inspired
by two key insights on mobile traffic. First, the burstiness of
mobile traffic is transitional, and the general trend can be
predicted. The usage of mobile applications often follows
diurnal patterns, and can be learned with historical data.
Instantaneous traffic burstiness may be handled by delaying
some user requests for a short period of time. Second, not all
user requests are “created equal.” For instance, in a messag-
ing application, users expect timely processing on requests
such as sending a message, but are less anxious about requests
such as changing the profile photo. During traffic peaks, pri-
oritizing urgent requests and postponing delay-tolerant
requests may not necessarily result in a degraded user expe-
rience. These two observations motivate us to help develop-
ers make suitable decisions on backend capacity planning
and user request scheduling.

In this paper, we present Razor, a new backend manage-
ment mechanism that enables mobile application developers
to optimize underlying infrastructures while maintaining
service quality. Based on our key insights, Razor features a
two-tier structure. On a long timescale, Razor periodically
predicts future mobile traffic using machine learning
algorithms and derives the optimal backend capacity for the
developer to make the appropriate adjustment in the next
time period. On a short timescale, Razor reduces the instanta-
neous peak traffic by deciding which user requests to delay,
and by buffering these requests with their delay-tolerance
restriction.

Highlights of our original contributions are as follows.
First, with Razor, we are able to help mobile application devel-
opers address the dynamic backend capacity management

6000

5000 -

in]

4000 -

9%

(=3

(=3

(=}
T

2000

Traffic [req/m

1000 §

0 24 48 72 96 120 144 168 192 216 240
Time (Hour)

Fig. 2. Traffic fluctuations and diurnal pattern.

1703

Backend
Service

Database

Backend
Service

problem with less cost. Second, our algorithm smooths out the
peak load in backend, without compromising the quality-
of-experience from the perspective of mobile users. Finally,
Razor allows the backend to handle different delay-toler-
ance requests with rescheduling, which increases backend
utilization.

The remainder of the paper is organized as follows.
Section 2 describes the background of this work and presents
an overview of Razor’s design. Section 3.1 demonstrates our
solution for optimal capacity planning. Section 3.2 compares
four machine learning algorithms and Section 3.3 introduces
a new request scheduling mechanism in the backend.
Section 4 resolves implementation issues of Razor. Section 5
provides an extensive evaluation of Razor using three differ-
ent traffic traces. Section 6 discusses the limitations of Razor.
Section 7 reviews related work in the context of this paper.
Section 8 finally summarize the paper.

2 BACKGROUND

2.1 Mobile Traffic

Mobile traffic features significant short-term variations and
steady long-term trend. An analysis on real-world mobile
traffic traces is presented in [5]. It is shown that the mobile
data traffic exhibits burstiness over short timescale (e.g., 30
seconds) and demonstrated that to delay mobile traffic for a
few seconds will not affect user experience. Similar observa-
tions are made in some other works that use unpublished
private datasets. In Fig. 2, we plot the requests per-minute
of the World Cup 1998 website access records [6]. It is clear
that the traffic has a diurnal pattern but with instant wild
fluctuations. The general trend enables us to predict future
mobile traffic based on historical data, and the short-term
burstiness can be smoothed through request delay.

2.2 Auto Scaling

Mainstream cloud service providers [7], [8] have offered
rule-based (e.g.,, CPU utilization thresholds) or schedule-
based (e.g., time-of-the-day) auto-scaling mechanisms that
allow developers to scale the capacity up or down automati-
cally according to predefined policies. Amazon Web Service
(AWS) offers Auto Scaling, a rule-based auto-scaling mecha-
nism that enables developers to use one or more perfor-
mance metrics to define a scaling up or scaling down policy.
The developer should specify the threshold, the time for the
conditions to last to trigger the scaling, and the actions to
take. These autoscaling mechanisms seem simple but are

Authorized licensed use limited to: The University of Toronto. Downloaded on May 19,2021 at 07:28:16 UTC from IEEE Xplore. Restrictions apply.



1704

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 7, JULY 2020

Mobile Device

User Request

Smartphone

Request

Request
Scheduler

Information Table

Backend Capacity Planning

T

Future E
Demand Prediction !

Optimal Capacity

Fig. 3. Architecture of Razor.

inefficient in practice. To designate an ideal autoscaling pol-
icy, the developer needs to have a deep understanding of the
relationship between the mobile traffic and the backend
capacity, which is largely unavailable. For instance, the traf-
fic fluctuations may lead to high or low CPU utilization.
Nevertheless, it may not be necessary to scale up or down
the capacity as the fluctuations may be momentary. Further-
more, even if capacity scaling is required, it is not sure how
much capacity to scale up or down. Thus it is difficult for
developers to take advantage of such autoscaling mecha-
nisms for efficient backend management.

2.3 Startup and Shutdown Time

Another concern is the latency in backend capacity adjust-
ment in the cloud environment. The time it takes to increase
or decrease the number of instances is influenced by various
factors such as the instance type, the OS image size, and the
number of instances in concern. It is shown in [4] that the
startup time of an instance can be as high as 15 minutes. Our
experimental results is given in Fig. 4, showing that it takes
more than one minute to launch or terminate an instance,
during which the mobile traffic may have already changed.
In Fig. 4, we can observe that the number of instances only
slightly increases the launching or termination latency, while
the type and family (i.e., t2 or c4) of instances has a more
appreciable influence. Understanding the latency help Razor
to plan ahead and make better resource provisioning
decisions.

2.4 Pricing Model

Cloud platforms adopt a pay-as-you-go billing model, i.e.,
developers need to pay for their resource usage. For instance,
Amazon EC2 offers on-demand instances, spot instances,
reserved instances and dedicated hosts, each with a different
pricing model [9]. Throughout this paper, we focus on the
on-demand instance. Amazon on-demand EC2 instances
usually charges users for compute capacity by the hour,
namely each partial instance-hour consumed will be billed as
a full hour or per-second. Additionally, users are charged
from the time instances are launched until they are termi-
nated or stopped. In other words, startup and shutdown time

will also be charged. Therefore, it is critical for developers to
make careful decisions on whether or not to scale up or down
the backend capacity.

2.5 Architecture

Fig. 3 illustrates the two-tier architecture of Razor: long-
term backend capacity planning and short-term request
scheduling.

Backend capacity planning is conducted periodically on
a relatively long timescale, e.g., per hour, since it is either
difficult or costly to frequently change the backend capacity.
The objective is sufficient capacity provision with reduced
cost. The optimal backend capacity for the next time stage is
calculated based on the predicted future mobile traffic and
the delay-tolerance of each type of requests specified by the
developer.

Request scheduling is performed on a short timescale,
e.g., per minute, to smooth the short-term peaks by prioritiz-
ing delay-sensitive requests and buffering delay-tolerant
requests based on the request dynamics. Such request sched-
uling aims at reducing the peak-to-average ratio of requests
within the current time stage, but is not designed for persis-
tent request congestion, which will be prevented through
periodic backend capacity adjustment.

3 RAZzOR: SYSTEM DESIGN

In this section, we first present the optimization model that
minimizes the cost of backend under constraints of request
delay. We then proceed to describe how future request
demand can be predicted, and to evaluate the performance
of different machine learning algorithms. Finally, we show
how dynamic request scheduling can be performed.

3.1 Backend Capacity Optimization

We define the backend capacity as the maximum number of
requests that can be served per minute, which is closely
related to the cost of the backend (e.g., the number of instan-
ces required on Amazon EC2). We assume that backend
capacity planning is conducted every hour, and the devel-
oper will be notified of the optimal backend capacity for the

Authorized licensed use limited to: The University of Toronto. Downloaded on May 19,2021 at 07:28:16 UTC from IEEE Xplore. Restrictions apply.



CHEN ET AL.: RAZOR: SCALING BACKEND CAPACITY FOR MOBILE APPLICATIONS

50
40

30
20
10
0

1 2 3 4 5

Number of instance

B (2.nano t2.micro t2.small

Latency (Second)

B c4large

30
20
10
0

1 2 3 4 5

Number of instance

c4.4xlarge c4.8xlarge

Latency (Second)

(a) Launch instances

120

B (2.nano t2.micro t2.small

90

) I I I I I
0
1 2 3 4 5

Number of instance

Latency (Second)
[*X)
(=]

120 W c4large

; | | | | |
0
1 2 3 4 5

Number of instance

c4.4xlarge c4.8xlarge

Latency (Second)
D
(=]

(b) Terminate instances

Fig. 4. Time for launching or terminating instances.

next hour with enough time to make the adjustment. The
adjustment can also be automated through an API overlay-
ing the existing autoscaling mechanisms in public cloud
platforms.

Let N denote the required backend capacity, to be deter-
mined by the optimization model. The developer classifies
all possible requests of the application into K types accord-
ing to their delay tolerance, and feed the designated request
types as input to Razor. An hour consists of i = 1,2,...,60
minutes, during which the backend capacity is fixed. Let n*
denote the estimated number of type k requests that will
arrive at the ith minute in the next hour. Without Razor, to
guarantee the performance of the backend, the developer
has to make sure that the backend capacity is greater than
the peak demand, i.e., N > max; >, n.

We make the simplified assumption that all requests gen-
erated in a specific hour will be served within that hour. In
other words, during the current hour, the backend will nei-
ther handle requests from the previous hour, nor put off
requests to the next hour. At the ith minute, let éfj € [0,1]
denote the proportion of the n¥ requests that will be post-
poned to the jth minute. All requests to be served at the jth

1705

minute, denoted by IN;, include those deferred from the pre-
vious minutes to the jth minute, and those generated and
instantly served in the jth minute, i.e., N; = /-] "8 | Shmlk+
1 8knk =320 ST 8Enk. To guarantee the performance
of the backend, its capacity should be larger than the peak
demand after request scheduling, i.e., N > maxe; 65 IV;.
Razor classifies requests from the frontend according to
the impact of their delay on the quality of service experienced
by users. To illustrate this, we consider the following main-
stream traffic classes with different delay tolerance (tolerant
to urgent): (a) Streaming requests (e.g., video streaming).
Since streaming data is often buffered beforehand, these
requests are delay tolerant when their playback buffer is not
empty. (b) Download requests (e.g., large file download). As
large file downloading usually runs in the background, these
requests can tolerate short delays since users usually expect
to wait a little while for the download to complete. (c) Batch
requests (e.g., batch database batch query). The results to the
batch query can be returned in several parts with certain
delay. (d) Large page requests (e.g., web browsing [5]). Due
to their small size, mobile devices can only display a small
portion of a website at any given time, thus off-screen con-
tents can be downloaded a little bit later without impacting
the user experience. (e) Customized requests (e.g., changing
account information). The app developer can specify delay
tolerance for customized requests based on use case.
Delaying requests for a long time will affect the user expe-
rience, thus the developer needs to have a control over how
many and how long a certain type of requests can be delayed.
Razor allows the developer to set the upper-bound of SZ as
8;“]-, which depends on the request type k and the length of
delay j— . For instance, in a web browsing application,
mobile devices like smartphones and tablets can display
only a small portion of the whole webpage at a given time
due to their small screen sizes. Requests for contents that
will be shown on the screen are the most urgent type of
requests and should not be delayed, so that the developer

download showing content
F) :

can simply set Vj > 4, = 0; if no request
should be delayed for more > than 2 minutes, the developer
can simply stipulate that V&, 8:‘] =0,if j—i > 2.

As the backend cost will monotonically increase with the
backend capacity, we set the objective of Razor as to mini-
mize the required backend capacity, without violating the
constraint on 81?]. designated by the developer

min N, (@]
sk
ij
subject to N > max Nj, 2)
je[160]
J_ K
Ny =00 sknk v, (3)
=1 k=1
60
> 8l =1,V k, @
Jj=i
0 < 8f < 8%, Vi, vy, Vk. (5)

Constraint (2) guarantees that the backend capacity is
greater than the smoothed peak demand. Constraint (4)
ensures that all the requests initiated in the ith minute are

Authorized licensed use limited to: The University of Toronto. Downloaded on May 19,2021 at 07:28:16 UTC from IEEE Xplore. Restrictions apply.



1706

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 7, JULY 2020

4 No Razor ® Razor

1500
—_ Capacity without Razor_
=
‘S 1275
£
=
)
J=, 1050
=
E 825
=

600

10 20 30 40 50 60
Time (Minute)

Fig. 5. Request demand smoothing by Razor.

served, either instantly or in later minutes. The objective
function is minimized through variables Sfj, and we can get
the optimal baqkenil capacity as N* = max;e[ o)V, in which
N = I Zile Sfj n¥. The optimization problem (1) is a lin-
ear programming problem, and can be solved by existing
algorithms such as Simplex and Interior point algorithms.
Fig. 5 gives an example of how the backend capacity optimi-
zation of Razor works with the FIFA trace. It is shown that
the demand profile is smoothed and the required backend

capacity is lower.

3.2 Future Demand Prediction

The expected number of requests generated at the ith minute
in the next hour is needed as input for the backend capacity
optimization. Network traffic prediction is a well-studied
problem, with many proposals for better and more expres-
sive prediction algorithms, which can be classified into two
categories: linear methods and nonlinear methods. The most
widely adopted linear prediction methods are based on
ARMA /ARIMA [10], [11], which heavily rely on the mean
values of historical series data. With the recent rise of
machine learning, there has been increased interest in non-
linear adaptive prediction methods based on machine learn-
ing algorithms [12], [13], which are able to capture the rapid
variations underlying the traffic load and outperform linear
methods. For instance, Neural Networks (NN) are widely
used for modeling and predicting network traffic since they
can learn complex non-linear patterns and unusual traffic
patterns thanks to their strong self-learning and self-
adaptive capabilities.

In this paper, we leverage machine learning algorithms to
predict future demand based on historical data. There is a
wide variety of machine learning algorithms for data predic-
tion, each of which has their advantages and disadvantages.
We focus on four widely-used algorithms: linear regression
(LR), single-hidden-layer multilayer perceptron (sMLP),
deep belief networks (DBN), and convolutional neural net-
works (CNN). Linear regression and sMLP are simple
machine learning models, while DBN and CNN are deep
learning models. In addition, we discuss the compromise
between the desired prediction accuracy and training time of
the four machine learning algorithms.

Historical data are collected in the form of the number of
requests generated in each minute. The input vector z to the
machine learning model should contain the best predictors for
nk. Two potential factors should be taken into consideration.

One is temporal-proximity, i.e., the most recent demand indi-
cates the near future. The other is diurnal effect, i.e., demands
at the same time of each day have a similar trend, as shown
in Fig. 2. Therefore, we use the demand of the previous two
hours and the demand around the same time of the previous
two days as the input vector to predict n, i.e., z = (nl 4,

nk o ,nk nk nk n¥ )
© 0 TUi—610 "%—1440—1800 * * 0 TPi—1440+179> i—1440%2—1800 * * * TYi—1440%24+179 /7
and Y = n’. Furthermore, we normalize entries in the input
vectors as x — x/max{n}}.

In this paper, we use the World Cup 1998 trace during
April 30, 1998 ~ July 26, 1998 to evaluate the performance of
the four machine learning models. The World Cup trace con-
sists of access logs and we count the number of request gener-
ated in each minute as one sample. Thus, there are 80,000
samples for training, 20,000 samples for validation, and
20,000 samples for testing. We run the four machine learning
algorithms on a desktop computer with a 3.6 GHz Inter Core
i7-4790 CPU and 8 GB memory. As shown in Fig. 6a, deep
learning models outperform simple models in terms of accu-
racy, since deep learning models are more powerful in dis-
covering the intricate relationship between the input and the
output. As shown in Fig. 6b, the training time of deep learn-
ing models is far higher than that of simple models, which is
not surprising since the deep learning models contain far
more parameters to be learned. The training time of DBN and
CNN also depends on the choice of the number of layers and
neurons in each layer. Though the training time diverges con-
siderably, given a new input, it takes almost the same time
(less than a second) for the trained models of all four algo-
rithms to yield the prediction result. Therefore, it is possible
for Razor to re-train the deep learning models on a daily or
weekly basis, and use the trained model for online prediction.

3.3 Dynamic Request Scheduling

After the optimal backend capacity has been calculated
according to Equation (1), the developer will adjust the
instance configuration on Amazon EC2 accordingly, and
such backend capacity will be fixed for the next hour. Given
the backend capacity for the hour, to ensure that the backend
will not be overwhelmed by the instantaneous request
demand, we design and implement a dynamic request sched-
uling strategy.

Razor schedules requests from users based on the back-
end capacity and delay tolerance of these requests. The
requests of a more delay-sensitive type get a higher priority
and will be scheduled earlier. The most urgent requests will

Authorized licensed use limited to: The University of Toronto. Downloaded on May 19,2021 at 07:28:16 UTC from IEEE Xplore. Restrictions apply.



CHEN ET AL.: RAZOR: SCALING BACKEND CAPACITY FOR MOBILE APPLICATIONS

100

Accuracy (%)

LR sMLP CNN DBN
(a) Prediction accuracy

[\ (O8] S W
o (] o o

Training Time (Minute)
S

LR sMLP CNN DBN
(b) Training Time

Fig. 6. Prediction accuracy and training time.

be handled instantly without delay, and the most delay-tol-
erant requests will be postponed for a relatively longer
period of time. For requests with the same delay tolerance,
those with an earlier arrival time will get a higher priority.
As shown in Fig. 7, at each minute ¢, the requests in the
system are in one of the four states: new arrivals, pending,
processing and finished. At the beginning of minute ¢, there
are R(t) requests being processed, F'(t) new arrivals and P(t)
pending requests. First of all, the most urgent type of requests
should not be delayed, thus the backend will process these
request immediately. In addition, an initial priority will be
assigned to each request in the pending status according to
their delay tolerance. A delay-sensitive request will have a
higher initial priority, and a delay-tolerant request will have
a lower initial priority. The priority of pending requests will
increase along with time. During minute ¢, N — R(t) requests

1707

with the highest priority (either pending or new arrival
requests) will be launched into the processing status. The
new arrivals with lower priority are then pended, and some
pending requests remain pended until the next time slot.
During minute ¢, a proportion 6 of the requests in the process-
ing state will be finished, while the remaining (1 — 6)R(t)
requests will still be under processing.

A major problem facing dynamic request scheduling on
the backend is that the new backend capacity calculated
based on the optimization problem (1) may not be able to
accommodate the newly arrived requests during the next
hour. More specifically, future request demand cannot be
precisely predicted, and it is possible that the real traffic is
higher than expected. To mitigate this problem, we design a
threshold-based request scheduling mechanism as summa-
rized in Algorithm 1.

Algorithm 1. Threshold-Based Dynamic
Scheduling Algorithm

Request

Input: Newly-arrived requests r;, capacity for each minute N,
number of time slots T', threshold n < N/T.
1: Calculate the available capacity for each time slot as
c=N/T.
2: if Request r; is most urgent then
3:  Process request r; instantly.
4:  Update the threshold n = n — 1.
5. Update the available capacity ¢ = ¢ — 1.
6: end if
7: if Request r; is delay-tolerant then
8:  if Pending queue is empty and n is non-zero then
9: Process request r; instantly.
10: Update the threshold n = n — 1.
11: Update the available capacity ¢ = ¢ — 1.

12:  else

13: Put request r; into the pending queue.
14:  endif

15: end if

16: Rank requests in the pending queue in a non-ascending
order of priorities.

17: if ¢is non-zero then

18:  Process the first ¢ requests in the pending queue.

19: end if

We divide each minute into 7" smaller time slots, say 5
seconds, so the capacity for each time slot will be N/T. The
granularity of the time slot should be small, since newly-
arrived requests that are delay-tolerant will be buffered in a
queue to be scheduled based on their priority, which means

Pending - —

B _|
y (U-ORO

A

Processing >

Finished

OR(t)

I
|
: | 4
I |
|
4

—->

New arrivals |~ —

F(t)

Fig. 7. Dynamic request scheduling.

Authorized licensed use limited to: The University of Toronto. Downloaded on May 19,2021 at 07:28:16 UTC from IEEE Xplore. Restrictions apply.



1708

8000

=+ 2 micro
=B t2.medium|
-2 xlarge

6000

4000

Capacity

2000

1 2 3 4 5 6 7 8
Number of instances

Fig. 8. Relationship between the backend capacity and the number of
needed instances.

that these requests will be delayed for at least one time slot.
The most urgent newly-arrived requests will be processed
instantly in any circumstances to avoid user experience deg-
radation. We set a threshold n < N/T for dynamic request
scheduling. If the pending queue is empty and there are
fewer than n requests being processed in the current time
slot, other newly-arrived requests will be processed instantly;
otherwise, these newly-arrived requests will be put into the
pending queue, ranked in a non-ascending order of priorities
that are jointly determined by the delay tolerance and arrival
time. Requests in the pending queue will be scheduled later
according to their priorities.

4 IMPLEMENTATION

In this section, we first discuss issues of backend capacity
implementation on public cloud platforms, and then address
the problem of implementing dynamic request scheduling.

4.1 Backend Capacity Optimization
Backend Capacity Realization. In Section 3.1, we have derived
the optimal backend capacity in terms of the maximum num-
ber of requests that can be served in unit time. We need to
identify the number of instances needed in Amazon EC2 to
realize such an optimal backend capacity. In this paper, we
use t2 family of instances because it is commonly used in
almost all existing general-purpose workloads, e.g., websites
and mobile applications. There is a wide selection of instance
types provided by AWS, and developer can select an optimal
instance type for their applications and exploit the relation-
ship between the backend capacity and the number of needed
instances as follows. We adopt the autoscaling policy of AWS
and set the CPU utilization threshold as 50 percent, i.e., we
fix the number of instances as o and gradually increase the
number of requests to see when the CPU utilization will hit
50 percent. In this way, we can get the maximum number of
requests N(«) that can be served by « instances. In turn, it is
indicated that to realize a backend capacity of N(«), a number
of « instances are needed. Through experiments, we can
obtain the relationship between the backend capacity and the
number of needed instances as shown in Fig. 8. It is shown
that the backend capacity is approximately a linear function
of the number of instances, and the slope of the linear func-
tion depends on the type of instances.

Backend Capacity Adjustments. 1If the optimal backend
capacity for the next hour turns out to be the same as that of

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 7, JULY 2020

the current hour, the developer does not have to make any
changes. If the optimal backend capacity for the next hour is
higher or lower than that of the current hour, the developer
can increase or decrease the number of instances according
to the relationship between the backend capacity and the
number of needed instances as discussed above. More spe-
cifically, when scaling down backend capacity, the devel-
oper should choose which instances to shut down. Razor
closely monitors the operation time of each instance and
selects the instances that are approaching full hour as poten-
tial ones to terminate. In our implementation, we set one
hour as the cycle for backend capacity optimization and
adjustment. Considering the launching and termination
latency as shown in Fig. 4 and the time to solve the optimiza-
tion problem, we perform backend capacity optimization 10
minutes before the upcoming hour. We dynamically scale up
or down the number of instances in the cloud by changing
the configuration file base on Section 3.1. We also record his-
torical request processing time and request information as
the basis to improve the system performance.

4.2 Request Scheduling Cost

In our request scheduling mechanism, we use a queue to
temporarily buffer delay-tolerant requests, which will lead
to storage overhead. We analyze this storage overhead under
two different circumstances: queue in memory and queue in
disk.

In order to make full use of the CPU and memory, we keep
all requests in the memory (newly arrived, pending, and in-
processing requests) in our implementation. In this way, we
can reduce latency as much as possible, and such latency is
also evaluated through experiments in Section 5. In our
implementation, we find that the memory of the instances
deployed according to our optimal backend capacity plan-
ning is enough for queueing the requests during dynamic
request scheduling. Therefore, there is no extra cost since the
instances have already been paid for. In the case that a huge
number of requests have arrived such that a large space is
needed for request buffering, we may need to save some of
the requests in disk using serialization. This might cause
additional cost but it is much cheaper than the payment for
instances in the cloud.

5 PERFORMANCE EVALUATION

In this section, we first develop a testbed of Razor on Amazon
EC2 on-demand instances, then compare Razor with two
benchmarks in terms of the backend cost and utilization,
using both real and synthetic datasets. We also evaluate Razor
under different parameter settings.

5.1 Testbed

The testbed of Razor is developed using the t2.micro on-
demand instance in the US west (Oregon) in Amazon EC2
with 1 vCPU, 1 GiB memory [9]. To simulate backend, we
created an Amazon Machine Image (AMI), where a shell
script is added to /etc/rc.laocal so that Razor can keep run-
ning once the instance is launched using this AMI. To record
the real delay of every request, we created a mysql database
in Amazon Relational Database Service (RDS), where we can
note down every request log from each instance in service.

Authorized licensed use limited to: The University of Toronto. Downloaded on May 19,2021 at 07:28:16 UTC from IEEE Xplore. Restrictions apply.



CHEN ET AL.: RAZOR: SCALING BACKEND CAPACITY FOR MOBILE APPLICATIONS

161 18000
|—Razor-"-Auto*'Max Trafﬁcl .
127 !
S 16000 —
= g
S
@ E
2 Laooo £
" 4000 =
S LE 2
2 40 b=}
s =
B &
= 12000
ot
0 160 320 480 640 800 960 1120 1280 1440
Time (Minute)
(@
167 18000
—Razor - Auto—-Max__ Traffic]
v
<9 —
= 5
g £
@ =
£ g
2 £
s <
2z (=
5 12000
ot
0
0 160 320 480 640 800 960 1120 1280 1440
Time (Minute)
(b)
207 18000
—Razor - Auto—-Max Trafﬁc|
16}
° 4
o 5 1716000 —
E 12 L 2
3 L 5
= R -;__‘__ 53
2 14000 =
g, E
% o
£ 12000 &

0 480 960 1440 1920 2400 2880 3360 3840 4320
Time (Minute)

(©)
Fig. 9. Comparison of Razor, Autoscaling, and Maxscaling when the traf-
fic is drawn from three datasets. The graph shows the traffic and the

number of instances in service. (a) Poisson dataset. (b) Uniform dataset.
(c) The World Cup 1998 trace.

We use the collected data trace as input to the optimization
problem in Equation (1). We use bills from Amazon to show
the real cost. Since Amazon EC2 does not break the bills into
individual requests, we do not report the cost of each request
but the overall cost.

We have developed a series of test generator, each of
which can send emulated traffic that consists of different
types of requests, such as resource request, database requests
and so on. We divide them into K = 5 types: type 1 requests
are the most urgent and type 5 requests are the most delay-
tolerant. No request should be delayed for more than 2
minutes, and maximum delayed time of type 1 — 5 requests
is 10, 30, 60, 90 and 120 seconds, respectively.

We choose two benchmarks to compare with Razor: peak
scaling (Maxscaling) and Autoscaling in AWS [7]. In
Maxscaling, we allocate enough EC2 instances to scale the
backend capacity to meet the (predicted) peak demand in the
upcoming hour and the number of instances are updated
hourly. For Autoscaling in AWS, we choose the rule-based
autoscaling mechanism, and the number of instances can
change at any time once the autoscaling policy is triggered.

1709

Autoscaling policies in AWS are set as follow: 1) scale-down
policy: remove 1 instance when the average CPU utilization
is between 10 and 20 percent for 600 seconds, remove 2
instance when the average CPU utilization is between 0 and
10 percent for 600 seconds; 2) scale-up policy: add 1 instance
when the average CPU utilization is between 50 and 60
percent for 300 seconds, add 2 instances when the average
CPU utilization is between 60 and 80 percent for 300 seconds,
add 3 instances when the average CPU utilization is between
80 and 100 percent for 300 seconds. To maintain a reasonable
user experience, we target at a CPU utilization of no more
than 50 percent. In other words, we keep each instance run-
ning at no more than 50 percent capacity. Note that there are
potentially infinite number of ways to set the autoscaling pol-
icies in AWS. We have experimented with numerous differ-
ent policies, and choose the one with the best performance
for comparison.

5.2 Dataset

Since the patterns of mobile traffic are infinite, we adopt
three different datasets for a fair comparison, including one
real and two synthetic dataset for evaluation.

Real Dataset. Web browsing applications are one of the top
generators of mobile traffic [5]. Unfortunately, to the best of
our knowledge, there is no public traces of mobile web appli-
cation traffic. To emulate the real-world traffic, we use the
World Cup trace to evaluate Razor, as mentioned in Section
3.2. This trace has been extensively used in the literature. It
contains all HTTP requests made to the World Cup website
in 92 days. During this period, the website has received
1,352,804,107 requests. In our future demand prediction, we
need to calculate the aggregate number of requests per min-
ute from these traces for training and prediction.

Synthetic Dataset. As poisson and uniform distribution are
often used to model distributions of users for network serv-
ices [14], [15], we generate a poisson and a uniform distribu-
tion dataset as follows. Assume that there are 100 users, each
generating requests according to a poisson or a uniform dis-
tribution. For each type of requests, we first generate a series
of values with a diurnal pattern (low demand at working
time, and high demand at leisure time), to represent the
request arrival rate at different time of a day for an average
user. Then, we compute the arrival rate for each individual
user. To simulate the burstiness over a short timescale, we
add noises to the arrival rate of the average user. Finally,
aggregating the number of requests from all users at each
minute yields the request demand dataset.

5.3 Simulation Result

Costs. Fig. 9 shows how the backend capacity changes as the
traffic changes. It is obvious that the number of instances
increases or decreases whenever the traffic goes up or down.
Compared with Maxscaling, Razor always allocates fewer
instances. In order to match the request demand, Autoscaling
changes the backend capacity more frequently than the other
two mechanisms when request demand fluctuates dramati-
cally. But such actions always fall behind the traffic changes
because of the rapidly-changing request demand and the
latency in launching or terminating instances. Razor periodi-
cally (per hour) plans the optimal backend capacity in
advance and the resulting backend capacity closely matches

Authorized licensed use limited to: The University of Toronto. Downloaded on May 19,2021 at 07:28:16 UTC from IEEE Xplore. Restrictions apply.



1710
3 T T T T T T T
©ORazor
2.5 'AAuto ,E]
ElMax = A\
2 - AT

H
\
e

Cost (Dollar)
"

o
W

0 3 6 9 12 15 18 21 24

Time (Hour)
(a)
©Razor|

2.5 A Auto 1
™ ElMax A0
S 2 -
3 A
el 5 B H A “““ -)
< | F AT
S 1r s A
S

05 0 SHl L 1

op e 1 1
0 3 6 9 12 15 18 21 24

Time (Hour)
(b)
H

7 =

! A
= )
=5
(=
64 “““
Z3
S

1

0 9 18 27 36 45 54 63 72
Time (Hour)

(©)

Fig. 10. Accumulated cost of Razor, Autoscaling and Maxscaling for
three datasets. (a) Poisson dataset. (b) Uniform dataset. (c) The World
Cup 1998 trace.

the incoming traffic with the least required instances. We can
observe that Razor may deploy a larger number of instances
(at the start of the hour) than AWS autoscaling if Razor pre-
dicts that the demand in the next hour is high. But on average,
Razor will deploy a lower number of instances than AWS
autoscaling since AWS autoscaling may respond to a burst of
traffic by adding too many instances while Razor changes the
configuration less frequently and more properly by carefully
predicting future traffic demand.

In this experiment, we measured the average costs per
hour and accumulated costs by different scaling schemes in
the cloud. Fig. 11 shows that when the request demand

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 7, JULY 2020

O Razor .o

o || 2 Aue N Lot
L 12 (Lo Max - o ..
H > B. AoAD
= o LA O ..o
w8 ) 3 A 0 0---0° A A
£ o.. o O DA PRI S .
H O...A e ¢
a A ATV DL BB

4 Aol

0

0 3 6 9 12 15 18 21 24
Time (Hour)
(a)
16
G Razor

b || 2 Awe o
12 (Lo Max B, 0%
5 y )
H
2 s
N
H

4

(b)

O Razor
16 || & Auto
O Max

Billing hour

Time (Hour)

©

Fig. 11. Billing hours of Razor, Autoscaling and Maxscaling for three data-
sets. (a) Poisson dataset. (b) Uniform dataset. (c) The World Cup 1998
trace.

follows the Poisson dataset and Uniform dataset, Razor
always uses fewer billing hours than Autoscaling and
Maxscaling. This result confirms that Razor can make proper
decisions for backend planning. Fig. 10 shows the accumu-
lated costs for the three scaling mechanisms. All the experi-
mental results on three datasets show a similar trend in
accumulated costs. When the request demand follows the
World Cup trace, Razor incurs 16.5 percent less cost than
Autoscaling and saves 25.4 percent cost compared to
Maxscaling. Overall, Razor outperforms the other two base-
lines and achieves the least cost. The benefits of Razor stem
from optimally planning backend capacity.

Backend Ultilization. Razor performs capacity adjustment
according prediction to minimize the incurred cost. This, in
turn, improves the average backend utilization. Fig. 12 shows
the backend utilization achieved by the three scaling mecha-
nisms, computed on an hourly basis. Processed requests are
calculated as utilized capacity while others are not. Autoscal-
ing and Maxscaling have lower backend utilizations as they
request developers to set more instances to handle user
requests. Most of the time, Razor has the highest backend uti-
lization, compared with Autoscaling and Maxscaling. In our
experiments, the backend utilization can be improved by as
much as 54.9 percent with Razor.

Prediction Accuracy. Core elasticity regarding under-
provisioning and over-provisioning is an important aspect
to evaluate the effectiveness of resource provisioning mech-
anisms [16], [17], [18]. We can adopt the delay tolerance
non-miss rate or CPU utilization to differentiate under-
provisioning and over-provisioning, e.g., we deem the back-
end deployment as over-provisioning if the CPU utilization
is higher than a threshold. We show the prediction accuracy
in terms of over-provisioning and under-provisioning in
Fig. 13. It is shown that the resource supply of Razor can
closely track the resource demand. Since Razor aims to

Authorized licensed use limited to: The University of Toronto. Downloaded on May 19,2021 at 07:28:16 UTC from IEEE Xplore. Restrictions apply.



CHEN ET AL.: RAZOR: SCALING BACKEND CAPACITY FOR MOBILE APPLICATIONS

100

80

60

Instance Utilization (%)

st A
]
T a ©RazorAAAuto £l Max|
20 L N
0 2 4 6 8 10 12 14 16 18 20 22 24
Time (Hour)
(@)
100
<
g so0f \
5 NG - e
£ oo} AN oA ]
=] o N bl
g ol -]
401 4 1
=
2 o a8
= ©RazorAAAuto £ Max|
20 L N
0 2 4 6 8 10 12 14 16 18 20 22 24
Time (Hour)
100
<
=}
=
S
= 60f
-
W
=
< 40F
Z +
= ©ORazorAAuto £l Max|
20 —

0 6 12 18 24 30 36 42 48 54 60 66 72
Time(Hour)

(©
Fig. 12. Backend utilization of Razor, Autoscaling and Maxscaling for

three datasets. (a) Poisson dataset. (b) Uniform dataset. (c) The World
Cup 1998 trace.

reduce the backend cost for developers, the instance deploy-
ment tends to incur more under-provisioning than over-
provisioning. Developers who are less cost-sensitive and
want to cater to user demand can adjust the objective function
in (1) to achieve a balance of under-provisioning and over-
provisioning, e.g., set the instance deployment higher than V.

User Experience. Razor delays requests to smooth the traffic
profile and reduce the cost, so we check the reschedule rate
and delay tolerance non-miss rate to evaluate the influence of
Razor on user experience. It is shown in Fig. 14 that Razor
provides performance guarantees as it plans the backend
capacity to meet estimated future demand based on historical
information. As shown in Fig. 14a, in Razor, only 12.9 percent
of type 5 requests, the most delay-tolerant type of requests,
are rescheduled, while far less than 10 percent other types
of requests are rescheduled. For all requests, more than
90 percent are finished within the delay tolerance, which indi-
cates that Razor has little impact on user experience.

Delay Constraints. We vary the parameters of delay con-
straints in Razor to evaluate the corresponding backend cost.
Fig. 15 shows accumulated billing hours under different
delay constraints. If Razor can delay requests for a longer
time, meaning that the constraint on request delay is looser,
a lower backend capacity is needed and fewer instances are
required, e.g., a delay constraint of 10 minutes induces the
lower cost. The reduction of cost is high when the delay

1711

— Resource supply
Resource demand

Instances

IS
w
EN
-
5
=
=
S
2

Time (Hour)

(@)

= Resource supply
Resource demand

Instances

)
w
=N
IS
%
=
I
R

Time (Hour)

(b)

16

— Resource supply
Resource demand

Instances
o

Time (Hour)

()

Fig. 13. Prediction accuracy of Razor for three datasets. (a) Poisson
dataset. (b) Uniform dataset. (c) The World Cup 1998 trace.

constraint is tight, but will be insignificant when the delay
constraint is loose enough, e.g., the costs under delay con-
straints of 5 minutes and 10 minutes are almost the same.

6 DISCUSSION

In this section, we discuss some of the issues and limitations
of Razor.

6.1 Historic Data Collection

Razor relies on historic traces to learn the trend of request
demand in order to suggest an appropriate backend capacity
to application developers. It is essential to collect enough
training data samples for building a predictive model. How-
ever, for newly deployed mobile application backend, there
is a lack of historic data. We may resort to the observation in
cloud computing that recurring jobs have similar trend [19],
thus recurring user requests may reflect similar user usage
behaviors. Therefore, we may extend the limited data using
data augmentation techniques [20]. Note that the trend of
mobile application requests may change over time. There-
fore, we should only use data augmentation techniques at
the early deployment stage when there is scarce historic
data, and retrain the predictive model periodically to catch
the newest trend of request demand.

6.2 Backend Performance Variation
One of the concerns with cloud-based backend is that there
could be performance variations over time even if the same

Authorized licensed use limited to: The University of Toronto. Downloaded on May 19,2021 at 07:28:16 UTC from IEEE Xplore. Restrictions apply.



1712

—_ r ; r
§ 14r | |Poisson B UniformllReal
P 12
S ok
s 10
2 8
g or
£ 4t
<9
0

Request Type
(a)

[ IPoisson [l Uniform [l Real

[=3
=}

96
92
88
84
80

Tolerance Non-miss (%)

Request Type
(b)

Fig. 14. (a) Reschedule requests rate. (b) Delay tolerance non-miss rate.

instance type and number of instances are used [21]. A vari-
ation in machine performance will change the relationship
between the backend capacity and the number of instances,
which may lead to over-provisioning or under-provisioning
that may hurt the backend performance or utilization. Per-
formance variations in cloud are caused by various reasons
that are hard for us to monitor or control, e.g., multi-
tenancy, networks, and instance types. In our future work,
we will explore how to address performance variations,
e.g., seek for key indicators that reflects performance varia-
tions to adjust the backend planning.

6.3 Heterogeneous Instance Types

Cloud service providers provide a wide selection of instance
types that are optimized to fit different usage cases. In Razor,
we simplify the backend capacity as the number of requests
per minute, and suggests the corresponding number of
instances, but not consider the influence of different type of
instances on the cost. Using different types of instances to
cater for the same capacity (as defined as the number of
requests per minute) will result in different costs. In the
future, we will further model the relationship between the
instance type and the cost, and to suggest not only the num-
ber of instances, but also the most desirable instance type to
the application developers.

6.4 Switching Costs

Frequent changes in backend configuration will incur consid-
erable switching costs. In our implementation of Razor, we
choose one hour as the cycle for backend optimization and
adjustment, which is relatively long and the switching cost is
neglected. However, if the developer chooses a short adjust-
ment cycle, the switching costs in the optimization problem
should be taken into consideration. We can introduce a pen-
alty term in the optimization problem to control frequent
changes of backend configurations, e.g., Slog|N — Ny, in
which Ny is the current configuration, and the value of g can
be adjusted to avoid significant deviation from the current
configuration.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 7, JULY 2020

8000 T
Tmi
2000 |[E minute
minutes
6000 HEO5 minutes
¢ 10 minutes

@»

5
Z 5000
564000

g
£ 3000

a
2000
1000
0

0 3 6 9 12 15 18 21 24 27 30
Time (Day)

Fig. 15. Instance hours with different delay constraints.

6.5 Pending Queue Starvation Problem

The backend capacity planning optimization problem (1)
aims to ensure that the backend capacity planned for the hour
is able to serve all user traffic generated in the hour, thus the
pending queue will be empty at the end of the current hour
and will not affect the capacity planning for the next hour. In
practice, if the pending queue at the end of an hour is non-
empty, the backend planning for the next hour can be
adjusted as N + AN, in which N is derived from (1) and AN
depends on the size of the pending queue. The computation
of AN based on the size of the pending queue will be an inter-
esting future direction.Another problem is that the pending
queue may grow too long due to a large deviation from the
real user demand to the prediction. In this case, the developer
can set a threshold for the size of the pending queue, beyond
which extra instances will be launched to avoid the pending
queue starvation problem. In our experiments, we set a CPU-
threshold-based scaling policy. If the CPU utilization is higher
than the given threshold, one more instance will be added to
avoid the pending queue starvation problem.

7 RELATED WORK

Dynamic Resource Provisioning. Several dynamic resource pro-
visioning approaches have been proposed to meet the appli-
cation performance requirement in cloud environment [16],
[22], [23], [24]. These works mainly adopt control theory to
achieve an autonomic dynamic resource system. In [22], Ruth
etal. designed designed a virtualization-based computational
resource sharing platform, which allows dynamic machine
trading to meet the request demand. Ali-Eldin et al. [16]
introduced a hybrid adaptive elasticity controller with a pro-
active controllers for scaling down resources to meet the ser-
vice level agreements (SLAs) requirements and a reactive
approach for scaling up resources. Bodik et al. [23] combined
statistics and machine learning techniques to address the per-
ceived shortcomings of using closed-loop control. In [24],
Wang et al. proposed a fuzzy model predictive controller that
combines the control theory and the fuzzy rules to automati-
cally manage the resources in a virtualized system. These
works show interesting results of improving performance of
cloud computing platforms but do not target at minimizing
the total running cost. Besides, the mobile traffic shows high
short-term variations, making it difficult or expensive to scale
resources frequently to closely match the request demand.
Workload Scheduling. Scheduling bas been applied to auto-
mate the management of traffic with multiple optimization
criteria, such as budget constraints, security deadlines and

Authorized licensed use limited to: The University of Toronto. Downloaded on May 19,2021 at 07:28:16 UTC from IEEE Xplore. Restrictions apply.



CHEN ET AL.: RAZOR: SCALING BACKEND CAPACITY FOR MOBILE APPLICATIONS

other SLAs. Wu etal. [25] developed a selection model to min-
imize infrastructure cost and meet multiple service provider
SLAs parameters in the cloud. In [26], a greedy algorithm is
proposed to efficiently schedule workload for practical multi-
media cloud to minimize the response time. Mao et al. [27]
proposed to schedule instances and determine the suitable
execution plan in a cost-efficient way, considering both the
number and the type of instances. Besides, one of the most
popular solution is to convert the resource allocation optimi-
zation problem into a linear programming problem with
SLAs constraints [28], [29], but the linear programming
approach may not scale well when the number of parameters
becomes large. In [30], Pandey et al. considered the cost of
bulky data transfer between tasks in scientific applications.
Different from the time-consuming workload in the cloud,
mobile applications requests features short processing time,
large volume and high fluctuations, thus existing workload
scheduling algorithms that are based on required CPU/mem-
ory resource and deadlines are not applicable for mobile
request scheduling.

Prediction Techniques. Workflow or resource usage predic-
tion has been largely used for scaling resources in the cloud
[31], [32], [33], [34], [35], [36]. In [31], Islam et al. presented
prediction-based resource measurement and provisioning
strategies using neural network and linear regression to sat-
isfy upcoming resource demands. Igbal et al. [32] used time-
series forecasting with reactive techniques to automatic allo-
cate resources on a cloud. Niu et al. [33], [34] introduced a
statistical model and used time-series analysis techniques to
forecast the demand of videos and the performance in peer-
assisted VoD services, based on which the video service pro-
vider can dynamically book bandwidth resources to match
the fluctuated demand. In [35], Wu et al. proposed an epi-
demic model to predict the viewing requests in a social
media application, and scale the application to efficiently
store and migrate contents among different data centers in a
geo-distributed cloud. In [36], Roy et al. described a look-
ahead resource allocation algorithm using predictive models
control based on a limited horizon. In this paper, we have uti-
lized machine learning algorithms and historical data to
predict future request demand, which serves as input for
backend capacity optimization.

8 CONCLUSION

One of the major objectives of mobile application developers
is to provide guaranteed service quality with minimum
costs. In this paper, we present Razor, a novel mobile back-
end management mechanism that can significantly reduce
the cost of backend provisioning. In stark contrast with
existing solutions that try to match backend resources with
highly-fluctuated traffic, Razor exploits a different way, that
is, smoothing out mobile traffic profiles by postponing
delay-tolerant user requests. Razor features an integrated
two-tier structure that combines periodic backend capacity
optimization with dynamic request scheduling to achieve an
effective backend management. A fully-functional prototype
of Razor has been implemented on Amazon EC2, and experi-
mental results on 3 representative mobile traffic traces con-
firm that Razor can help developers cut down expenses on
backend while preserving the user experience.

1713

ACKNOWLEDGMENTS

This work was supported in part by the National Natural
Science Foundation of China under Grant No. 61702380,
Hubei Provincial Natural Science Foundation of China under
Grant No. 2017CFB134, Hubei Provincial Technological
Innovation Special Funding Major Projects under Grant
No. 2017AAA125, and the Wuhan University Independent
Research fund under Grant 2042018kf0005. The co-authors
would also like to acknowledge the generous research sup-
port from a NSERC Discovery Research Program and the
National Natural Science Foundation of China with grant
number 61772406.

REFERENCES

[1] Statistas, “Number of mobile app downloads worldwide in 2016,
2017 and 2021 (in billions).” [Online]. Available: https://www.
statista.com/statistics /271644 /forecast-of-mobile-app-
downloads/

[2] Amazon EC2. [Online]. Available: https://aws.amazon.com/cn/
ec2/, Last accessed: 2019.

[3] Google Compute Engine. [Online]. Available: https://cloud.
google.com/compute/, Last accessed: 2019.

[4] M. Mao and M. Humphrey, “A performance study on the VM
startup time in the cloud,” in Proc. IEEE Int. Conf. Cloud Comput.,
2012, pp. 423-430.

[5] C. Shi, K. Joshi, R. K. Panta, M. H. Ammar, and E. W. Zegura,
“CoAST: Collaborative application-aware scheduling of last-mile
cellular traffic,” in Proc. ACM Annu. Int. Conf. Mobile Syst. Appl.
Serv., 2014, pp. 245-258.

[6] World Cup 1998 Trace. [Online]. Available: ftp://ita.ee.lbl.gov/
html/contrib/WorldCup.html, last accessed: 2019.

[7] EC2 Auto Scaling. [Online]. Available: https://aws.amazon.com/
autoscaling, Last accessed: 2019.

[8] Right Scale. [Online]. Available: https://www.rightscale.com/,
Last accessed: 2019.

[9] Amazon EC2 Price. [Online]. Available: https://aws.amazon.

com/ec2/pricing/, Last accessed: 2019.

M. Van Der Voort, M. Dougherty, and S. Watson, “Combining Koho-

nen Maps with ARIMA time series models to forecast traffic flow,”

Transp. Res. Part C: Emerging Technol., vol. 4, no. 5, pp. 307-318, 1996.

B. M. Williams and L. A. Hoel, “Modeling and forecasting vehicu-

lar traffic flow as a seasonal ARIMA process: Theoretical basis and

empirical results,” J. Transp. Eng., vol. 129, no. 6, pp. 664-672, 2003.

K.Y. Chan, T.S. Dillon, J. Singh, and E. Chang, “Neural-network-

based models for short-term traffic flow forecasting using a

hybrid exponential smoothing and Levenberg-Marquardt algo-

rithm,” IEEE Trans. Intell. Transp. Syst., vol. 13, no. 2, pp. 644-654,

Jun. 2012.

Y. Lv, Y. Duan, W. Kang, Z. Li, and F.-Y. Wang, “Traffic flow pre-

diction with big data: A deep learning approach,” IEEE Trans.

Intell. Transp. Syst., vol. 16, no. 2, pp. 865-873, Apr. 2015.

F. Baccelli, B. Btaszczyszyn, etal., “Stochastic geometry and wireless

networks: Volume II applications,” Found. Trends® Netw., vol. 4,

no. 1/2, pp. 1-312,2010.

S.Sen, Y. Jin, R. Guérin, and K. Hosanagar, “Modeling the dynamics

of network technology adoption and the role of converters,” IEEE/

ACM Trans. Netw., vol. 18, no. 6, pp. 1793-1805, Dec. 2010.

A. Ali-Eldin, J. Tordsson, and E. Elmroth, “An adaptive hybrid

elasticity controller for cloud infrastructures,” in Proc. IEEE Netw.

Operations Manage. Symp., 2012, pp. 204-212.

N. R. Herbst, S. Kounev, and R. Reussner, “Elasticity in cloud com-

puting: What it is, and what it is not,” in Proc. Int. Conf. Autonomic

Comput., 2013, pp. 23-27.

A. Ilyushkin, A. Ali-Eldin, N. Herbst, A. V. Papadopoulos, B. Ghit,

D. Epema, and A. lIosup, “An experimental performance evaluation

of autoscaling policies for complex workflows,” in Proc. ACM/SPEC

Int. Conf. Perform. Eng., 2017, pp. 75-86.

A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca,

“Jockey: Guaranteed job latency in data parallel clusters,” in Proc.

ACM Eur. Conf. Comput. Syst., 2012, pp. 99-112.

S. Frithwirth-Schnatter, “Data augmentation and dynamic linear

models,” J. Time Series Anal., vol. 15, no. 2, pp. 183-202, 1994.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[171

[18]

[19]

[20]

Authorized licensed use limited to: The University of Toronto. Downloaded on May 19,2021 at 07:28:16 UTC from IEEE Xplore. Restrictions apply.


https://www.statista.com/statistics/271644/forecast-of-mobile-app-downloads/
https://www.statista.com/statistics/271644/forecast-of-mobile-app-downloads/
https://www.statista.com/statistics/271644/forecast-of-mobile-app-downloads/
https://aws.amazon.com/cn/ec2/
https://aws.amazon.com/cn/ec2/
https://cloud.google.com/compute/
https://cloud.google.com/compute/
ftp://ita.ee.lbl.gov/html/contrib/WorldCup.html
ftp://ita.ee.lbl.gov/html/contrib/WorldCup.html
https://aws.amazon.com/autoscaling
https://aws.amazon.com/autoscaling
https://www.rightscale.com/
https://aws.amazon.com/ec2/pricing/
https://aws.amazon.com/ec2/pricing/

1714

[21]

[22]

[23]

[24]

[25]

[26]

[271

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica,
“Ernest: Efficient performance prediction for large-scale advanced
analytics,” in Proc. USENIX Symp. Netw. Syst. Des. Implementation,
2016, pp. 363-378.

P. Ruth, P. McGachey, and D. Xu, “VioCluster: Virtualization for
dynamic computational domains,” in Proc. IEEE Int. Cluster Comput.,
2005, pp. 1-10.

P. Bodik, R. Griffith, C. Sutton, A. Fox, M. L. Jordan, and D. A. Patterson,
“Statistical machine learning makes automatic control practical
for internet datacenters,” in Proc. USENIX Workshop Hot Topics Cloud
Comput., 2009, Art. no. 12.

L. Wang, J. Xu, M. Zhao, and ]J. Fortes, “Adaptive virtual resource
management with fuzzy model predictive control,” in Proc. Int.
Conf. Autonomic Comput., 2011, pp. 191-192.

L. Wu, S. K. Garg, and R. Buyya, “SLA-Based resource allocation for
software as a service provider (SaaS) in cloud computing environ-
ments,” in Proc. IEEEJACM Int. Symp. Cluster Cloud Grid Comput.,
2011, pp. 195-204.

X.Nan, Y. He, and L. Guan, “Optimization of workload scheduling
for multimedia cloud computing,” in Proc. IEEE Int. Symp. Circuits
Syst., 2013, pp. 2872-2875.

M. Mao and M. Humphrey, “Auto-scaling to minimize cost and
meet application deadlines in cloud workflows,” in Proc. IEEE Int.
Conf. High Perform. Comput. Netw. Storage Anal., 2011, pp. 1-12.
A.-M. Oprescu and T. Kielmann, “Bag-of-tasks scheduling under
budget constraints,” in Proc. IEEE 2nd Int. Conf. Cloud Comput.
Technol. Sci., 2010, pp. 351-359.

R. Van den Bossche, K. Vanmechelen, and J. Broeckhove, “Cost-opti-
mal scheduling in hybrid IaaS clouds for deadline constrained work-
loads,” in Proc. IEEE Int. Conf. Cloud Comput., 2010, pp. 228-235.

S. Pandey, L. Wu, S. M. Guru, and R. Buyya, “A particle swarm
optimization-based heuristic for scheduling workflow applica-
tions in cloud computing environments,” in Proc. IEEE Int. Conf.
Adv. Inf. Netw. Appl., 2010, pp. 400-407.

S.Islam, J. Keung, K. Lee, and A. Liu, “Empirical prediction models
for adaptive resource provisioning in the cloud,” Future Generation
Comput. Syst., vol. 28, no. 1, pp. 155-162, 2012.

W. Igbal, M. N. Dailey, D. Carrera, and P. Janecek, “Adaptive
resource provisioning for read intensive multi-tier applications in the
cloud,” Future Generation Comput. Syst., vol. 27, no. 6, pp. 871-879,
2011.

D. Niu, Z. Liu, B. Li, and S. Zhao, “Demand forecast and perfor-
mance prediction in peer-assisted on-demand streaming systems,”
in Proc. IEEE Int. Conf. Comput. Commun., 2011, pp. 421-425.

D. Niu, H. Xu, B. Li, and S. Zhao, “Quality-assured cloud band-
width auto-scaling for video-on-demand applications,” in Proc.
IEEE Int. Conf. Comput. Commun., 2012, pp. 460—468.

Y. Wu, C. Wu, B. Li, L. Zhang, Z. Li, and F. Lau, “Scaling social
media applications into geo-distributed clouds,” IEEE/ACM
Trans. Netw., vol. 23, no. 3, pp. 689-702, Jun. 2015.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 7, JULY 2020

[36] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in the
cloud using predictive models for workload forecasting,” in Proc.
IEEE Int. Conf. Cloud Comput., 2011, pp. 500-507.

Yanjiao Chen received the BE degree in electronic
engineering from Tsinghua University, in 2010, and
the PhD degree in computer science and engineer-
ing from the Hong Kong University of Science and
Technology, in 2015. She is currently a professor
with the School of Computer Science, Wuhan Uni-
versity, China. Her research interests include com-
puter networks, wireless system security, cloud
computing, and network economy. She is a mem-
ber of the IEEE.

Long Lin received the BE degree in computer sci-
ence from Central South University, China, in 2016
and is currently working toward the master’s
degree in the School of Computer Science, Wuhan
University, China. His research interest include
cloud computing. He is a student member of the
IEEE.

Baochun Li received the BE degree from the
Department of Computer Science and Technology,
Tsinghua University, China, in 1995, and the MS
and PhD degrees from the Department of Com-
puter Science, University of lllinois at Urbana-
Champaign, Urbana, in 1997 and 2000, respec-
tively. Since 2000, he has been with the Depart-
ment of Electrical and Computer Engineering,
University of Toronto, where he is currently a pro-
fessor. His research interests include large-scale
distributed systems, cloud computing, peer-to-peer
networks, applications of network coding, and wireless networks. He has
co-authored more than 290 research papers, with a total of more than
13,000 citations, an H-index of 59, and an i10-index of 189, according to
Google Scholar Citations. He was the recipient of the IEEE Communica-
tions Society Leonard G. Abraham Award in the field of communications
systems, in 2000. He is a member of the ACM and a fellow of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: The University of Toronto. Downloaded on May 19,2021 at 07:28:16 UTC from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


