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ABSTRACT
Distributed data stores have been rapidly evolving to serve
the needs of large-scale applications such as online gaming
and real-time targeting. In particular, distributed key-value
stores have been widely adopted due to their superior per-
formance. However, these systems do not guarantee to pro-
vide strong protection of data confidentiality, and as a result
fall short of addressing serious privacy concerns raised from
massive data breaches.

In this paper, we introduce EncKV, an encrypted key-
value store with secure rich query support. First, EncKV
stores encrypted data records with multiple secondary at-
tributes in the form of encrypted key-value pairs. Second,
it leverages the latest practical primitives for searching over
encrypted data, i.e., searchable symmetric encryption and
order-revealing encryption, and provides encrypted indexes
with guaranteed security to support exact-match and range-
match queries via secondary attributes of data records. Third,
it carefully integrates these indexes into a distributed index
framework to facilitate secure query processing in parallel.
To mitigate recent inference attacks on encrypted database
systems, EncKV protects the order information during range
queries, and presents an interactive batch query mechanism
to further hide the associations across data values on dif-
ferent attributes. We implement an EncKV prototype on a
Redis cluster, and conduct an extensive set of performance
evaluations on the Amazon EC2 public cloud platform. Our
results show that EncKV effectively preserves the efficiency
and scalability of plaintext distributed key-value stores.

Keywords
Encrypted Key-value Store; Searchable Encryption; Order-
revealing Encryption

1. INTRODUCTION
In the last decade, a new group of distributed storage sys-

tems — also known as NoSQL data stores — are rapidly
evolving to handle data in large-scale applications, such as
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online gaming and product recommendation [18,32]. Among
others, key-value (KV) stores are considered as one of the
most popular types of distributed data stores, due to their
strength in terms of both performance and scalability. Ex-
emplary systems include Redis [29], DynamoDB [9], and
RAMCloud [22]. Recent advances on KV stores have fur-
ther leveraged secondary indexes to enrich their features,
i.e., supporting rich queries via secondary attributes other
than the primary key [11,15].

However, privacy concerns are becoming increasingly more
serious with large volumes of data stored in distributed KV
stores, from the public clouds to private data warehouses,
with recent incidents of massive data breaches [13]. In-
deed, these KV stores do not provide strong protections of
data confidentiality. Conventional mechanisms resort to ac-
cess control that specifies the access scope at the user or
group levels [7], or transparent server-side encryption that
asks the servers (not the data owners) to encrypt data [21].
These mechanisms are not able to fully defend against seri-
ous threats of stealing data.

Recent work that seeks to protect the data while preserv-
ing the query functionality falls into two categories. In the
first category, generic cryptographic primitives have been
designed to enable specific query functions over encrypted
data, such as searchable encryption [4, 8, 14] for keyword
search, and order-revealing encryption1 [1, 10, 19] for range
search. In the second category, encrypted database systems
that utilized various primitives to support a wide range of
query functions have been implemented. Representative sys-
tems include CryptDB [27], BlindSeer [24], Arx [25], and
Seabed [23]. Depending on the primitives adopted, they
have different trade-offs on security, functionality, and ef-
ficiency. Unfortunately, neither category is specifically tai-
lored for distributed KV stores.

To bridge this gap, we start from a very recent encrypted
KV store design [33] that preserves advantages of modern
KV stores while initiating an encrypted local index frame-
work for efficient queries via secondary attributes of data.
The core idea of this framework is to co-locate the encrypted
data records and the corresponding encrypted indexes in
the same nodes, so as to avoid inter-node interaction during
query protocols and facilitate parallel query processing. Un-
fortunately, this initial framework serves only as a blueprint,
as it did not present how to securely support different types
of queries over distributed encrypted data records.

1Early results [1] that only support numeric comparisons are
also called order-preserving encryption.
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Our objectives in this paper are to address the following
two challenges. First, appropriate cryptographic primitives
need to be carefully chosen to balance security and practi-
cality, and further customized and integrated into the afore-
mentioned index framework. The selected primitives should
be both sufficiently efficient for deployment scenarios and
provably secure with guaranteed strength. Meanwhile, their
integration should not diminish the advantages of the local
index framework.

Second, leakage in our system should be minimized. Driven
by recent inference attacks [16, 20] and leakage-abuse at-
tacks [3, 12], we follow the latest primitives with the “best-
possible” security notion in the literature. Further, we note
that implementing rich queries in real systems might re-
veal auxiliary information which is not considered in generic
primitives. For example, the associations between data val-
ues on different attributes are sometimes exposed unneces-
sarily, and have been shown to be exploitable, leading to
compromised data confidentiality [10, 20]. Therefore, our
proposed query protocols should protect such information.

In this paper, we propose EncKV, an encrypted key-value
store with secure rich query support. We first classify com-
mon queries of KV stores into two categories, i.e., exact-
match queries (keyword search, equality test and counting)
and range-match queries (range search and prefix match).
To support these two types of queries, EncKV leverages
two primitives respectively: searchable symmetric encryp-
tion (SSE) [4, 8] and order-revealing encryption (ORE) [6,
19]. For low latency queries, EncKV follows the guideline
of the encrypted local index framework given in [33]; that
is, the client needs to track the location of each data record
when it builds the local encrypted indexes2 that index the
data records on each node respectively.

For exact-match queries, EncKV carefully integrates Cash
et al.’s elegant and efficient SSE scheme [4] into the local
index framework, and customizes it to support exact-match
queries via encrypted single or multiple secondary attributes
of data. As a result, EncKV’s encrypted local indexes hold
the security of SSE, and can readily be stored in any KV
store back end for easy deployment.

For range-match queries, EncKV utilizes Lewi and Wu’s
ORE scheme [19], which achieves the “best-possible” secu-
rity notion for practical ORE. Like exact-match queries, the
chosen ORE scheme is firstly customized and integrated into
EncKV’s index framework. Furthermore, we observe that
the order information (i.e., “>” and “<”) is not necessarily
revealed to for the correctness of range queries. Accordingly,
EncKV enhances the ORE scheme by using randomized or-
ders in ciphertext comparisons, and only allows the server
to know whether the query condition is matched.

Finally, EncKV provides an engineered approach to mit-
igate the inference attacks. Our empirical observation is
that a certain query is commonly conducted in two phases.
The first is to process the corresponding encrypted indexes
to find matched primary keys (i.e., record IDs) on a given
query condition, and then the second phase is to fetch the
specified data values associated. And provisioning the server
an ability to complete the two phases seamlessly will ex-
pose data correlations across different attributes. Therefore,
EncKV splits the two and introduces an interactive batch
query mechanism to reduce the leakage.

2In distributed data stores, “local index” implies that each
node stores an index that only indexes its local records [15].

Figure 1: The architecture of EncKV.

EncKV has the following salient features:

• It stores data records with multiple attributes in the
form of encrypted key-value pairs, and distributes them
to the nodes via a standard data partitioning algo-
rithm.

• It supports rich queries over distributed encrypted data
records. The supported queries include keyword search,
equality, count, join, range, like, sum, average, group
by, max, and min.

• It offers guaranteed security, i.e., SSE’s security no-
tion for exact-match queries, and ORE [19]’s security
notion for range-match queries.

• It preserves linear scalability of KV stores with respect
to their performance. The query throughput increases
linearly with the number of nodes in the cluster. Mean-
while, it enables parallel query processing. The query
latency decreases when more nodes are deployed.

The paper is organized as follows. Section 2 presents
our system architecture and threat assumptions. Section 3
presents our system design. Our security analysis is con-
ducted in Section 4, and an extensive array of evaluation
results is shown in Section 5. Finally, we introduce related
work in Section 6, and conclude the paper in Section 7.

2. OVERVIEW

2.1 System Architecture
The system architecture of EncKV is shown in Figure 1,

containing two entities, the client and server node. EncKV
serves the clients who wish to store their sensitive data
records in KV stores. A cluster of server nodes can be leased
from the public cloud or be deployed at on-premise data
centers. These nodes store encrypted data records and pro-
vide secure query functions to the clients. Correspondingly,
EncKV implements two separate modules for the client and
server nodes. The client module performs data encryption
and decryption, encrypted index construction, as well as
query token generation. It maintains the client’s master
key which is used to derive different private keys for the
functions above. A node in the server module handles query
requests from the client. It processes query tokens over the
encrypted indexes, and utilizes the APIs of the underlying
KV stores to put/get encrypted data records.

To insert a data record to EncKV, the client uses its pri-
vate key to generate encrypted label-value (LV) pair(s)3. If
the data is formated in the rich data model other than the

3We use the term“label” instead of“key”to avoid ambiguity.
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simple key-value model, it will randomly be mapped into a
set of encrypted LV pairs. This treatment allows EncKV
to use the standard data partitioning algorithm (i.e., consis-
tent hashing [9]) to distribute encrypted data records evenly
across the nodes.

For the purpose of building local indexes, EncKV asks
the client to maintain a small-sized consistent hashing ring
which indicates the label range associated with each node.
As a result, the client can directly insert LV pairs to targeted
nodes and build the encrypted indexes for them on each
node. To submit a secure query via secondary attributes of
data, the client first generates a token set from the query
condition attribute, and then broadcasts the tokens to each
node respectively. After that, each node processes the to-
kens on its local index, and returns the matched, encrypted
record IDs. Finally, the client decrypts the record IDs and
generates labels to fetch the encrypted result values.

Remarks: (1) In our current implementation, EncKV does
not add dummy records, while they can be inserted to mit-
igate inference attacks and leakage-abuse attacks (see our
discussion in Section 4.3). (2) EncKV’s query protocols re-
quire two rounds of interaction. The first is to obtain the
encrypted record IDs, and the second is to fetch the matched
results. This treatment facilitates an immediate security im-
provement to hide the associations between data values on
different attributes (see more details in Section 3.5). (3)
EncKV’s index framework needs the client to generate query
tokens for all the nodes, and each node produces partial re-
sults. Nevertheless, we show that this broadcast will not
introduce too much overhead (see our evaluation in Sec-
tion 5.2). One salient advantage of local indexes is that
all nodes can process query tokens in parallel.

2.2 Threat Assumption
Following most of the prior studies on search over en-

crypted data [8, 19, 25, 27], EncKV considers the case that
the client is secure and trusted. It will not expose the keys to
server nodes, and the keys are securely stored at the client.
EncKV assumes that the attackers will never have access to
a client’s private keys, but they can dump all the encrypted
indexes and KV pairs from server nodes. They can also
monitor the query protocols and learn about the query to-
kens, accessed index entries, and encrypted results. EncKV
does not consider the case where attackers can access the
background information about the queries and datasets, e.g.,
the partial (entire) distribution or the content of queries or
records [3,20]. Nevertheless, discussions on how to mitigate
those threats are conducted in Section 4.3. Finally, EncKV
does not handle the case where malicious attackers modify
or delete the indexes and records intentionally, which has
been addressed by orthogonal studies like [2].

2.3 Cryptographic Primitives
A symmetric encryption scheme (KGen,Enc,Dec) con-

tains three algorithms: The key generation algorithm KGen
takes a security parameter λ to return a secret key k. The
encryption algorithm Enc takes a key k and a value v ∈
{0, 1}n to return a ciphertext v∗ ∈ {0, 1}n; The decryption
algorithm Dec takes k and v∗ to return v.

Define a family of pseudo-random functions F : {0, 1}λ ×
{0, 1}m → {0, 1}n, if for all probabilistic polynomial-time

distinguishers D, |Pr[DF (k,·) = 1|k $← {0, 1}λ] − Pr[Dg =

Figure 2: Construction summarized from [33]

1|g $← {Func[m,n]}]| < negl(λ), where negl(λ) is a negligi-
ble function in λ.

3. THE ENCKV DESIGN
This section presents the designs of EncKV’s encrypted

exact-match and range-match indexes in detail, based on
which several types of queries are then instantiated. Fea-
tures such as batch queries and incremental updates are also
presented for security and practical considerations.

3.1 The Underlying Encrypted KV Store
EncKV builds on top of an encrypted KV store [33]. This

prior design has two features. First, it proposes a secure data
partition algorithm that dispatches encrypted data records
across distributed nodes, while preserving horizontal scala-
bility. Second, it sketches an encrypted local index frame-
work towards efficient queries via secondary attributes of
data in distributed data stores. EncKV’s index designs are
carefully integrated into this framework for the practical per-
formance of secure rich queries. Before introducing EncKV
in greater detail, we shall first summarize the underlying
encrypted KV store proposed in [33].

As an example, Figure 2 illustrates the column-oriented
data model in [33], and other data models are supported
as well. The core idea of its secure data partition algo-
rithm is to map data records into encrypted label-value
pairs. Specifically, each LV pair in EncKV is constructed
as 〈P (kl, C||R), Enc(kv, v)〉, where kl, kv are private keys,
P is a secure PRF, R is the record ID, C is a column (sec-
ondary) attribute, v is a value on C, and Enc is a symmetric
key encryption algorithm.

Different from [33] which uses P (kl, C||R) as the label
for partition, EncKV uses the unique record ID R instead
to preserve the locality for queries via multiple attributes.
As a result, all the encrypted values for a given record are
stored at the same node, but they are still fully scrambled
to protect the auxiliary information such as the number of
columns and the associations between the underlying values.

Regarding the encrypted local index framework, the client
is asked to maintain a consistent hashing ring so that it can
trace the locations of values and build encrypted indexes
that index the values stored on the same node. The benefits
are two-fold: 1) Inter-node interaction is avoided during the
query process, because if we directly adopt generic prim-
itives, additional dedicated nodes are needed to store the
encrypted global indexes. 2) Nodes can process the queries
in parallel. The query workload is also balanced.
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Algorithm 1 Buildext: build exact-match indexes

Input: Private key ke; secure PRFs {G1, G2, H1, H2}; val-
ues {v1, · · · , vm} on attribute C.

Output: Encrypted indexes {Iext1 , · · · , Iextn }.
1: Initialize a hash table S to maintain counters;
2: for vj ∈ {v1, · · · , vm} do
3: i← route(R); // R is vj ’s ID, i ∈ {1, n} is node ID
4: t1 ← G1(ke, C||vj ||i);
5: t2 ← G2(ke, C||vj ||i);
6: if S.find(i||j) = ⊥ then
7: cji ← 0;
8: else
9: cji ← S.find(i||j);

10: end if
11: α← H1(t1, c

j
i );

12: β ← H2(t2, c
j
i )⊕ Enc(kR, R);

13: cji + +;

14: S.put(i||j, cji );
15: Iexti .put(α, β);
16: end for

3.2 Exact-match Index and Query Protocol
In this subsection, we will articulate the designs of EncKV’s

encrypted exact-match indexes and query protocols.

3.2.1 Encrypted Index Design
As mentioned, the construction of EncKV’s encrypted in-

dexes for secure exact-match queries is inspired by a recently
proposed (and elegant) SSE scheme [4]. This design uses KV
pairs to index files that match the same keyword, and each
file of this keyword is distinguished by a stateful counter.
EncKV adopts this idea and indexes the record IDs that
match the same values on a certain column attribute. To
integrate the design into the distributed local index frame-
work, EncKV’s client tracks the values and maintains the
counters for each distinct value on different nodes during
the index building procedure.

The detailed algorithm to index values {v1, · · · , vm} for
a given column attribute C is shown in Algorithm 1. This
procedure is executed at the client. For each vj for j from 1
to m, n counters are first initialized, where n is the number
of nodes. Then the client finds the target node i for vj based
on the position of its record ID R on the consistent hashing
ring. After that, it generates two tokens by embedding the
value securely via secure PRF, i.e., t1 = G1(ke, C||vj ||i) and
t2 = G2(ke, C||vj ||i), and further uses the corresponding
counter cji to generate the encrypted index entry, i.e., 〈α =

H1(t1, c
j
i ), β = H2(t2, c

j
i )⊕ Enc(kR, R)〉.

The encrypted index above holds the security notion of
SSE. The index size is known to the nodes. Without query-
ing, no other information about the underlying content is
learned. Note that the counters will not be used to generate
query tokens at the client, and thus can be dropped after
the indexes are uploaded. If new records are incrementally
added, those counters can be cached at the nodes in their
encrypted form to generate new index entries. More details
can be found in Section 3.6.

3.2.2 Secure Query Protocol
The corresponding query protocol following the index con-

struction is executed between the client and nodes as pre-

Algorithm 2 Queryext: secure exact-match query protocol

Input: Private key ke; query condition value v; query con-
dition attribute Cv; result value attribute Cr.

Output: Encrypted matched results {vr}.
Client.Token

1: for i ∈ {1, · · · , n} do
2: t1 ← G1(ke, Cv||v||i);
3: t2 ← G2(ke, Cv||v||i);
4: Send (t1, t2) to node i;
5: end for

Nodei.ExtQuery

1: ci ← 0;
2: α← H1(t1, ci);
3: while find(α) 6= ⊥ do
4: β ← find(α);
5: r ← Iexti .get(H2(t2, ci)⊕ β);
6: ci + +;
7: α← H1(t1, ci);
8: Return r to client for decryption;

Client
9: R← Dec(kR, r);

10: l← P (kl, Cr||R);
11: Fetch vr via l;
12: end while
13: // Implementation note: all matched {r} are sent back

in a batch, and {vr} are also fetched in a batch.

sented in Algorithm 2. Given a query via two attributes,
the client wants to find all the values {vr} in attribute
Cr on the matching condition such that another attribute
Cv’s value should exactly be the value v. First, the client
generates query tokens for each node {t1, t2}, where t1 =
G1(ke, Cv||v||i) and t2 = G2(ke, Cv||v||i). Each node pro-
cesses these tokens in parallel. In particular, each node in-
crements a counter ci to locate all the matched index entries
via H1(t1, ci) till no entry is returned, and each entry is un-
masked via XORing H2(t2, ci) to get r the encrypted record
ID. After that, all matched {r} are sent back to the client
for decryption. For each decrypted ID R, the client gen-
erates the corresponding label via P (kl, Cr||R) to fetch the
encrypted result value.

During the query procedure, data values and attributes
are strongly protected. Each node only learns the query
tokens, accessed index entries, and encrypted result values.
Due to the deterministic property of tokens, it also learns
the repeated queries on the same attribute. Note that the
proposed query protocol requires two rounds of interaction
between the client and each node. Such treatment prevents
the server from generating labels of other values which are
never queried. Each node only learns the matched values as-
sociated to the same column attribute, and it will not learn
the associations between values in different attributes of a
record, thereby effectively addressing inference attacks. For-
mal security analysis will later be conducted in Section 4.1.

3.3 Range-match Index and Query Protocol
In this subsection, we will present EncKV’s encrypted

range-match indexes and the corresponding query protocols.
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Algorithm 3 Buildrng: build range-match indexes

Input: Private keys kr, ko; secure PRFs {G1, G2, H1, H3};
values {v1, · · · , vm} on attribute C.

Output: Encrypted indexes {Irng1 , · · · , Irngn }.
1: Initialize a hash table S to maintain counters;
2: for vj ∈ {v1, · · · , vm} do
3: i← route(R); // R is v’s ID, i ∈ {1, n} is node ID
4: t1 ← G1(kr, C||i);
5: t2 ← G2(kr, C||i);
6: if S.find(i) = ⊥ then
7: ci ← 0;
8: else
9: ci ← S.find(i);

10: end if
11: α← H1(t1, ci);
12: ctR ← OREenc(ko, vj , ci); // shown in Algorithm 4
13: β ← H3(t2, ci)⊕ (ctR||Enc(kR, R));
14: ci + +;
15: S.put(i, ci);
16: Irngi .put(α, β);
17: end for

3.3.1 Design Rationale
In the current literature, a challenge of enabling secure

range queries is how to design secure comparison schemes
with minimized leakage. Most of the existing ORE prim-
itives leak more information (i.e., order information) than
SSE. Recent attacks show that order information can be ex-
ploited to recover the underlying values of ciphertexts [10,12,
20]. To address this issue, the desired ORE primitive must
achieve a strong security notion; that is, the ciphertexts
should be semantically-secure encryptions of their underly-
ing values [19]. Then if the attackers obtain the encrypted
database, they can never learn any useful information.

However, only achieving the requirement above is not nec-
essarily secure, because attackers still know order informa-
tion during the queries. For example, attackers can learn
which values are smaller than or greater than the query
value. Such information can be combined with partial knowl-
edge of the query distribution and record distribution to
compromise the database [16].

To this end, we start from one of the latest ORE schemes [19]
that defend against inference attacks, and it is also the most
efficient ORE scheme currently. As this scheme does not
fully address the second issue, we further enhance it to pro-
tect the order information. Here, we consider the order as
“>” or “<”. Our observation is that secure range queries can
still be supported without leaving the order in cleartext. The
core idea of our design is to hide the order in both query to-
ken generation and ciphertext comparison. As a result, the
only known information is that the index entries match an
encrypted order condition. The attackers will learn neither
the order of the underlying values on a column attribute,
nor whether two different queries are conducted in the same
order condition.

3.3.2 Encrypted Index Design
First of all, the construction of encrypted range-match

indexes follows the same treatment as the encrypted exact-
matched indexes. For security, each index entry should be
strongly encrypted, and the information on which entries as-

Algorithm 4 OREenc: enhanced ORE encryption

Input: Private key ko; secure PRFs {F1, F2, F3}; secure
PRP π; value v; counter c;

Output: ORE ciphertext ctR

1: Derive k1, k2, k3 from ko;
2: Generate a nonce γ;
3: for i ∈ {1, B} do
4: for j ∈ {1, 2b} do
5: j∗ ← π−1(F2(k2, v|i−1), j);
6: if CMP (j∗, v|i) 6= 0 then
7: si,j ← F3(k3, CMP (j∗, v|i))||C||j);
8: zi,j ← Q1(si,j , c) +Q2(F1(k1, v|i−1||j), γ);
9: else

10: zi,j ← ”equal” +Q2(F1(k1, v|i−1||j), γ);
11: end if
12: end for
13: ctR|i ← zi,1, · · · , zi,2b ;
14: end for
15: ctR ← γ, ctR|1, · · · , ctR|B ;

Algorithm 5 OREcmp: ORE compare operation

Input: ORE query token ctL; ORE ciphertext ctR;
Output: true or false.

1: γ, u′1, ..u
′
B ← ctR;

2: u1, .., uB ← ctL;
3: for i ∈ {1, · · ·B} do
4: xi, ṽ|i, qi ← ui;
5: zi,1, ..., zi,2b ← u′i;
6: si ← zi,ṽ|i −Q2(xi, γ);

7: if si 6= 0 and si = Q1(qi, c) then
8: return true; // condition matched
9: end if

10: end for
11: return false;

sociated with the same column attribute should also be hid-
den before querying. This objective can be achieved through
searchable encryption techniques. For index and data local-
ity, EncKV’s client is still required to track the locations of
data values. Algorithm 3 presents the index building proce-
dure. For each value vj on a column attribute C, the client
first locates the node where the record is stored, and then
generates the encrypted index entry 〈α, β〉 by securely em-
bedding C and the counter ci. Note that the underlying
content of β also contains the ORE ciphertext ctR which
is computed from our enhanced ORE scheme introduced in
the next paragraph. As a result, the encrypted range-match
index is integrated into EncKV’s local index framework.

Enhanced ORE scheme: The idea of the ORE scheme
proposed in [19] is to split a message into bit blocks with
equal length, and conduct comparison from the significant
least blocks of two messages. For example, if the message
space is 4 bits, the block size is 2 bits, each message will
then be encrypted into 2 blocks. Specifically, each block
has total 22 possible values {00, 01, 10, 11}. The message
block, say “10” to be encrypted, will be transformed to 4
sub blocks, where the order information {>,>,=, <} to
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Algorithm 6 Queryrng :secure range-match query protocol

Input: Private key kr, ko; query condition value v; order
condition cmp ∈ {>,<}; query condition attribute Cv;
result value attribute Cr.

Output: encrypted matched results {vr}.
Client.Token

1: for i ∈ {1, · · · , n} do
2: t1 ← G1(kr, Cv||i);
3: t2 ← G2(kr, Cv||i);
4: for i ∈ {1, B} do
5: ṽ|i ← π(F2(k2, v|i−1), v|i));
6: qi ← F3(k3, cmp||C||ṽ|i);
7: ui ← F1(k1, v|i−1||ṽ|i), ṽ|i, qi;
8: end for
9: ctL ← (u1, · · · , uB);

10: Send (t1, t2, ctL) to node i;
11: end for

Nodei.RngQuery

1: ci ← 0;
2: α← H1(t1, ci);
3: while find(α) 6= ⊥ do
4: β ← find(α);
5: r ← Irngi .get(H3(t2, ci)⊕ β);
6: Parse r as rx ← Enc(kR, R), ry ← ctR;
7: ci + +;
8: // ORE compare operation shown in Algorithm 5
9: if OREcmp(ctL, ctR) = true then

10: Return rx to the client;
11: end if
12: α← H1(t1, ci);
13: end while
14: // Note: we ignore the steps to fetch final results, which

is the same in Line 7 to 10 in Algorithm 2.

each value above is securely embedded with its prefix block4.
Here, the order cmp is defined as the output of the compar-
ison CMP (m1,m2) for block m1 and m2. For more details,
we refer the readers to [19].

We note that the original scheme reveals the order be-
tween the query value and each ciphertext on the column.
Such leakage tells partial order information between cipher-
texts, i.e., some ciphertexts are smaller than or greater than
others. Even the order is transformed as a pseudo-random
tag, such tags should be sent along the queries, which is
exploitable if the attackers know the query distribution.

To minimize the leakage, we propose to protect the or-
der by embedding it securely via PRF with the column at-
tribute, the block index, and the stateful counter, as shown
in Line 7 and Line 8 of Algorithm 4, i.e., our enhanced
ORE encryption algorithm. The sub block j in block i
is encrypted as Q1(si,j , c) + Q2(F1(k1, v|i−1||j), γ), where
si,j = F3(k3, CMP (j∗, v|i))||C||j), v|i is the block value,
v|i−1 is the prefix block value, C is the column attribute,
and c is the counter of this value on the column. j∗ is the
securely permuted j in one of the possible values to this
block, where j ∈ [1, 2b], b is the bit length of each block, and
B is the number of blocks.

4The prefix block will be set as “null”, if the encrypted block
is the first block [19].

Figure 3: Our proposed ORE compare operation

This improved construction guarantees that the order in
each sub block is different, and the order conditions for dif-
ferent values and attributes are also different. Due to the
deterministic property of PRF, the query comparison can
still correctly be performed via token matching, which will
later be introduced in the query protocol.

3.3.3 Secure Query Protocol
Based on the index construction, we present the range-

match query protocol in details in Algorithm 6. Given a
query via two attributes, the client wants to find all val-
ues {vr} in attribute Cr on the matching condition such
that another attribute Cv’s value should smaller than the
value v. Similar to the exact-match query, the client gener-
ates query tokens for each node {t1, t2} from Cv. For ORE
comparison, the client needs to compute another token ctL
which contains the encrypted blocks {u1, · · · , uB} with dis-
tinct encrypted order condition qi of each block. Each node
processes {t1, t2} in parallel, i.e., unmasking the correspond-
ing ORE index entries via incremental counters. After that,
each node calls the ORE compare operation OREcmp to
compare ctL and ctR in each entry above, as presented in
Algorithm 5. The process is conducted from the most sig-
nificant block. Symmetric to the block encryption, the en-
crypted order is obtained via si = zi,ṽ|i − Q2(xi, γ), where
zi,ṽ|i is the block of ctR, xi is the corresponding block of ctL,
and γ is the nonce of this ciphertext. With the encrypted
query condition qi, Q1(qi, c) is computed via counter c to
check whether it is matched to si. If matched, the encrypted
record ID will be sent to the client to fetch the final result
values on attribute Cr.

Note that this design reveals the repeated queries, and the
equality of query values and ciphertexts. It also indicates the
position of the first block in which two values differ, which
is the same to the adopted ORE scheme [19]. More detailed
security analysis will be given in Section 4.1. The query time
complexity in the current treatment is O(mC), where mC is
the number of values on attribute C at a certain node. The
performance can further be improved via binary search, i.e.,
sorting values before encryption as indicated in [19].

3.4 Secure Rich Query Instantiation
EncKV’s encrypted indexes readily enable rich queries

supported in existing NoSQL data stores [9,11]. These stores
implement SQL-like query language for easy data manage-
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(a) Exact-match query (b) Range-match query

Figure 4: Secure query protocol illustration

ment. Accordingly, this section will use SQL-like query ex-
amples to introduce how EncKV support those queries.

Keyword Search, Equality and Count queries: Given
a keyword search or equality query“SELECT nameWHERE
city = LA ”in Figure 4(a), the client first generates a pair
of tokens {t1, t2} for each node based on the keyword con-
dition “city = LA”, where t1 = G1(ke, city||LA||i), t2 =
G2(ke, city||LA||i), and i is the node ID. Then, each node
processes these tokens in parallel. Specifically, all the matched
index entries are located via H1(t1, ci) in node i, where ci
is a counter. The encrypted record ID (Enc(kR, 01) and
Enc(kR, 02)) after XORing H2(t2, ci) are returned. Finally,
the client decrypts them and obtains the encrypted result
values via labels P (kl, name||01), P (kl, name||02). Regard-
ing count queries, the client needs to count the values re-
turned from each node, and aggregate the counts .

Range and Like queries: In terms of range-match queries
such as “SELECT name WHERE age >20” in Figure 4(b).
The client firstly generates tokens t1 = G1(kr, age||i) , t2 =
G2(kr, age||i) with ORE ciphertext of ctL(20) containing
randomized “ >′′. Each node scans index entries viaH1(t1, ci)
with incremented ci, and gets ctR by XORingH3(t2, ci) with
entries. Then the node i returns the encrypted recored ID
(Enc(kR, 02)) to the client as OREcmp(ctL(20), ctR) algo-
rithm outputs true. Finally, the client fetches the result
value (E(kv, bob)) via label P (kl, name||02).

EncKV also supports LIKE (aka prefix) query. For in-
stance, the query“SELECT City WHERE City LIKE ′A%′”
obtains answers like “Argentina” or “Australia” and so on.
Our adopted ORE scheme [19] supports comparison on both
numeric numbers and alphanumeric strings. Recall that
each ORE ciphertext is encrypted by blocks, and previous
block content is embedded in the current block ciphertext
for prefix matching. During the comparison, the first dif-
ferent blocks between ctL and ctR tell that their previous
blocks are the same.

Join Queries: EncKV supports Join queries such that any
attributes of two tables can be joined together. Here, we de-
fine a generic join query statement, FROM T1 JOIN T2 ON
T1.C1 = T2.C2 WHERE field, where T1 and T2 are two ta-
bles being joined, C1 and C2 are attributes of T1 and T2, and
field is a join condition such as an exact-match or range-
match operation. For example, given a query “SELECT

T2.GPA from T1 JOIN T2 on T1.id=T2.id where T1.age >
20”, the client parses the query and performs“SELECT T1.id
from T1 WHERE T1.age > 20” via the range-match indexes,
which derive the matched record ID set R. Then, the client
generates label P (kl, T2.GPA||Ri)Ri∈R to get final results.

Sum and Average queries: Following the treatment in
prior encrypted databases, nodes in EncKV can perform ag-
gregation on encrypted data values by using addictive homo-
morphic encryption (HOM) scheme [27]. Values to be aggre-
gated are encrypted via a certain HOM encryption scheme,
i.e., 〈P (kl, C||R||HOM), HEnc(kv, v)〉 When the client is-
sues a query in the form “SELECT SUM(score) FROM
Score WHERE age > 20”, it firstly queries the matched
record ID set R via the range-match indexes from “SE-
LECT stu ID FROM Score WHERE age > 20”. Then
each node locates and aggregates the HOM ciphertext via
label {P (kl, score||Ri||HOM)}Ri∈R. This procedure can be
done in parallel under the local index framework. Finally,
each node returns intermediate results to the client for ag-
gregation. And the average value can further be computed
at the client.

Group By queries: EncKV performs Group By queries via
combining exact-match queries with aggregation computa-
tion. Suppose the client issues a group by request as “SE-
LECT city, sum(age) GROUP BY city”. It firstly finds the
specific record ID set R for each group such as “LA” via the
exact-match query “SELECT stu ID where city=LA”. Here,
we assume that the client knows all the distinct city names.
Then it can use the HOM label {P (kl, age||Rj ||HOM)}Rj∈R
to ask the corresponding nodes to compute the aggregation
of age values which associate “LA”. Aggregation results are
also finalized at the client just like Sum queries. For other
group entries, it follows the same treatment.

Max and Min queries: To support Max and Min queries,
the client inserts a specific LV pairs for the MAX/MIN data
values on a column attribute. For example, if the maximum
value of the attribute “age” is “100”, the client generates
LV pair: 〈P (kl, age||MAX), E(kv, 100)〉. When the client
wants to query the maximum data, it computes the label
P (kl, age||MAX) to get the maximum value. Obtaining the
minimum value can be realized in the same way.
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3.5 Batch Queries
EncKV’s query protocols across different attributes are

conducted in two phases. The first is to find the encrypted
record IDs that matches the query condition on a specific
query attribute, and the second phase is to fetch the val-
ues of these matched records on a targeted attribute. As
mentioned in Section 3.2.2, EncKV implements those two
phases in two rounds respectively to hide the associations of
encrypted KV pairs in same records. However, we observe
that such treatment still might allow the nodes to know
the associations between index entries and result values (see
analysis in Section 4).

To reduce the above leakage, an engineered approach is to
conduct queries in a batched manner. For a batch of queries,
the client first parses the query conditions in a way that the
overlapped or repeated query conditions will be queries only
once in this batch. After receiving the encrypted result IDs,
the client decrypts them and generates the labels from dis-
tinct IDs and the targeted attributes. In addition, the client
permutes those labels and fetches final result values from the
corresponding nodes. We note that such improvement can
be realized via a dedicated query planner which is also used
for improving performance in [25, 31]. Based on the above
approach, the associations between values and index entries
on same records can be well protected.

3.6 Secure Update Operations
EncKV provides two ways of update operations when new

data records are added, i.e., bulk update and incremental up-
date. Bulk update is suitable for the case of adding a large
number of records, i.e., migrating an unencrypted database
to EncKV. Encrypted exact-match and range-match indexes
can be built via their index building functions introduced in
Algorithm 1 and Algorithm 3 respectively. Yet, we note
that building new indexes require the client to generate ad-
ditional tokens for new indexes. Thus, periodical index con-
silidations are demanded to preserve the complexity of token
generation.

Incremental update is suitable for the case when data
records are occasionally inserted into EncKV. As a result,
new index entries need to be added to existing indexes.
To implement incremental update, the state information
(i.e., counters) on each indexed attribute should carefully
be maintained either at the client or at the nodes in the en-
crypted form so that the client can generate the correspond-
ing index entries without affecting the following queries. We
note that this operation will leak additional information just
like most of the prior dynamic SSE schemes [4, 14]. Once
the attributes are queried, the nodes will know whether
the newly inserted index entires are associated with those
attributes. One recent scheme addresses this issue via to-
ken permutation [2], and we will integrate this technique to
EncKV in future.

Currently, we consider the single-client setting. The multi-
client setting will be addressed as future work. In addition
to access control, concurrent query operations will also be
investigated when encrypted index entries and data records
are accessed from different clients simultaneously.

4. SECURITY ANALYSIS
This section will analyze EncKV’s security strength. The

values of different attributes in each record are stored as

encrypted LV pairs. The encrypted underlying data stor-
age defends against offline inference attacks [20], because
auxiliary information such as schema information is com-
pletely hidden even if the attacker obtains the entire en-
crypted database. Our security analysis focuses on our pro-
posed secure exact-match queries and secure range-match
queries. We will follow the primitives we adopted, SSE [4]
and ORE [19], to quantify the security guarantees of EncKV’s
query protocols respectively. In addition, we will discuss
EncKV on the protection against a series of recent attacks
on search over encrypted data.

4.1 Security on Exact-match Queries
Since EncKV’s secure exact-match queries are realized in

the framework of SSE [8], the nodes only learn the controlled
leakage, but never learn the underlying contents of queries
and results. Basically, the index size will be learned once
the index is uploaded to the server. Search and access pat-
tern will be learned along the queries, where search pattern
indicates the repeated queries, and access pattern indicates
the accessed ciphertexts. In our targeted queries which con-
tain multiple query attributes, and thus access pattern also
includes the associations between values of those attributes.
Following the notion of SSE, we first define the leakage func-
tions in EncKV as follows:

Lext1 (C) = ({mi}n, 〈|α|, |β|〉)

where C is the set of secondary attributes, mi is the size
of local index Iexti of node i, n is the number of nodes, and
|α|, |β| are the lengths of label and value in the index entry.

Lext2 (vC , Cv, Cr) = ({ti1, ti2}n, {{〈α, β〉, 〈l, v∗〉}ci}n)

where vC is the query value, Cv is the attribute of vC , Cr is
the attribute of result values, and {ti1, ti2}n are tokens for n
nodes respectively. Given a query, the matched index entries
and results {〈α, β〉, 〈l, v∗〉}ci at each node are known.

Lext3 (Q) = (Mq×q, Tv∗→α)

where Q is q number of adaptive queries, and Mq×q is a
symmetric bit matrix to trace the same queries. Mi,j and
Mj,i are equal to 1 if ti1 = tj1 for i, j ∈ [1, q]. Otherwise,
they are equal to 0. Tv∗→α is an inverted list that traces
index entries that match each result value, which is also
known as inference information [20]. For each posting list
v∗|{α1, · · · , αa} in T , the associations between the queried
index entries of different attributes and each queried result
value are learned.

In terms of the quantified leakage, we present the secu-
rity definition of exact-match queries in Definition 1 in Ap-
pendix, and give the following theorem.

Theorem 1. Ext is adaptively secure with (Lext1 , Lext2 ,
Lext3 ) under the random-oracle model if G1, G2, H1, H2, P
are secure PRF.

We leave the detailed proof in Appendix.
The security notion of EncKV’s exact-match queries is

stronger than deterministic encryption (DET), which is used
in several existing encrypted databases [27]. DET-based de-
signs expose the server all the same values on an attribute,
while EncKV will not tell that information. For other aux-
iliary information, associations between values across at-
tributes (aka inter-column and intra-column associations)
are directly exposed in existing encrypted databases with
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legacy compatibility, while such information in EncKV will
greatly be reduced. On the one hand, the attribute is se-
cretly embedded in the encrypted index, the server will never
learn whether the tokens of different query values on the
same attribute or not. On the other hand, EncKV’s batch
query mechanism further hides the associations of columns.

4.2 Security on Range-match Queries
EncKV’s secure range-match queries are designed on top

of the ORE scheme proposed in [19]. Therefore, the secu-
rity achieves the same level as the scheme in [19]. That is
briefly, the ciphertexts are semantically secure, and the first
different block that differs between two values in the com-
parison. To achieve general protection and integrate the in-
dexes into the local index framework, EncKV leverages SSE
techniques as an overlay to mask ORE ciphertexts. Similar
to exact-match queries, inference information will also be
learned since queries may involve multiple query attributes.
Accordingly, we define the leakage functions as follows:

Lrng1 (C) = ({mi}n, 〈|α|, |β|〉)

where C is the set of secondary attributes, mi is the size of
local index Irngi of node i, n is the number of nodes, and
|α|, |β| are the lengths of label and value in the index entry.

Lrng2 (vC , Cv, Cr) = ({ti1, ti2}n, ctL, {{〈α, β〉, 〈l, v〉}ci}n)

where vC is the query value, Cv is the query attribute, Cr is
the attribute of result value , ctL is the token for ORE com-
parison, and {ti1, ti2}n are tokens for n nodes respectively.
Given a query, the matched index entries and result pairs
{〈α, β〉, 〈l, v∗〉}ci at each server node are known. In addi-
tion, the rest of index entries on this column will also be
learned.

Lrng3 (vC , cmp) = ({{bdif}ci}n)

where bdif is the first block that differs in the comparison of
matched ORE ciphertexts.

Lrng4 (Q) = (Mq×q, Tv∗→α)

where Q is q number of queries, and Mq×q is a symmetric bit
matrix to trace the same queries. Mi,j and Mj,i are equal
to 1 if ti1 = tj1 for i, j ∈ [1, q]. Otherwise, they are equal to
0. Tv∗→α is an inverted list that indicates the associations
between the index entries of different attributes and the re-
sult values as defined in exact-match queries. Accordingly,
we present the security definition of range-match queries in
Definition 2 in Appendix and give the theorem below.

Theorem 2. Rng is non-adaptively secure with (Lrng1 ,
Lrng2 , Lrng3 , Lrng4 ) if G1, G2, H1, H3, P, F1, F2, F3 are se-
cure PRF.

We give the proof in Appendix.
Our enhanced ORE scheme protects the order information

in queries and ciphertexts along the comparison. Recall that
in line 6 of Algorithm 6, the query order is protected in the
ORE query token, i.e., qi = F2(k3, cmp||C||ṽ|i), where cmp
is the order, C is the query attribute, and v|i is the ith
block of query value. As a result, different query values
or attributes will result in different query tokens. Then qi
is used by the server node to compute Q1(qi, c) in line 7
of Algorithm 5. If the output is matched with si in the
ciphertext, this entry will be considered to be matched.

4.3 Further Discussion
Remark on inference attacks: Recent attacks [16, 20]
use auxiliary information to compromise the confidentiality
of encrypted databases. In [20], reference databases, table
structures, order information, and frequency statistics are
exploited to attack databases in property-preserving encryp-
tion, i.e., order-preserving encryption (OPE) and determin-
istic encryption (DET).

We note that EncKV effectively defends against these at-
tacks. Our exact-match and range-match indexes are built
via SSE [8] and ORE [19], which are semantically secure.
Exact-match queries will not reveal matched values without
querying, and range-match queries via our enhanced ORE
scheme will not even tell the order information. In addition,
the associations between data values are also protected in
the proposed batch query mechanism. Again, note that one
may always add dummy records to improve security.

In [16], a generic attack is proposed, which only relies on
prior knowledge on query distribution. The attackers can
recover the database without knowing the orders of query
results. This attack samples queries and observes the size
of results for each to find the order of ciphertext in high
probability. We are aware that none of existing encrypted
databases design can address this attack. Nevertheless, we
argue that attackers need to make more efforts in EncKV,
i.e., compromising all EncKV’s nodes to obtain the full size
of results in each query. Otherwise, this attack cannot be
launched in the first place.

Remark on leakage-abuse attacks: In [3], several at-
tacks on SSE are proposed by abusing search and access
patterns. Despite their effectiveness, these attacks heavily
rely on the amount of prior information about the databases
and queries. Besides, as shown in their countermeasure eval-
uation, random padding largely reduces the reconstruction
ratio of queries and data. A very recent attack is proposed
to compromise SSE schemes that support legacy applica-
tions [28]. The targeted schemes leak more information than
schemes that build an encrypted index with minimized leak-
age, and thus that attack is not applicable to EncKV.

Attacks on ORE schemes are also proposed in [10, 12].
However, we note that those attacks target on specific schemes
with specific leaky information [1,6,17], i.e, orders of under-
lying ciphertexts or orders of some bit of ciphertexts, which
will not be learned in our adopted ORE scheme. Therefore,
they are not applicable to EncKV. Besides, they require aux-
iliary information such as inter-column correlations, which
can be protected in EncKV’s batch query mechanism. And
intra-column correlations are also somehow protected, be-
cause query tokens of the same query attributes are not the
same for different nodes. If the attackers only get the par-
tial views from some of the server nodes, those attacks are
further mitigated effectively. In the future, we will analyze
EncKV’s strength on defending those attacks empirically.

5. EXPERIMENTAL EVALUATION

5.1 Prototype Implementation
To assess the performance of EncKV, we implement a pro-

totype and deploy it to Amazon Web Services. We create 4
AWS M4-xlarge instances as the clients, and a Redis (v3.2.0)
cluster that consists of 9 AWS M4-xlarge instances as the
nodes to store encrypted indexes and records. Each instance
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Figure 5: Performance

# Indexed values 400K 600K 800K
Size (GB) 0.012 0.018 0.024

(a) Encrypted exact-match index
# Indexed values 400K 600K 800K

Size (2bit block) (GB) 0.209 0.313 0.417
Size (4bit block) (GB) 0.399 0.599 0.799
Size (8bit block) (GB) 3.070 4.604 6.139

(b) Encrypted range-match index

Table 1: Encrypted index space consumption

is assigned with 4 vcores (2.4 GHz Intel Xeonr E5-2676
v3 CPU ), 16GB RAM and 40GB SSD, and Ubuntu server
14.04 are installed. EncKV’s prototype utilizes Apache Thrift
(v0.9.2) to implement the remote procedure call (RPC).

EncKV uses OpenSSL (v1.01f) for the implementation of
cryptographic building blocks. Secure PRF is implemented
via AES cipher (128 bits). The enhanced ORE scheme is
implemented on top of the implementation5 of the ORE
scheme [19]. In this evaluation, we set 8 bits as the block size
for ORE encryption. In the future, more parameter settings
will be evaluated. The encrypted exact-match and range-
match indexes are integrated into the implementation6 of
the distributed encrypted index framework [33]. In total,
EncKV contains about 10144 lines of C++ code.

5.2 Performance Evaluation
The evaluation on EncKV mainly focuses on the encrypted

index and query performance.
Index evaluation: We first report the index space con-
sumption in Table 1. For the encrypted exact-match index,
the size of each entry 〈α, β〉 is 256 bits, where α and β are
128-bit long. Table 1(a) shows that the index size increases
linearly from 0.012 GB (400K indexed values) to 0.024 GB
(800K indexed values). For the encrypted range-match in-
dex, each entry also needs to store ORE ciphertext ctR for
comparison. As an ORE ciphertext is encrypted by blocks,
the size of ctR depends on the length of block b. And each

5An implementation of order-revealing encryption: online
at https://github.com/kevinlewi/fastore.
6An encrypted, distributed, and searchable key-value store:
online at https://github.com/CongGroup/BlindDB.

block ciphertext contains 2b sub blocks, where each is 64
bit-long (truncated from AES cipher output). With α, β, a
128-bit nonce γ, and ctR, the size of an entry for a 32-bit
value is 128 + 128 + 64× 2b× 32/b+ 128 bits. As mentioned
in [19], there is a tradeoff in security and space. The larger
block size has stronger security while introducing more space
cost, which is also shown in Table 1(b).

Figure 5(a) and Figure 5(b) measure the index building
time at the client. Both time cost increases linearly with
the number of indexed values. The range-match index takes
more time because it needs to generate ORE ciphertexts in
addition to masking the encrypted record IDs.
Query evaluation: To evaluate the scalability of EncKV,
we evaluate the query throughput in Figure 5(c) and Fig-
ure 5(d). The result shows that the total number of in-
dex entries processed per second in both indexes increases
with the number of cores. Specifically, we can find that
the throughput of exact-match queries achieves up to 255K
entries per second in 9 nodes, while the throughput of range-
match queries is lower, 213K entries per second. The over-
head comes from the cost of PRP and PRF operations in
compared blocks during the ORE comparison. The results
confirm that EncKV performs satisfactorily at scale.

To gain a deeper understanding on the query performance
of EncKV, we evaluate the latency for exact-match and
range-match queries, respectively. In Figure 5(e), we can
find that as the number of nodes increases, the latency of
exact-match queries that return a fixed number of results is
reduced dramatically in similar proportions. The latency of
exact-match queries with 32 cores is roughly half of the la-
tency with 16 cores for returning 32K matched encrypted
values. Likewise, Figure 5(g) shows that the latency of
range-match queries follows a similar downward trend as
the number of cores increases. When the number of com-
pared ciphertexts is 32K, the query latency with 36 cores is
around 17s which is almost one-third of the latency with 12
cores. Thus, we can confirm that EncKV benefits from the
encrypted local index framework and can effectively handle
queries in parallel.

Figure 5(f) compares the exact-match query performance
with the scheme proposed in [33] denoted as YWWQL16,
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Figure 6: Query token bandwidth overhead

which conducts token matching by enumerating all values on
a column. Here, we pre-insert around 70K records for both
designs. As seen, the query time of our design only scales
in the number of matched results, while YWWQL16 scans
the entire column no matter how many values are matched.
Specifically, the number of matched values from 2K to 32K
increases the query time from approximately 0.92s to 14.4s.
In contrast, the query time of YWWQL16 is a constant-time
operation, about 32.7s.

Recall that EncKV also supports incremental updates for
newly added records. We accordingly evaluate the cost for
index entry insertion in Figure 5(h). The comparison re-
sult shows that inserting new records into both encrypted
indexes will not introduce too much overhead compared to
the case without indexing. Note that such cost includes net-
work transmission for each new indexed value, and thus it
is much higher than the index building cost (bulk update).
For 1000 values, it takes 0.686s and 0.875s to index entries
for exact-match and range-match indexes respectively.

The adopted local index framework requires the client to
generate query tokens for each node. To understand the
bandwidth overhead, we show the ratio between the query
token size and the result size in Figure 6. The result from
Figure 6(a) indicates that the ratio of exact-match query de-
creases gradually with the increased size of results. Specif-
ically, the ratio for 50 nodes drops from about 1.25% to
approximately 0.25% when the number of retrieved result
values increases from 4K to 20K. On the other hand, we
can find that the increasing number of nodes can render a
rise in the bandwidth. The ratio of 8K result size increases
from around 0.13% to about 0.63% when the number of
nodes rises from 10 to 50. Nevertheless, the bandwidth over-
head of query tokens is negligible to the size of results. The
range-match queries follow a similar trend as provided in
Figure 6(b), but the corresponding ratio is higher than the
exact-match queries. The reason is that the range query to-
ken contains an additional ORE ciphertext ctL to perform
ORE comparison, which enlarges the size of the query token.
As shown, the ratio reaches 10.3% for 50 nodes to return 4K
results.

6. RELATED WORK
Encrypted database systems: To enable rich queries
over encrypted data records, a line of encrypted database
systems are implemented [24, 25, 27] (just to list a few).
The first fully functional system is CryptDB [27], which
uses property-preserving encryption (PPE) schemes and a
dedicated query planner [31] to support legacy SQL queries.
Although CryptDB applies randomized encryption on top
of PPE ciphertexts, the security strength after queries is
reduced to the security of PPE such as DET and OPE.

BuildSeer [24] devises secure rich query protocols based on
secure multi-party computation, which requires an assump-
tion on non-colluded index and data servers. Arx [25] is pro-
posed to minimize the leakage in range queries. It designs
a scheme based on Yao’s garbled circuits, where tree (range
index) nodes are compared with the encoded query value
via circuit evaluation. Because circuits cannot be reused for
security, the circuits on tree nodes need to be updated every
time they are accessed. This might introduce considerable
bandwidth overhead, and limit the potential throughput of
range queries. Very recently, an encrypted data analytics
system called Seabed [23] is designed. It leverages a sym-
metric key based homomorphic encryption scheme for fast
aggregation over encrypted data records. Additionally, it de-
signs a customized schema to partition one column into mul-
tiple columns to address inference attacks. However, that
customization requires prior knowledge on query and data
distribution for partition, and thus it is hardly dynamic.
Also, it introduces large overhead from random padding,
e.g., a storage overhead of about 10×.
Searchable Symmetric Encryption: Another line of re-
lated work [4,8,14,30] (just to list a few) is a cryptographic
primitive for keyword search over encrypted data, i.e., search-
able symmetric encryption (SSE). In [8], the security notion
of SSE is formalized. And later in [14], the notion of dy-
namic SSE is further formalized. In [4], encrypted docu-
ments are encrypted into keyword and document ID pairs,
and packing mechanisms are proposed to improve the read
efficiency when the index is too large to be in memory. Other
schemes like [30] considers the multi-client setting of SSE.
The scheme in [30] proposed for boolean queries makes ex-
isting SSE multi-client query protocols non-interactive so as
to reduce the communication overhead.
Order-revealing Encryption: Order-revealing encryption
(ORE) is the primitive to enable comparison on ciphertexts
for secure range queries [1,5,6,17,19,26] (just to list a few).
The early result [1], also known as order-preserving encryp-
tion (OPE), only supports numeric comparison, and the
orders are directly learned from ciphertexts. To improve
the security, new OPE schemes are designed [17, 26], but
these schemes introduce multiple rounds of interaction (i.e.,
O(logN), N is the number of indexed values) for each query.
The first ORE scheme is proposed in [6], while this scheme
leaks the first bit where two messages differ. Very recently,
a new ORE scheme is proposed in [19], where the cipher-
texts achieve semantic security. The comparison only shows
the first different block. Concurrently, another secure ORE
scheme is introduced in [5] based on pairings.

7. CONCLUSION
This paper introduces a functionally rich key-value store,

called EncKV, with guaranteed data protection. EncKV
stores encrypted data records with multiple secondary at-
tributes in the form of encrypted key-value pairs. It lever-
ages the latest cryptographic primitives (i.e., SSE and ORE)
to design encrypted indexes for exact-match and range-match
queries, respectively. For practical query performance, EncKV
integrates those indexes into an encrypted local index frame-
work so that each node can process queries in parallel. A
formal security analysis is given to quantify the security
strength of the proposed secure query protocols. EncKV’s
prototype is deployed on a Redis cluster, and our evaluation
on Amazon AWS demonstrates its efficiency.
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Appendix
Definition 1. Let Ext = (KGen,Buildext, Queryext) be

EncKV’s encrypted exact-match index construction. Given
leakage Lext1 , Lext2 and Lext3 , and a probabilistic polynomial
time (PPT) adversary A and a PPT simulator S, define the
following experiments.

RealA(k): The client calls KGen(1k) to output a private
key K. A selects a dataset D and asks the client to build
{Iext1 , · · · , Iextn } via Buildext. Then A performs a polyno-
mial number of q adaptive queries, and asks the client for
tokens and ciphertexts. Finally, A outputs a bit.

IdealA,S(k): A selects D. S generates {I ′ext1 , · · · , I ′extn }
for A based on Lext1 . A performs a polynomial number of
adaptive q queries. From Lext2 and Lext3 , S returns the sim-
ulated ciphertexts and tokens. Finally, A outputs a bit.
Ext is adaptively secure with (Lext1 ,Lext2 ,Lext3 ) if for all

PPT adversaries A, there exists a simulator S such that
Pr[RealA(k) = 1]− Pr[IdealA,S(k) = 1] ≤ negl(k), where
negl(k) is a negligible function in k.

Theorem 1. Ext is adaptively secure with (Lext1 , Lext2 ,
Lext3 ) under the random-oracle model if G1, G2, H1, H2, P
are secure PRF.

Proof. The objective is to prove that the adversary A
cannot differentiate the real game from the simulated game
defined in Definition 1. We define {HG1,HG2,HH1,HH2,HP }
are random oracles.

The simulator S simulates the encrypted exact-match in-
dexes {I ′ext1 , · · · , I ′extn } on each of n nodes. For node i, S
obtains mi, 〈|α|, |β|〉 from Lext1 , where mi is the number of
index entries, and |α| and |β| are the bit length of encrypted
label-value (LV) pair of each entry. Based on the above in-
formation, S inserts total mi random LV pairs {α, β}mi with
the same length of the real index entry to I ′exti .
S simulates the first query (vC , Cv, Cr) that returns the

encrypted values on attribute Cr if their records match vC
on attribute Cv. In particular, for node i, S generates sim-
ulated query tokens t′1 = (HG1(k′e||Cv||vC ||i)) and t′2 =
(HG2(k′e||Cv||vC ||i)), where k′e is a random string. After
that, from learning the number of matched entries ci in
Lext2 , S locates ci index entries from I ′exti by computing α′ =
HH1(t′1, ci) from 0 to ci, and returns R′∗ = HH2(t′2, ci)⊕ β′
at the same time. R′∗ can be derived from (λ,HR(k′R||λ)⊕
R)), where λ and k′R are random stings, HR is a random
oracle, and R is the record ID. Next, with a random string
k′l, S simulate l′ = HP (k′l||Cr||R), and then generates a ran-

dom v∗
′

with the same length of v∗. From Lext3 , S updates
M ′1,1 = 1 in a matrix M ′q×q. Besides, it creates an inverted

list T ′
v∗′→α′ and inserts v∗

′
|α′ for each v∗

′
.

For the subsequent jth query (j from 2 to q), if the query
is conducted before, say the same as the first query, the
corresponding element in M ′1,j and M ′j,1 need to be updated
to “1”. All simulated query tokens and results of this query
can directly be copied from the tokens and results simulated
from the first query. If the query is not conducted before,
the tokens and results will be simulated in the above step
as shown in the first query. Note that because Tv∗→α from
Lext3 tells the repeated result values queried from different

attributes, 〈l′, v∗
′
〉 appeared before can be obtained from

T ′
v∗′→α′ .
Due to the semantic security of secure PRF, A cannot

differentiate the simulated tokens and results from the real
tokens and results.

Definition 2. Let Rng = (KGen,Buildrng, Queryrng)
be EncKV’s encrypted exact-match index construction. Given
leakage Lrng1 , Lrng2 , Lrng3 , and Lrng4 , and a PPT adversary
A and a PPT simulator S, define the following experiments.

RealA(k): The client calls KGen(1k) to output a private
key K. A selects a dataset D and asks the client to build
{Irng1 , · · · , Irngn } via Buildrng. Then A performs a polyno-
mial number of q adaptive queries, and asks the client for
tokens and ciphertexts. Finally, A outputs a bit.

IdealA,S(k): A selects D. S generates {I ′rng1 , · · · , I ′rngn }
for A based on Lrng1 . A performs a polynomial number of
non-adaptive q queries. From Lrng2 , Lrng3 , and Lrng4 , S re-
turns the simulated ciphertexts and tokens. Finally, A out-
puts a bit.
Rng is non-adaptively secure with (Lrng1 , Lrng2 , Lrng3 , Lrng4 )

if for all PPT adversaries A, there exists a simulator S such
that Pr[RealA(k) = 1] − Pr[IdealA,S(k) = 1] ≤ negl(k),
where negl(k) is a negligible function in k.

Theorem 2. Rng is non-adaptively secure with (Lrng1 ,
Lrng2 , Lrng3 , Lrng4 ) if G1, G2, H1, H3, P, F1, F2, F3 are se-
cure PRF.

Proof. The objective is to prove that the adversary A
cannot differentiate the real game from the simulated game
defined in Definition 2.

For each of n nodes, S iterates over q queries all at once.
S generates random keys {k′r, k′o, k′R, k′1, k′2, k′3, k′l}. Regard-
ing the jth query (cmp, vC , Cv, Cr) (cmp ← {<,>}) that
returns the encrypted values on attribute Cr if their records
match (cmp, vC) on attribute Cv, S simulates tokens and
ciphertexts from Lrng2 , Lrng3 , Lrng4 ). For node i, S computes
t′1 = G1(k′r, Cv||i), t′2 = G1(k′r, Cv||i), and then computes
α = H1(t′1, ci) from 0 to ci.

To simulate the ORE query token ct′L, S splits vC into b
blocks, and generates simulated encrypted blocks as ṽ′|i =

π(F (k′2, v|i−1), v|i)), q
′
i = F2(k′3, cmp||Cv||ṽ′|i), and u′i =

F1(k′1, v|i−1||ṽ′|i), ṽ′|i, q
′
i. To simulate an ORE ciphertext ct′R

on Cv, S obtains bdif the first block that differs between
ctL and ctR from Lrng3 . Then S simulates 2b sub blocks in
each block. For bdif , S simulates the matched sub block
as z′ = Q1(q′i, c) + Q2(u′i, γ

′) where c is the counter of
ctR, and generate random strings for the rest of sub blocks.
For the previous blocks, S simulates equal sub blocks as
z′ = Q2(u′i, γ

′), and generates random strings for the rest.
Likewise, S generates random strings for blocks after bdif .

After that, S computes β′ = H3(t′2)⊕ (ct′R||Enc(K′R, R)),
and inserts {α′, β′} to I ′rngi . Total ci index entries will
be inserted. For the matched index entries, S computes
l′ = P (k′l, R||Cr). In the meantime, S can also generate to-
kens and ciphertexts appeared before from Lrng4 ) just like in
simulating exact-match queries. When all queries are simu-
lated, S inserts random index entries till I ′rngi hasmi entries,
where mi is obtained from Lrng1 .

Due to the semantic security of secure PRF, A cannot
differentiate the simulated tokens and results from the real
tokens and results.
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