
Secure Multi-Client Data Access with Boolean
Queries in Distributed Key-Value Stores

Xu Yuan† Xingliang Yuan‡ Baochun Li† Cong Wang‡

† Department of Electrical and Computer Engineering, University of Toronto
‡ Department of Computer Science, City University of Hong Kong, China

Abstract—In the era of big data processing, it is desirable to
manage large volumes of data with high scalability, confidentiality
protection, and flexible types of search queries. In this paper,
we propose a design to store encrypted data on a cluster
of distributed servers while supporting secure and authorized
Boolean queries. In particular, the data owner encrypts the
database with encrypted searchable index attributes, and the
encrypted data values are stored evenly across multiple servers
by leveraging a distributed index framework. Based on this
design, we show how to construct encrypted indexes, generate
search tokens, and query parallelly to achieve efficient Boolean
search. Moreover, these queries are not only limited to those
initiated by the data owner but also by other authorized clients.
Specifically, we further integrate a recent scheme to make the
authorization of client’s requests non-interactive. The data owner
is not required to stay online to interact with the clients. We
characterize the leakage profile and provide a formal security
analysis to demonstrate that our system can guarantee data
confidentiality and query privacy. To validate our protocol, we
implement a system prototype and evaluate the efficiency of our
construction experimentally. Through experimental results, we
show the effectiveness of our protocol in term of data encryption
time and Boolean query time.

I. INTRODUCTION

The last decade has witnessed a significant increase in
the volume of data generated every day, reaching an order
of exabytes. Applications of big data have been extended
into many areas, such as social networking, e-health systems,
and smart grid systems. It is becoming increasingly common
for data to be hosted off-site, especially with the rise of
cloud computing. However, the need for storing such large
volumes of data in the cloud has raised new challenges for
its scalability, privacy, and support for flexible types of data
operations.

To guarantee security and privacy, data should be encrypted
before outsourcing to remote servers. This brings barriers
for data owners or other clients to perform flexible data
operations on the encrypted data. Particularly, even though
standard encryption technology could protect data confiden-
tiality, it does not readily support textual search functions
over encrypted data. Many recent mechanisms, in the general
category of Searchable Symmetric Encryption (SSE), have
been introduced to enhance data privacy while preserving data
operation privileges (e.g., [1]–[3]). These works focused on
either centralized servers or simple data operations (e.g., single
keyword search), and do not address all the new requirements

on storage scalability, security and privacy guarantee, as well
as fast data retrieval in big data applications.

The goal of this paper is to address the challenges imposed
by big data applications on system scalability, data confiden-
tiality, and support for flexible data operations. To improve
storage scalability, we employ a distributed index framework
(i.e., key-value (KV)) to encrypt and distribute data evenly
across multiple servers. To keep data private, all data should
be encrypted as long as they are left from the data owner.
At the same time, the search operations as in the plaintext
systems should still be preserved. Also, these operations are
not only limited to those initiated by the data owner, and
should also be extended to support multiple clients, where
authorized clients can access the private database owned by a
data owner. In particular, we study how to achieve secure and
efficient Boolean search in a multi-client setting to meet the
needs of real-world data applications.

Boolean search is intensively used in big data applications.
For example, in hospital database systems, if the doctors
require investigating all male patients with the diabetes clinical
trial, they will perform the conjunctive search for keywords
“male” and “diabetes”. In the encrypted domain, Boolean
search can be realized to search individual keywords. By doing
so, prior SSE schemes for single keyword search [1]–[3] can
directly be used. However, this treatment will introduce two
issues. The first is that the search time scales in the number of
keywords in a Boolean query. If some keywords match a large
portion of documents in a dataset, it will incur a long query
latency. The other is that the server learns all the matched
documents of each keyword, even some of the documents
are not in the final query results, and are not expected to
be revealed. Although there are some recent efforts [4], [5]
working on these issues, how to apply them to an encrypted
and distributed data store remains an open challenge.

On the other hand, enabling authorized keyword search for
multi-clients is also critical to data applications in practice.
For example, in the hospital system, one hospital has the
rich information about clinical trials “diabetes” and would
like to share this information with partner hospitals. It is
useful to authorize other hospitals to access its database
of the diabetes information but without leaking additional
information. One solution is to use broadcast encryption as
introduced in [2], but it is not scalable for a large number
of users, and supports single keyword search only. Recent

978-1-5386-0683-4/17/$31.00 ©2017 IEEE

2017 IEEE Conference on Communications and Network Security (CNS)

978-1-5386-0683-4/17/$31.00 ©2017 IEEE

solutions in [6], [7] support Boolean search in specific access
policies, but they ask the client to communicate with the data
owner for authorization of each query. This somehow limits
the throughput of the entire system.

In this work, we focus on enabling authorized Boolean
search in encrypted and distributed data stores. First, we start
from the recent advancement of encrypted Boolean search [5]
that enables conjunctive search in sublinear complexity. To
deploy this primitive to a distributed data store, we leverage
the framework of an encrypted KV store [8], so as to empower
the parallel computing ability of distributed systems for the
encrypted queries. In particular, our design allows the data
owner to build the local encrypted databases (LEDB) and
Boolean search encrypted index (LBSIndex) that will be
stored on each server, where the LEDB on a server stores
the encrypted documents while the corresponding LBSIndex
indexes those documents for Boolean queries. As a result, a
given Boolean query can be processed by all the servers in
parallel.

In a multi-client setting, to control clients’ access privileges
of Boolean queries, we further integrate the latest multi-client
SSE scheme [9] into our design, and advocate this non-
interactive scheme, where a client only needs to interact with
the data owner once to request the necessary search keys
from the access policy, and later generate the permitted search
tokens without the interaction with the data owner. In order
to set up our design in a production system, we show how to
implement the proposed protocols and cryptographic construc-
tions in a known key-value store, i.e., Redis. Specifically, the
LEDB and LBSIndex are physically stored as key-value pairs
in Redis, and are accessed by native Redis API, i.e., Put, Get,
and Exists.

Based on our design, we characterize the leakage profile
incurred in the Boolean search, and show that the information
leakage is no more than that from the current state-of-the-art
works, i.e., [5], [9]. We provide a formal security analysis to
show that data privacy is robust (i.e., leakage is no more than
defined) to the potential attackers. To show the effectiveness
and efficiency of our theoretical results, we have developed
a system prototype and evaluated the performance of our
construction experimentally. Through experimental results, we
have validated the correctness and demonstrated the effective-
ness of our scheme.

The main contributions of this paper can be summarized as
follows:
• We design a secure encryption scheme to support Boolean

search based on a distributed index framework. The local
encrypted database and search structures are built and
stored on multiple servers in a distributed fashion to
be more scalable. Due to the characteristics of local
encryption structures, we demonstrate that our protocol
enables parallel search and computation for Boolean
queries among all servers. Therefore, the search effi-
ciency is significantly improved. On the other hand, the
communication overhead and workload on each single
server can be significantly reduced when comparing to

a centralized single server due to the parallel operation,
which eventually improve network throughput.

• We advocate the non-interactive multi-client access con-
trol scheme and integrate it into our design, where the
client only needs to interact with a data owner once to
obtain the necessary search keys. In this scheme, both
data owner’s data and clients’ search information can be
protected. With these keys, a client can always generate
the token by itself to perform Boolean queries without
interacting with data owner.

• We formally show the security and privacy guarantee
of the newly designed protocol. By characterizing and
analyzing the leakage profile from both the encryption
structure and query process, we show that the information
leakage is no more than that from the current state-of-the-
art works. We also discuss the existing attack models and
address that our protocol is robust to these models.

• We design a system prototype and deploy it to the Ama-
zon EC2 to validate our design. The experimental results
show that both the data uploading time and Boolean query
efficiency are significantly improved when comparing to
a centralized server and the interactive scheme.

The remainder of this paper is organized as follows. In
Section II, we introduce the system model for this paper.
Section III discuss the main challenges of Boolean search
and multi-client query over distributed KV store. Section IV
proposes our construction of secure KV store with the supports
of multi-client access and Boolean search. Specifically, we
present conjunctive search as an example to show how the
encrypted local index is built, search tokens generated, and
parallel queries performed. In Section V, we characterize the
leakage profiles and discuss the maximum leakage incurred
to adversaries and clients in the encryption scheme and query
process. In Section VI, we present the implementation and
performance evaluation of our protocol. Section VII discusses
related work and Section VIII concludes this paper.

II. SYSTEM MODEL

A. Overview

In this section, we describe a system architecture that
supports secure multi-client data access and Boolean search
over distributed and encrypted KV store. As shown in Figure 1,
the system model consists of four entities: data owner, clients,
dispatcher, and a number of distributed public cloud servers.
The former two entities are individuals or enterprises users,
and the following two entities are public cloud service nodes.
The data owner is a user who wishes to store its encrypted data
into the public cloud service nodes. The rule of a dispatcher is
to route the encrypted documents evenly across all distributed
servers. In our architecture, there are multiple clients who wish
to access the data owner’s database but have to request the
authorization from the data owner.

In our setting, we assume the data owner has a private
database which includes the documents, document IDs, and
keywords. This database is required to store on remote servers

2017 IEEE Conference on Communications and Network Security (CNS)

Data
owner

Dispatcher

Servers

Request

Query key
Query token

Clients

Fig. 1: The system architecture.

and the confidentiality should be guaranteed. For each docu-
ment, it has a unique ID and a set of keywords w. To preserve
the confidentiality and privacy, the data owner encrypts its data
and build the searchable index to enable the query operation.
Since the database will be distributively stored on multiple
servers, the data owner needs to build the local encryption
database and local searchable index respected to each single
server, and sends them to the dispatcher to decide which server
will be routed to. The data owner can perform the queries
either with document IDs or keywords to find the matched
documents. In our model, we assume these queries should not
only be limited to data owner but also can be extended to
multiple clients. That is, the data owner can authorize other
clients to access its database.

In this work, we focus our study on how to enable client
to perform the Boolean search, i.e., conjunctive of multiple
keywords. For example, we wish to find the conjunctive results
of keywords w1, w2, · · · , wm., i.e., w1 ∧ w2 ∧ · · · ∧ wm. If
one client’s search request is authorized, it can submit the
conjunctive search request w1 ∧ w2 ∧ · · · ∧ wm to servers.
Upon receiving this request, all servers perform the queries
and return all matched documents that include all keywords
w1, w2, · · · , wm.

B. Threat Model

In this paper, we aim to protect data owner’s database.
Regarding the privacy and confidentiality, we are targeting the
threats from semi-honest adversaries (both servers and clients).
The data owner will never expose its encryption keys to the
servers and other unauthorized clients. Besides, we assume our
distributed KV store will not allow the attackers to access data
owner’s private keys. Our designed scheme is secure against
the passive attacker, who can fetch the encrypted database but
cannot obtain more information rather than encrypted indexes.
For the positive attackers, we assume they can monitor the
query protocol and analyze both the query pattern and result
pattern. In this paper, we do not consider the case where
attackers can access the background information about the
queries and database. Thus, inference attack [10] and leakage-
abuse attack [11] will not be included here. Also, we do not
consider the case where malicious attackers can modify or
delete the database intentionally.

C. Background Knowledge

Symmetric Encryption: A symmetric encryption scheme
(KGen,Enc,Dec) contains three algorithms: The key gen-
eration algorithm KGen takes a security parameter λ to
return a secret key K. The encryption algorithm Enc takes
a key K and a message m ∈ {0, 1}∗ to return a ciphertext
m∗ ∈ {0, 1}∗; The decryption algorithm Dec takes K and
m∗ to return m.
Pseudo-random Function: We define a family of pseudo-
random functions F : K × X → R, if for all probabilistic
polynomial-time distinguishers D, |Pr[DF (k,·) = 1|k ← K]−
Pr[Dg = 1|g ← {Func : X → R}]| < negl(k), where
negl(k) is a negligible function in k.
Encrypted key-value store: We follow the construction of en-
crypted key-value stores proposed in [8], where the encrypted
document can be stored as a key-value pair. Assume that the
data owner has a set of documents f , and for each document
fi, it has a unique document identifier idi. The documents
identifiers id are protected with PRF P , and the documents f
are encrypted with the symmetric encryption algorithm. Then
the entry of KV store is defined as:

< l∗, f∗ >=< P (Kid, id), Enc(Kf , f) > (1)

where Kid and Kf are the private keys. The dispatcher can
use consistent hashing to find the target server for l∗. With
consistent hashing, all documents can be stored across multiple
nodes with a balanced distribution.

III. BOOLEAN SEARCH AND MULTI-CLIENT QUERY OVER
DISTRIBUTED KV STORE

Before we present our construction, we discuss the straight-
forward methods to support multi-client query and Boolean
search, which will raises the challenges should be addressed
in the design. This section also serves as a demonstration of
the necessity and importance of constructing a more secure
scheme to support multi-client data operations.

A. Boolean Search

Based on our system model, one straightforward method
to execute Boolean search is to reduce the conjunctive search
into m single keyword search and return a set of matched
documents for each keyword. Upon receiving all matched
documents sets, the client performs the intersection operation
to find the common documents among these sets. That is, the
client performs the search for each keyword wi and returns
a set of matched encrypted documents (denoted as set Fi)
to the clients. With all returned encrypted document sets Fi
where i = 1 · · ·m, the clients can find the intersection among
F1, F2, · · · , Fm, i.e., F1∩F2 · · · ∩Fm. This method is simple
but inefficient since it returns too many redundancy docu-
ments. The complexity is the sum of all matched documents
for all search keywords. Especially, if one keyword is included
in all documents, the whole database will be returned. On
the other hand, it will cause the severe network overhead.
More importantly, this method incurs significant information
leakage, i.e., the set of documents matching each keyword.

2017 IEEE Conference on Communications and Network Security (CNS)

Conjunctive search
1. Input: Private key K, DB, {w1 ∧ w2 ∧ · · · ∧ wm}.
2. begin:
3. Kwi ← H(K,wi);
4. For i = 1 · · ·m
5. ti1 ← F1(Kwi , 1||wi), t

i
2 ← F2(Kwi , 2||wi);

6. send {ti1, ti2}ni=1 to cluster storage nodes
7. for node z= 1, · · · , n do
8. while(true)
9. ci ← 1;
10. α← G1(t

1
1, ci)

11. while (α, ·) ∈ XSetz do
12. β ← (α, ·);
13. l∗ ← β ⊕G2(t

1
2, ci);

14. for j = 1, · · · ,m do
15. if((G1(t

j
1, ci), G2(t

j
2, ci)⊕ l∗) /∈ XSetz)

16. break;
17. f∗ ← get(l∗), F ← F ∪ f∗
18. end while
19. if((α, ·) /∈ XSetz)
20. break;
21. else
22. ci ++;
23. α← G1(t

1
1, ci)

24. send F to client.
25. end while

Fig. 2: Support boolean queries.

To overcome weakness above, one consideration is to let
servers to perform the Boolean search and only return inter-
section results to the client. By observing the data structure
of KV store in [8], we can see that α is corresponding to
the keyword attributes and β is corresponding to the matched
document id. Therefore, the server can check whether two
keywords have the same index l∗, and thus find the intersection
results between them. In one word, the client can submit all
keywords query request to servers, and servers can perform
the intersection operation for (α, β) sets to find the matched
document indexes. Through this way, the servers can only
return the matched conjunctive search results to the clients.
The Detailed description of this scheme is shown in Figure 2.

Comparing to method above, this scheme is more efficient
since only matched documents are returned to the client, which
greatly reduces the network overhead. However, since the
client submits all (t1, t2) to the server, the honest-but-curious
servers can still learn the number of document matching each
keyword, as well as the number of document matching the
conjunctive query of any combination of a subset of keywords
in {w1, w2, · · · , wm}.

B. Multi-client Query

To enable multi-client query, one method is to allow data
owner to send all encryption keys to clients. This method is
simple, but brings risk to the encrypted databases. With the
encrypted key, clients can access the whole databases, or even
modify the database. In this situation, the data owner will lose
the control of its own database, which definitely should not
happen.

Another secure method is that the clients submit query
request to the data owner. Upon receiving the request, the
data owner can generate the query token and sends back to
the client. With query token, clients can perform the query
operation with the obtained token from data owner to cloud
servers. This method is simple but requiring data owner to
stay online to process per-query and generate query token
responding to client’s request. On the other hand, the query
information from the client will be learnt by the data owner.

From the discussion above, we conclude that, to support
multi-client query and Boolean search, a more secure and
efficient scheme is needed.

IV. THE PROPOSED CONSTRUCTION

In this section, we present our design to support multi-
client Boolean queries in a distributed and encrypted KV
store to satisfy the efficiency and secure requirements. First,
we introduce how to deploy an SSE scheme specifically
designed for Boolean queries to an encrypted KV store with
a distributed index framework. Second, we integrate a non-
interactive scheme to enable authorized Boolean queries in
the multi-client setting.

The idea of the scheme [5] is to build two indexes to achieve
sublinear search time with minimized leakage for conjunctive
queries. From the high-level point of view, the first is an
encrypted index, where each entry is an encrypted keyword
associated with a set of matched document IDs. The second
index is a file-word index, where every matched id in each
inverted list is linked to a set of keywords in this document.
To implement this scheme in a KV store, we first use consistent
hashing to determine the server location of each document, and
then transform this encrypted invert index into an encrypted
KV pairs, where the key is an encrypted keyword with a state,
and the value is an encrypted document id. For the file-word
index, it is also transformed into KV pairs, where the key is
derived from the document and a keyword of this document
while the value indicates the existence.

To enable authorized queries, we further adopt a secure non-
interactive scheme proposed in [9]. In this scheme, a client
is only required to interact with the data owner in the setup
stage to obtain the necessary keys within a specified search
policy. After that, the client can generate the search token to
perform the permitted Boolean queries without the interaction
with the data owner. Note here, with these keys, the clients
cannot execute more data operations (e.g., modify database)
rather than only performing query operations within the policy.

A. Our Construction

To enhance search efficiency, we consider the search re-
spected to keyword and document ID pairs instead of keyword
document pairs. Since the server stores both document ID and
document pairs, when a document ID is located, the respected
documents can be quickly retrieved. Thus, the search for a
document ID is the same as for a document itself.

2017 IEEE Conference on Communications and Network Security (CNS)

1) Build Encrypted Database: To improve memory effi-
ciency, the data owner employs the hash functions to transform
keywords into prime integers. That is, for each keyword, it has
a unique corresponding prime integer. At the server side, it will
store prime integers rather than keyword strings. Since this
part is out of the scope of this paper, the detailed discussion
of keywords to prime integers transformation is omitted here
to conserve space. In this paper, we assume data owner already
has the keywords and corresponding prime integers pairs
(w,P), i.e., (P1, P2, · · · , PS) ← (w1, w2, · · · , wS). In the
following section, we will represent P as the keyword for
easy of discussion.

In the distributed KV store, since the encrypted database
is stored across multiple servers, it is important to build
local index sets rather than the global index as in [5].
Particularly, we build the local encrypted database (LEDB)
and Local Boolean search index (LBSIndex) corresponding
to each server. Now, we show how to build local LEDB and
LBSIndex. To generate necessary keys for encrypted document
ID and keyword, data owner inputs a security parameter κ,
Then, it chooses big primes p, q, random keys Ka for a
hash function H , KI ,KZ ,KX for a PRF Fp and KP for
a PRF F . With these keys, it outputs the system master
key MK = (p, q,Kw,KI ,KZ ,KX , g1, g2, g3,msk) and the
corresponding system public key PK = (n, g,mpk), where
(mpk,msk) ← ABE.Setup(1κ), n = pq, g

$← G and
gi

$← Z∗n for i ∈ [3]

For each server i, we initiate the LEDBi and LBSIndexi
as the empty sets at each server i. For each document, it
has a unique ID l∗, we store the key-value pair as l∗ and
P (P corresponding to a keyword) where l∗ corresponding
to the document ID. As we mentioned, when the document
ID is located, the document can be quickly retrieved. Since
we have used l∗ as the search attribute, now we can store
the pair between P and each respected l∗. The relationships
between l∗ and keyword P (i.e., prime integer) are the main
objectives that we need to protect. Since each P will be
contained in multiple documents, we increment a value c
from 1 with each respected l∗. For each l∗, dispatcher will
decide the target server i which will be routed to for the
encrypted keyword and l∗, we have i← route(l∗). To protect
l∗ and keyword relationships, we build local LEDB on each
server i in the following format: e ← Enc(mpk, l∗||kid, S),
xind ← Fp(KI , l

∗); and z ← Fp(KZ , g
1/P
2 mod n||cj),

where kid is the document encryption key. We then have
y ← xind · z−1. To store them into LEDB, we set stagP ←
F (KP , g

1
P
1 mod n) and label ← F (stagP , cj). Then, we

add (e, y) to LEDBi, i.e., LEDBi[label] ← (e, y). To build
LBSIndex, we set xtag ← gFp(KX ,g

1/P
3 mod n)·xind and add

xtag into LBSIndex, i.e., LBSIndexi ← LBSIndexi ∪ {xtag}
respected to server i. This progress continues till all keywords
and their corresponding document IDs are added into LEDB
and LBSIndex. Fig. 3 shows the details of building local LEDB
and LBSIndex. Now, we have encrypted database LEDBi and
LBSIndexi corresponding to each server i, and the dispatcher

Secure Put
1. Request: Put(K, f)
2. Data: Private key K, DB, w.
3. Result: true or false.
4. begin:
5. client:
6. For w = w1, · · ·wf do

7. ci ← 1, stagw ← F (Kw, g
1
w
1 mod n)

8. for id ∈ DB(w) do
9. l∗ ← P (Ka, id), i← route(l∗).
10. label← F (stagw, ci), e← Enc(mpk, l∗||kid, P)

11. xind ← Fp(KI , l
∗); z ← Fp(KZ , g

1/w
2 mod n||ci)

12. y ← xind · z−1; xtag← gFp(KX ,g
1/w
3 mod n)·xind

13. LEDBi[label]← (e, y),
14. LBSIndexi ← LBSIndexi ∪ {xtag}
15. ci ← ci + 1
16. end for
17. end for
18. Service Nodes:
19. For node i = 1 to N
20. store LEDBi[label], LBSIndexi

21. end for

Fig. 3: Multi-client setup algorithm.

will route them to the corresponding servers and locally store
them.

2) Multi-client Authorization and Search Token Generation:
In our design, we assume a client submits attributes set s to
the data owner. If this set is within the data owner’s access
policy S, then the data owner will issue permitted search
key sets to this client, i.e., w = (w1, w2, · · · , wS) with
respective primer integers (P1, P2, · · · , PS), and the follow-
ing private keys sk = (skS ,Kw,KI ,KZ ,KX , skw), where
skS ← KeyGen(msk, S) and skP = (sk

(1)
P , sk

(2)
P , sk

(3)
P)

where sk(i)
P = (g

1/Πn
j=1Pj

i mod n) for i ∈ [3].

To generate a search token at a client side, we assume a
client wishes to perform the conjunctive search with w1 ∧
w2 ∧ · · · ∧ wm. The least frequent keyword (assume P1) will
be chosen to generate stag ← F (Kw, (sk

(1)
P)ΠP ′∈P\{P1}P

′

mod n) = F (KS , g
1/P1

1 mod n).
For each remaining keyword wj , it will

generate search token xtoken[c, j] for the c-th
encrypted document as following: xtoken[c, j] ←
gFp(KZ ,(s

(2)
P)

Π
P ′∈P\{P1}P ′

modn||c)·FP (KX ,(s
(3)
P)

Π
P ′∈P\{Pj}

P ′
modn)

= gFp(KZ ,g
1/P1
2 mod n||c)·Fp(KX ,g

1/Pj mod n).
3) Parallel Boolean Search: After generating the search

token st = (stag, xtoken[1], xtoken[2], · · ·), the client can
send the query request to servers to perform the Boolean
search. In our design, we propose the parallel search, where the
client can send all search tokens simultaneously to all servers.
Based on the characteristic of local LEDB and LBSIndex, we
can see that from local LEDB, all respective document IDs
stored on a single server corresponding to the least frequency
keyword can be retrieved. For each of these document IDs, if
it also includes another keyword, this ID and keyword should
be already indexed in the local LBSIndex. The LBSIndex
serves as the test of existence of a keyword within a document

2017 IEEE Conference on Communications and Network Security (CNS)

Multi-clients search
1. Input: st = (stag, xtoken[1], xtoken[2], · · ·),

LEDB,LBSIndex
2. Output: R.
3. Function: SEARCH(st, LEDB, LBSIndex).
4. Simultaneously sending st to all servers 1 to N.
5. At server i:
6. Ri ← {}
7. for stag ∈ stags do
8. label← F (stagP , c);
9. while label ∈ LEDB do
10. (e, y)← LEDBi[label]
11. if xtoken[c, j]y ∈ LBSIndexi for all j then
12. R← R ∪ {e}
13. end if
14. c← c+ 1; label← F (stag, c)
15. Send Ri to client.

Fig. 4: Multi client search algorithm.

iD> Thus, from LEDB and LBSIndex, the server can check
whether a document is a conjunctive result of two keywords.
This allows all servers perform the parallel search indepen-
dently. There, instead of passing search token from nodes 1 to
N (assume total N servers), the client sends the search tokens
and query request to all servers in parallel. Upon receiving the
search token, all server can simultaneously perform the search
operations and return the matched documents to the clients. At
each server i, it calculates label← F (stag, c) by increasing c
from 1 to check whether label ∈ LEDBi and terminates when
label /∈ LEDBi respected to some c values. For label ∈ LEDBi
and (e, y)← LEDBi[label], if xtoken[c, j]y ∈ LBSIndexi for
all j, the corresponding e is the conjunctive result and we
take Ri ← Ri ∪ {e}. After completing this operation, each
server i sends Ri back to the client. The clients can integrate
R1, R2, · · · , RN together to get the conjunctive results. Ob-
viously, this parallel computation can significantly accelerate
the search progress. Fig. 4 shows the detailed parallel search
progress.

V. SECURITY ANALYSIS

To show the security strength of our proposed scheme,
we quantify the leakage information and show the security
guarantee against attackers from adaptive servers and the
clients. Recall as discussed in threat model (Section II-B), the
data owner will never expose its private key to public, thus
the encrypted database can be assumed secure for a passive
attacker. In this section, we focus our discussion on the positive
attackers who have strong ability to learn and analyze the
search patterns and results patterns involved in the multi-client
conjunctive queries.

We discuss the leakage profile that can be learned by
adversaries and present the security definition based on the
simulation-based security analysis. In distributed KV store,
the encrypted database LEDB are distributed across multi-
ples servers, thus each server only has a small portion of
the database and can only learn the local search patterns
and results patterns. This obviously strengthens the security
guarantee comparing to the centralized server design, since it

is impractical to compromise all servers to collude with each
other to obtain the entire database information. This security
strength will be consistently enhanced with the growing of the
number of servers. When comparing with the current state-of-
art work, i.e., [5], [9], the leakage profile at each server from
our encryption scheme is only a small portion of that from
them, since the whole database is distributed across all servers
and each server only includes a small portion of the database.
Even in the worse case, all servers are assumed to collude with
each other and collect all leakage profiles from other servers,
the leakage profile is the same as in [5], [9]. Thus, we can
conclude that the leakage profile from our proposed protocol
is no more than that from [5], [9], which guarantee that our
scheme has higher security guarantee.

Let Π=(EDBSetup, ClientGen, TokenGen, Search) be our
encryption scheme and A,S be two efficient algorithms.
In term of the quantified leakage, we present the security
definition via a real experiment Real and an ideal experiment
Ideal as follows:
• RealΠA(k): A(k) choose a database DB. The experimen-

tal runs the algorithm {(MK,PK,LEDBi,LBSIndexi) :
1 ≤ i ≤ N} ← EDBSetup(1k, DB,RDK,U) and
returns (PK,LEDBi,LBSIndexi) to A. After that, A
selects a set of authorized keywords (i.e., w) for a client
and then performs a polynomial number of t adaptive
queries, where we assume the keyword associated with
t are always within the authorized keyword set w. To
response, the experiment runs the remaining algorithm
in Π (including ClientGen, TokenGen, and Search), and
gives the transcript and client outputs to A.

• IdealΠA(k): A(1κ) chooses a databse DB. The game
initializes an empty list and a counter i = 0. Then the
experiment runs {(PK,LEDBi,LBSIndexi) : 1 ≤ i ≤
N} ← S(L(DB)) and gives (PK,LEDBi,LBSIndexi)
to A. A repeatedly chooses a search t. To response, the
experiment records this query as t[i], increments i and
gives the output to S(L(DB(t)) for A, where t consists
of all previous queries in addition to the latest query
issued by A. Experimentally, the experiment outputs the
bit that A returns.

Our encryption scheme Π is adaptively secure with above
leakage file if for all PPT adversaries A, there exists a sim-
ulator S such that Pr[RealA(k) = 1] − Pr[IdealA,S(k) =
1] ≤ negl(k), where negl(k) is a negligible function in k.

Theorem 1: Our scheme is L−semantically secure (L is the
leakage function defined as before) against no-adaptive attacks
if F and Fp are secure PRFs and that ABE is a CPA secure
attribute-based encryption.

Proof Since the leakage profile in our scheme is no more than
that from [9]. Our proof can follow the same proceed as in
[9]. We omit its discussion here to conserve space.

Discussion on SSE attacks: Although the security notion
of SSE explicitly defines the information learned during the
search protocols, the impact of that information is not in-
dicated. In fact, several recent studies [12], [13] show that

2017 IEEE Conference on Communications and Network Security (CNS)

the leakage could be exploited (e.g., frequency analysis) to
compromise the confidentiality of documents and queries, es-
pecially when the adversary knows some background informa-
tion about the documents and queries. An effective mitigation
approach as indicated in [12] is to introduce dummy keywords
and documents to obfuscate access patterns. To mitigate active
injection attacks [13], SSE schemes with forward security [14]
should be adopted, which prevent the servers from learning
additional information from newly added documents. As future
work, we will integrate the above techniques to our system.

VI. EXPERIMENTAL EVALUATION

A. Implementation Environment

The goal of this implementation is to evaluate the efficiency
of our protocol in term of data processing time and multi-
client Boolean query time. We have implemented the prototype
and deploy it to the Amazon Web Services (AWS). In our
experiments, we create a set of AWS M4-xlarge instances,
with one instance as data owner, four instances as clients, and
a cluster of instances as the server nodes. For each instance,
the Ubuntu server 14.04 is installed, and the configurations
include 4 vcores (2.4 GHz Intel Xeon@E5-2676 v3 CPU),
16GB RAM and 40 GB SSD. The bandwidth between any
two instances is 1Gbps. To achieve remote data operations
among different instance, we use the software framework
Apache Thrift (v0.9.3) to implement the remote procedure call
(RPC). In our prototype, the OpenSSL (v1.0.2a) is used for
the cryptographic build blocks, and Redis 3.2.0 is used to store
data on each instance. The PRF function is implemented via
calling HMAC-SHA2 and the symmetric encryption for data
is implemented via AES/CBC-256.

In our experimental, we choose TPC-H/dbgen [15] to gen-
erate the required dataset, which includes a total of 10× 106

records to represent document IDs. Different number of docu-
ments IDs within this dataset will be considered in respective
performance studies. The keywords for each document varies
from 100 to 10000, and will be specified in the respective
performance evaluation.

B. Date Encryption and Uploading time

This time refers to both the data processing time and
uploading time, where data processing time includes the data
encryption time (building LEDB and LBSIndex) and upload-
ing time is the time consumption to transmit data from data
owner to servers as shown in Fig. 3.

Fig. 5 shows the processing time for the 100000 document
IDs. We consider the servers’ amounts increase from 1 to
8. From this figure, we can see that the processing time is
significantly decreased with the increasing of server numbers.
This is due to the parallelized uploading operations from data
owner to multiple servers. In this figure, the processing time
is only 2.65s with 8 servers comparing to 13.04s with 1
server. If the servers amounts keep increasing, the time costs
for processing data will keep reduced. This demonstrates the
advantages of distributed servers over a single centralized

server on the data processing operations in term of data
encryption and uploading.

Fig. 6 shows the time cost for the processing operations with
different sizes of document IDs, which varies from 0.1×106 to
10× 106. From this figure, we can see the time cost increases
linearly with the sizes of the dataset. Even the dataset size
is 10× 106, the processing time is less than half minute, i.e.,
28.23s. This shows the processing operations of building local
encryption structure LEDB and LBSIndex will not cost too
much time, which is within the acceptable level.

C. Query Time Evaluation

To show the efficiency of query performance, we consider
the number of servers increases from 1 to 8, and the size of
dataset increase from 0.1 × 106 to 10 × 106. The number of
document IDs that contains each keyword will increase with
the growing of dataset sizes. Fig. 7 shows the time cost of
Boolean search with the increasing number of servers when
the dataset sizes are 0.1×106, 1×106 and 2×106, respectively.
We assume the conjunctive results of any two keywords scale
with the sizes of dataset. From this figure, we can see the query
latency decreases when the servers amounts increase from 1 to
8. Especially, when the dataset size is 1×106, the query latency
is 0.34s with 1 server and 0.05s with 8 servers. If servers’
amount keeps increasing, the query latency will keep reducing.
This confirms the query efficiency of distributed servers over
a single centralized server, since our scheme can effectively
handle queries in parallel. In this result, we can see the query
time does not strictly linearly decrease with the number of
servers. This is due to two reasons: 1) The connection process
between client and servers costs certain time; 2) The number
of matched results are different among servers and this query
time is determined by the server with the maximum number
of matched results. For example, when the dataset size is
0.1×106, the latency has only slight changes when the server’
amounts increase from 3 to 8, since the connections progress
dominates the latency between the client and servers.

To demonstrate the scalability of our protocol, we show the
query complexity is determined by the number of matched
resulted from the least frequency keyword. We set the number
of document IDs that corresponding to the least frequency
keyword as 100. For other query keywords, each one will
be contained in the arbitrary number of documents and this
number is at least 100. We consider servers number as 8.
Fig. 8 shows the query time with different sizes of datasets
which vary from 0.1× 106 to 10× 106 (number of document
IDs). Note here, the matched document IDs for least frequency
keywords is 100 and will not change with the size of the
dataset. From this figure, we can see the Boolean query time
does not increase with the sizes of the dataset. This confirms
that the search complexity is independent of the dataset sizes.

D. Comparison with Interactive Method.

In this work, we advocate the non-interactive mechanisms
where the data owner is not required to stay online to pro-
cess clients’ request. To demonstrate the advantage of non-

2017 IEEE Conference on Communications and Network Security (CNS)

1 2 3 4 5 6 7 8

Number of servers

2

4

6

8

10

12

14
P

ro
c
e
s
s
in

g
 t
im

e
 (

s
)

Data Size = 1,00000

Fig. 5: The processing time with different num-
ber of servers.

0.1 1 2 3 4 5 6 7 8 9 10

The number of document IDs (× 106)

0

5

10

15

20

25

30

P
ro

c
e

s
s
in

g
 t

im
e

 (
s
)

Fig. 6: The processing time with of different
sizes of dataset over 8 servers.

1 2 3 4 5 6 7 8

Number of servers

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

L
a
te

n
c
y
 (

s
)

Data Size = 10000
Data Size = 100000
Data Size = 200000

Fig. 7: The search time with different number
of servers.

0.1 1 2 3 4 5 6 7 8 9 10

The number of document IDs (× 106)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

T
im

e
 c

o
s
t

(s
)

Fig. 8: The time cost with the increasing of documents that contains least
frequency keyword.

100 200 300 400 500 600 700 800 900 1000

Query times

0

5

10

15

20

25

T
h
e
 c

u
m

u
la

ti
v
e
 t
im

e
 (

s
)

Non-interaction
Interaction

Fig. 9: The comparison of the time under interactive and non-interactive
methods with 1000 queries..

interactive scheme, we compare its time consumption with that
from the interactive method. The interactive method represents
the scheme where the client needs to interact with the data
owner for each query. We use the same setting as in Fig. 8
and perform 1000 times query. Fig. 9 shows the comparison
of the cumulative time consumption between interactive and
non-interactive methods under 1000 times query. From this
figure, we can see that under the interactive method, the time
consumption will increase faster comparing to non-interactive
method. This is due to that for each query, the client needs to
interact with the data owner to request search token. But under
the non-interactive method, the client only needs to interact
with the data owner one time. After one time interaction, the
client can alway generate the search token by itself without
the interaction with the data owner any more. This saves a

huge amount of time and improve the whole search speed.
From Fig. 9, we can see that if a client performs 1000 times
query, the total time consumption is 17.20s under interactive
method, while only 12.90s under the non-interactive method.
The interactive method will cause 4.3s latency compared to the
non-interactive method. If a client continues to perform more
queries, this latency will also increase, which thus cause more
delay. Note here, these results are from the excellent network
environment where the bandwidth between the client and data
owner is 1Gbps. If the network environment is worse (low
bandwidth), the interaction will cause even more delay and
slow down the search speed. This demonstrates the advantages
of our method over the interactive method.

VII. RELATED WORKS

Searchable Symmetric Encryption: Searchable symmetric
encryption (SSE) [1], [2] has become a prominent crypto-
graphic methodology for privacy-preserving data applications
in cloud computing, with the advantage of supporting effi-
cient search over encrypted data. There were many active
efforts [2], [14], [16], [17] to design specific SSE schemes
from the perspectives of security, efficiency, and functionality.
Since using single keyword search SSE schemes for boolean
queries neither scales well nor guarantees minimized leakage,
dedicated schemes for boolean queries are designed [4], [5].
In [5], Cash et al. proposed the first scheme that achieves sub-
linear search complexity for conjunctive queries, and reduces
the leakage only reflecting the access pattern of conjunctive
keywords. After that, Faber et al. extended the above scheme
to enable secure range, substring, and wildcard queries [18].
To further improve efficiency, Kamara and Moataz recently
proposed a scheme that achieves sublinear search complexity
for disjunctive and arbitrary boolean queries [4].

Most SSE schemes consider a simplified setting which
includes only one client and one server. As recognized, directly
deploying those schemes to realistic applications sometimes is
not sufficient to serve the needs of involving multiple clients
and a cluster of distributed servers.
Multi-client Access in Searchable Encryption: Although
asymmetric key based searchable encryption schemes [7], [19]
(just to list a few) facilitates the management of multi-client
access privileges with privacy preservation, those schemes

2017 IEEE Conference on Communications and Network Security (CNS)

need to compute over the all encrypted documents, which is
not scalable for large datasets. Therefore, we are interested in
symmetric key based schemes. In [2], Curtmola et al. gave
the first construction for multi-client SSE based on broadcast
encryption. However, their scheme only enables a basic access
control policy such that as long as a client is granted access,
it is allowed to generate arbitrary keyword queries.

To enforce a more strict and refined access policies for
different clients, Jarecki et al. leveraged oblivious PRF for the
generation of keyword tokens [6]. As a result, only authorized
keywords can be queried. In addition, they apply the proposed
technique to Cash et al.’s scheme [5] for boolean queries.
One potential performance issue of this work is that the data
owner is required to always stay online to interact with the
client to run the oblivious PRF protocol. To address this issue,
Sun et al. proposed a non-interactive scheme, where a client
only needs to communicate with the data owner one time to
obtain the necessary search keys for authorized keywords.
With the search keys, the client can perform any boolean
queries within a specific policy without the interaction with
the data owner. Unfortunately, those schemes focus on the
construction of theoretical primitives, and thus provide the
practitioners little intuition about the integration of production
systems and these cryptographic primitives. Our design aims
to identify and bridge the gaps between them.
Encrypted Data Management Systems: The encrypted
database systems [20]–[22] have been implemented to support
a large portion of database queries over encrypted data. Among
them, a system named BlindSeer [20] supports practical and
arbitrary boolean queries. The technique is to encode a boolean
query in a Bloom filter and query an encrypted Bloom filter
index via secure function evaluation protocols. We note that
those systems are designed for conventional relation database
systems. Recently, Yuan et al. proposed a distributed and
encrypted key-value store [8]. This data store provides an
encrypted local index framework to facilitate secure queries
in parallel. Afterward, they further realize range-match and
exact match queries under the index framework [23]. But their
design does not support practical boolean queries, where each
boolean query is still required to be split into individual queries
for each query attribute.

VIII. CONCLUSIONS

In this paper, a new secure multi-client Boolean search
scheme is designed to provide guarantees of data confidential-
ity and satisfy the search efficiency. By leveraging distributed
index framework, this design is distributed in nature to support
the system scalability needs. To keep data confidential and
privacy, we designed a new scheme to generate the local
encrypted index LEBD and LBSIndex which are distributed
across multiple servers. Based on this scheme, we show how
to construct encryption structure, generate search token, and
search in parallel to achieve the efficient Boolean search.
On the other hand, to authorize multi-client access for data
owner’s data, we advocate the non-interactive scheme where
the data owner is not required to stay online to process clients’

access request. To demonstrate the security and privacy guar-
antees, we provide the formal security analysis to illustrate that
our protocol can achieve strong security guarantee comparing
to the existing works. Finally, a system prototype is designed
and deployed to Amazon EC2 to evaluate and demonstrate the
effectiveness and efficiency of our proposed scheme.

REFERENCES

[1] D.X. Song, D. Wagner, and A. Perrig, “A practcal techniques for
searches on encrypted data,” in IEEE S&P, 2000.

[2] R. Curtmola, J. Garay, S. Komara, and R. Ostrovsky, “Searchable
symmetric encryption: Improved definitions and efficient constructions,”
in Proc. ACM CCS, 2006.

[3] S. Kamara and C. Papamanthou, “Parallel and dynamic searchable
symmetric encryption,” in Financial Cryptography, 2013.

[4] S. Kamara and T. Moataz, “Boolean searchable symmetric encryption
with worst-case sub-linear complexity,” in Eurocrypt, 2017.

[5] D. Cash, S. Jarecki, C.S. Jutla, H. Krawczyk, M-C. Rosu, M. Steiner,
“Highly-scalable searchable symmetric encryption with support for
Boolean queries,” in Proc. CRYPTO, 2013.

[6] S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner, “Outsourced
symmetric private information retrieval,” in Proc. ACM CCS, 2013.

[7] F. Bao, R. Deng, X. Ding, Y. Yang, “Private query on encrypted data in
multi-user settings,” in ISPEC, 2008.

[8] X. Yuan, X. Wang, C. Wang, C. Chen, and J. Lin, “Building an
encrypted, distributed, and searchable key-value store,” in Proc. ACM
ASIACCS, 2013.

[9] S.F. Sun, J.K. Liu, A. Sakzad, R. Steinfeld, and T.H. Yuen, “An
efficient non-interactive multi-client searchable encryption with support
for boolean queries,” in Proc. ESORICS, 2016.

[10] M. Naveed, S. Kamara, and C.V. Wright, “Inference attacks on property-
preserving encrypted databases,” in Proc. ACM CCS, 2015.

[11] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart,, “Leakage-abuse attacks
against searchable encryption,” in Proc. ACM CCS, 2015.

[12] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart , “Leakage-abuse attacks
against searchable encryption,” in ACM CCS, 2015.

[13] Y. Zhang, J. Katz, and C. Papamanthou, “ All your queries are belong
to us: The power of file-injection attacks on searchable encryption,” in
USENIX Security, 2016.

[14] R. Bost, “Sophos: Forward Secure Searchable Encryption,” in ACM
CCS, 2016.

[15] Transaction Processing Performance Council, “TPC Benchmark H (De-
cision Support) Standard Specification,” in TPC, 2002.

[16] F. Hahn and F. Kerschbaum, “Searchable Encryption with Secure and
Efficient Updates,” in CCS, 2014.

[17] D. Cash, J. Jaeger, S. jareck, and C. Jutla, H. Krawczyk, M.-C. Rosu,
and M. Steiner, “Dynamic searchable encryption in very-large databases:
Data structures and implementation,” in Proc. ACM NDSS, 2014.

[18] S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M. Rosu, and M. Steiner,
“Rich queries on encrypted data: Beyond exact matches,” in ESORICS,
2015.

[19] C. Dong, C. Russello, and N. Dulay, “Shared and searchable encrypted
data for untrusted servers,” in DAS, 2008.

[20] V. Pappas, B. Vo, F. Krell, S. Choi, V. Kolesnikov, A. Keromytis, and
T. Malkin., “Blind Seer: A scalable private DBMS,” in Proc. IEEE S&P,
2014.

[21] R. Poddar, T. Boelter, and R. A. Popa, “Arx: A strongly encrypted
database system,” in Cryptology ePrint Archive, Report 2016/591, 2016.

[22] R.A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan,
“CryptDB: protecting confidentiality with encrypted query processing,”
in Proc. ACM SOSP, 2011.

[23] X. Yuan, Y. Guo, X. Wang, C. Wang, B. Li, and X. Jia, “EncKV: An
encrypted key-value store with rich queries,” in Proc. ACM. ASIACCS,
2017.

2017 IEEE Conference on Communications and Network Security (CNS)

