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ABSTRACT

Network coding has emerged as a promising approach that
enables reliable and efficient end-to-end transmissions in lossy
wireless mesh networks. Existing protocols have demon-
strated its resilience to packet losses, as well as the ability
to integrate naturally with multipath opportunistic routing.
However, these heuristics do not take into account the inher-
ent resource competition in wireless networks, thereby com-
promising the coding advantages. In this paper, we take a
game-theoretic perspective towards optimized resource allo-
cation for network coding based unicast protocols. We de-
sign decentralized mechanisms that achieve better efficiency-
fairness tradeoff, for both cooperative and selfish users. Our
framework features a modularized optimization of two sub-
problems: the multipath routing of coded information flows
for each player, and the broadcast and coding rate allocation
among competing players. We have implemented the frame-
work on a wireless emulation testbed and demonstrated its
high performance in terms of throughput and fairness.
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1. INTRODUCTION
Existing measurement studies have revealed the preva-

lence of low-quality wireless links in real-world wireless net-
works [1]. This inspired routing protocols that are sustain-
able under lossy conditions. Such protocols have mostly
revolved around two major issues: reliability and efficiency
(in terms of energy or throughput). An intuitive way to-
wards efficiency is to follow the traditional shortest-path
paradigm, with a path metric associated with the recep-
tion probabilities of wireless links [2]. Traditional multipath
routing has been proposed for the purpose of reliability, but
not for throughput or energy efficiency in lossy wireless net-
works, mainly due to the redundancy and route coupling
problem [3].

An opportunistic routing protocol (e.g., ExOR [4]) takes
advantage of the broadcast nature of wireless networks, ex-
ploring the forwarding capacity of all intermediate nodes
that may overhear packets. It avoids overlapping packet
transmissions through negotiations among intermediate for-
warders. Though claiming high throughput, the protocol re-
quires complex interactions between intermediate forwarders
before each scheduling and forwarding decision, which is in-
feasible in lossy networks. Moreover, ExOR does not ensure
end-to-end reliability, and relies on traditional routing to
make up for the missing packets.

Network coding departs from the conventional store-and-
forward paradigm by allowing mixture of information at the
source and intermediate relays. Specifically, the source node
splits the original data file into data blocks and then encode
them with random linear codes (RLC) [5]. Intermediate
nodes can re-encode and forward the linearly independent
blocks on hand. The destination is able to decode once it
receives a sufficient number of coded blocks. The upshot of
such a network code is that full reliability can be achieved
without retransmissions — a single ACK can ensure the suc-
cessful reception of a group of data blocks. Furthermore, the
route coupling problem no longer exists since paths are im-
plicitly formed — all nodes that are closer to the destination
than their predecessors take part in the forwarding. Follow-
ing the preliminary proposal in [6], Chachulski et al. [5] im-
plemented such a scheme in a wireless mesh network testbed,
focusing on the practical problems therein. The core of the
protocol in [5] (referred to as MORE) lies in an iterative
centralized algorithm that determines how many outgoing
packets a relay should generate upon receiving one fresh
packet. However, this heuristic does not account for the
bandwidth resource competition among neighboring nodes,
which results from the inherent interference effect of wireless



networks. Consequently, the network tends to become con-
gested, especially when multiple concurrent sessions coexist.

In this paper, we address the problem of resource alloca-
tion for multipath network coding (henceforth referred to
as MNC) in lossy wireless mesh networks. In particular,
we develop Dice1, a game theoretic framework that models
the coding, routing, and bandwidth constraints specific to
an MNC protocol. Dice leads all players (represented by
source-destination pairs) in the network towards optimized
opportunistic multipath routing and rate allocation. Within
this framework, we consider both the case where the play-
ers are cooperative, willing to share the resources through
negotiation; and the case where players are selfish, greedily
maximizing their own utility. In the cooperative framework,
social optimum is achieved through a decentralized bargain-
ing algorithm. We design the bargaining algorithm based
on optimization decomposition, and prove its optimality as
well as convergence rate. In the noncooperative framework,
socially efficient Nash equilibrium can still be ensured, as-
suming wireless nodes in the network enforce a pricing mech-
anism on all the players. A similar line of analysis can be
applied to the case where energy rather than bandwidth is
the scarce resource, as in mobile ad hoc networks.

In order to validate the performance of the Dice frame-
work, we have implemented Dice on a wireless emulation
testbed that is designed for computationally extensive ap-
plication specific protocols like MNC. We observe that the
resource allocation mechanism in Dice results in a much
higher level of throughput and fairness, in comparison with
the heuristic in MORE. To our knowledge, there has been no
existing work in the literature with a focus on using a game
theoretic framework to resolve conflicts of interest between
competing flows when wireless multipath network coding is
used.

The remainder of the paper is structured as follows. In
Sec. 2, we present a literature review of related work. Sec. 3
formulates the players’ strategy space within which they are
running the MNC protocol. Following this, Sec. 4 introduces
the cooperative model in Dice, derives a decentralized nego-
tiation algorithm for each user, and proves the convergence
of the algorithm. Sec. 5 develops the noncooperative model
in Dice, as well as the corresponding algorithm that leads to
an efficient Nash equilibrium. In Sec. 6, we present exper-
imental evaluations in order to verify the Dice framework.
Finally, Sec. 7 concludes the paper.

2. RELATED WORK
The problem of efficient and fair resource allocation has

been extensively explored in the context of wireless ad hoc
and mesh networks. This is closely related with the vast
literature of cross layer utility optimization [7], where util-
ity functions represent different notion of fairness-efficiency
tradeoff. Recently, game theory has been applied to ana-
lyze the cooperative and selfish behavior of wireless network
users. For instance, [8] applied the Nash bargaining solution
approach to model the cooperative relay and bandwidth al-
location in wireless multihop networks. Efficiency and fair-
ness are enforced by pricing mechanisms. [9] addressed the
problem of MAC layer bandwidth allocation, from both a
cooperative and noncooperative perspective.

Our work differs from the above line of research in its

1Dice: a code on a piece of instrument used in a game.

unique models. With network coding, the traditional short-
est or min-cost single path routing is no longer efficient.
Instead, multiple opportunistic paths can be formed by tak-
ing advantage of the relays’ overhearing capability. To fully
explore the wireless broadcast advantage, we need to model
a broadcast MAC instead of the traditional unicast MAC
scheduling scheme. We are particularly interested in mod-
eling the propagation of coded information flows in a lossy
network.

Optimization based approaches to network coding have
been extensively studied, but mostly confined to multicast
in wireline networks (see e.g. [10]). [11] adopted a pricing
based algorithm that creates incentives for selfish users to
cooperatively achieve the wireline multicast capacity. In [6],
the authors pointed out that network coding may also im-
prove energy efficiency for unicast sessions in wireless net-
works. They proposed a min-cost problem to determine the
transmission rate of each node. This inspired the design
and implementation of the MORE protocol [5]. Since un-
controlled dissemination of coded packets results in redun-
dant transmissions, MORE uses a heuristic algorithm that
tells how many incoming packets a relay should wait be-
fore generating a new packet. Unfortunately, this heuristic
omits the possible congestion effects caused by multiple for-
warders having new packets to transmit. The problem is
especially pronounced for multiple unicast sessions which
tend to suffer from congestion. In addition, it remains an
open problem how many coded packets the source node has
to transmit so as to save redundant transmissions while en-
suring decodability at the destination. Solving the above
problems is the exact objective of the Dice framework. In-
stead of determining the number of packets, we allow each
player (a source-destination pair) to determine the encod-
ing and broadcast rate of its source and forwarders in a
decentralized manner, taking into account the competition
among players, and seeking for optimized bandwidth usage
and congestion avoidance.

An unpublished work [12] addressed similar resource allo-
cation problem based on a stochastic network optimization
approach. [12] extended the optimal backpressure algorithm
for network coding based multicast [13] to the unicast case.
The backpressure algorithm assumes that each intermediate
forwarder has the queue size information at all downstream
nodes, which is infeasible due to the difficulty of real-time
feedback in a lossy wireless network. Such queuing informa-
tion is not required in the Dice framework.

To the best of our knowledge, Dice represents the first at-
tempt towards a game theoretic framework to allocate scarce
resources among competing flows with wireless network cod-
ing. The upshot of wireless network coding with oppor-
tunistic multipath routing is primarily reflected in its greedy
nature, in that all possible transmission opportunities are
fully utilized to maximize throughput. Such a greedy na-
ture can easily lead to bottlenecks and congestion, when
multiple “players” are engaged in the game. Dice is designed
to resolve such conflicts of interest among competing flows.

3. SYSTEM MODELS AND PROBLEM FOR-

MULATION
In this section, we introduce the network models that form

the basis for the Dice framework. Specifically, we describe
the basic operations of a multipath network coding (MNC)



protocol, in contrast with the traditional single-path and
multipath routing protocols in wireless ad hoc and mesh net-
works. Such a protocol is further abstracted from a game
theory perspective, where the strategies of players corre-
sponds to the network constraints of the protocol.

3.1 Basic Operations of an MNC Protocol
The MNC protocol is designed for long lived unicast ses-

sions in lossy wireless networks. In MNC, the source node
continuously generates packet streams from a group of data
blocks using a random linear network coding scheme. Coded
packet streams flow through multiple paths towards the des-
tination. Intermediate forwarders can refresh the packet
streams by re-encoding existing packets and broadcasting
the coded packets to downstream nodes. Once a sufficient
number of packets accumulates at the destination, the orig-
inal group of data blocks can be recovered. Subsequently,
an uncoded ACK is sent back to the source (preferably us-
ing traditional routing), allowing it to start operating on
a new group of data blocks. The detailed network coding
operations in MNC are as follows.

3.1.1 Basic Encoding and Decoding

In random linear network coding, both the encoding and
decoding operations can be regarded as matrix multipli-
cation over a Galois field. Specifically, the source data is
grouped into generations, and further split into data blocks.
Each generation is an n × m matrix B, with rows being
the n blocks of the generation, and columns the m bytes
of each data block (usually m ≫ n). The encoding opera-
tion produces a linear combination of the original blocks by
X = R · B, where R is an n × n matrix composed of ran-
domly selected coefficients in the Galois field GF (28). The
coded blocks (rows in X), together with the coding coeffi-
cients (rows in R), are packetized and flow as packet streams
towards the destination.

The decoding operation at the destination node, in its
simplest form, is the matrix multiplication B = R−1 · X,
where each row of X represents a coded block and each row
of R represents the coding coefficients accomplished with it.
The successful recovery of the original data blocks B requires
that the matrix R be of full rank, i.e., the destination must
collect n independent coded blocks.

3.1.2 Operations At Intermediate Nodes

Intermediate relays can refresh the packet streams by re-
encoding incoming packets and broadcasting the re-encoded
packets to downstream nodes. The re-encoding operation
replaces the coding coefficients accomplished with the orig-
inal coded packets with another set of random coefficients.
For instance, consider the existing coded packets at an in-
termediate node as rows in the matrix Y , which from the
viewpoint of the source node was obtained using Y = Ry ·B
(B is the original uncoded packets and Ry is the random
coefficients). Then the intermediate node may produce a
new code block by re-encoding existing packets as Y ′ =
R′ ·Ry ·B = R′

y ·B. As a result, the original coefficients Ry

are replaced by R′

y.
To reduce futile transmissions, a relay stores an incoming

packet only if it is a fresh packet independent of existing re-
ceived ones, i.e., it is innovative. This ensures that if a relay
accepts a new packet, it is also able to produce and con-
tribute an independent coded packet to the packet streams.

3.1.3 Why Resource Allocation?

The very nature of randomized network coding makes it
possible to guarantee full reliability even under severe losses,
since the probability of decoding failure approaches 0 as
more and more packets accumulate at the destination [6].
However, it is a nontrivial task to tailor the random lin-
ear network coding for efficient unicast, given the possible
redundancy induced by linearly dependent packets, and con-
gestion caused by competing sessions. The key contribution
of Dice lies in its ability to manage the encoding, broadcast-
ing and multipath routing in an optimized manner, in or-
der to maximize the performance of lossy wireless networks.
This is mainly achieved by the game theoretic framework
which optimizes the broadcast/coding rate for relay and
source nodes, and thus resolves the conflict among compet-
ing flows.

3.2 A Game Theoretic Formulation
Game theory analytically models the interactions among

individual decision makers called players. To play the game,
each player selects a strategy from a set of possible strate-
gies (referred to as strategy space). The outcome of the game
is evaluated by payoff or utility functions representing the
preferences of individual players. If each player tends to self-
ishly move towards his own beneficial point, this is called a
noncooperative game. A noncooperative game reaches Nash
equilibrium if no player can increase his own payoff by vary-
ing his strategies while other players’ strategies remain un-
changed. The primary application of noncooperative game
theory has centered around the existence, uniqueness and
efficiency of a Nash equilibrium. On the other hand, co-
operative game theory models the situations where players
coordinate their actions so as to reach a solution of pub-
lic interest. It is concerned with the formalization of fair
resource sharing and cost allocation problems.

In the Dice framework, each player is a network user that
can manipulate a single session, i.e., the end-to-end trans-
mission from a source to a destination node. The player
commands intermediate relay nodes to behave according to
his preference. For player k, the utility function is U(λk),
where λk is the throughput of the corresponding session.
His strategy is to assign encoding and broadcast rates to all
transmitters (including the source and intermediate relays),
and to allocate an information flow rate to each forward-
ing link, in order to increase his payoff. The encoding rate
and broadcast rate are the same, i.e., a node attempts to
broadcast a coded packet immediately after it is encoded.
Under both the cooperative and noncooperative framework,
the strategy space of participating players is constrained by
the underlying network models, which we detail in the se-
quel.

3.2.1 The Opportunistic Multipath Routing Model

Before the actual transmission, an MNC protocol per-
forms a node selection procedure in a decentralized man-
ner [5], such that each intermediate relay is closer to the des-
tination than its predecessors. Denote the resulting topology
as G(V k, Ek) for each player k, where Ek is the set of di-
rected links and V k is the set of nodes involved in session
k. Note that unlike traditional multipath routing protocols,
no explicit path selection is needed. All nodes selected by k
will opportunistically contribute to the unicast.

Without loss of generality, we focus only on the model for



player (session) k, as reflected in the superscripts of all vari-
ables. Denote xk

ij as the information flow rate from node i
to j, which is the average injection rate of innovative packets
on link (i, j). Since fresh information must be conserved at
each relay, we have:

X

j

xk
ij −

X

j

xk
ji = π(i, k), ∀i ∈ V k, (i, j) ∈ Ek (1)

where

π(i, k) =

8

<

:

λk if i = Sk,
−λk if i = T k,

0 otherwise.

Sk, T k and λk denote the source, destination and through-
put of player k.

3.2.2 The Broadcast MAC Model

The MAC layer is responsible for scheduling all transmit-
ters, so as to avoid the collisions at the receiver caused by
interfering transmissions. In a unicast MAC protocol, the
primary concern is to avoid the interference among links. In
contrast, a broadcast MAC must ensure that collision does
not happen for any of the transmitting nodes. Formally, a
broadcast transmission from node i is collision free if and
only if all other transmitters are outside the range of any
downstream receiver of node i. Unlike the traditional unit-
disk model, we define range as the distance where reception
probability falls below a small threshold. With this defini-
tion, it is fair to assume that the interference range equals
to the transmission range. Note that the notion of collision
free lies only within the MAC layer, and is independent of
packet loss due to path-loss or fading effects.

Our MAC model determines the feasible broadcast rate
that each transmitter can achieve, subject to wireless in-
terference. For unicast MAC protocols, it is well known
that the maximal clique model gives a necessary condition
for feasible link rate, while the independent set model im-
poses a sufficient condition [14]. However, both problems
are NP-hard and the exact characterization of the rate re-
gion remains an open problem. Similar results apply to the
broadcast MAC, where the basic element in a clique (or in-
dependent set) is a node rather than a link. To gain insights,
we have to tradeoff accuracy of the models for the simplicity
of the resource allocation algorithm running at each player.
Specifically, we propose a necessary condition for a broad-
cast MAC that is similar to the clique model. A sufficient
condition can be derived following similar analysis for the
unicast MAC [14]. In Sec. 4, we will discuss how the Dice
framework can be generalized to other MAC models.

Assume an ideal collision-free broadcast MAC protocol
exists and is based on slotted scheduling. Let Bk

i [t] be the
decision variable indicating whether node i is transmitting
player k’s data in slot t. According to the above definition
of collision, a necessary and sufficient condition for collision
free schedule is:

X

k

Bk
i [t] +

X

k

X

j∈R(i)

Bk
j [t] ≤ 1, ∀i ∈ V k\Sk, (2)

i.e., in each time slot, any receiver i allows the broadcast
transmission from at most one transmitter within its range
(including itself), denoted as R(i). Note that the source
node Sk is excluded because all nodes in V k are receivers
except Sk. Assume the period of a schedule is T , then the

broadcast rate of node i is:

X

k

bk
i = lim

T→∞

1

T

T
X

t=1

X

k

Bk
i [t], (3)

Apply (3) to (2), we have:
X

k

bk
i +

X

k

X

j∈R(i)

bk
j ≤ C, ∀i ∈ V k\Sk (4)

where C = 1
T

is the MAC layer capacity, which equals to
the maximal broadcast rate of a node when no interferer
presents. In consequence, for any feasible broadcast sched-
ule, (4) must be necessarily satisfied. It is necessary but
insufficient as we transformed an integer variable Bk

i [t] into
a continuous one bk

i by averaging.

3.2.3 The Coding Model

It is straightforward that the injection rate of innovative
information flow along a link (i, j) must not exceed the cor-
responding unicast transmission rate, i.e.,

bk
i · pij ≥ xk

ij , (5)

where pij is the reception probability of link (i, j). How-
ever, this is not a tight bound for xk

ij . It is possible that
a collision-free, loss-free packet arriving from (i, j) is lin-
early dependent with existing packets stored on j, which
may have been delivered from some other link (k, j). Never-
theless, (5) still represents a reasonable approximation in a
lossy environment. To see this, consider an elementary sce-
nario where S pushes the coded packet streams to T through
two paths, each containing one forwarder, denoted as u and
v (u /∈ R(v)), respectively. If u, v have different set of lin-
early independent packets from S, then they can generate
linearly independent packets for T with high probability.
Furthermore, when links are lossy, the probability for u,
v to have the same set of linearly dependent packets is as
low as q = (pSu · pSv)t, where t is the sequences of packets
broadcasted from S, which increments from 1 to as large as
the generation size. Obviously, q remains small most of the
time, thus it is fair to assume u and v can independently con-
tribute information to T . In [6], an exact characterization of
the coding model is provided, but it involves an exponential
number of constraints, making the problem intractable.

We remark that the above models involve approximations
to the behavior of an actual wireless mesh network. This is
largely due to the undetermined MAC layer rate region and
probabilistic nature of lossy wireless networks. However,
from the player’s point of view, this formulation includes
all the tractable information that they can manipulate to
induce a better payoff. In effect, the essential objective of
the Dice framework is not to compute an absolutely optimal
value, but to derive optimized MNC algorithms that high-
light the importance of resource allocation for the players.
We will demonstrate in Sec. 6 that these models can indeed
lead the players towards a much higher level of efficiency
and fairness tradeoff than existing heuristic algorithms.

4. THE COOPERATIVE GAME THEORETIC

FRAMEWORK
As a first contribution in the Dice framework, we model

the MNC resource allocation problem as a cooperative Nash
bargaining game in which the players select strategies through
collaboration.



4.1 The Nash Bargaining Game Formulation
A pivotal element of the Nash bargaining game is a dis-

agreement point which takes effect when no agreement can
be reached through negotiation. The disagreement point
provides an incentive for the players to jointly move towards
an optimal point called Nash bargaining solution (NBS) [15].
NBS captures the notion of social efficiency and fairness us-
ing a set of axiomatic definitions. In this paper, we highlight
the following properties of the NBS:

Pareto optimality. This implies that there is no other
point that leads to strictly higher utility than the NBS.

Fairness. The notion of fairness for NBS involves sym-
metry, scale invariance and independence of irrelevant alter-
natives (for a formal definition, see [15]). These properties
establish a sufficient condition for the well known concept of
proportional fairness.

Assume there are n players, whose strategy space S = S1×
S2×· · ·×Sn. Each player k has a metric function fk(s) eval-
uating the efficiency of a strategy s ∈ S. If fk(·) is concave,
and S is a convex and compact set, then the NBS satisfying
the above properties is unique, and is the solution to the fol-
lowing optimization problem [16]: max

Qn

k=1(fk(s)−fd
k ),

subject to: s ∈ S0, where fd
k is the disagreement point and

S0 is the subset of strategies that achieve higher payoff than
the disagreement point.

In the MNC resource allocation problem, it is natural to
set the metric function as the throughput of a player, i.e.,
fk(s) = λk. The disagreement point can be set to a null vec-
tor, in order to prevent the failure of consensus. Consider
the NBS framework under opportunistic multipath routing
(Sec. 3.2.1), broadcast MAC scheduling (Sec. 3.2.2) and
RLC coding constraints (Sec. 3.2.3): max

Qn

k=1 fk(s), sub-
ject to s ∈ S, which is equivalent to:

max
n

X

k=1

ln(λk), (6)

subject to:

X

j

xk
ij −

X

j

xk
ji = π(i, k), i ∈ V k (7)

xk
ij ≥ 0, (i, j) ∈ Ek (8)

X

k

bk
i +

X

k

X

j∈R(i)

bk
j ≤ C, i 6= Sk (9)

bk
i pij ≥ xk

ij , i 6= T k (10)

We consider λk as a special element xk
ts in the vector x, in-

dicating the conceptual flow from the destination node back
to the source. All vectors (bold characters) are obtained
by stacking the corresponding variables in a row. Thus the
strategy of a player k is a vector consisting of the informa-
tion flow rate xk

ij , (i, j) ∈ Ek, and broadcast rate bk
i , i ∈ V k

which is also the rate that node i re-encodes the data blocks
for player k. Since the strategy space S defined by con-
straints (7), (8), (9) and (10) is affine and compact, and the
metric function fi(s) is concave, the above optimization will
result in the unique Nash bargaining solution.

Unfortunately, the NBS concept itself does not explicitly
specify the procedure leading to a consensus. Here we use
the dual decomposition method [17] to solve the problem (6)
and derive a decentralized algorithm that converges to the
NBS.

4.2 The Cooperative Dice
Consider the partial Lagrangian of the cooperative Dice

framework (6):

L(x, b, β, γ)

= ln(λk) +
X

i

βi(C −
X

k

bk
i −

X

k

X

j∈R(i)

bk
j )

+
X

k

X

(i,j)∈Ek

γk
ij(b

k
i pij − xk

ij)

= ln(λk) −
X

i

X

k

[(βi +
X

j∈R(i)

βj −
X

(i,j)∈Ek

γk
ijpij)b

k
i ]

−
X

k

X

(i,j)∈Ek

γk
ijx

k
ij +

X

i

βiC (11)

which is obtained by relaxing the scheduling constraint (9)
and the coding constraint (10).

Then the primal optimization problem is:

d(β, γ) = max
x,b

L(x, b, β, γ) (12)

subject to the routing constraint (7). The corresponding
dual problem is minβ,γ d(β, γ). According to decomposition
theory, the subgradients for the dual variables βi and γk

ij

are:

Gβi
= C −

X

k

bk
i −

X

k

X

j∈R(i)

bk
j

Gγk
ij

= bk
i pij − xk

ij

Therefore, the dual variables can be updated using the
subgradient method:

βi(t + 1) = [βi(t) − θ2 · Gβi
]+ (13)

γk
ij(t + 1) = [γk

ij(t) − θ1 · Gγk
ij

]+ (14)

Here [·]+ denotes projection on the non-negative domain. θ1

and θ2 are the step sizes. The rules for choosing step sizes
will be discussed in Lemma 1.

Both dual variables have economic interpretations. βi is
the price used to charge wireless node i for its violation of
the bandwidth resource constraint, i.e., the MAC constraint
(4). The adjustment of such a price can be performed by a
MAC level protocol that is independent of individual play-
ers. The players negotiate with each other in order to reduce
the MAC price, i.e., the cost of using the bandwidth. γk

ij is
the price that each player uses to adjust the amount of infor-
mation flows on the forwarding links. The minimum price
corresponds to the opportunistic multipath routing scheme
with maximum efficiency.

At the same time, all players need to solve the primal
problem (12) in order to maximize their payoff. Observe that
(12) can be decomposed with respect to the broadcast rate
vector b and the information flow rate vector x, resulting in
two subproblems: SUB1:

max
x

n
X

k=1

ln(λk) −
X

k

X

(i,j)∈Ek

γk
ijx

k
ij (15)

subject to: constraints (7) and (8). And SUB2:

max
b

X

k

X

j:(i,j)∈Ek

γk
ijpijb

k
i −

X

k

X

i

[(βi +
X

j∈R(i)

βj)b
k
i ]

subject to: 0 ≤ bk
i ≤ C. (16)



Note that (16) is an implicit constraint in the original
problem (6). Owning to the above decomposition, we ob-
tain a modularized optimization of two subproblems: the
multipath opportunistic routing problem (SUB1), and the
broadcast/encoding rate allocation problem (SUB2). These
two problems are solved separately and coordinated by the
pricing vector γ.

4.2.1 The multipath opportunistic routing problem
(SUB1)

It is straightforward to see that problem SUB1 is decom-
posable with respect to each player. In particular, both the
objective and the constraint can be decoupled, thus each
player performs an individual optimization:

max
xk

ln(λk) −
X

(i,j)∈Ek

γk
ij · x

k
ij (17)

subject to: constraint (7) and (8).

We observe that the above optimization tends to give a single
path solution, as we relaxed the capacity constraint (10). To
see this, consider the equivalent flow-path formulation (P is
the set of paths):

max
y

ln(
X

r∈P

yr) −
X

r∈P

pr · yr (18)

where yr indicates the amount of flow on path r; pr is the
cost of routing a unit flow, which is obtained by adding up
the link cost γk

ij along the path r. Let Y =
P

r yr and pmin

be the cost of the min-cost path, then:

ln(
X

r

yr) −
X

r

pryr ≤ ln(Y ) − pminY ≤ ln(
1

pmin
) − 1

equality is achieved iff we choose the min-cost path.
The loss of a multipath solution is mainly due to the non-

strict concavity of the primal Lagrangian function (17) (since
obviously its Hessian with respect to x is not negative def-
inite), which implies that a dual optimal solution does not
necessarily produce a primal optimum. Thus we design the
following mechanism to recover the primal solution. Fol-
lowing the above flow-path reasoning, we send 1

pmin

units of

traffic through the shortest path in each optimization iter-
ation. Correspondingly, for each link (i, j) along this path,
xk

ij = 1
pmin

. Then we use an averaging based primal recovery

method [18] to retain the feasibility of the primal solution.
Specifically, we take an equally-weighted average of the re-
sulting flow rate in each iteration t:

x̄k
ij(t) =

1

t

t
X

m=1

xk
ij(m) (19)

where xk
ij(m) is the solution for link (i, j) in iteration m.

Note that the link cost γk
ij may vary throughout the pro-

cess of iterative optimization. Within each iteration, only a
single shortest path is selected. However, with (19), we not
only obtain a primal feasible solution, but also a multipath
routing scheme that appropriately assigns rates to all links.

4.2.2 The rate allocation problem (SUB2)

Problem SUB2 can be solved separately for each bk
i :

max
bk
i

(
X

j:(i,j)∈Ek

γk
ijpij)b

k
i − (βi +

X

j∈R(i)

βj)b
k
i (20)

Obviously this is a linear objective, which will cause oscilla-
tions if solved directly. Thus we add a quadratic regulation
term to make it strictly concave. Specifically, at each step,
the bk

i is updated as follows:

bk
i (t + 1) = arg max

bk
i

n

(
X

j:(i,j)∈Ek

γk
ijpij)b

k
i

− (βi +
X

j∈R(i)

βj)b
k
i − ǫ|bk

i − bk
i (t)|2

o

= bk
i (t) +

1

2ǫ
(

X

j:(i,j)∈Ek

γk
ijpij − (βi +

X

j∈R(i)

βj))

where ǫ is a small positive constant. As the algorithm
converges, the quadratic term approximates zero, thus the
above update approximates the optimal value of bk

i . For a
validation of such a method, see Sec. 3.4 in [19].

Note that the opportunistic multipath routing (SUB1) al-
gorithm is based on iterations of the shortest path algorithm,
which has well-established decentralized solutions. The rate
allocation scheme (SUB2) only involves localized updates for
each player and the corresponding forwarding nodes. Fur-
thermore, the dual pricing mechanism uses constant step
sizes, and only requires nodes in the same neighborhood to
communicate the dual variable βi to each other. Overall, the
cooperative Dice can be realized in a decentralized manner.
Another noteworthy point is that the term Gβi

is essentially
the congestion price in the neighborhood of node i. Such a
congestion price can be locally generated by a MAC proto-
col itself (for such a MAC, see [20]). Therefore, the above
Dice algorithm can be extended to other MAC models, as
long as the MAC protocol can generate the congestion price
by itself.

4.2.3 Proof of optimality and convergence

We proceed to prove that the above dual decomposition
based algorithm, together with the primal recovery and reg-
ulation mechanism, indeed results in a feasible and optimal
solution corresponding to the NBS. In particular, the above
algorithm convergences to the NBS at a linear rate. The
proof shares a similar spirit with recent work on the conver-
gence of primal recovery techniques when using the subgra-
dient method [18]. The difference is that our primal problem
is ill conditioned, especially in the linear part for the vector
b where we added a quadratic term to regularize the pri-
mal function. Our proof borrows the following important
result from [18]: If Slater’s condition holds and the subgra-
dients are bounded, the sequence of Lagrange multipliers are
bounded, i.e., ||β(t)|| ≤ B, ||γ(t)|| ≤ R, The bounds B and
R depend on the dual optimal solution, the constraint viola-
tion at iteration t, and the value of an initial point satisfying
the Slater’s condition.

In our problem, the Slater’s condition holds since we can
easily construct a feasible solution by assigning each player
a small amount of information flows so that their aggregate
bandwidth requirements do not violate the broadcast MAC
constraint (4) and the coding constraint (5). Furthermore,
the subgradients are bounded since the problem is concave,
and the constraint set is affine and compact [18].

For brevity, we reformulate the Dice optimization problem
(6) as: maxx f(x), s.t., ri(x) = 0, gi(b) ≥ 0, hi(x, b) ≥ 0,
corresponding to the routing constraint, MAC constraint
and coding constraint, respectively. In addition, we have
x ≥ 0, and C ≥ b ≥ 0, in consistent with the original



problem (6). Further, denote hi(x(t), b(t)) = hi(t) where t
is the iteration index. Obviously hi(·) can be decomposed:

hi(x, b) = h
(1)
i (x) + h

(2)
i (b). Denote the bounds for subgra-

dients as ||h(t)||2 ≤ H, ||g(t)||2 ≤ G. We precede the final
result with three lemmas.
Lemma 1: The primal solutions generated by the coopera-
tive Dice are feasible as t → ∞.
Proof: The routing constraint ri(x) = 0 is always satisfied
since we used iterations of the shortest-path algorithm which
maintains flow conservation. Further, when solving problem
(15) (i.e., SUB1), we used the average value of the vector x.
Thus we have:

hi(x̄(t), b(t)) = h
(2)
i (b(t)) +

1

t

t
X

j=1

h
(1)
i (x(j))

≥
1

t

t
X

j=1

h
(2)
i (b(j)) +

1

t

t
X

j=1

h
(1)
i (x(j)) (21)

=
1

t

t
X

j=1

hi(j) ≥
1

t

t
X

j=1

1

θ1
[γi(j) − γi(j + 1)] (22)

=
1

tθ1
(γi(0) − γi(t + 1)) ≥ −

1

tθ1
γi(t + 1) (23)

Denote hi(t)
− as the amount of constraint violation for

subgradient hi at iteration t. It is straightforward that:

hi(t)
− = min(0, hi(x̄(t), b(t))) ≥ −

1

tθ1
γi(t + 1) (24)

Since the sequences of Lagrange multipliers are bounded by
R, we have:

||h(t)−|| ≤
1

tθ1
||γ(t + 1)|| ≤

R

tθ1

which approximates zero as t → ∞. Note that (22) can be
derived from the update rule (14). (21) stands under either
of the following two technical conditions. First, (20) has
non-zero solution and thus b(t) is non-decreasing in general.
This can be satisfied by adjusting the step sizes for dual
variables β and γ, or by allowing multiple sub-iterations
of γ for each iteration of β. Second, we can use the same
averaging based primal recovery algorithm to approximate
a feasible solution for the vector b.

Similarly, we can prove that under the above conditions
the amount of constraint violation for g(·) approximates zero
as t → ∞, i.e., limt→∞ ||g(b(t))−|| = 0. ⊓⊔
Lemma 2: The cooperative Dice approximates the NBS so-
lution from above at a linear rate.
Proof: Denote f∗ and q∗ as the optimal primal and dual
value, respectively. Since the objective function f(·) is con-
cave, we have:

f(x̄(t)) ≥
1

t

t
X

j=1

f(x(t)) =
1

t

t
X

j=1

[f(x(j)) + γ(j)hT (j)

+ β(j)gT (j)] −
1

t

t
X

j=1

[γ(j)hT (j) + β(j)gT (j)]

≥ q
∗ −

1

t

t
X

j=1

[γ(j)hT (j) + β(j)gT (j)] (25)

From Proposition 2(b) in [18], we know that:

γ(t)hT (t) ≤
1

2θ1
(||γ(t)||2 − ||γ(t + 1)||2) +

θ1

2
||h(t)||2

Similar results can be obtained for the multiplier β. Fur-
thermore, since the Dice optimization problem is concave,
there is no duality gap, i.e., f∗ = q∗ . Then the inequality
(25) can be simplified as:

f(x̄(t)) ≥ q
∗ +

||γ(t + 1)||2 − ||γ(1)||2

2tθ1
−

θ1

2t

t
X

j=1

||h(t)||2

+
||β(t + 1)||2 − ||β(1)||2

2tθ2
−

θ2

2t

t
X

j=1

||g(t)||2

≥ f
∗ +

||γ(t + 1)||2

2tθ1
+

||β(t + 1)||2

2tθ2
−

θ1H

2
−

θ2G

2

Thus as t → ∞, the iterative cooperative Dice algorithm
approaches the optimal objective f∗ at a linear rate. The
distance to the optimal objective f∗ depends on the step
size θ1 and θ2, as well as the subgradient bounds H and G.

⊓⊔
Lemma 3: The cooperative Dice approximates the NBS so-
lution from below at a linear rate.

Proof:f(x̄(t)) = f(x̄(t)) + γ
∗

h
T (t) + β

∗

g
T (t)

− γ
∗

h
T (t) − β

∗

g
T (t)

≤ f
∗ − γ

∗

h
T (t) − β

∗

g
T (t)

≤ f
∗ + ||γ∗ || · ||hT (t)−|| + ||β∗ || · ||gT (t)−||

Since both ||γ∗ || and ||β∗ || are bounded, while ||hT (t)−||
and ||gT (t)−|| approximate zero at a linear rate as t → ∞,
Lemma 3 follows directly. ⊓⊔
Theorem 1. The cooperative Dice approaches the unique
solution of the NBS problem at a linear rate.
Proof: From Lemma 2 and Lemma 3, we know that the Dice
algorithm approximates the optimal solution f∗ of the NBS
problem at a linear rate. Furthermore, Lemma 1 states that
the primal solution vector x and b generated by the Dice
algorithm are feasible. Since the original NBS problem has
a concave objective function and affine constraints, it has
a unique optimal solution. Therefore, the Dice algorithm
approximates the unique solution of the NBS problem at a
linear rate. ⊓⊔

5. THE NONCOOPERATIVE FRAMEWORK
When players selfishly improve their own payoff without

considering the social welfare, it is important to determine
the existence, efficiency and fairness of consensus points. For
such a noncooperative case, the consensus is characterized
by the well known Nash equilibrium point (NEP). The game
arrives at a NEP if no player can unilaterally increase his
own payoff, i.e.,

fi(s
∗

1, · · · , s∗i , · · · , s∗n) ≥ fi(s
∗

1, · · · , si, · · · , s∗n), ∀si ∈ Si

where s∗i is the strategy of player i at the NEP. Unlike the
Nash bargaining framework for cooperative games, there is
no guarantee that a Nash equilibrium can be unique or so-
cially optimal. For instance, consider a one-shot static game
where each player attempts to satiate the channel by max-
imizing their broadcast rate, then all players will achieve
zero throughput due to severe collisions. Unfortunately, this
catastrophic result is a NEP since no player can increase his
throughput by adjusting his own broadcast rate.

To avoid such unfavorable NEPs, we need to design mech-
anisms that lead all players to a socially optimal point. Here



we propose a price based scheme that regulates the behavior
of the players. The key problem is to design a payoff func-
tion (referred to as the net payoff) that relates the utility
of each player with the price for achieving the utility. By
analogy with the cooperative Dice, we assume a MAC level
pricing protocol exists and charges each player for access-
ing the channel. In other words, the noncooperative game
is a hierarchical game [21], in which the pricing protocol is
the leader at the higher level, while the players are followers
at the lower level, which selfishly update their net payoff.
In addition, each player needs a pricing mechanism for his
forwarding links, so as to efficiently use the bandwidth al-
located to him. This involves no competition with other
players, and is referred to as the routing price. With such a
setup, the net payoff of player k can be defined as:

f(k) = U(λk) −
X

i∈V k

P k
i bk

i −
X

(i,j)∈Ek

Qk
ijx

k
ij (26)

where the vector x satisfies the routing constraint (1). Ac-
cording to the economic interpretation of diminishing re-
turns, the utility function U(λs) should be concave and
monotonically increasing. The ln(·) function is a conven-
tional choice. The routing price Qk

ij is exactly the same as

the dual variable γk
ij for the multipath routing problem in

the cooperative Dice. As for the MAC price P k
i , we can de-

rive it directly from the cooperative framework, according
to equation (11):

P k
i = βi +

X

j∈R(i)

βj −
X

j:(i,j)∈Ek

γk
ijpij

where β and γ are the dual variables.
With the above formulation, the noncooperative Dice is

reduced to an optimization problem that is exactly the same
as the cooperative Dice, thereby achieving the same level of
efficiency and fairness. In the following theorem, we claim
that the resulting solution indeed achieves a Nash equilib-
rium.

Theorem 2. Assume the players’ net payoff is defined
by (26), and a pricing protocol charges each player for using
the bandwidth resource, then the selfish players can achieve a
Nash equilibrium following the same decentralized optimiza-
tion as in the cooperative Dice.
Proof: As shown in Sec. 4, the payoff function of each player
is concave, and their strategy space is affine and compact.
By Theorem 3.1 in [15], the noncooperative game admits at
least one NEP.

We proceed to show that when the price vectors β and
γ reach optimality (i.e., the duality gap becomes zero), the
corresponding set of strategies x and b form a NEP. First of
all, the utility function and constraint functions are concave
and continuously differentiable. By Theorem 3 in [21], a
Nash equilibrium can be achieved by decomposing the orig-
inal game into a higher-level optimization problem that ad-
justs the dual variables (the pricing vectors), and a lower
level Nash game with the individual payoff function de-
fined in (26). Furthermore, with the primal recovery and
quadratic regularization method in Sec. 4, we are able to
guarantee a primal feasible and optimal strategy for each
player. As a result, the final strategies x and b form a fea-
sible Nash equilibrium. Since we used exactly the same de-
composition method to solve for the optimal point of the co-
operative Dice and the noncooperative Dice, the two frame-

works achieve the same level of utility. We thus complete
the proof for Theorem 2. ⊓⊔

6. EXPERIMENTAL RESULTS
In this section, we first introduce Drift, the emulation

testbed that we use to implement the multipath network
coding protocol. We then present experiments on the per-
formance of the Dice framework, in order to validate its
performance under practical settings.

6.1 Experimental Environment — The Drift
Emulator

Drift is a high performance emulation testbed that we de-
signed for prototyping and validating application layer pro-
tocols in large-scale wireless networks. Compared with ex-
isting emulators, the main feature of Drift is a better trade-
off between scalability and accuracy, which rests on its dis-
tributed architecture, efficient packet processing unit and
analysis based lower layer models. Running in a server clus-
ter, Drift is able to accommodate hundreds of nodes and
several MBytes/second traffic in a single server host. Such
advantages enable Drift to operate efficiently even for those
computationally intensive algorithms such as network cod-
ing.

As in existing wireless emulation testbeds, application al-
gorithms developed in Drift run in real-time and real oper-
ating systems. Drift directly employs the IP and transport
layer protocol stacks in the emulation hosts, simulates the
wireless PHY and MAC with specific models, and emulates
wireless transmissions over a Gigabit Ethernet. The lower
layer models consist of a PHY model that captures the lossy
nature of the actual wireless environment, and a MAC model
that captures the channel competition among neighboring
nodes. We next provide more details of both models and
justify their sufficiency for the purpose of evaluation.
PHY model. To model opportunistic packet reception in a
lossy wireless environment, the widely used unit-disk graph
model, which assumes perfect reception within transmission
range, no longer holds. Instead, we use a PHY model based
on real-world traces from [22], which empirically maps link
distance to the reception probability. With this model, the
transmission range is defined as the distance where reception
probability falls below a small threshold. Therefore, we can
define interference range as the same as transmission range,
in consistent with the notion of range in the Dice framework
(Sec. 3.2.2).
MAC model. To model bandwidth allocation among neigh-
boring nodes by the MAC layer, we partition the network
into groups, each including an active receiver and all trans-
mitters that may send packets or cause interference to it.
The group size equals to the interference range. A node
cannot receive packets if it falls in the interference range
of an interfering node, and the total broadcast rate of all
group members must not exceed the channel capacity. The
packet transmission of each member is enabled in a random-
ized round-robin fashion in order to avoid starvation. Such
an abstract scheduling model corresponds to a generic MAC
protocol in which interfering nodes can optimally multiplex
the channel. Although such a generic MAC does not model
protocol details such as RTS/CTS, it serves as the foun-
dation for predicting the performance trends, and ensuring
a fair comparison among various application-specific proto-
cols.
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Figure 1: The average per-player utility in a lossy

network.

To evaluate the performance of the MNC protocols, in-
cluding Dice and MORE, we have implemented them within
Drift. We now proceed to present the experimental results
obtained from the Drift testbed.

6.2 Performance Evaluation
We explore the potential of Dice for multiple unicast ses-

sions on a 50-node random topology with node density 6
(an average of 5 neighbors per node). The transmission and
interference range is defined as the distance where reception
probability drops to 0.1. The reception probabilities of all
links range from 0.11 to 0.93, with an average of 0.48. The
channel capacity is 104 bytes/second. In the coding mod-
ule, each generation contains 40 data blocks and each data
block is of 1 KB. The source and destination of each player
are randomly chosen, with a path length constraint of 4 to
10 hops. The CBR rate is set to half of the channel capac-
ity. Throughput (excluding overhead) is calculated imme-
diately after the source receives the “successfully decoded”
ACK from the destination, and then averaged over the entire
session.

Fig. 1 demonstrates the average per-player utility as a
function of the number of concurrent players. In general,
the average utility decreases as more players join. With
Dice, the players always achieve higher utility than that of
MORE, especially when a large number of concurrent play-
ers compete for the bandwidth resource. The average utility
improvement is 12%. It is worth noting that the actual emu-
lation results of Dice have lower utility than those predicted
by the optimization framework (6). The main reason lies in
the fact that the Dice framework is built upon an approxi-
mate coding model that overestimates the amount of inno-
vative information flow injecting into each node. In contrast,
in the emulation, each node performs independence check on
each incoming data block. A data block is dropped unless
it is innovative.

Since utility reflects a tradeoff between efficiency (reflected
by throughput) and fairness, we further evaluate the perfor-
mance of both Dice and MORE in terms of network through-
put and fairness. Fig. 2 plots the aggregate throughput of
all players when we vary the number of concurrent players.
We observe that Dice consistently achieves higher through-
put than MORE. The throughput improvement can be up
to 47%, with an average of 17%.

A more important performance metric demonstrating the
advantage of the game theoretic framework is fairness. As
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Figure 2: The aggregate throughput as a function

of the number of concurrent players.
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respectively.

a quantitative evaluation, we compare the Jain’s fairness
index [23] of Dice and MORE. Denote the throughput of
player i as Ti and the number of players as n, the fairness

index is then defined as F =
(
Pn

i=1
Ti)

2

n·
P

n
i=1

T2

i

. From the results

(Fig. 3), we observe that the fairness of MORE varies quite
significantly with the number of players. In comparison,
Dice is able to maintain a high level of fairness. It’s fairness
index can be up to 91% higher than that of MORE, and
32% higher on average.

The above experiments have verified the claim that Dice
can lead the players towards a higher level of throughput-
fairness tradeoff. The main reason for such advantage over
MORE is that it performs optimized bandwidth resource
allocation. As an intuitive explanation, we quantify the net-
work congestion status by monitoring the average queue size
of relay nodes when running Dice and MORE, respectively.
Specifically, we start 4 randomly selected players, which re-
quire the service of 22 relay nodes for the corresponding
end-to-end sessions. We sample the queue size of each relay
and then calculate its time average. The results are sorted
and plotted in Fig. 4. We see that the time averaged queue
size of each relay in Dice is lower than 1, with an average of
0.16, implying that Dice matches the coding and broadcast
rate of intermediate forwarders with the network congestion
status. In contrast, the queue sizes of nodes in MORE are
largely unbalanced, ranging from 0.05 to 97 (the average is
18.4). Some nodes may not even be able to transmit their
encoded data before the data expire. In summary, MORE
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relay nodes.

is not able to match the encoding rate of intermediate for-
warders to the amount of resource that they can obtain from
the network, hence leading to performance degradation.

7. CONCLUSION
With the Dice game theoretic framework, we raised and

addressed the problem of resolving conflicts of interest among
multiple competing flows with wireless multipath network
coding. In Dice, we model the problem as a network game,
in which participating players share the bandwidth resource
through negotiation or competition. In case when play-
ers are willing to cooperate, a Nash bargaining solution
can be achieved through a decentralized negotiation algo-
rithm. When players are selfish, socially optimal equilibrium
point can still be achieved by enforcing pricing mechanisms.
For both cases, the players perform a localized optimization
of two subproblems: multipath opportunistic routing and
broadcast/coding rate allocation. With extensive experi-
ments on an emulation testbed, we demonstrated the effec-
tiveness and potential of Dice, in comparison with heuristics
in previous work. To our knowledge, this is the first attempt
towards a game theoretic framework to negotiate multiple
competing flows in the context of wireless network coding.
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