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Abstract—The persistent growth of big data applications has being raising new challenges in managing large volumes of datasets

with high scalability, confidentiality protection, and flexible types of search queries. In this paper, we propose a secure design

to disassemble the private dataset with the aim to store them across geographically distributed servers while supporting secure

multi-client Boolean queries. In this design, the data owner encrypts the private database with the searchable index attributes. The

encrypted dataset will be disassembled and distributed evenly across multiple servers by leveraging the property of a distributed index

framework. By constructing an encryption structure, generating search tokens, and enabling parallel query, we show how the proposed

design performs the secure while efficient Boolean search. These queries are not only limited to those initiated by the data owner but

also can be extended to support multiple authorized clients, where each client is allowed to access a necessary part of the private

database. In this stage, we advocate a non-interactive authorization scheme where data owner is not required to stay online to process

the query request. Moreover, the query operation can be executed in parallel, which significantly improves the search efficiency. We

formally characterize the leakage profile, which allow us to follow the existing security analysis method to demonstrate that our system

can guarantee data confidentiality and query privacy. To validate our protocol, we implement a system prototype and evaluate the

efficiency of our construction. Through experimental results, we demonstrate the effectiveness of our protocol in terms of data

outsourcing time and Boolean query time.

Index Terms—Searchable symmetric encryption, multi-client data access, key-value stores, Boolean query

Ç

1 INTRODUCTION

THE last decade has witnessed a significant increase in
the volume of data generated every day, reaching an

order of exabytes [1]. Applications of such large volume
data have been extended into many areas, such as social
networking, e-health systems, and smart grid systems,
and others. It is becoming increasingly common for data
to be hosted off-site, especially with the rise of cloud
computing for use. Despite this, the need for storing
such large volumes of data in the cloud has raised new
challenges in its scalability, privacy, and support for flex-
ible types of data operations.

To guarantee security and privacy, data should be
encrypted before outsourcing to remote servers. This brings
barriers for data owners or other clients to perform flexible
data operations on the encrypted data. Particularly, even
though standard encryption technology may protect data

confidentiality, it does not readily support textual search
functions over encrypted domain. Many recent mecha-
nisms, in the general category of Searchable Symmetric
Encryption (SSE), have been introduced to enhance data pri-
vacy while preserving data operation privileges (e.g., [2],
[3], [4], [5], [6], [7], [8], [9], [10], [11]). These works are lim-
ited either on a single centralized server or simple data
operations (e.g., single keyword search), and do not well
address the new requirements on storage scalability, secu-
rity and privacy guarantee, as well as flexible data retrieval
to serve the big data applications.

The goal of this paper is to address the challenges
imposed by big data applications on system scalability, data
confidentiality, and support for flexible data operations. To
improve storage scalability, we employ a distributed index
framework (i.e., key-value (KV) [12], [13]) to encrypt and
distribute data evenly across multiple servers. To keep data
privacy, all data should be encrypted as long as they are left
from the data owner. At the same time, the search opera-
tions as in the plaintext systems should still be preserved.
Moreover, these operations are not only limited to those ini-
tiated by the data owner, but also should be capable of sup-
porting multiple clients data access, where authorized
clients can access the private database owned by a data
owner. In particular, we study how to enable the secure and
efficient Boolean search in a multi-client setting to fulfill the
needs of real-world data applications.

Boolean search has been intensively applied in the large
dataset. For example, in hospital database systems, if a
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doctor requires investigating all male patients with the dia-
betes clinical trial, she will perform the conjunctive search
for keywords “male” and “diabetes”. In the encrypted
domain, Boolean search can be realized to search each indi-
vidual keyword. By doing so, prior SSE schemes for single
keyword search [3], [4], [10] can directly be used. However,
this treatment will introduce two issues. The first is that the
search time scales with the number of keywords in a Bool-
ean query. If some keywords match a large portion of docu-
ments in a dataset, they may incur a long query latency. The
other is that the server learns all the matched documents of
each individual keyword, even some documents are not in
the final query results, and are not expected to be revealed.
Although there are some recent efforts [8], [14] working
on to address these issues, how to apply them into an
encrypted and distributed data store remains an open
problem.

On the other hand, enabling authorized keyword
search for multi-clients is also critical to data applications
in practice. For example, in the hospital system, one hos-
pital has the rich information about clinical trials
“diabetes” and would like to share this information with
partner hospitals. It is useful to authorize other hospitals
to access its database of the diabetes information but
without leaking additional data. One solution is to use
broadcast encryption as introduced in [4], but it is not
scalable for a large number of users while supporting sin-
gle keyword search only. Recent solutions in [5], [15]
support Boolean search in specific access policies, but
they ask a client to communicate with data owner for the
authorization of each query. This somehow limits the
throughput of the entire system.

In this work, we focus on enabling authorized Boolean
search in encrypted and distributed data stores. First, we
start from the recent advancement of encrypted Boolean
search [8] that enables conjunctive search in sublinear com-
plexity. To deploy this primitive to a distributed data store,
we leverage the framework of an encrypted KV store [11],
[16], so as to disassemble the entire database and store them
across geographically distributed servers. In particular, our
design allows the data owner to build the local encrypted
databases (LEDB) and Boolean search encrypted index
(LBSIndex) that will be stored on each server, where the
LEDB on a server stores the encrypted documents while the
corresponding LBSIndex indexes those documents which
can be applied for Boolean queries. Such local structures
enable the data owner or clients to perform the Boolean
queries in parallel among all servers.

In a multi-client setting, to control clients’ access privi-
leges of Boolean queries, we further integrate the latest
multi-client SSE scheme [6] into our design, and advocate
this non-interactive scheme, where a client only needs to
interact with the data owner one time to request the neces-
sary search keys from the access policy, and later generate
the permitted search tokens without the interaction with the
data owner. In order to set up our design in a production
system, we show how to implement the proposed protocols
and cryptographic constructions in a known key-value
store, i.e., Redis [17]. Specifically, the LEDB and LBSIndex
are physically stored as key-value pairs in Redis, and are
accessed by native Redis API, i.e., Put, Get, and Exists.

Based on our design, we characterize the leakage profile
incurred in our designed Boolean search, and show that the
information leakage is no more than that from the current
state-of-the-art works, i.e., [6], [8]. We provide a formal
security analysis to show that data privacy is robust (i.e.,
leakage is no more than defined) to the potential attackers.
To show the effectiveness and efficiency of our theoretical
results, we have developed a system prototype and evalu-
ated the performance of our construction. Through experi-
mental results, we validate the correctness and demonstrate
the effectiveness of our scheme.

The main contributions are summarized as follows:

� We design a secure encryption scheme to support
Boolean search based on a distributed index frame-
work. The original database is disassembled into
local encrypted database and search structures
which can be stored evenly across multiple servers
in a distributed fashion to be more scalable. Due to
the characteristics of local encryption structures, we
demonstrate that our protocol enables parallel search
and computation for Boolean queries among all serv-
ers. Thus, the search efficiency is significantly
improved. On the other hand, the communication
overhead and workload on each server can be sub-
stantially reduced when comparing to a single cen-
tralized server since each server can only be
responsible of processing a small portion of data,
which eventually improve the network throughput.

� We advocate the non-interactive multi-client access
control scheme and integrate it into our design,
where the client only needs to interact with a data
owner one time to obtain the necessary search keys.
In this process, both data owner’s data and clients’
search information can be well protected. With the
requested keys, a client can always generate the
search token by itself to perform Boolean queries
without interacting with data owner.

� We characterize and analyze the leakage profile from
both the encryption structure and query process,
which allow us to follow the existing formal security
analysis to demonstrate that our system can guaran-
tee data confidentiality and query privacy. We show
that the information leakage is no more than that
from the current state-of-the-art works. We also dis-
cuss the existing attack models and address that our
protocol is robust to these models.

� We design a system prototype and deploy it to Ama-
zon EC2 to validate our design. The experimental
results show that both the data outsourcing time and
Boolean query efficiency are significantly improved
when comparing to a centralized server and the
interactive scheme.

The remainder of this paper is organized as follows.
In Section 2, we introduce the system model for this
paper. Section 3 discusses the necessity and importance of
Boolean search and multi-client query over distributed KV
store. Section 4 proposes our construction of secure KV store
with the supports of multi-client access and Boolean search.
Specifically, we present conjunctive search as an example to
show how the encrypted local index is built, search tokens
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are generated, and parallel queries are performed. In the
end, we show how to extend our design into general
queries. In Section 6, we characterize the leakage profiles
and discuss the maximum leakage incurred to adversaries
and clients in the encryption scheme and query process. In
Section 7, we present the implementation and performance
evaluation of our protocol. Section 8 discusses related work
and Section 9 concludes this paper.

2 SYSTEM MODEL

2.1 Overview

In this section, we describe our system architecture that we
rely on to support securemulti-client data access andBoolean
search. As shown in Fig. 1, data owner, clients, dispatcher,
and a number of distributed public cloud servers are the
main entities in this system. The former two entities are indi-
viduals or enterprise users while the following two are public
cloud service nodes. Specifically, the data owner is a user
who has a private dataset and wishes to store the encrypted
version of this dataset into public cloud service nodes. The
role of a dispatcher is to disassemble the encrypted dataset
and route them evenly across all distributed servers. In this
architecture, there exist some clients who wish to access
the data owner’s database on cloud but have to request the
authorization.

In our setting, we assume the information of the private
dataset from the data owner includes the documents, docu-
ment IDs, and keywords. The data owner aims to store such
a dataset on the remote geographically distributed servers
while maintaining its confidentiality and search capability.
For each document, it has a unique ID and a set of keywords
w. To preserve the confidentiality and privacy, the data
owner encrypts each document using the standard algo-
rithm (i.e., AES), while building the searchable index with
document ID to enable the query operation. To disassemble
the dataset so as to distributively store them on multiple
distributed servers, the data owner needs to build the local
encryption database and local searchable index respected to
each individual server, and then sends them to the dis-
patcher so as to decide which server will be routed to. In
addition to perform the search with document ID, we also

enable the second attributes search, i.e., keyword search, to
enhance the data owner’s search ability on the outsourced
data. That is, for data owner, it can perform the search either
on document identifiers or keywords to find the matched
documents. In our model, we assume the data access shall
not only be limited to the data owner but also can be
extended to other clients by authorizing their access. Due to
the privacy concern from the data owner side, the autho-
rized clients are only allowed to perform keyword search.

In this work, we focus our study on enabling the
encrypted dataset on cloud servers to support the Boolean
search (i.e., conjunctive, disjunctive, and negate) that are
submitted from clients. We first use conjunction query as an
example to present our design, i.e., w1 ^ w2 ^ � � � ^ wm. That
is, one client submits the conjunctive search request
w1 ^ w2 ^ � � � ^ wm to cloud servers. Upon receiving this
request, cloud servers perform the query and return all
matched documents including keywords w1; w2; � � � ; wm.
Later, we show that our protocol can be easily adapted to
any other form of Boolean search expressions.

2.2 Threat Model

In this paper, we aim to protect data owner’s database.
Regarding the privacy and confidentiality, we are targeting
the threats from semi-honest adversaries (both servers and
clients). The data owner will never expose its encryption
keys to servers and other unauthorized clients. Besides, we
assume our distributed KV store will not allow the attackers
to access data owner’s private keys. Our designed scheme is
secure against the passive attacker, who can fetch the
encrypted database but cannot obtain more information
rather than encrypted indexes. For the positive attackers, we
assume they canmonitor the query protocol while analyzing
both the query and result patterns. In this paper, we do not
consider the case where attackers can access the background
information about the queries and database, including data-
base structure, statistic information of database, the relation-
ships of different queries, and others. Thus, inference attack
[18] and leakage-abuse attack [19] will not be included here.
Also, we do not consider the case where malicious attackers
canmodify or delete the database intentionally.

2.3 Background Knowledge

Symmetric Encryption. A symmetric encryption scheme
(KGen, Enc, Dec) contains three algorithms: The key gen-
eration algorithm KGen takes a security parameter � to
return a secret key K. The encryption algorithm Enc takes
a key K and a message m 2 f0; 1g� to return a ciphertext
m� 2 f0; 1g�; The decryption algorithm Dec takes K and
m� to return m.

Pseudo-Random Function. We define a family of pseudo-
random functions F : K�X ! R, if for all probabilistic
polynomial-time distinguishers D, jPr½DF ðk;�Þ ¼ 1jk K��
Pr½Dg ¼ 1jg fFunc : X ! Rg�j < neglðkÞ, where neglðkÞ
is a negligible function in k.

Encrypted Key-Value Store. We follow the construction of
encrypted key-value stores as proposed in [11], where the
encrypted document can be stored as a key-value pair.
Assume that the data owner has a set of documents f , and
for each document fi, it has a unique document identifier

Fig. 1. The system architecture.
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idi. The documents identifiers id are protected with pseudo-
random function PRF, and the documents f are encrypted
with the symmetric encryption algorithm. Then the entry of
KV store is defined as:

< l�; f� >¼< PRF ðKid; idÞ; EncðKf; fÞ > ; (1)

where Kid and Kf are the private keys. The dispatcher can
use consistent hashing to [20] find the target server with the
input of l�. With consistent hashing, all encrypted database
can be disassembled and distributively stored across multi-
ple nodes with a balanced distribution.

3 BOOLEAN SEARCH AND MULTI-CLIENT QUERY

OVER DISTRIBUTED KV STORE

Before we present our construction, we discuss some
straightforward methods to support multi-client query and
Boolean search, which raise the challenges that should be
addressed in our design. This section also serves as a dem-
onstration of the necessity and importance of constructing a
more secure scheme to support multi-client Boolean search.

3.1 Boolean Search

According to our system model, one straightforward
method of executing Boolean search is to replace the con-
junctive search into m single keywords search while
returning a set of matched documents for each individual
keyword. Upon receiving all matched document sets, the
client performs the intersection operation to find the
common documents among these sets. That is, the client
performs search for each keyword wi and returns a set of
matched encrypted documents (denoted as set Fi) to the
client. With all returned encrypted document sets Fi

where i ¼ 1 � � �m, the client finds the intersection among

F1; F2; � � � ; Fm, i.e., F1 \ F2 � � � \ Fm, to find the conjunctive
search results. This method is simple but inefficient since it
returns too many redundancy documents. The complexity
is the sum of all matched documents for searched key-
words. Especially, if one keyword is included in all docu-
ments, the entire database will be returned. On the other
hand, it will cause the severe network overhead. More
importantly, this method incurs significant information
leakage, i.e., the set of documents matching each searched
keyword.

To overcome such weakness, one approach is to enable
servers to perform the conjunctive search and only return
intersection results to the client. Fig. 2 shows one plausible
solution of the conjunctive search by extending the results
of [11]. By observing the data structure of KV store in [11],
we can see that a is corresponding to the keyword attributes
and b is corresponding to the matched document id. There-
fore, the server can check whether two keywords have the
same index l� to see if l� is the conjunctive search result. In
one word, the client can submit all keywords query requests
to servers, and servers can perform the intersection opera-
tion for ða;bÞ sets to find the matched document indexes.
Through this way, the servers need only to return the
matched conjunctive search results to the clients.

Comparing to the aforementioned method, this scheme is
much more efficient since only matched documents are
returned to the client, which thus substantially reduces the
network overhead. However, since the client submits all
search token ðt1; t2Þ related to each keyword to servers, the
honest-but-curious servers can still learn the number of
documents matching each keyword, as well as the number
of document matching the conjunctive query of any combi-
nation of a subset of keywords in fw1; w2; � � � ; wmg.

3.2 Multi-Client Query

To enable multi-client query, one method is to allow data
owner to send all encryption keys to clients. This method is
simple, but brings risk to the encrypted databases. With the
encrypted key, clients can access the entire databases, or even
modify it. In this situation, the data owner will lose its control
of database, which definitely is not expected to happen.

Another secure method is that the clients submit query
request to the data owner. Upon receiving the request, the
data owner can generate the search token and sends back to
the client. With the search token, clients can perform the
query operation to cloud servers with the obtained token
from data owner. The main weakness of this solution is that
it requires data owner to stay online to process per-query
and generate query token responding to the client’s request.
On the other hand, the query information from the client
will be learnt by the data owner.

With aforementioned discussions, we conclude that, to
support multi-client query and Boolean search, a more
secure and efficient scheme is needed.

4 THE PROPOSED CONSTRUCTION

In this section, we present our design of disassembling
encrypted dataset into distributed servers while supporting
multi-client Boolean queries. First, we introduce how to
deploy a SSE scheme specifically designed for Boolean

Fig. 2. Support boolean queries.
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queries to an encrypted KV store with a distributed index
framework. Second, we integrate a non-interactive scheme
to enable authorized Boolean queries inmulti-client settings.

We rely on the idea from [8] to build two indexes to
achieve sublinear search time with minimized leakage for
conjunctive queries. From the high-level point of view, the
first is an encrypted index, where each entry is an encrypted
keyword associated with a set of matched document IDs.
The second index is a file-word index, where every matched
ID in each inverted list is linked to a set of keywords in this
document. To implement this scheme in a KV store, we first
use consistent hashing to determine the server location of
each document, and then transform this encrypted invert
index into an encrypted KV pair, where the key is an
encrypted keyword with a state, and the value is an
encrypted document ID. For the file-word index, it is also
transformed into KV pairs, where the key is derived from
both the document and a keyword of this document while
the value indicates the existence.

To enable authorized queries, we customize a secure
non-interactive scheme proposed in [6] into our design to
enable the multi-client query over distributed KV store.
In this scheme, a client is only required to interact with
the data owner in the setup stage to obtain the necessary
keys within a specified search policy. After that, the client
can generate the search token to perform the permitted
Boolean queries without the interaction with the data
owner. Note here, with these keys, the clients cannot exe-
cute other effective data operations (e.g., modify data-
base) rather than only performing the permitted query
operations.

4.1 Build Encrypted Database

To enhance search efficiency, we consider the search
respected to (keyword, document ID) pairs instead of (key-
word, document) pairs. As the server stores both documents
and associated IDs, once an ID is located, the corresponding
document can be quickly retrieved. Thus, the search for a
document ID is the same as for a document itself.

To improve memory efficiency, the data owner employs
the hash functions to transform keywords into prime inte-
gers. That is, for each keyword, it has a unique correspond-
ing prime integer. At the server side, it will store prime
integers rather than keyword strings. Since this part is out
of the scope of this paper, the detailed discussion of key-
words to prime integers transformation is omitted here to
conserve space. In this paper, we assume data owner
already has the keywords and corresponding prime inte-
gers pairs ðw;PÞ, i.e., ðP1; P2; � � � ; PmÞ  ðw1; w2; � � � ; wmÞ. In
the following section, we will use P to represent keyword
for ease of discussion.

To disassemble the encrypted database and store dis-
tributively across multiple servers, it is important to build
local index sets rather than the global index as that has
been proposed in [8]. Particularly, we aim to build both
the local encrypted database and local boolean search
index (LBSIndex) corresponding to each individual
server. Here, we show how to build local LEDB and
LBSIndex. To generate necessary keys for encrypted doc-
ument ID and keyword, data owner inputs a security
parameter k, Then, it chooses big primes p; q, random

keys Kw for a PRF PRF , KI;KZ;KX for a PRF Fp and KP

for a PRF F . With these keys, it outputs the system
master key MK ¼ ðp; q;Kw;KI; KZ;KX; g1; g2; g3Þ and the
corresponding system public key PK ¼ ðn; gÞ; where

n ¼ pq; g $ G and gi  $ Z�n for i 2 f1; 2; 3g. Here, G is a

cyclic group of prime order p.
For each server i, we initiate the LEDBi and LBSIndexi as

the empty sets. Regarding each document, we store the key-
value pair as l� and P , where l� corresponds to the associ-
ated document ID and P corresponds to a keyword. As we
have mentioned, once the document ID is located, the docu-
ment can be quickly retrieved. Thus, the l� should be well
protected as well as the relationships between l� and key-
word P , which are the main objectives of our design. Since
each P will be contained in multiple documents, we incre-
ment an integer value c from 1 regarding to each document.
To protect the l� and keyword relationships, we build the
LEDB and LBSIndex with the following operation.

� We build local LEDB on each server i in the follow-
ing format: e Encðl�jjkidÞ, xind FpðKI; l

�Þ; and
z FpðKZ; g

1=P
2 modnjjcjÞ, where kid is the docu-

ment encryption key. We then have y xind � z�1.
To store them into LEDB, we set stagP  
F ðKP ; g

1
P
1 modnÞ and label F ðstagP ; cjÞ. Then, we

add ðe; yÞ to LEDBi, i.e., LEDBi½label�  ðe; yÞ.
� To build LBSIndex, we set xtag gFpðKX;g

1=P
3

modnÞ�xind

and add xtag into LBSIndex, i.e., LBSIndexi  
LBSIndexi [ fxtagg respected to the server i.

This progress continues till all keywords and their corre-
sponding document IDs are added into LEDB and LBSIn-
dex. To distribute LEDB and LBSIndex, the dispatcher will
decide the target server (based on l�) that will be routed to
for the encrypted keyword and l�, so we have i routeðl�Þ.
Fig. 3 shows the details of building local LEDB and LBSIn-
dex. Now, we have encrypted database LEDBi and
LBSIndexi corresponding to each server i, and the

Fig. 3. Multi-client setup algorithm.
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dispatcher will route them to the corresponding servers and
locally store them.

The advantages in design of local LEDB and LBSIndex
manifest two aspects. First, with local LEDB, we can retrieve
the document IDs stored on a single server corresponding to
a keyword. If these document IDs also include another key-
word, then the document ID and keyword should be already
indexed in the local LBSIndex. This allows a server to check if
a document is a conjunctive result of two keywords without
any information from other servers and enables the search
can be done independently among all servers. Second, the cli-
ent can store the information ci corresponding to each key-
word on each server. Once a new document is added to the
database (i.e., update operation), the new index entry can be
immediately built by increasing the value of ci that respects
to a keyword on server i (assuming new document will be
routed to server i) and added to LEDBi and LBSIndexi with-
out rebuilding the entire LEDB and LBSIndex.

xtoken½c; j�  gFp
�
KZ;
�
s
ð2Þ
P

�PP 02PnfP1gP
0
modnjjc

�
�Fp
�
KX;
�
s
ð3Þ
P

�PP 02PnfPjgP
0
modn

�
¼ gFp

�
KZ;g

1=P1
2

modnjjc
�
�Fp
�
KX;g1=Pj modn

�
:

(2)

xtoken½c; j�y ¼
�
gFpðKZ;g

1=P1
2

modnÞ�FpðKX;g
1=Pj
3

modnÞ
�xind�z�1

¼ gFpðKZ;g

1
P1
2

modnÞ�FpðKX;g

1
Pj
3

modnÞ
 !xind�

�
FpðKZ;g

1
P1
2

modnjjcjÞ�1
�

¼ g
Fp

�
KX;g

1=Pj
3

modn

�
�xind

:

(3)

To further enforce the access control policies on retrieved
documents, we adapt ABE [21] for document encryption.
Each document encryption key can be secured by ABE
encryption. Only with authorized attributes, the user is able
to decrypt the key ciphertext and recover the document from
the search result. The ABE consists of the following algo-
rithms ABE.Setup, ABE.KeyGen, ABE.Enc, and ABE.Dec.
ABE.Setup takes the security parameter k as input and out-
puts the public parameters and a master secret key. ABE.
KeyGen takes a set of access attributes S, the master key, the
public parameters as the input, and then output a decryption
key for document. ABE.Enc takes a document, an access
structure A and the public parameters as input and outputs
the ciphertext such that only a user processing a set of attrib-
utes satisfying the access structure A will be able to decrypt
themessage. ABE.Dec takes the input of a ciphertext contain-
ing an access policy and a private key which is associated
with a set of attribute S, and recovers themessage if S 2 A.

4.2 Multi-Client Authorization and Search Token
Generation

In our design, we assume a client submits attributes set s to
the data owner. If this set is within the data owner’s access
policy S, then the data owner will issue permitted search
key sets to this client. Here, the access policy means the data
owner allows this client to access the request dataset.

In our design, we assume a client submits a set of search
keywords include w ¼ ðw1; w2; � � � ; wmÞ with respective
primer integers ðP1; P2; � � � ; PmÞ, and the following private

keys sk ¼ ðKw;KI;KZ;KX; skPÞ, where skP ¼ ðskð1ÞP ; sk
ð2Þ
P ; sk

ð3Þ
P Þ

while sk
ðiÞ
P ¼ ðg

1=Pn
j¼1Pj

i modnÞ for i 2 f1; 2; 3g:
To generate a search token at a client side, we

assume a client wishes to perform the conjunctive
search with w1 ^ w2 ^ � � � ^ wm. The least frequent keyword
(assume P1) will be chosen to generate stag 
F ðKP ; ðskð1ÞP ÞPP 02PnfP1gP

0
modnÞ ¼ F ðKP ; g

1=P1
1 modnÞ. For each

remaining keyword wj, it will generate search token
xtoken½c; j� for the c-th encrypted document as shown in
Eqn. (2). Fig. 4 depicts the search token generation
procedure.

4.3 Parallel Boolean Search

After generating the search token st ¼ ðstag, xtoken[1],
xtoken½2�; � � �Þ, the client can send the query request to serv-
ers and perform the Boolean search. In our design, we
enable the parallel Boolean search, where a client can send
all search tokens simultaneously to all servers. Based on the
characteristic of local LEDB and LBSIndex, we can see that
with local LEDB, all respective document IDs stored on a
single server corresponding to the least frequent keyword
can be retrieved. For each of these document IDs, if it also
includes another keyword, this ID and keyword should be
already indexed in the local LBSIndex. The LBSIndex serves
as the test of existence of a keyword within a document ID.
Thus, from LEDB and LBSIndex, the server can check
whether a document is a conjunctive result of two key-
words. This allows all servers to perform the parallel search
independently. Therefore, instead of passing search token
from nodes 1 to N (assume total N servers), the client sends
the search tokens and query request to all servers in parallel.
Upon receiving the search token, all servers can simulta-
neously perform the search operations and return the
matched documents to the clients. At each server i, it calcu-
lates label F ðstag; cÞ by increasing c from 1 to check
whether label 2 LEDBi and terminates when label =2 LEDBi

respected to some c values. For label 2 LEDBi and
ðe; yÞ  LEDBi½label�, if xtoken½c; j�y 2 LBSIndexi for all j,
the corresponding e is the conjunctive result. We add e to
the conjunctive set Ri, i.e., Ri  Ri [ feg. After completing

Fig. 4. Token generation algorithm.
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this operation, each server i sends Ri back to the client. The
clients can integrate R1; R2; . . . ; RN together to get the con-
junctive results. Obviously, this parallel computation can
significantly accelerate the search progress. Fig. 5 depicted
the parallel search procedure.

4.4 Correctness

The correctness of our construction can be verified as shown
in Eqn. (3). Based on the construction of XSet in Fig. 3, we

can see that if gFpðKX;g
1=Pj
3

modnÞ�xind 2 XSeti, then the keyword
Pj (i.e., wj) is included in the respected document l�, accord-
ing to xind.

5 EXTENSIONS TO GENERAL QUERIES

The aforementioned section has presented the design of
secure multi-client conjunctive query. Following the similar
token, we can easily extend our protocol to support any form
of Boolean queries, including disjunctive query, conjunctive
with negated terms, and Boolean expressions in searchable
normal form. We now show that our protocol can be readily
adapted to support these forms of Boolean queries.

Disjunctive Query. To support disjunctive query, the
search token generation and query process are different
from that in the conjunctive query. In the token generation
stage, the client needs to generate both stag and respected
xtoken for all keywords rathe than only for the least fre-
quent keyword in conjunctive query. The generation pro-
cess can follow the similar method as shown in Section. 4.2.
To perform the query, each server i will start from the most
frequent keyword and calculate label F ðstag; cÞ by
increasing c from 1 by checking whether label 2 LEDBi and
terminate when label =2 LEDBi respected to some c value.
The server saves the encrypted data e and put into result set
Ri, i.e., Ri  Ri [ feg. Then, the server selects the second
most frequent keyword and calculates label F ðstag; cÞ by
increasing c from 1 to check whether label 2 LEDBi and
terminating once label =2 LEDBi respected to some c
values. For label 2 LEDBi and ðe; yÞ  LEDBi½label�, if
xtoken½c; 1�y =2 LBSIndexi, then Ri  Ri [ feg. After that,
the server selects the third most frequent keyword and
find the associated ðe; yÞ. If xtoken½c; 1� =2 LBSIndexi and
xtoken½c; 2� =2 LBSIndexi, we add e to set Ri, i.e.,

Ri  Ri [ feg. The server can continue above progress till
the last keyword, which will check xtoken½c; j� for all
1 � j � m� 1 (m is the number of keywords). If all of them
are not in LBSIndexi, we add e to R, i.e., Ri  Ri [ feg.
After finishing these operations, all servers will send their
result sets (i.e., Ri) to client and the client unions them
together to obtain the set of disjunctive results.

Conjunctive with Negated Terms. We refer negated term
query as that the searched results do not contain a given key-
word. Here, we study the conjunctive search with some
negated termswhere at least one non-negated term exists. To
perform the query, the client chooses one of the non-negated
terms as the terms stag and the remaining as xterm (i.e., xto-
ken). Both stag and xtoken will be sent to servers. Upon
receiving them, each server i finds the matched results and
then computes whether xtokeny belong to XSeti or not. If
xtoken½c; j�y belongs to XSeti for any j on a server i, this
server will broadcast a “drop” message to all servers. After
receiving the ”drop” message, each server will remove the
associated results from Ri. Note here, for negated query,
additional communication overhead will be generated
among servers. But comparing to [8], the query efficiency is
significantly improved due to the parallel query operations.

Boolean Expressions in Searchable Normal Form. Based on
the aforementioned discussions for conjunctive query, dis-
junctive query, and negated query, we can easily adapted
our protocol to support any expression of Boolean queries,
such as “w1 ^ uðw2; w3; � � � ; wmÞ”, where u is an arbitrary
combination of Boolean expressions, i.e., conjunctive, dis-
junctive, and negated. To perform the query, the client can
calculate the necessitated stag and xtoken for w1; w2; � � �wm

based the Boolean categories as discussed before. We take
the Boolean query w1 ^ w2 _ w3 as an example. The client
will generate stag for w1 while xtoken for w2 and w3 and
send to servers. At each server i, it first finds the ðe; yÞ for
stag, and checks if xtoken½c; 2�y or xtoken½c; 3�y 2 XSeti. If
there is any one of xtoken½c; 2�y and xtoken½c; 3�y belonging
to XSeti, then the server adds e to Ri, i,e., Ri  Ri [ feg. In
the end, each server will send its Ri to client. By putting all
Ri together, the client gets the matched results for Boolean
search of w1 ^ w2 _ w3. By following the similar design, any
Boolean query expression can be achieved. We omit their
discussions here to conserve space.

6 SECURITY ANALYSIS

To show the security strength of our proposed scheme, we
quantify the leakage information and show the security
guarantee against attackers from adaptive servers and the
clients. Recall as discussed in threat model (Section 2.2), the
data owner will never expose its private key to public, thus
the encrypted database can be assumed secure for a passive
attacker. In this section, we focus our discussion on the posi-
tive attackers who have strong ability to learn and analyze
the search and results patterns involved in the multi-client
conjunctive queries.

We discuss the leakage profile that can be learned by
adversaries and present the security definition based on the
simulation-based security analysis. In distributed KV store,
the encrypted database LEDB are distributed acrossmultiples
servers, thus each server only has a small portion of the

Fig. 5. Multi client search algorithm.
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database and can only learn the local search patterns and
results patterns. This obviously strengthens the security guar-
antee comparing to the centralized server design, since it is
impractical to compromise all servers to collude with each
other to obtain the entire database information. This security
strength will be consistently enhanced with the growing of
the number of servers. When comparing with the current
state-of-the-art work, i.e., [6], [8], the leakage profile at each
server from our encryption scheme is only a small portion of
that from them, since the entire database is distributed across
all servers and each server only includes a small portion of the
database. Even in the worse case, all servers are assumed to
collude with each other and collect all leakage profiles from
other servers, the leakage profile is the same as in [6], [8].
Thus, we can conclude that the leakage profile from our pro-
posed protocol is nomore than that from [6], [8]. This guaran-
tees that our scheme has a higher security level.

Let P = (EDBSetup, ClientGen, TokenGen, Search) be our
encryption scheme and A;S be two efficient algorithms. In
term of the quantified leakage, we present the security defi-
nition via a real experiment Real and an ideal experiment
Ideal as follows:

� RealPAðkÞ: AðkÞ chooses a database DB. The
experiment runs the algorithm fðMK;PK;LEDBi;
LBSIndexiÞ : 1 � i � Ng  EDBSetupð1k;DB;RDK;UÞ
and returns ðPK;LEDBi;LBSIndexiÞ to A. After that,
A selects a set of authorized keywords (i.e., w) for a
client and then performs a polynomial number of t
adaptive queries, where we assume the keyword
associated with t are always within the authorized
keyword setw. To response, the experiment runs the
remaining algorithm in P (including ClientGen,
TokenGen, and Search), and gives the transcript and
client outputs to A.

� IdealPAðkÞ: Að1kÞ chooses a databse DB. The game
initializes an empty list and a counter i ¼ 0. Then the
experiment runs fðPK;LEDBi;LBSIndexiÞ : 1 � i �
Ng  SðLðDBÞÞ and gives ðPK;LEDBi;LBSIndexiÞ
to A. A repeatedly chooses a search t. To response,
the experiment records this query as t½i�, increments
i and gives the output to SðLðDBðtÞÞÞ for A, where t
consists of all previous queries in addition to the lat-
est query issued by A. Experimentally, the experi-
ment outputs the bit that A returns.

Our encryption scheme P is adaptively secure
with above leakage file if for all PPT adversaries A, there
exists a simulator S such that Pr½RealAðkÞ ¼ 1��
Pr½IdealA;SðkÞ ¼ 1� � neglðkÞ, where neglðkÞ is a negligible
function in k.

Theorem 1. Our scheme is L�semantically secure (L is the leak-
age function defined as before) against no-adaptive attacks if F
and Fp are secure PRFs and that ABE is a CPA secure attri-
bute-based encryption.

Proof. Since the leakage profile in our scheme is no more
than that from [6]. Our proof follows the same proceed as
in [6]. We omit its discussion here to conserve space. tu

Discussion on SSE Attacks.Although the security notion of
SSE explicitly defines the information learned during the

search protocols, the impact of that information is not indi-
cated. In fact, several recent studies [19], [22] show that the
leakage could be exploited (e.g., frequency analysis) to com-
promise the confidentiality of documents and queries, espe-
cially when the adversary knows some background
information about the documents and queries. An effective
mitigation approach as indicated in [19] is to introduce
dummy keywords and documents to add a protection to
access patterns. For the injection attack [22], SSE schemes
with forward security [23] should be adopted, which pre-
vents from learning additional information from newly
added documents.

7 EXPERIMENTAL EVALUATION

7.1 Prototype Implementation

In this section, we design the system prototype to implement
our protocol as proposed in Section 4. Fig. 6 shows the imple-
mentation of our system prototype. In our implementation,
only three entries are included, which are data owner, clients
and servers. The dispatcher is integrated into the data owner
to simplify our design. In each entry, we use blocks to repre-
sent the operation modules. At the data owner side, the
encrypted database is generated under the Encryption mod-
ule and disassembled by the Consistent Hashing module,
which is based on the algorithm in Fig. 3. After generating
the local encrypted index sets LEDB and LBSIndex, the data
owner can send them to the respective servers through
multi-thread module. All encryption keys are stored in Key-
Storage module. If the search request from a client is autho-
rized, the KeyGen module will be turned on to generate the
search keys for this client. Note the data owner needs to gen-
erate the search keys based on client’s request rather than
retrieving the encryption keys, so the simple Socket call oper-
ation for remote data retrieval cannot meet this need. Hence,
we employ Apache Thrift as a stack to achieve the remote
call procedure between clients and data owner.

Each client has four modules, i.e., KeyRequest, GenToken,
Parallel search and Decryption. The KeyRequest module
requires clients interacting with the data owner only one
time to get the necessary search keys. After that, it can
always call GenToken to generate the search token with any
search within the specified policy. The search token is sent
to all servers simultaneously through the Parallel search
module. Here, the Apache Thrift is also employed to imple-
ment the remote procedure call between clients and servers.

At each server, after receiving the search request, it starts
the Computation module to perform the necessary computa-
tion and retrieve the encrypted value ðe; yÞ. This ðe; yÞ and
search token will be passed to the Check module to perform
the test operation as shown in Fig. 5. To accelerate this oper-
ation, we employ Redis.EXIST() to test the existence of each
xtoken in LBSIndex. For Redis.EXIST() function, as the
server only needs to check a key’s existence without access-
ing its value, the time cost is extremely low. In our experi-
ment, the time cost is only around 1 ms, which is negligible
when compared to Put/Get operation. After completing all
operations at each module, the server returns the matched
results to clients for decryption.

For attribute-based encryption (ABE), we employ the algo-
rithm proposed in [21] to test its performance. The JPBC with
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the Type A elliptic curve is used to implemented this algo-
rithm. Since ABE is not the main contribution of this paper,
we just show its performancewith different sizes of attributes,
separately with our proposed search solution. Table 1 shows
the performance ofABE algorithmwhen varying the numbers
of attributes from 4, 8, to 16. The algorithm runs 10 times for
each size and the averaged running times for setup, key gen-
eration, encryption, and decryption are shown in the second,
third, fourth and fifth columns, respectively.

7.2 Implementation Environment

The goal of this implementation is to evaluate the efficiency
of our protocol in terms of data outsourcing time and multi-
client Boolean query time. We implement the system proto-
type and deploy it to the Amazon Web Services (AWS)
for experiments. In our experiments, we create a set of
AWS M4-xlarge instances, with one instance as data owner,
four instances as clients, and a cluster of instances as the
server nodes. For each instance, the Ubuntu server 14.04 is
installed, and the configurations include 4 vcores (2.4 GHz
Intel Xeon@E5-2676 v3 CPU), 16 GB RAM and 40 GB SSD.
The bandwidth between any two instances is 1Gbps. To
achieve remote data operations among different instances,
we use the software framework Apache Thrift (v0.9.3) to
implement the remote procedure call (RPC). In our proto-
type, the OpenSSL (v1.0.2a) is used for the cryptographic

build blocks, and Redis 3.2.0 is used to store data on each
instance. The PRF function is implemented via calling
HMAC-SHA2 and the symmetric encryption for data is
implemented via AES/CBC-256.

In our experiment, we choose TPC-H/dbgen [24] to gen-
erate the required dataset, which includes a total of 1� 107

records to represent document IDs. Different number of
documents IDs within this dataset will be used in the
respective performance studies. The keywords for each doc-
ument varies from 100 to 10000, and will be specified in the
respective performance evaluation.

7.3 Date Outsourcing Time

This time includes both the data processing time and
uploading time. The processing time refers to the data
encryption time (building LEDB and LBSIndex) while
uploading time refers to the time consumption of transmit-
ting data from data owner to servers.

We first show the impact of server amounts to data out-
sourcing time. Fig. 7 shows the outsourcing time cost for
1� 105 document IDs, when we vary the server’ amounts

TABLE 1
The Running Time of ABE Algorithm (ms)

Attributes Setup KeyGen Encrypt Decrypt
number time time time time

4 34.1 58.2 127.1 54.3
8 40.3 98.6 243.3 101.3
16 52.3 178.2 490.2 197.1

Fig. 6. The system implementation.

Fig. 7. The processing time with different number of servers.
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from 1 to 8. From this figure, we can see that the outsourcing
time is substantially decreased with the increasing of server
amounts. This is due to the paralleled uploading operations
from data owner to multiple servers. In particular, the out-
sourcing time is only 2.65s with 8 servers comparing to
13.04s with one server. If the server amounts keep increas-
ing, the time costs for outsourcing stage will keep reduced.
This demonstrates the advantages of distributed servers
over a single centralized server on the data outsourcing
operations in term of data encryption and uploading.

Fig. 8 shows the time cost for the outsourcing with differ-
ent sizes of document IDs, which varies from 0:1� 106 to
10� 106. From this figure, we can see the time cost increases
likely linear with the sizes of dataset. Even the dataset size
reaches to 10� 106, the outsourcing time is less than half
minute, i.e., 28:23s. This shows the outsourcing operation of
building local encryption structures LEDB and LBSIndex is
very efficient and time cost falls within the acceptable level.

7.4 Query Time Evaluation

To show the efficiency of query performance,we consider that
the number of servers increases from 1 to 8, and the size of
dataset increases from 0:1� 106 to 10� 106. The number of
document IDs that contains each keyword will increase with
the growth of dataset sizes. Fig. 9 shows the time cost of Bool-
ean search with the increasing number of servers when the
dataset sizes are 0:1� 106; 1� 106 and 2� 106, respectively.
From this figure, we can see the query latency decreaseswhen
the servers amounts increase from 1 to 8. Especially, when the
dataset size is 1� 106, the query latency is 0:34swith 1 server
and 0:05s with 8 servers. If server amounts keep increasing,

the query latency will keep reducing. This confirms the query
efficiency of distributed servers over a single centralized
server, since our scheme can effectively handle queries in par-
allel. In this result, we can see the query time does not strictly
linearly decrease with the number of servers. The reasons
include: 1) The connection process between client and servers
costs certain time; 2) The number ofmatched results are differ-
ent among servers and this query time is determined by the
server with the maximum number of matched results. For
example, when the dataset size is 0:1� 106, the latency has
only slight changes as the server’ amounts increase from 3 to
8, since the connections progress dominates the latency
between the client and servers.

To demonstrate the scalability of our protocol, we show
the query complexity is determined by the number of
matched results from the least frequent keyword. We set
the number of document IDs that are corresponding to the
least frequent keyword as 100. For other queried keywords,
each one will be contained in an arbitrary number of docu-
ments and this number is at least 100. We consider the num-
ber of servers as 8. Fig. 10 shows the query time under
different sizes of datasets which vary from 0:1� 106 to
10� 106 (number of document IDs). Note here, the matched
document IDs for least frequent keywords are 100 and will
not change with the size of the dataset. From this figure, we
can see the Boolean query time does not increase with the
sizes of the dataset. This confirms that the search complexity
is independent with the dataset sizes.

We then consider the scenarios where the number of
documents including the least frequent keyword increases
linearly with the sizes of dataset. Fig. 11 shows that the

Fig. 8. The processing time with of different sizes of dataset over 8
servers.

Fig. 9. The search time with different number of servers.

Fig. 10. The time cost with the increasing of documents that contains
least frequent keyword.

Fig. 11. The time cost with the increasing of document IDs that contains
least frequent keyword (linearly increasing with the dataset size).
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query time cost increases almost linearly with the size of the
dataset. This represents that the query time increases with
the number of documents that contain the least frequent
keyword. Therefore, we confirm that the query complexity
is decided by the number of documents that contain the
least frequent keyword instead of the size of dataset.

7.5 Comparison with Interactive Method

In this work, we advocate the non-interactive mechanisms
where the data owner is not required to stay online to pro-
cess clients’ request. To demonstrate the advantage of non-
interactive scheme, we compare its time consumption with
that from the interactive method [5]. The interactive method
represents the scheme where the client needs to interact
with the data owner for each query. We use the same setting
as in Fig. 10 and perform 1000 times query. Fig. 12 shows
the comparison of the cumulative time consumption
between interactive and non-interactive methods under
1000 times query. From this figure, we can see that under
the interactive method, the time cost is higher when com-
paring to non-interactive method. The reason is that that for
each query, the client needs to interact with the data owner
to request search token. But under the non-interactive
method, the client only needs to interact with the data
owner one time. After one time interaction, the client can
alway generate the search token by itself without the inter-
action with the data owner any more. This saves a lots of
time and improves the search speed. From Fig. 12, we can
see that if a client performs 1000 times query, the total time
consumption is 17.20s under the interactive method, while
only 12.90s under the non-interactive method. The interac-
tive method will cause 4.3s latency when compared to the
non-interactive method. If a client continues to perform
more queries, this latency will also increase, which thus
cause more delay. Note here, these results are from the
excellent network environment where the bandwidth
between the client and data owner is 1 Gbps. If the network
environment is worse (low bandwidth), the interaction will
cause even more delay and slow down the search speed.
This demonstrates the advantages of our method over the
interactive method.

8 RELATED WORKS

Searchable Symmetric Encryption. Searchable symmetric
encryption [3], [4] has become a prominent cryptographic

methodology for privacy-preserving data applications in
cloud computing, with the advantage of supporting efficient
search over encrypted data. There were many active efforts
[4], [23], [25], [26] to design specific SSE schemes from the
perspectives of security, efficiency, and functionality. Since
using single keyword search SSE schemes for boolean
queries neither scales well nor guarantees minimized leak-
age, dedicated schemes for boolean queries are designed [8],
[14]. In [8], Cash et al. proposed the first scheme that
achieves sublinear search complexity for conjunctive
queries, and reduces the leakage only reflecting the access
pattern of conjunctive keywords. Their scheme is later
improved by Lai et al. [27] with enhanced security and effi-
ciency. After that, Faber et al. extended the above scheme to
enable secure range, substring, and wildcard queries [7]. To
further improve efficiency, Kamara and Moataz recently
proposed a scheme that achieves sublinear search complex-
ity for disjunctive and arbitrary boolean queries [14]. Note
that recent SSE schemes also focus on achieving forward
and backward privacy in dynamic operations like [28].
Those schemes can readily be integrated to our design.

Most SSE schemes consider a simplified setting which
includes only one client and one server. As recognized,
directly deploying those schemes to realistic applications
sometimes is not sufficient to serve the needs of involving
multiple clients and a cluster of distributed servers.

Multi-Client Access in Searchable Encryption.Although asym-
metric key based searchable encryption schemes [15], [29] (just
to list a few) facilitates the management of multi-client access
privileges with privacy preservation, those schemes need to
compute over the all encrypted documents, which is not scal-
able for large datasets. Therefore,we are interested in symmet-
ric key based schemes. In [4], Curtmola et al. gave the first
construction for multi-client SSE based on broadcast encryp-
tion. However, their scheme only enables a basic access con-
trol policy such that as long as a client is granted access, it is
allowed to generate arbitrary keyword queries.

To enforce a more strict and refined access policies for
different clients, Jarecki et al. leveraged oblivious PRF for
the generation of keyword tokens [5]. Here, only authorized
keywords can be queried. In addition, they apply the pro-
posed technique to Cash et al.’s scheme [8] for boolean
queries. One potential performance issue is that the data
owner is required to always stay online to interact with the
client to run the oblivious PRF protocol. To address this
issue, Sun et al. proposed a non-interactive scheme, where a
client only needs to communicate with the data owner one
time to obtain the necessary search keys for authorized key-
words. After that, it can perform any boolean queries within
a specific policy without the interaction with the data
owner. Unfortunately, those schemes focus on the construc-
tion of theoretical primitives, thus provide the practitioners
little intuition about the integration of production systems
and cryptographic primitives. Our design aims to identify
and bridge the gaps between them.

Encrypted Data Management Systems. The encrypted data-
base systems [30], [31], [32] have been implemented to sup-
port a large portion of database queries over encrypted
data. Among them, a system named BlindSeer [30] supports
practical and arbitrary boolean queries. The technique is to
encode a boolean query in a Bloom filter and query an

Fig. 12. The comparison of the time under interactive and non-interactive
methods with 1000 queries.
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encrypted Bloom filter index via secure function evaluation
protocols. We note that those systems are designed for con-
ventional relation database systems. Recently, Yuan et al.
proposed a distributed and encrypted key-value store [11].
This data store provides an encrypted local index frame-
work to facilitate secure queries in parallel. Afterward, they
further realize range-match and exact match queries under
the index framework [33]. But their design does not support
practical boolean queries, where each boolean query is still
required to be split into individual queries for each query
attribute.

9 CONCLUSIONS

In this paper, a new secure multi-client Boolean search
scheme is designed to provide guarantees of data confi-
dentiality and satisfy the search efficiency. By leveraging
distributed index framework, this design is distributed in
nature to support the system scalability needs. To keep data
confidential and privacy, we designed a new scheme to gen-
erate the local encrypted index LEBD and LBSIndex which
are distributed across multiple servers. Based on this
scheme, we show how to construct encryption structure,
generate search token, and search in parallel to achieve the
efficient Boolean search. On the other hand, to authorize
multi-client access for data owner’s data, we advocate the
non-interactive scheme where the data owner is not
required to stay online to process clients’ access request. To
demonstrate the security and privacy guarantees, we pro-
vide the formal security analysis to illustrate that our proto-
col can achieve strong security guarantee comparing to the
existing works. Finally, a system prototype is designed and
deployed to Amazon EC2 to evaluate and demonstrate the
effectiveness and efficiency of our proposed scheme.
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