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Age-of-Information (AoI) has been recently reckoned as a suitable parameter to evaluate the freshness of

collected information, which is essential for data retrieval in Internet of Things, especially the monitoring

tasks, e.g., the operating situation of equipments. To motivate a large number of sensor nodes and solicit more

up-to-date information from these nodes, the control center usually allocates rewards to nodes according to

their proportional contributions. This induces intense competitions among nodes who try to gain high payoffs

by carefully balancing the rewards and the costs. In this article, we propose a novel stochastic game model to

formulate the competition among sensor nodes, which considers AoI as a metric used by the control center

to quantify the contributions of nodes. We also take into account the uncertainty of channel quality, which

affects the transmission success ratio of packets generated by nodes. Finally, we design an ϵ-Nash learning

algorithm, which adopts the θ -greedy exploration strategy, to derive the ϵ-approximate Nash equilibrium

such that nodes can maximize their long-term payoffs. Our substantive simulation results and analysis verify

that the proposed algorithm outperforms baseline algorithms in bringing higher payoffs to nodes and more

fresh information to the control center.
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1 INTRODUCTION

Fuelled by wide penetration and ubiquitous connectivity of portable devices and Internet of

Things (IoTs), the demand is ever increasing for real-time information, such as equipment su-

pervision and traffic condition monitoring. In most cases, out-of-date information will be of little

or no use. More specifically, for equipment supervision, equipment faults will be accurately pre-

dicted if the control center can timely obtain real-time equipment operation status, which can be

accessed by sensors deployed on the monitored equipment to effectively avoid industrial safety ac-

cidents. To characterize the freshness of information, the metric Age-of-Information (AoI) has

been proposed to measure the time elapsed after the packet is generated [9]. A lower AoI indicates

that the information is more fresh.

There have been extensive efforts on studying the technical issues of AoI management. For

instance, scheduling policies have been proposed to minimize AoI in a single-hop wireless network

[8], and a zero-wait policy for AoI management has been designed in Reference [20]. However,

generating and transmitting information consumes valuable resources. Therefore, control centers

need to deploy certain incentive mechanisms to compensate sensor nodes and encourage them to

contribute more up-to-date information. Such economic issues regarding AoI were first introduced

in Reference [5], which formulated the competition between two platforms as a non-cooperative

game. Different from Reference [5], we are interested in the competition among nodes who are

trying to gain desirable profits from the center. Generally, the center allocates a fixed pool of

rewards to nodes based on their proportional contributions to the specific tasks. This indicates

that the reward obtained by a node not only depends on her own contribution but also relies

on the contributions of other nodes, which may induce intense competitions among nodes. To

make the problem more complicated, not all data generated by a node can be delivered successfully

to the center due to uncertainty in wireless channel quality. With a poor channel quality, even if

a node generates a large number of packets, few of them can reach the center, thus the payoff of

the node is affected considering the cost of packet generation and transmission.

In this article, we investigate the dynamic and strategic competition between sensor nodes for

data collection in IoTs by taking AoI management of data into account. Our target problem is to

derive the optimal strategies for nodes to achieve expected payoffs, which imply the optimal allo-

cation of system resources by trading off between the freshness of information and the cost based

on the stochastic game from the perspectives of nodes, not only a monetary reward. Since each

node’s payoff depends on the joint actions of nodes in each time slot, we make the first attempt

to utilize the general-sum game to formulate the competition among nodes for data gathering in

IoTs. Furthermore, due to the uncertainty in channel quality, the system state of the game keeps

changing over time, inspiring by nature of game theory; thus, we model the long-term dynamic

packet generation in a stochastic setting. At each time stage, a node determines the packet gen-

eration rate according to the current observed channel quality and the average AoI of its packets.

The generated packets will be transmitted to the control center but the fraction of successfully

delivered packets are affected by the channel quality, i.e., more packets can reach the platform if

the channel quality is high. With the newly generated packets, the platform will update the AoI of

nodes. More specifically, if more packets are received in the current time slot, then the AoI value of
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the node will be reduced by a larger amount, meaning that the information provided by the node is

more fresh. The platform then distributes a fixed amount of reward to nodes proportional to their

contributions calculated according to the number of received packets and AoI of their contents.

To achieve the best strategy for involved nodes in the stochastic game, we design a learning algo-

rithm leading to ϵ-Nash Equilibrium, which adopts the θ -greedy strategy, to achieve the optimal

strategies for nodes that can maximize their long-term payoffs. Experimental results show that

our proposed approach achieves superior performance over baseline algorithms.

In this article, we make the following key contributions.

• We present the first attempt to adopt a stochastic game model to analyze the AoI for the

control center in IoTs, which captures the uncertainty of the environment and the dynamic

interactions between nodes.

• We propose a novel incentive mechanism that considers both the quantity and quality (i.e.,

AoI) of information provided by nodes to the control center. We design an efficient ϵ-Nash

learning algorithm, which adopts the θ -greedy exploration strategy, to achieve the optimal

strategies for nodes, and then the nodes can learn and adjust their actions based on optional

strategies and revenue expectations.

• We evaluate the proposed algorithm to verify its superiority over random, fixed, and myopi-

cally learned strategies in terms of node payoff and information freshness. We also conduct

extensive validation about the impact of ϵ on convergence speed and node payoff.

The remainder of the article is organized as follows. Section 2 reviews related work. In

Section 3, we describe our system model for data collection in IoTs. In Section 4, we formulate the

competition among nodes based on the stochastic game. We present a learning algorithm, which

utilizes the θ -greedy learning strategy and can lead to the ϵ-Nash Equilibrium, to achieve the best

strategies for nodes in Section 5. The evaluation results and performance analysis of our scheme

are demonstrated in Section 6. The limitation and guiding principles are discussed in Section 7.

Finally, Section 8 concludes the article.

2 RELATED WORK

Age-of-information. AoI has been introduced as a new metric to evaluate the freshness of

information, which measures the duration between the moment that the content is generated and

the time the content is received. There has been a lot of research focusing on the technological

issues of minimizing AoI. The existence of an optimal packet generation rate has been proved,

which allows a source to keep its status as timely as possible [9]. To better control information

updates, a general age penalty function has been introduced to characterize the staleness of data

and an optimal update policy has been proposed for minimizing the average age penalty [20]. A

method of minimizing AoI has been proposed that jointly considers multiple properties, includ-

ing sampling behavior, sample size, and the transmission capacity [10]. To optimize AoI without

throughput loss, a preemptive Last-generated First-served (LGFS) strategy has been proposed

with multiple servers under an arbitrary task arrival rate [1]. The economics of AoI management

has been investigated [5, 18, 21]. A non-pricing mechanism has been proposed to enforce cooper-

ation among selfish platforms to balance their AoIs and sampling costs [5].

To encourage nodes to sample information at different rates over time, a dynamic pricing strat-

egy has been designed for the provider to offer age-dependent monetary returns [18]. Two pricing

schemes, i.e., optimal time-dependent and optimal quantity-based pricing, have been designed by

modeling the interactions between information sources and nodes as a Stackelberg game [21].

However, there is a lack of works that study AoI from the perspectives of nodes. In particular, it

is unexplored how nodes manage AoI to obtain optimal rewards from the control center. In this
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article, we address this problem by considering the competition among nodes who carefully adjust

their packet generation rate to attain the desirable AoI and reward.

Stochastic Game. On the basis of Markov Decision Process, the stochastic game takes inter-

action and competition among different players into consideration [13, 15]. Recently, a stochastic

game-based model can characterize the interactions between multiple agents in a time-varying en-

vironment with uncertainties. A stochastic game framework has been designed for anti-jamming

defence to improve the spectrum utilization in cognitive radio networks [16]. To protect user pri-

vacy, the interaction between the user and its competitor is modeled as a zero-sum stochastic game

to find the best strategy in Reference [17]. The video rate adaptation problem can also be modeled

based on the stochastic game to improve viewers’ Quality-of-Experience (QoE) in Reference [2].

To formulate the interactive competition between Bitcoin mining pools, a general-sum stochastic

game-based model has been developed in Reference [19].

Moreover, numerous works have leveraged the learning algorithms to find the optimal strate-

gies for agents in the stochastic game. The minimax-Q learning algorithm has been proposed in

Reference [12] for zero-sum Markov game. Based on the work of Reference [12], a multi-agent

Q-learning method has been proposed for general-sum stochastic games in Reference [6]. Fur-

thermore, Q-learning has been extended to a noncooperative multi-agent setting in general-sum

stochastic games, where the convergence under different conditions has been studied [7]. Re-

cently, two-timescale algorithms have been proposed, which can find stationary Nash equilibria

in a general-sum stochastic game [14]. Different learning approaches have been presented for five

variants of multi-agent inverse reinforcement learning in general-sum stochastic games [11]. In

this article, we formulate the competition among nodes as a stochastic game, and adopt learning

algorithms to find the optimal strategy for each node.

3 SYSTEM MODEL

We consider two sensor nodesu1 andu2 competing with each other for data gathering in an IoT, as

shown in Figure 1. Each node samples information from the environment and attempts to transmit

the newly sampled packets to the control center. We consider a time-slot-based dynamic time

horizon. Each node generates multiple packets periodically in each time slot, and each packet

contains certain information, including the time of generation, the order of generation, and the

total number of generated packets in the current time slot. We use fi (n) and qi (n) to denote the

average AoI and channel quality of node ui at time slot n, respectively. The average AoI reflects

the timeliness of the information provided by the node to the center in each time slot, and the

channel quality determines the packet transmission success ratio, which will affect AoI in the next

time slot.

Upon receiving the packets from the two nodes, the control center will divide up a fixed amount

of reward among the two nodes, proportional to their contributions to the specific tasks, i.e., the

number of delivered packets and the AoI of the contents. More specifically, nodes will receive the

same amount of rewards provided that they performed equally well/equally bad or proportional

payment (i.e., nodes with poor performance will receive less rewards). Therefore, the payoff of

a node at a certain time slot relies upon various factors, including the number of successfully

transmitted packets, the AoI of the contents, and the cost of packet generation and transmission.

A node has incentives to adjust the packet generation rate to manage the AoI to maximize its long-

term payoff. Therefore, the modeling considerations related to AoI manage when finding the best

strategies for nodes are as follows.

• Packet generation rate. A higher packet generation rate incurs a higher cost but produces

more packets that are more likely to be successfully transmitted to refresh AoI, which may
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Fig. 1. System model. The nodes generate and send real-time data to the control center, then the control

center assigns rewards to nodes based on their contributions.

yield a higher reward from the control center. Meanwhile, a node faces competition from

the rival node who will share a fixed amount of reward from the control center. To gain the

maximum payoff, the node has to find the optimal packet generation rate at each time slot

by jointly considering its own cost and the channel quality, as well as possible actions of the

rival node.

• Channel quality. The channel quality is determined by the environment where a node is in,

and it will have an influence on the transmission success ratio. Given the packet generation

rate chosen by the node, a larger fraction of the generated packets can be successfully deliv-

ered to the control center when the channel quality is better. In other words, if the channel

quality is poor, even if the packet generation rate is high, then the payoff of the node may be

low, since few packets can be received by the control center. Therefore, the node should take

into account the current channel quality when deciding the packet generation rate. Note that

the channel quality of two nodes are independent.

4 STOCHASTIC GAME FORMULATION

As an extension to the Markov Decision Process (MDP), stochastic games [7] can capture the

dynamic interactions among multiple agents. In this section, we analyze the interaction between

two nodes and formulate the packet generation decision game as a two-agent stochastic game.

4.1 Game Formulation

We formulate the AoI management of two competing nodes in an IoT as a two-agent stochas-

tic game, denoted as a six-tuple Γ =< S,A1,A2, r1, r2, P >, where (1) S is denoted as the state

space, and the system state is characterized by the average AoI and the channel quality, S =

{s (1), . . . , s (n)}, s (n) = { f1 (n), f2 (n),q1 (n),q2 (n)}, where s (n) is the state at time slot n, fi (n) is

the average AoI of node ui , i ∈ {1, 2}, at time slot n, and qi (n) is the channel quality of node ui ,

i ∈ {1, 2}, at time slot n, (2) Ai, i ∈ {1, 2} is denoted as the action space that contains all possi-

ble actions that node ui can take, (3) ri : S × A1 × A2 �→ ri is the payoff for ui , where ri ∈ R,R is

denoted as the set of real numbers, (4) P : S × A1 × A2 �→ Δ(S) is described as the transition prob-

ability function of S = { f1 (1), f2 (1),q1 (1),q2 (1), . . . , f1 (n), f2 (n),q1 (n),q2 (n)}, and actions, i.e., A1,

A2 taken by u1 and u2. The game Γ is executed stage by stage. At each time stage, node ui chooses

an action based on the current state s , s ∈ S, then receives a payoff determined by the joint action

of two players and the current state s , s ∈ S. Each node attempts to maximize the expected sum of

payoffs with the time discount effect.

State space S. The state space is defined as the average AoI and the channel quality of u1

and u2, i.e., the state at time slot n is s (n) = { f1 (n), f2 (n),q1 (n),q2 (n)}. The channel quality is
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measured by channel state information in wireless communications, and represented generally

by Channel Quality Indication (CQI). The AoI of a node is computed as the average duration

from the moment that packets are generated to the time when they have been received. As a node

adjusts the packet generation rate at different time slots, its AoI will be updated over time. The

channel quality affects packet transmission and will determine the number of packets that can be

successfully delivered. The control center offers reward to the node depending on the number of

received packets and the AoI of the contents, i.e., the node’s payoff is decided by channel quality

and AoI. Therefore, a node needs to adapt its packet generation rate based on the channel quality

and the current AoI of both nodes. The channel quality of the rival node can be observed by channel

estimation, and the AoI of the rival node can be deduced from the reward distribution.

Actions A1,A2. The action of node ui is defined as the packet generation rate chosen by node

ui , i ∈ {1, 2}, i.e., the actions taken byu1 andu2 in time slot n are a(n) = {a1 (n),a2 (n)}, where ai (n),
i ∈ {1, 2} is the number of packets node ui generates in time slot n. Each node decides its action

for the current time slot based on the current state s (n) = { f1 (n), f2 (n),q1 (n),q2 (n)}. With packet

generation rate ai (n), we assume that node ui can generate a total number of Ji (n) = ai (n) × Δt
packets, where Δt is the duration of a time slot. Each generated packet j is stamped with the time

of generation, the order of generation, and the aggregate number of packets generated in this time

slot, denoted as {τi, j , j, Ji (n)}.
Stage payoff r1, r2. The payoff at stage n depends on s (n) and a(n) of u1 as well as u2, where

s (n) is the current state, and a(n) is actions taken by two nodes. To be more specific, the payoff of

node ui is determined by its average AoI, the number of packets transmitted successfully, and the

cost of packet generation and transmission. The payoff of u1 in time slot n can be computed as

r1[s (n),a(n)] = PoC1[s (n),a(n)] ×W (n) − c1a1 (n), (1)

where PoC1[s (n),a(n)] is the proportion of u1’s contribution to the platform, determined by the

current state and actions of both nodes.W (n) is the total reward offered by the center in time slot

n. c1 is the unit cost of packet generation and transmission of node u1.

To enhance the freshness and richness of information, the control center distributes rewards

based on the average AoI and the number of received packets of nodes in each time slot. Thus, we

have

PoC1[s (n),a(n)] =
ψ1

(
s (n),a(n)

)

ψ1

(
s (n),a(n)

)
+ψ2

(
s (n),a(n)

) , (2)

whereψi (s (n),a(n)), i ∈ {1, 2} is the incentive mechanism adopted by the control center, which con-

siders both the quality and quantity of information contributed by node ui , and aims to motivate

nodes to provide more information to refresh the AoI. Therefore, we define the reward function

as

ψi

(
s (n),a(n)

)
=
mi (n)

fi (n)
, (3)

where mi (n) is the number of packets that transmitted successfully by node ui given the packet

generation rate ai (n) and the channel quality qi (n), and fi (n) is the average AoI of node ui , i ∈
{1, 2}, in time slot n.

In the same way, r2[s (n),a(n)] can be calculated as

r2[s (n),a(n)] = PoC2[s (n),a(n)] ×W (n) − c2a2 (n), (4)

where PoC2[s (n),a(n)] is

PoC2[s (n),a(n)] =
ψ2

(
s (n),a(n)

)

ψ1

(
s (n),a(n)

)
+ψ2

(
s (n),a(n)

) . (5)
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State transition probability. The state transition includes the transition of channel quality

and the transition of AoI of nodes, which are independent from each other. Furthermore, the AoI

transition of node ui , i ∈ {1, 2}, only depends on the current AoI and the action of ui , i ∈ {1, 2}, the

channel quality follows certain random distribution that is independent of node actions. Therefore,

we can decouple the state transition function as

P[s (n + 1) |s (n),a(n)] = P[f1 (n + 1) | f1 (n),a1 (n)]

× P[f2 (n + 1) | f2 (n),a2 (n)] × P[q1 (n + 1)] × P[q2 (n + 1)],
(6)

where P[q1 (n + 1)] and P[q2 (n + 1)] can be estimated according to radio propagation models,

evaluation and transition of channel quality are outside the scope of the study. We explain how to

derive P[f1 (n + 1) | f1 (n),a1 (n)] and P[f2 (n + 1) | f2 (n),a2 (n)] in the following context.

Given the channel quality qi (n) in time slot n, the probability that packets of node ui can be

transmitted successfully to the control center is pi (n) ∈ [0, 1], which follows a Gaussian distribu-

tion pi ∼ N (1, 1
2qi

) [4]. If at least one packet is transmitted successfully, then the platform can

derive the AoI of each packet j of ui as follows:

Δi, j (n) =
⎧⎪⎨
⎪
⎩

αi, j − τi, j , if packet j is received,

Δi,l (n − 1) + 1, otherwise,
(7)

where αi, j is the time that packet j successfully arrives at the control center, τi, j is the generation

time of packet j, and Δi,l (n−1) is the AoI of the last received packet l in the previous time slot n−1.

The control center can infer that packet j is lost based on the information carried by successfully

transmitted packets. The AoI of a lost packet is set as the AoI of the last received packet l in the

previous time slot plus 1.

The average AoI considering all packets generated by node ui in time slot n is

Δi (n) =
⎧⎪⎪⎨
⎪⎪
⎩

∑Ji (n )
j=1 Δi, j (n)

Ji (n) , with probability 1 − A,
Δi,l (n − 1) + 1, with probability A,

whereA = [1−pi (n)]Ji (n) , pi (n) is the transmission success probability of nodeui , and Ji (n) is the

total number of generated packets of node ui in time slot n. If at least one packet is successfully

delivered to the control center (the probability is 1− [1−pi (n)]Ji (n)), then the average AoI of node

ui will be updated according to the information of the received packets. If no packet arrives at the

control center (the probability is [1 − pi (n)]Ji (n)), then the average AoI of node ui will be updated

as the AoI of the last received packet in the previous time slot plus 1.

To better understand the update of AoI, we provide a toy example to illustrate how the platform

calculates the AoI of nodes. Suppose that nodeui takes action after observing the state by choosing

packet generation rate of 4. We assume that Δt = 1 so that 4 packets are generated in the time

slot, and each packet is stamped with the information for calculating AoI. Given different channel

qualities, the transmission success probability is different.

• With a high channel quality, we assume that the transmission success probability ispi (n) = 1,

i.e., all packets can be received by control center. The information carried by the four packets

is (0, 1, 4), (0.25, 2, 4), (0.5, 3, 4), and (0.75, 4, 4). We assume that the arrival time of the four

packets is 0.25, 0.5, 0.75, and 1. Hence, the AoI of each packet is 0.25. and the average AoI of

the node in this time slot is 0.25.

• With a moderate channel quality, we assume that the transmission success probability is

pi (n) = 0.75 and the second packet is lost. The center receives three packets (0, 1, 4),
(0.5, 3, 4), and (0.75, 4, 4) with the arrival time 0.25, 0.75, and 1. The AoI of each received
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Fig. 2. Illustration of time slot n of the stochastic game.

packet is 0.25. The center can infer that packet 2 is lost, and calculate its AoI as 0.4+ 1 = 1.4,

where 0.4 is the AoI of the last received packet in the previous time slot. Thus, the AoI of

the node in this time slot is 0.5375.

• With a poor channel quality, it may happen that no packet is transmitted successfully. The

platform will calculate the AoI of the node as 1.4.

Based on AoI of node ui in the current time slot, the average AoI of ui is updated as

fi (n + 1) =
(n − 1) fi (n) + Δi (n)

n
. (8)

We can compute the transition probability of the AoI as

P[fi (n + 1) | fi (n),a(n)]

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪
⎩

1 − [1 − pi (n)]Ji (n), if fi (n + 1) =
(n−1)fi (n)+

∑Ji (n )
j=1

Δi, j (n )

Ji (n )

n
,

[1 − pi (n)]Ji (n), if fi (n + 1) =
(n−1)fi (n)+Δi,l (n−1)+1

n
,

0, otherwise.

As illustrated in Figure 2, we divide each time slot into three phases to better explain the flow

of events in the stochastic game. At the initial phase n1 of time slot n, the nodes first observe

the current state, i.e., the average AoI and channel quality { f1 (n), f2 (n),q1 (n),q2 (n)}, based on

which they choose the packet generation rate a1 (n) and a2 (n) according to their learned strategies.

At phase n2, the two nodes generate packets and transmit the packets to the control center. At

phase n3, the center allocates the rewards to nodes according to their contributions considering

the average AoI and the number of successfully transmitted packets.

As shown in Table 1, according to the proposed scheme, we illustrate the state transition over 10

rounds by using the given toy example. Here, we assume that the unit cost per packet is 0.02, and

the transmission success ratio of the two nodes is fixed as p1 = 0.3,p2 = 0.6. We can observe that

the payoff of nodes depend on the actions of both nodes, and the payoff of a certain time slot may

be negative, since the rewards from the control center is lower than the cost of packet generation

and transmission. Due to fierce competition, it is critical for nodes to learn the optimal strategy to

obtain a high long-term payoff.
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Table 1. Toy Example of the Stochastic Game

Time slot State Action Payoff Next State Average payoff

n {f1 (n), f2 (n), q1 (n), q2 (n) } {a1 (n), a2 (n) } {r1 (n), r2 (n) } {f1 (n + 1), f2 (n + 1), {r 1 (n), r 2 (n) }
q1 (n + 1), q2 (n + 1) }

1 {0.200, 0.400, 0.3, 0.6} {6, 5} {0.325, 0.456} {0.184, 0.300, 0.4, 0.6} {0.325, 0.456}

2 {0.184, 0.300, 0.3, 0.6} {4, 10} {0.206, 0.515} {0.206, 0.233, 0.4, 0.6} {0.266, 0.485}

3 {0.206, 0.233, 0.3, 0.6} {7, 2} {0.610, 0.210} {0.190, 0.300, 0.4, 0.6} {0.381, 0.394}

4 {0.190, 0.300, 0.3, 0.6} {5, 10} {0.150, 0.550} {0.192, 0.260, 0.4, 0.6} {0.323, 0.433}

5 {0.192, 0.260, 0.3, 0.6} {3, 9} {–0.600, 0.820} {0.327, 0.236, 0.4, 0.6} {0.247, 0.510}

6 {0.327, 0.236, 0.3, 0.6} {4, 2} {0.520, 0.360} {0.316, 0.273, 0.4, 0.6} {0.292, 0.485}

7 {0.316, 0.273, 0.3, 0.6} {7, 7} {0.360, 0.360} {0.294, 0.257, 0.4, 0.6} {0.302, 0.468}

8 {0.294, 0.257, 0.3, 0.6} {5, 1} {0.700, 0.180} {0.284, 0.329, 0.4, 0.6} {0.352, 0.432}

9 {0.284, 0.329, 0.3, 0.6} {9, 6} {0.392, 0.309} {0.267, 0.313, 0.4, 0.6} {0.326, 0.418}

10 {0.267, 0.313, 0.3, 0.6} {7, 1} {0.8600, –0.02} {0.256, 0.375, 0.4, 0.6} {0.407, 0.374}

4.2 Problem Statement

We execute a stochastic game between the two nodes for an infinite number of time slots. Fur-

thermore, we take the effect of time discount into consideration. In other words, payoffs in the

current time slot should be worth more than those in future time slots. The total long-term utility

of ui , i = 1, 2 can be denoted as the expected sum of discounted payoffs,

Ui = E
⎧⎪⎨
⎪
⎩

∞∑

n=0

γ (n)ri [s (n),a(n)]
⎫⎪⎬
⎪
⎭
, (9)

let γ denote the discount factor, γ < 1. Our objective for a node is to learn an optimal strategy to

gain maximum expected long-term utility.

5 LEARNING THE OPTIMAL STRATEGY

In this section, we describe how to obtain the optimal strategy for sensor nodes in IoTs, based on

the stochastic game formulated in the previous section.

5.1 Nash Equilibrium

For stochastic games, the strategy is a probability distribution over all possible actions for the

set of states. In this article, we study the stationary strategy, which means that the strategy is

independent of time, i.e., π (n) = π for all n.

We express the strategy of node ui as πi : S �→ P (Ai ), i ∈ {1, 2}, let S denote the state space,

let P (Ai ) denote the probability distribution over action space Ai . Given strategies π1,π2 and the

current state s ∈ S, the value of the state s is V π
i (s ) for ui , i ∈ {1, 2}, can be computed as

V π
i (s ) =

∞∑

n=0

γ (t )E{ri [s (n),a(n)]|π1,π2, s (0) = s}

= ri (s,aπ
1 ,a

π
2 ) + γ

∑

s ′�s

Pr [s ′ |s,aπ
1 ,a

π
2 ]V π

i (s ′),
(10)

where aπ
1 and aπ

2 are the actions of u1 and u2, which are decided by strategies π1 and π2, and s (0)
is the initial state in time slot 0.

Let π ∗ = {π ∗1 ,π ∗2 } denote the optimal strategies for u1 and u2. Due to the nature of the general-

sum stochastic game, the interactions between u1 and u2 will converge to an optimal strategy pair,

and achieve a Nash Equilibrium finally. A Nash equilibrium [7] is a collection of strategies where

each node’s strategy is a best-response to other players’ strategies, defined as follow.

Definition 1 (Nash Equilibrium). The existence of Nash Equilibrium implies that every player

has the best strategy. Furthermore, players have no motivation to change the current state when
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ALGORITHM 1: ϵ-Nash Learning Algorithm

Input: s (0) = { f1 (0), f2 (0),q1 (0),q2 (0)}, and game Γ.

Output: πϵ .

1: t ← 0, f1 (n) = f1 (0), q1 (n) = q1 (0), f2 (n) = f2 (0), q2 (n) = q2 (0).
2: V1[s1 (n), s2 (n)] = 0, V2[s1 (n), s2 (n)] = 0, ∀s1, s2 ∈ S.
3: Initialize π (n) : a1 (n) = 5,a2 (n) = 5.

4: Repeat

5: Compute θ using Equation (18).

6: Choose an action pair a1 (n),a2 (n) based on π (n) with probability 1 − θ .

Choose randomly an action pair a1 (n),a2 (n) with probability θ .

7: Compute f1 (n + 1), f2 (n + 1) after u1 and u2 take their actions a1 (n),a2 (n).
8: Compute optimal strategies π1 (n + 1), π2 (n + 1) for u1 and u2 using Equation (16).

9: Compute V1 (n + 1), V2 (n + 1) using Equation (17).

10: n← n + 1.

11: until convergence.

12: Return πϵ .

the best strategy is chosen by every player. Given π ∗ = {π ∗1 ,π ∗2 } for two players, for any possible

state s ∈ S, we have

V π ∗
1 (s ) ≥ V

(π1,π
∗
2 )

1 (s ), (11)

and

V π ∗
2 (s ) ≥ V

(π ∗1 ,π2 )
2 (s ). (12)

For a specific data collection task, the objective of node u1 is to attain the optimal strategy π ∗1
to maximize V π

1 (s ) for any possible state, while node u2 has the same goal to maximize V π
2 (s ) for

any possible state. However, a pure tactical Nash Equilibrium may not exist in this bimatrix game.

We demonstrate a game playing process of 0.03-Nash Equilibrium, as shown in Figure 3.

The current state is {0.7, 0.8, 0.13, 0.13}, and the transmission success ratio is 0.13 for both nodes.

As shown in Figure 3, the reward achieved by the two nodes when taking different actions, e.g.,

if node u1 and node u2 choose action {2, 3}, their rewards are 0.39 and 0.21, respectively. More

specifically, given that node u1 takes action 2, the dominant strategy of node u2 is 5 that produces

the highest reward 0.52. Then, u1 chooses the new dominant strategy 3 and gains a reward of 0.45.

After this, u2 takes a new dominant strategy 3 with a reward of 0.45. In turn, u1’s new dominant

strategy is 2. This search cycle goes on forever and there is no pure tactical Nash Equilibrium for

the given game.

Accordingly, we define ϵ-Nash Equilibrium [3] as follows instead.

Definition 2 (ϵ-Nash Equilibrium). For stochastic game Γ, an ϵ-Nash Equilibrium (ϵ-NE) is an

optimal strategy pair π ϵ = {π ϵ
1 ,π

ϵ
2 }, for all state s , s ∈ S, we have

V π ϵ

1 (s ) ≥ V π 2

1 (s ) − ϵ, (13)

and

V π ϵ

2 (s ) ≥ V π 1

2 (s ) − ϵ, (14)

where π 2 = (π1,π
ϵ
2 ), ∀π1, and π 1 = (π ϵ

1 ,π2), ∀π2, and ϵ > 0.

As shown in Figure 3, the bimatrix game converges to a Nash Equilibrium with ϵ = 0.03 af-

ter three rounds of execution. When node u2 selects action 5, node u1 changes the action from

2 to 3 with a reward of 0.45. If node u1 continues to choose action 2, then it will get a reward

of 0.42. Since 0.42 = 0.45 − 0.03, according to the definition of ϵ-Nash equilibrum, u1 will not

change its action. If no node can alter its action to attain a growth of reward that exceeds 0.03,
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Fig. 3. Illustration of a bimatrix game. It can be observed there is no pure tactical Nash equilibrium for this

game, but a 0.03-Nash equilibrium exists.

then the 0.03 Nash Equilibrium is achieved, and {a1,a2} = {2, 5} is a 0.03-approximate Nash

equilibrium.

We update the state value of ui , i ∈ {1, 2} as

V π ϵ

i (s ) = ri (s,aπ ϵ

1 ,a
π ϵ

2 ) + γ
∑

s ′�s

Pr [s ′|s,aπ ϵ

1 ,a
π ϵ

2 ]V π ϵ

i (s ′), (15)

where ϵ is an arbitrarily small value, such that the reward obtain in the ϵ-Nash equilibrium can

approach asymptotically that in the Nash equilibrium. We set ϵ as 0.001 in our algorithm.

The target problem is to learn the best strategy π ϵ
i in π ϵ = {π ϵ

1 ,π
ϵ
2 } for two nodes,

π ϵ
i = arg max

πi

ri (s,aπ ϵ

) + γ
∑

s ′�s

Pr [s ′|s,aπ ϵ

]V π ϵ

i (s ′). (16)

5.2 Learning Algorithm for ϵ-Nash Equilibrium with θ -Greedy Exploration

To achieve the ϵ-Nash Equilibrium, we present a learning algorithm with θ -greedy exploration

based on Q-learning. According to the update rules of Q-learning [6], we can obtain π ϵ by learning

V π ϵ

i , i = 1, 2.

Vi [s (n + 1)] = [1 − η(n + 1)]Vi [s (n)]

+ η(n + 1)ri [s,a1 (n + 1),a2 (n + 1)] + γVi [s
′(n)],

(17)

where let η(n) ∈ [0, 1) denote the rate of learning, our algorithm will converge when η(n) declines

over time. In the meantime, η(n) is set as 1
n1/3 , and we use Vi [s (n + 1)] as the approximate refer-

ence of V π ϵ

i . The state values of u1 and u2 are calculated iteratively based on Equation (17) until

convergence.
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During the learning process, each node has two choices: exploit the action chosen by the cur-

rently learned strategy or explore a new action. More specifically, in the exploitation process, the

node chooses the optimal action determined by its strategy, and in the exploration process, the

node randomly selects an action. We adopt a θ -greedy method to balance exploration and ex-

ploitation, i.e., there is a 1−θ probability that node ui will choose the action, which is determined

based on the current strategy π (n), as well as will explore a new action randomly with probability

θ . While exploration has potential to find the optimal action, exploitation can achieve the best re-

ward based on the result of exploration. Therefore, more explorations first and then exploitations

are executed in our algorithm; θ should decrease over time as the algorithm converges. Therefore,

θ can be updated as

θ =
θ0

n
1
2 + 1

, (18)

where θ0 is the initial value of θ .

The learning algorithm for ϵ-optimal strategy is described in Algorithm 1. We set the initial state

as 0, the strategy pair as π (0) = {5, 5}, and γ as 0.8. Then, the strategy pair is calculated iteratively

based on Equations (16) and (17) until the pair of the best strategy is achieved.

6 EVALUATIONS

In this section, we evaluate the performance of the proposed scheme, i.e., ϵ-Nash learning algo-

rithm, on a server with an Intel Xeon processor at 2.80 GHz and 24 GB RAM. We conduct a set of

simulations to pay close attention to the utility of u1, and compare the average payoffs as well as

the aggregate discounted payoffs of u1 when u1 adopts different strategies.

6.1 Experiment Setup

6.1.1 Parameter Settings. The parameter settings by default in our experiments are as follows.

The transmission success ratio pi follow the Gaussian distribution pi ∼ N (1, 1
2qi

) [4]. The time

discount factor γ is set as 0.8, and the unit cost per packet is set as 0.1. To closely approximate the

Nash equilibrium, we set ϵ as 0.001.

6.1.2 Baselines. We assume that the rival node u2 adopts the proposed strategy. We compare

the utility of node u1 when utilizing the proposed algorithm and the following baselines.

• Random strategy. Node u1 randomly chooses an action at each time slot.

• Fixed strategy. Node u1 chooses a fixed action at each time slot no matter what the state is.

• Myopic strategy. Node u1 uses the optimal strategy, which is derived by myopic learning. In

other words, we ignore the impact of the time discount factor, i.e., γ = 0.

6.2 Performance Analysis

6.2.1 Payoff. We compare the aggregate average payoff and accumulated discounted payoff

when different strategies are employed at time slot n under different s (0) with the fixed trans-

mission success ratio. As shown in Figures 4 and 5, we can observe that our strategy as well as

the myopic strategy obtain higher payoff than random strategy as well as fixed strategy, since

the two former strategies are both learning-based and dynamically updated according to the state.

The strategy proposed in this article attains both the highest accumulated average payoff and the

highest aggregate discounted payoff no matter what the initial state is, since the ϵ-Nash learning

algorithm tries to find the best strategy for the current state by also taking the future payoff into

account. This confirms that for nodes competing in IoTs that consider AoI as a contributing fac-

tor, taking the result learned from the ϵ-Nash learning algorithm, which considers both current

payoffs and long-term payoffs, as their own strategies can always achieve the highest payoffs.
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Fig. 4. Average payoff versus initial states.

Figures 6 and 7 show the accumulated average payoff and aggregate discounted payoff of the

four strategies with different channel qualities, given initial average AoIs. We can find that the

strategy proposed in this article can obtain the best payoff, and the payoff of nodes increases with

the channel quality, since a larger fraction of generated packets can be successfully transmitted,
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Fig. 5. Discounted payoff versus initial states.

which boosts the payoff of the nodes. In addition, all curves in Figures 4–7 gradually become stable,

which shows that the proposed learning algorithm has converged to an ϵ-Nash equilibrium.

6.2.2 Impacts of State. In Figures 8 and 9, we analyze the impact of state on generation rate

selection. Since the channel quality determines the transmission success ratio and introduces un-

certainty to AoI, we compare the sum of generation rate over a long term.
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Fig. 6. Average payoff versus channel qualities.

In Figure 8, we show the impact of initial average AoI on generation rate selection with trans-

mission success ratio {0.8, 0.8}. In general, the sum of generation rate increases as the average AoI

increases. Further, we analyze the generation rate selection when node u1’s initial average AoI is

0.6 with different initial state of u2. It is observed that the generation rate selection of two nodes
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Fig. 7. Total discounted payoffs of different strategies with different channel qualities.

is lower when their initial average AoI is the same. This is because in an IoT, it is ideal to allocate

the total reward evenly among sensor nodes to maximize the payoff of each node. Therefore, each

node obtains the same reward in one time slot when the states (average AoI and channel quality)

are the same, and applies a relatively small generation rate to reduce the cost for a higher payoff.

Moreover, to minimize the average AoI, the control center can dynamically change the total re-

ward according to the average AoI at each time slot to motivate nodes to provide more updated
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Fig. 8. Generation rate selection of nodes with different initial average AoI.

information. In this article, we assume that the total reward distributed to each node in each slot

is proportional to the number of packets it successfully transmits and its corresponding average

AoI, and we will explore other reward allocation schemes in our future work.

In Figure 9, we demonstrate the impact of channel quality on generation rate selection under

different channel qualities with initial average AoI {0.5, 0.5}. It is shown that the sum of generation

rate decreases as the channel quality improves. This indicates that when the channel quality is

ideal, nodes can reduce the generation rate to lower the costs and obtain a high payoff.

6.2.3 Impacts of System Parameters. In this set of simulations, we analyze the convergence

properties of the proposed algorithm and the impact of system parameters (i.e., channel quality

and ϵ) on our proposed scheme.

As shown in Figure 10(a), the running time of the four strategies decreases with improvement of

channel quality, where the initial average AoI is {0.5, 0.5}, and ϵ is 0.001. We noticed that Random

strategy has the longest running time, and our algorithm as well as Myopic strategy can achieve

shorter running time. Compared with Myopic strategy, the proposed algorithm always find the
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Fig. 9. Generation rate selection of nodes with different channel qualities.

ϵ-optimal strategy as the Nash equilibrium solution, and thus require a slightly longer running

time than Myopic strategy.

Given the initial average AoI {0.5, 0.5}, with better channel quality, the running time of the

proposed algorithm generally shows a decreasing trend, as shown in Figure 10(b). Furthermore,

larger ϵ corresponds to lower running time. This is mainly because the game between nodes will

experience fewer rounds for bigger ϵ . More specifically, nodes will take the next move only when

they have sufficient reward increment, which is consistent with the nature of ϵ-Nash Equilibrium.

The impact of ϵ on the profit of nodes is illustrated in Figure 11, where the initial average AoI is

0.5,0.5. Naturally, payoff increases with channel quality. Both average and discount payoff are low

for bad channel quality but will increase rapidly with the increase of channel quality, as shown

in Figures 11(a) and 11(b). At the same time, there is a rough trend that smaller ϵ corresponds to

a higher reward. ϵ-Nash Equilibrium implies that the game target is to attain a growth of profit

that exceeds ϵ . Thus, smaller ϵ will strive for even a little profit and thus have a larger reward. Our
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Fig. 10. Running time comparison with different channel quality.

model will deteriorate into a general stochastic game when ϵ = 0. Thus, its payoff is between the

best and the worst. Combined with results in Figure 10(b), it is vital to choose ϵ cautiously to trade

off between the running time and profit.

6.2.4 AoI. In Figure 12, we compare the average AoI under four strategies during 50 time slots.

Specifically, we show the change process of average AoI with initial states {0.5, 0.5, 0.6, 0.8}. It

is observed that our proposed strategy attains the minimum average AoI. In addition, we have

demonstrated the change process of average AoI with different initial states and different channel

quality, and all results indicate that our proposed strategy can achieve the minimum average AoI.

Based on the analysis above, we can find that our proposed strategy is superior to the base-

line strategies. Our proposed strategy can obtain the highest payoff for nodes, while keeping the

average AoI of platform minimum.

7 DISCUSSIONS

In this section, we discuss the limitation and guiding principles for control center administrators

to consider.
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Fig. 11. Payoff versus channel quality with different ϵ .

Fig. 12. Change process of AoI during 50 time slots.
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7.1 System State Evaluation

The accurate evaluation of the system state determines the performance of the system. In our for-

mulation, the system state S includes the average AoI and the channel quality. The average AoI of

node ni , i ∈ {1, 2}, describes the freshness of collected information provided by this node, and can

be calculated by Equation (8). In our algorithm, we assume that all the packets sent in a time slot

will be all received in the same time slot, and the calculation of the average AoI is based on time

slots. However, due to uncertain reasons such as retransmission caused by low channel quality,

packets sent in a time slot may not be received until the next time slot. In this case, packets take a

long time to transmit, so they can no longer meet the information freshness requirements of the

control center with high probability. Therefore, such packets can be regarded as being lost. Because

of the challenges faced by wireless data transmission in IoTs, such as dynamic topology changes

and time-varying communication environment, channel quality changes dynamically. Fortunately,

there are some available general methods to estimate the channel quality. In general, channel qual-

ity is evaluated by CQI, which characterizes the overall influence of various effects, including

scattering, fading, and power decay, on the propagation of wireless signals. Furthermore, our goal

is to find the optimal data generation rate for nodes to achieve the best data freshness. The evalu-

ation of channel quality is outside the scope of our study. Therefore, we assume that the channel

quality of the node is given, and the node can deduce the channel quality of the rival node.

7.2 Penalty Term of the Game

In our two-player stochastic game, the payoff depends on the joint actions of two players. More

specifically, the reward of each player relies not only on its average AoI and the number of packets

successfully transmitted but also on the penalty term. With regard to the penalty term of the game,

both the cost of packet generation and the overhead of transmission (e.g., power consumption)

should be taken into account. Furthermore, packets transmitted by nodes may conflict, leading to

packet loss. At the same time, if the transmission rate of the sending node exceeds the receiving

capacity of the receiver, it will also lead to packet loss. According to the reliable transmission proto-

col, packet loss will cause retransmission. In principle, the resources wasted due to packet loss and

the resources consumed by retransmission should be regarded as overhead, corresponding to the

penalty term in our model. However, packet loss and resulting retransmission are unpredictable,

and it is impossible to determine the accurate calculation formula of the cost. Therefore, we do

not include the cost of packet loss and retransmission into the model but take the cost of data

generation and only one-time data transmission as a penalty.

7.3 Extension to N-Player Stochastic Games

In the wireless data gathering applications, a node may have multiple rival nodes who employ

diverse game policies. Accordingly, the proposed stochastic game formulation for two competing

nodes should be extended to an N-player one. More specifically, an N-player stochastic data gath-

ering game can be formulated as a tuple ΓN =< S,A1, . . . ,AN , r1, . . . , rN , P >, where (1) S is

the state space, and the system state is characterized by the average AoI and the channel quality,

S = {s (1), . . . , s (T )}, s (T ) = { f1 (T ), . . . , fN (T ),q1 (T ), . . . ,qN (T )}, where s (T ) is the state at time

slot T , fi (T ) is the average AoI of node ui , i ∈ {1, . . . ,N }, at time slot T, and qi (T ) is the channel

quality of node ui , i ∈ {1, . . . ,N }, at time slot T, (2) Ai is the action space that contains all possible

actions that node ui can take, i = 1, 2, . . . ,N , (3) ri : S × A1 × · · · × AN �→ ri is the payoff for

ui , where ri ∈ R,R is denoted as the set of real numbers, (4) P : S × A1 × · · · × AN �→ Δ(S)
is described as the transition probability function of S and actions, i.e., A1, . . . , AN taken by ui ,

i = 1, 2, . . . ,N . The two-player stochastic game formulation of the system states that actions to

ACM Transactions on Sensor Networks, Vol. 19, No. 2, Article 46. Publication date: February 2023.



46:22 X. Yin et al.

choose the generation rate, stage payoff, and state transition probability detailed in Section 4 can

be extended to the multiplayer stochastic game without difficulty, and the learning algorithm can

achieve the maximum sum of payoffs for multiplayer.

8 CONCLUSION

In this article, we present a general-sum stochastic game model to analyze the AoI update for IoTs,

which characterizes the interactions and competitions among sensor nodes. To derive the best

long-term payoff, we investigate a Nash learning algorithm for nodes to dynamically adjust their

strategies. Our extensive experimental results and performance analysis verify that our proposed

algorithm outperforms baseline algorithms. We believe that the proposed algorithm can provide

practical guidelines for nodes to get more payoff in highly competitive IoTs.
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