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Abstract—Dynamic spectrum access (DSA) redistributes spec-
trum from service providers with spare channels to those in need
for them. Existing works on such spectrum exchange mainly
focus on double auctions, where an auctioneer centrally enforces
a certain spectrum allocation policy. In this paper, we take a
different and new perspective, proposing to use matching as
an alternative tool to realize DSA in a distributed way for a
free market, which consists of only buyers and sellers, but no
trustworthy third-party authority. Compared with conventional
many-to-one matching problems, the spectrum matching problem
is distinctively challenging due to the interference bound between
buyers: the same channel can be reused by an unlimited number
of non-interfering buyers, but must be exclusively occupied by
only one of interfering buyers. In this paper, we firstly formulate
the spectrum matching problem as a many-to-one matching with
peer effects, i.e., a buyer’s utility is affected by other buyers who
are matched to the same seller. We then present a two-stage
distributed algorithm that converges to an interference-free and
Nash-stable matching result. Simulations show that the proposed
distributed matching algorithm can achieve 90% of the social
welfare from the optimal matching result.

I. INTRODUCTION

To support the ever-increasing volume of wireless traffic
with limited spectrum availability, dynamic spectrum access
has been proposed to better leverage the underused channels
[1], [2]. A wireless service provider can sell spare spectrum
to others when her traffic demand is light, and buy additional
spectrum from others when her demand becomes heavy. Con-
ventionally, such spectrum exchange is assumed to be achieved
via double auctions, where a third-party auctioneer determines
the spectrum allocation in a centralized manner, based on
auction participants’ bids and certain optimization objectives.
Unfortunately, the need for a trustworthy auctioneer makes it
impossible to apply double auctions to free spectrum markets
with only buyers and sellers but no third-party rule-enforcing
authorities.

Taking a completely different viewpoint, we propose to
leverage matching as an alternative framework for spectrum
redistribution. The seminal work of Gale and Shapley [3]
pioneers the research on matching items in two different sets
with stability. The concept of stable matching, compared with
optimal matching (i.e., the social welfare of buyers and sellers
is the highest), matters more in free spectrum markets for two
reasons. Firstly, stable matching ensures that no buyer or seller
is willing to deviate from the current matching result. Optimal
matching, if unstable, will not be obeyed by buyers and sellers,
unless it is enforced by a third-party authority. Secondly, stable

matching can be realized through deferred acceptance, an
algorithm that is both efficient and fully distributed. Stable
matching has been widely applied to computer science, such
as resource management in the cloud [4], user association in
small cells [5], as well as resource sharing in device-to-device
communication [6]. In this paper, the challenge of finding a
stable matching in free spectrum markets is referred to as the
spectrum matching problem.

Unfortunately, the spectrum matching problem is quite
different from traditional matching problems, such as the
well-known college admission problem [3]. In the college
admission problem, each student can attend only one college,
and each college can admit multiple students, but subject
to a fixed quota. In spectrum matching, the fundamental
constraint is no longer fixed quotas but interference: non-
interfering buyers can freely reuse the same channel, while
interfering buyers have to operate on separate channels. In
other words, the “quota” of a channel is infinite for non-
interfering buyers, but reduced to one for interfering buyers.
The unique feature of spectrum reusability has been widely
discussed in spectrum auctions, yet has never been considered
within a stable matching framework.

In this paper, we make the first attempt to introduce the
spectrum matching framework as a new economic model for
distributed spectrum exchange in free spectrum markets (Sec-
tion II). Sellers who own multiple channels and buyers who
demand multiple channels are represented by corresponding
numbers of dummies. In this way, spectrum exchange can
be formulated as a many-to-one matching problem, where
a buyer can be matched to no more than one seller, and
a seller can be matched to multiple non-interfering buyers
(spectrum reuse). To address spectrum heterogeneity, different
interference graphs are constructed for different channels to
determine spectrum reuse.

In this context, we propose a two-stage distributed algorithm
to achieve the objective of stable spectrum matching (Section
III). Stage I is inspired by the deferred acceptance (Gale-
Shapley) algorithm, which we adapt to enable spectrum reuse
and avoid interference among buyers. Stage I converges to
an interference-free but unstable matching, due to the compli-
cated interference relationship among buyers. Therefore, we
introduce Stage II, which allows buyers to transfer to more-
preferred channels and sellers to invite previously-rejected
buyers, if the interference condition permits. The final match-
ing result is proved to be individual rational and Nash-stable.



To address the synchronization problems in the real imple-
mentation of the proposed two-stage algorithm, i.e., buyers
and sellers are not coordinated to end Stage I and enter
Stage II simultaneously, we design rules for individual buyers
and sellers to independently decide the timing of their stage
transition (Section IV).

Through extensive simulations (Section V), we demonstrate
that our proposed distributed algorithm can achieve more than
90% of the maximum social welfare obtained by centralized
optimal (but unstable) matching. We also show the influence
of different parameters on the final matching results. One
interesting finding is that, if buyers have diverse utilities in
using different channels, the overall social welfare will be
higher, because more buyers will be matched to their desired
channels.

II. SYSTEM MODEL

A. Spectrum Market

In a free spectrum market, service providers with spectrum
supply or demand serve as sellers or buyers, respectively.
Spectrum reuse must conform to interference constraints.

Market participants. Assume that there are I sellers and J
buyers in the spectrum market. Seller i owns mi channels,
and buyer j requests nj channels. Let

∑I
i=1mi = M and∑J

j=1 nj = N denote the total numbers of supplied and
demanded channels, respectively. Inspired by the idea in [7],
we create mi and nj dummies for seller i and buyer j,
respectively. Hence, there are M virtual sellers and N virtual
buyers, and each virtual buyer or seller can trade only one
channel. In the remainder of this paper, we omit the term
“virtual” without confusion1. We also use the index of a seller
for her channel, e.g., seller i’s channel is referred to as channel
i.

Utility of buyers and sellers. A service provider ob-
tains different utilities when operating on different chan-
nels. We assume that buyer j has a utility vector Bj =
(b1,j , b2,j , ..., bM,j), in which bi,j is the utility for her to use
channel i. The higher bi,j is, the more valuable channel i is to
buyer j, and buyer j is willing to pay more for channel i. We
assume that bi,j is also the price that buyer j offers to seller
i. A seller’s utility equals the total offered price of all buyers
matched to her.

Interference relationship. The key feature of the spectrum
resource is interference-restricted reuse. To characterize inter-
ference heterogeneity of different channels [7], we construct
a series of interference graphs {Gi = (V,Ei)}Mi=1, in which
each node v ∈ V represents a buyer, and each edge ei ∈ Ei
connects a pair of interfering buyers on channel i. If two
virtual buyers originate from the same buyer, they are viewed
as interfering buyers, since they should not be matched to the

1For simplicity, we assume that channels are independent from each other.
Therefore, the value of a combination of channels is exactly the sum of
values of each individual channel. We will consider that channels may be
complementary or substitute goods (e.g., in a combinatorial auction) in the
future.

same channel. Let eij,j′ ∈ {0, 1} denote the interference status
between buyers j and j′ regarding channel i.

B. Optimal Matching

We introduce the optimal matching as a benchmark to be
compared later with our proposed stable matching. The opti-
mal matching maximizes social welfare while complying with
the interference constraint. Following the norm of spectrum
auctions, we define social welfare as the sum of buyers’ utility
from acquiring the channels through spectrum matching. Let
{xi,j}i=M,j=N

i=1,j=1 denote the matching result. xi,j = 1 if and
only if buyer j is matched to seller i. The optimal matching
is the solution to the following centralized maximization
problem:

max
xi,j

M∑
i=1

N∑
j=1

bi,jxi,j , (1)

subject to
M∑
i=1

xi,j ≤ 1,∀j, (2)

xi,j · xi,j′ = 0, if eij,j′ = 1, j 6= j′,∀i, j, j′, (3)

xi,j ∈ {0, 1},∀i, j. (4)

The first constraint indicates that each (virtual) buyer can
only get one channel. The second constraint restricts that
no interfering buyers can be matched to the same channel.
The optimal matching, if unstable, can only be implemented
by a third-party authority, who solves the above non-linear
integer programming problem, which is NP-hard. In compar-
ison, our proposed distributed matching algorithm can reach
an interference-free stable matching in linear time, and our
simulation results show that it can achieve 90% of maximum
social welfare yielded by the optimal matching.

III. SPECTRUM MATCHING

A. Preliminaries

We formally define spectrum matching as follows.

Definition 1. (Spectrum Matching). Given the set of sellersM
and the set of buyers N , a spectrum matching is a function µ
from M∪N to subsets of M∪N , such that
• For every buyer j ∈ N , µ(j) = {i} if buyer j is matched

to seller i, and µ(j) = {j} if buyer j is unmatched;
• For every seller i ∈M, µ(i) ⊆ N ;
• For every seller i and buyer j, µ(j) = {i} if and only if
j ∈ µ(i).

In the traditional college admission problem, a preference
profile is built for each student, indicating her willingness
of attending different colleges; a preference profile is also
built for each college, indicating its willingness of accepting
different students. In spectrum matching, however, a buyer’s
willingness to be matched to a channel depends not only on her
utility of using the channel, but also on whether her interfering
neighbors are matched to the same channel. In comparison,
in the college admission problem, a student’s willingness of
attending a college will not be affected by other students at



the same college. We assume that if a buyer is matched to
a channel without her interfering neighbors, she obtains full
utility; otherwise, she gets zero utility because of interference.
To deal with such peer effects in spectrum matching, we
construct preference profiles on spectrum coalition, rather than
individual buyers or sellers. A spectrum coalition consists of
a seller and the buyers matched to this seller, or includes a
single unmatched seller or buyer.

For buyer j, we can construct a complete, reflexive, and
transitive preference relation . over all spectrum coalitions,
based on her utility in the coalition. Assume that buyer j is
a member of two coalitions Ci1 and Ci2 , containing seller i1
and seller i2, respectively. Buyer j prefers Ci1 to Ci2 in two
cases: 1) buyer j prefers channel i1 to channel i2, and buyer j
does not have any interfering neighbor in Ci1 ; 2) buyer j has
some interfering neighbors in Ci2 . We implicitly assume that a
buyer is indifferent towards two coalitions both involving her
interfering neighbors, and she is indifferent towards a coalition
of herself (unmatched) and a coalition with her interfering
neighbors.

Ci1 .j C
i2 ⇐⇒

{
∀j′ ∈ Ci1 , ei1j,j′ = 0, bi1,j > bi2,j , or
∃j′ ∈ Ci2 , ei2j,j′ = 1.

(5)

For seller i, we can also build a preference relation over all
coalitions, based on her utility in the coalition. Assume that
seller i is a member of two coalitions Ci and C

′i, containing
different groups of buyers. Seller i prefers Ci to C

′i in two
cases: 1) the total offered price of buyers in Ci is higher than
that of buyers in C

′i, and buyers in Ci are all non-interfering;
2) there are interfering buyers in C

′i. We also assume that
a seller is indifferent towards two coalitions both involving
interfering buyers, and she is indifferent towards a coalition
of herself (unmatched) and a coalition with interfering buyers.

Ci .i C
′i ⇐⇒

 ∀j, j
′ ∈ Ci, eij,j′ = 0,

∑
j∈Ci

bi,j >
∑

j∈C′i
bi,j , or

∃j, j′ ∈ C ′i, eij,j′ = 1.

(6)

B. Distributed Matching Algorithm

1) Stage I: Adapted Deferred Acceptance: The traditional
deferred acceptance algorithm, designed to solve the college
admission problem, runs as follows [3]. There is a set of
students to be admitted to a set of colleges, each with a
fixed quota. In the first round, each student applies to her
favorite college. Among all applicants, a college with a quota
q temporarily puts the top q students in the waiting list, or
all students if the number of applicants is smaller than q, and
rejects others. In the following rounds, each rejected student
applies to her most-preferred college which has never rejected
her before. Each college updates its waiting list by selecting
the top q students among the current applicants and those in
the previous waiting list. This process is repeated until all
students have exhausted their applications.

Algorithm 1 Stage I: Adapted Deferred Acceptance
1: Initialization
2: ∀i ∈M, the waiting list Li = Φ, the current proposer list
Pi = Φ.

3: ∀j ∈ N , the unproposed seller list Aj =M.
4: while ∃ unmatched buyer with non-empty unproposed

seller list do
5: for all Unmatched buyer j with non-empty unproposed

seller list do
6: i = the most-preferred seller in Aj .
7: Buyer j proposes to seller i.
8: Add buyer j to seller i’s current proposer list, Pi =

Pi ∪ {j}.
9: Remove seller i from the unproposed seller list, Aj =

Aj \ {i}.
10: end for
11: for all Seller i with non-empty current proposer list do
12: Form the most-preferred coalition Ci ⊆ Li ∪

Pi,∀C
′i ⊆ Li ∪ Pi, Ci .i C

′i.
13: Set the waiting list as Li = Ci.
14: end for
15: end while
16: for all i ∈M do
17: µ(i) = Li.
18: end for
19: for all j ∈ N do
20: if ∃i, j ∈ Li then
21: µ(j) = {i}.
22: else
23: µ(j) = {j}.
24: end if
25: end for

We adapt the original deferred acceptance algorithm for
spectrum matching in Algorithm 1. Unlike the college ad-
mission problem, we are not able to determine the “quota”
of each seller, since the “quota” depends on the interference
relationship among buyers. Instead, at each round, we let
a seller to form her most-preferred spectrum coalition, i.e.,
to select a group of buyers who do not interfere with each
other according to the interference graph, and whose total
offered price is the highest. To find a group of non-interfering
buyers with maximum offered price is equivalent to finding a
maximum weighted independent set on the interference graph,
which is NP-hard. Greedy algorithms have been proposed
to solve the maximum weighted independent set (MWIS)
problem in linear time [8], which we will adopt in our
algorithm.

Proposition 1. Algorithm 1 is guaranteed to converge, and
the running time is O(MN).

Proof. Each time an unmatched buyer makes a proposal,
she will remove one seller from her unproposed seller list.
Therefore, each buyer will eventually become matched or
exhaust her unproposed seller list, thus Algorithm 1 comes
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Fig. 1. Stage I: Adapted deferred acceptance.
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Fig. 2. Stage II: Transfer and invitation.
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Fig. 3. Toy example.

to an end.
The worst case is that the interference graph on every

channel is a complete graph. Then, the spectrum matching
problem is reduced to a one-to-one matching problem, and
Algorithm 1 is equivalent to the original deferred acceptance

algorithm, whose running time is O(MN).

Toy Example. As shown in Fig. 3, there are five buyers
{1, 2, 3, 4, 5} and three sellers {a, b, c}. The interference graph
on each channel is shown in Fig. 3(a); the buyers’ utility
vectors are shown in Fig. 3(b). We make the simplified
assumption that f(bi,j) = bi,j . Fig. 1 shows the process of
the adapted deferred acceptance algorithm. In the first round,
buyer 1 and buyer 2 propose to seller a; buyer 3 and buyer 4
propose to seller b; buyer 5 proposes to seller c, as shown
in Fig. 1(a). After the first round, all sellers’ waiting lists
are shown in Fig. 1(b). Then, the unmatched buyer 2 and
buyer 4 propose to seller b and seller a, respectively. Seller
a evicts buyer 1 to form a better coalition with buyer 4 in
the waiting list. Fig. 1(c)(d) show the following rounds, and
the final matching result is shown in Fig. 1(e), with a social
welfare of 27.

2) Stage II: Transfer and Invitation: The deferred accep-
tance algorithm produces a stable matching result for college
admission problem [9], i.e., there is no pair of student and
college who both prefer each other to their current choices.
However, the matching result of the adapted deferred ac-
ceptance algorithm is not stable for spectrum matching. For
instance, in Fig. 1(e), buyer 2 can be matched to seller a
without interfering with buyer 4, and both buyer 2 and seller
a are better off. This instability is a result of the peer effect
of spectrum matching, caused by complicated interference
relationship among buyers. Buyer 2 has a better chance of



being chosen by seller a in the presence of her non-interfering
buyer 4, but a worse chance in the presence of her interfering
neighbor 1 (e.g., in the first round).

To improve the matching result and achieve a stable match-
ing, we propose a transfer and invitation algorithm as a second
stage, as shown in Algorithm 2. At Stage II Phase 1, buyers
send transfer applications to sellers who are more preferred
than their currently matched sellers. This means that buyers
send transfer applications to sellers whom they have proposed
to in Stage I. But unlike Stage I, sellers cannot evict any
currently matched buyers in Stage II. Hence a buyer’s transfer
application to a seller can only be accepted if she does not
interfere with any buyers matched to the seller. In Stage I,
we do not allow buyers to re-propose to sellers who have
rejected them, because this may lead to Ping-Pong effect,
where buyers continuously make proposals and the algorithm
never converges. In Stage II, such Ping-Pong effect won’t
happen because each buyer can only send transfer application
once to each seller who is more preferred than her currently
matched seller, and the number of such sellers is limited.

At Stage II Phase 2, as a seller’s previously matched buyers
may have transferred to other sellers, she can invite some of
the buyers whom she has rejected in Phase 1. In simulations,
we find that the invitation opportunities are scarce, but Stage
II Phase 2 has to be included to guarantee the stability of the
final matching result.

Toy example. Fig. 2 shows the process of our transfer and
invitation algorithm. Given the matching result in Fig. 1(e),
buyer 1 and buyer 2 send transfer applications to seller a;
buyer 4 sends transfer application to seller b; buyer 5 sends
transfer application to seller c. Buyer 2’s application is granted
while other buyers are rejected and added to the sellers’
rejecting lists, shown under the matching lists. After Phase
1, seller c sends invitation to buyer 5, and the final matching
result is shown in Fig. 2(d), with a social welfare of 30.

Proposition 2. Algorithm 2 is guaranteed to converge, and
the running time of Phase 1 is O(M), of Phase 2 is O(N).

Proof. Each buyer sends transfer application once to each
more-preferred seller, so Phase 1 will terminate in a limited
number of rounds. In Phase 2, each seller has a finite invitation
list and only sends invitation at most once to each buyer in the
list, thus Phase 2 will also end in a limited number of rounds.

In Phase 1, each buyer has at most M more-preferred
sellers, so the running time is O(M). Unlike Stage I, no buyer
will be evicted in Stage II, therefore the running time is O(M)
rather than O(MN). In Phase 2, each seller has at most N
buyers in the invitation list, so the running time is O(N).

C. Properties
In this section, we prove that the matching result of the

proposed distributed algorithm is individual rational and Nash-
stable.

Definition 2. (Individual rational).
A matching result is blocked by seller i if she prefers not

to be matched to some of her currently matched buyers. In

Algorithm 2 Stage II: Transfer and Invitation
1: Initialization
2: ∀i ∈ M, the current applicant list Di = Φ, the invitation

list Ri = Φ.
3: ∀j ∈ N , the unapplied seller list Tj = {i|bi,j > bµ(j),j}.
4: Phase 1: Transfer
5: while ∃ buyers with non-empty unapplied seller list do
6: for all Buyer j with non-empty unapplied seller list do
7: i = the most-preferred seller in Tj .
8: Buyer j sends a transfer application to seller i.
9: Add buyer j to seller i’s current applicant list Di =

Di ∪ {j}.
10: Remove seller i from the unapplied seller list Tj =

Tj \ {i}.
11: end for
12: for all Seller i with non-empty current applicant list

do
13: Select the most-preferred coalition Ci = µ(i) ∪

S,S ⊆ Di,∀C
′i = µ(i) ∪ S ′,S ′ ⊆ Di, Ci .i C

′i.
14: Update the matching, µ(i) = Ci, ∀j ∈ Ci, µ(j) = i.
15: Set the invitation list as Ri = Ri ∪ Di \ S .
16: end for
17: end while
18: Phase 2: Invitation
19: for all i ∈M do
20: Screen non-interfering buyers in the invitation list Ri =

{j|j ∈ Ri,∀j′ ∈ µ(i), eij,j′ = 0}.
21: end for
22: while ∃ seller with non-empty invitation list do
23: for all Seller i with non-empty invitation list do
24: j = buyer with the highest offered price.
25: Seller i send invitation to buyer j.
26: if Seller i is more preferred than µ(j) then
27: Buyer j accepts invitation.
28: Update the matching, µ(i) = µ(i)∪{j}, µ(j) = i.
29: Remove buyer j’s interfering neighbors in the

invitation list Ri = Ri \ {j|j′ ∈ Ri, eij,j′ = 1}.
30: end if
31: Remove buyer j from the invitation list Ri = Ri \

{j}.
32: end for
33: end while

other words, ∃S ⊆ µ(i),S 6= Φ, Ci = {i} ∪ µ(i), C
′i =

{i} ∪
(
µ(i) \ S

)
, C

′i .i C
i.

A matching result is blocked by buyer j if she prefers being
unmatched to being matched to the current seller. In other
words, {j} .j

(
µ(j) ∪ µ(µ(j))

)
.

A matching result is individual rational if it is not blocked
by any buyer or seller.

Proposition 3. The matching result of the proposed distributed
algorithm is individual rational.

Proof. For seller i, the matching result µ(i) of the proposed
algorithm is interference-free. In this case, removing any
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Fig. 4. Counter example, proposed spectrum matching algorithm.

buyers in µ(i) will reduce the total offered price, and result
in a less-preferred matching result.

For a matched buyer j, she does not have interference
neighbors in µ(µ(j)). Therefore, her utility is positive, higher
than the utility of being unmatched, which is zero.

Deferred acceptance algorithm can achieve pairwise sta-
bility for the college admission problem, i.e., no pair of
detached student and college would both be better off if
they are matched together. Due to peer effects in spectrum
matching, pairwise stability cannot be preserved, whereas we
can guarantee a weaker form of stability.

Definition 3. (Nash-stable). A matching result is Nash-stable
if no buyer prefers to be a member of another spectrum
coalition rather than stay in the current spectrum coalition,
i.e., ∀j ∈ N , i = µ(j), i′ 6= i,

(
i ∪ µ(i)

)
.j
(
i′ ∪ µ(i′) ∪ j

)
.

Proposition 4. The matching result of the proposed distributed
algorithm is Nash-stable.

Proof. We prove this by contradiction. Assume that the final
matching result is not Nash-stable. There exists at least one
buyer j who prefers to join another spectrum coalition with
seller i 6= µ(j). This implies that in Stage II Phase 1, buyer j
must have sent a transfer application to seller i because buyer
j prefers i to µ(j). Seller i must have rejected j and put j in
her rejecting list. In Stage II Phase 2, seller i can not have sent
an invitation to buyer j; otherwise, j will accept the invitation
and be matched to seller i. This implies that buyer j must
interfere with some buyers in µ(i). Therefore, buyer j would
not like to join seller i’s spectrum coalition because her utility
will become zero, which contradicts the assumption. Hence,
the matching result of the proposed algorithm is Nash-stable.

D. Discussions

In this section, we discuss the limitations of the proposed
matching algorithm. The deferred acceptance can achieve a

1

3

2

4

a

5

9

7

8 6 1

3

2

4

b

5

9

7

8 6 1

3

2

4

c

5

9

7

8 6

Fig. 5. Counter example, interference graph.

matching result that is pairwise stable and student-optimal
for the traditional college admission problem2. Unfortunately,
our two-stage algorithm based on adapted deferred acceptance
cannot achieve these two ideal properties, which may inspire
future research in this direction.

Definition 4. (Pairwise stability). A matching is blocked by a
pair of seller i and buyer j /∈ µ(i), if there exists S ⊆ µ(i)
such that:
• Non-interfering condition: ∀j′ ∈ S, eij,j′ = 0.
• Seller improvement:

(
{i} ∪ {j} ∪ S

)
.i
(
{i} ∪ µ(i)

)
.

• Buyer improvement:
(
{i}∪{j}∪S

)
.j
(
µ(j)∪µ(µ(j))

)
.

A matching is pairwise stable if it is not blocked by any seller-
buyer pair.

Unfortunately, the proposed spectrum matching algorithm
cannot ensure pairwise stability. A counter example is given
in Fig. 5 and Fig. 4. We ignore Stage II since the matching
result will not change in this example. Given the final matching
result in Fig. 4(e), seller b and buyer 2 form an unstable
pair. According to Definition 4, we know that S = {3, 7};
seller b prefers the spectrum coalition {b, 2, 3, 7} to the current
spectrum coalition {b, 3, 4, 7}; buyer 2 prefers seller b to the
currently matched seller c. Seller b and buyer 2 have incentives
to be matched together at the sacrifice of buyer 4, which is,

2Note that the definition of the optimal matching here is different from that
in Section II.



however, not allowed by the proposed matching algorithm.
Another nice property of the deferred acceptance algorithm

is that its matching result realizes an optimal assignment of
students among all pairwise stable matching result, that is, no
student can get admitted by a better college in another pairwise
stable matching result3. As the spectrum matching can only
achieve Nash-stability, we give the following definition for
optimality regarding Nash-stable matching.

Definition 5. (Optimality). A Nash-stable matching result µ
is buyer-optimal, if there does not exist another Nash-stable
matching result µ′, in which no buyer is worse off, and
some buyers are better off. In other words, ∀j ∈ N ,

(
µ(j) ∪

µ(µ(j))
)
.j
(
µ′(j) ∪ µ′(µ′(j))

)
,∀µ′ that is Nash-stable.

Using the same counter example in Fig. 5 and Fig. 4, we
show that the matching result of the proposed algorithm is not
optimal. Swap buyer 2 and buyer 4 to seller b and seller c,
respectively. It can be easily checked that the new matching
result is Nash-stable. The new matching result is strictly better
than the one produced by the proposed algorithm, in that not
only buyer 2 and buyer 4 but also seller b and seller c are
better off, and other buyers and sellers are unaffected. In Stage
II Phase 1, such a swap cannot be accomplished because seller
b is not aware that buyer 4 can transfer to seller c, as long
as she accepts the transfer application from buyer 2, who is
matched to seller c and interferes with buyer 4. How to enable
such a swap, which requires a coordination among different
sellers and buyers, is an interesting topic for future works.

IV. IMPLEMENTATION OF SPECTRUM MATCHING

The proposed two-stage matching algorithm runs in a dis-
tributed fashion within each stage and each phase. Neverthe-
less, asynchronization problem arises during stage or phase
transition. More specifically, Stage II commences when all
buyers exhaust their proposals and start the transfer appli-
cation. Unfortunately, it is impossible for a buyer to know
whether all other buyers have stopped making proposals.
Similar problem exists during phase transition in Stage II.
Therefore, in this section, we specify practical rules for stage
or phase transition, facilitating the implementation of the
proposed two-stage matching algorithm in perfectly distributed
manner.

Assume that each round in the proposed algorithm takes one
time slot. Proposition 1 and Proposition 2 give the running
time of Algorithm 1 and Algorithm 2, respectively, based on
which we have the following default transition rule.

Default transition rule. From the very beginning, all buyers
and sellers wait for MN time slots to transit to Stage II; then
M time slots to transit to Stage II Phase 2; finally N time
slots to end the matching process.

The default transition rule can be extremely inefficient. For
instance, given the toy example in Fig. 3, according to the
default transition rule, the whole matching process takes 23

3When the students initiate the proposal, the matching result is optimal for
students, but is not guaranteed to be optimal for colleges.

time slots, but in fact, 7 time slots are enough to reach the
final matching result as shown in Fig. 1 and Fig. 2. To tackle
this problem, we design the following transition rules.

A. Stage Transition Rules on Buyers’ Side
For a buyer, the risk of a premature entrance into Stage II

is being evicted after she starts to send transfer applications
but no more proposals. A transfer application has a lower
chance of being accepted than a proposal, as the seller will not
evict any currently matched buyers upon a transfer application.
Therefore, a buyer should transit to Stage II only when her
risk of being evicted by the currently matched seller is low.
One observation is that a buyer only faces the threat from her
interfering neighbors, so we have the following transition rule.

Stage transition rule I for buyers. A buyer can transit to
Stage II if all her interfering neighbors have proposed to her
currently matched seller.

Stage transition rule I for buyers guarantees that a buyer’s
matching result in Stage I will not change anymore, but the
condition may be hard to meet. For example, in Fig. 1, buyer 4
will never detect buyer 3’s proposal to seller a because buyer
3 never proposes to seller a.

To design a more operable rule, we estimate the probability
of a buyer being evicted after she performs the stage transition.
The smaller this probability is, the less risky for the buyer to
enter Stage II. Assume that all buyers’ prices follow identically
independent distribution (i.i.d.) with a cumulative distributed
function F (·).

Consider buyer j who is matched to seller i till the (k−1)th
round, and n of her interfering neighbors have not proposed
to seller i yet. Let pkx denote the probability that, at the kth
round, x of buyer j’s interfering neighbors propose to seller
i, and at least one of their offered prices is higher than buyer
j’s.

pkx =

(
n

x

)
(

1

M
)x(1− 1

M
)n−x

(
1− F x(bi,j)

)
. (7)

The probability of buyer j being evicted in the kth round
can be estimated as pk =

∑n
x=1 p

k
x. The probability of buyer

j being evicted in the (k+1)th round but not in the kth round
is (1 − pk)pk. Following the same logic, the probability of
buyer j being evicted through the kth round till the MN th
round is:

P k = pk + (1− pk)pk + · · ·+ (1− pk)MN−kpk

= 1− (1− pk)MN−k+1
(8)

P k decreases with k, so it is more secure for a buyer to
commence Stage II at a later round.

Stage transition rule II for buyers. A buyer can transit to
Stage II at the kth round if P k is less than a threshold.

We have one more transition rule for buyers that is incurred
by sellers. When a seller determines to carry out stage transi-
tion, she will inform all her currently matched buyers, which
ensures that the seller will no longer evict these buyers.

Stage transition rule III for buyers. A buyer can transit to
Stage II if she receives the transition notification from her
currently matched seller.
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Fig. 6. Optimal matching result versus the proposed distributed spectrum matching algorithm. (a) M = 4; (b) N = 8; (c) M = 5, N = 8.
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Fig. 7. The social welfare of the two-stage distributed spectrum matching algorithm. (a) M = 10; (b) N = 500; (c) M = 8, N = 300.

B. Stage Transition Rule on Sellers’ Side

A seller has to make the stage transition decision if she
receives no proposal but some transfer applications in the
current time slot. After stage transition, a seller cannot grant
proposals anymore. In other words, none of her currently
matched buyers can be expelled to make room for new buyers.
We estimate the probability of a seller getting better proposals
after she makes the stage transition. If the probability is low,
a seller may begin to process the transfer applications, thus
completing the stage transition.

Consider seller i who is, at the (k−1)th round, matched to a
group of buyers, among which buyer j has the lowest offered
price of bi,j . There are n buyers who haven’t proposed to seller
i yet. Let θ denote the probability that an un-proposed buyer
does not interfere with anyone in µ(i) except buyer j. θ is
an empirical value, which can be estimated by analyzing the
interference relationship between buyers in and out of µ(i).
Let qky denote the probablility that, at the kth round, y buyers
propose to seller i, and at least one of them offers a price
higher than bi,j , and this buyer do not interfere with anyone

in µ(i) other than buyer j.

qky =

(
n

y

)
(

1

M
)y(

M − 1

M
)n−y

[
1−

(
F (bi,j)

+ (1− θ)(1− F (bi,j))
)y]

.

(9)

Similar to (8), the probability of seller i receiving better
proposals through the kth round till the MN th round is
Qk = 1− (1−qk)MN−k+1, in which qk =

∑n
y=1 q

k
y . Qk also

decreases with k, thus it is less likely for a seller to obtain
more favorable proposals at a later round.

Stage transition rule for sellers. A seller can transit to Stage
II at the kth round if Qk is less than a threshold.

Upon stage transition, a seller will notify all her currently
matched buyers, and these buyers will transit to Stage II as
well, as specified by stage transition rule III for buyers.

C. Phase Transition Rule and Matching Termination

We will use the default transition rule for phase transition in
Stage II, as the simulation results show that Stage II Phase 1
lasts for approximately M rounds. Buyers and sellers have
to decide when to terminate the matching process so that
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Fig. 8. The running time of the two-stage distributed spectrum matching algorithm. (a) M = 10; (b) N = 500; (c) M = 8, N = 300.

spectrum exchange can be finalized. The simulation results
show that Stage II Phase 2 only runs a few rounds, as the
opportunities for sellers to send invitations to buyers are rare.
Nonetheless, the invitation phase is indispensable to guarantee
the stability of the final matching result. We set the rule that
each seller will put an end to the matching process when
she has no invitation to make, and let the user to access her
channel.

V. SIMULATION

A. Simulation Settings
We assume that buyers are randomly located in a 10 × 10

area. The transmission range of each channel is randomly cho-
sen in the range (0, 5]. The interference graph of each channel
is established based on users’ locations and the transmission
range of the channel. Users’ utility vectors are independently
and identically distributed (i.i.d.), following a uniform dis-
tribution in [0, 1]. The numbers of buyers and sellers are
specified in each simulation scenario. The similarity across
buyers’ utility vectors are quantified by the Spearman’s rank
correlation coefficient (SRCC) [10], which assesses whether
the relationship between two variables can well be described
as monotonic. We compute the SRCC for every pair of buyer’s
utility vectors, and obtain the average value. If the result is
close to 1, buyers’ utility vectors are perfectly similar to one
another. If the result is close to 0, buyers’ utility vectors are
perfectly random and independent from one another. To study
the utility similarity and its influence on the matching result,
we maneuver buyers’ utility vectors as follows. First, we sort
all buyers’ utilities in the ascending (or descending) order. In
this way, the average SRCC is 1. Then, for each buyer, we
randomly select m out of M items from her utility vector
and perform an m−permutation. As m increases, the average
SRCC will decrease, indicating that the buyers’ utility vectors
become more dissimilar to one another. When m = M , the
SRCC is approximately 0.

B. Performance of the Proposed Matching Algorithm

We compare the social welfare of the matching result
generated by the proposed algorithm and that of the optimal
matching result derived by (1)4, as shown in Fig. 6. Our
proposed distributed matching algorithm can obtain more than
90% of the social welfare from the optimal matching result.
Moreover, the running time of the proposed algorithm is only
O(MN) while the optimal matching problem in (1) is NP-
hard. The social welfare grows with the number of buyers or
sellers. If the buyers’ utility vectors are similar to each other,
multiple buyers will compete for the same channel, and it
is hard to satisfy every buyer’s requirement; on the contrary,
if buyers’ utility vectors are more diverse, they will pursue
different channels, and the final matching result can satisfy
more buyers.

C. Two-stage Distributed Algorithm

In Fig. 7 and Fig. 8, we demonstrate the social welfare and
running time of different stages and phases in our proposed
two-stage matching algorithm. Note that the social welfare is
accumulated with each stage and phase, while the running
time is separately counted for each stage and phase. Most of
the social welfare improvement in Stage II comes from Phase
1, while Phase 2 makes a minor contribution. Nevertheless,
Phase 2 is indispensable to guarantee the stability of the final
matching result.

When the number of buyers is far greater than the number
of sellers, the running time of Stage I is mostly influenced by
the number of sellers. The running time of Stage II Phase 1 is
theoretically O(M): it linearly increases with the number of
sellers, irrespective of the number of buyers and their offered
prices, as shown in Fig. 8. Stage II Phase 2 only runs for a

4The optimal matching result is derived by the brute-force approach. As the
running time exponentially increases with the numbers of buyers and sellers,
we can only simulate small-scale spectrum markets.



few rounds, as opportunities for sellers to send invitations to
buyers are rare.

VI. RELATED WORK

Matching-based resource allocation. Gale and Shapley first
studied the problems of stable matching in [3], and proposed
the deferred acceptance algorithm to achieve a stable matching
in a distributed way. Afterwards, the research in economics
explores all kinds of variants of matching problems [11], [12].
Matching has been widely used for resource allocation in
computer science. In [4], online and offline algorithms were
proposed to match virtual machines to heterogeneous sized
jobs in the cloud. In [5], matching was used to associate users
to small cells. In [6], Device-to-Device users were matched
to cellular users for resource sharing. In [13], secondary users
were matched to primary users for data relay. In [14], [15], a
friendly jammer was matched to a transmission pair to help
protect them from eavesdropping. However, none of these
frameworks can be applied to spectrum matching, where the
complicated interference relationship among buyers makes it
challenging to reach a stable matching result.

Spectrum auctions. Double auctions used to be the major
spectrum allocation paradigm for dynamic spectrum access. A
truthful spectrum double auction was first proposed in [16]. In
[17], a multi-auctioneer progressive auction mechanism was
designed, with all sellers assuming the role of auctioneers.
In [18], local availability of the spectrum license and its
influence on spectrum auctions were studied. In [19], [7],
heterogeneous interference graphs for different channels were
built for spectrum reuse. Apart from single-round auction
mechanisms, dynamic spectrum auction mechanisms were
proposed in [20], [21]. The major drawback of double auctions
is the need for a third-party authority to enforce the spectrum
allocation in a centralized way, which is not applicable for the
free spectrum markets.

VII. CONCLUSION

In this paper, we have presented the first matching frame-
work for distributed spectrum exchange in a free spectrum
market. In stark contrast to prior double auction mechanisms,
spectrum matching does not require the centralized manage-
ment of a third-party authority. We have designed a two-stage
distributed algorithm, with consideration of the interference
constraint in spectrum matching. We have theoretically proved
the convergence of our algorithm, as well as the stability of the
matching result. Simulations have demonstrated the efficiency
of the proposed distributed algorithm, as the final matching
results can attain 90% of the maximum social welfare from
optimal matching that needs centralized enforcement.
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