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Liquid identification plays an essential role in our daily lives. However, existing RF sensing approaches still

require dedicated hardware such as RFID readers and UWB transceivers, which are not readily available to

most users. In this article, we propose Akte-Liquid, which leverages the speaker on smartphones to transmit

acoustic signals, and the microphone on smartphones to receive reflected signals to identify liquid types and

analyze the liquid concentration. Our work arises from the acoustic intrinsic impedance property of liquids, in

that different liquids have different intrinsic impedance, causing reflected acoustic signals of liquids to differ.

Then, we discover that the amplitude-frequency feature of reflected signals may be utilized to represent the

liquid feature. With this insight, we propose new mechanisms to eliminate the interference caused by hard-

ware and multi-path propagation effects to extract the liquid features. In addition, we design a new Siamese

network-based structure with a specific training sample selection mechanism to reconstruct the extracted

feature to container-irrelevant features. Our experimental evaluations demonstrate that Akte-Liquid is able

to distinguish 20 types of liquids at a higher accuracy, and to identify food additives and measure protein

concentration in the artificial urine with a 92.3% accuracy under 1 mg/100 mL as well.
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1 INTRODUCTION

Liquid identification has recently garnered significant research attention, as potential application
scenarios include cheap detection of water contamination, adulteration, and food additives in bev-
erages, as well as kidney diseases using urine analysis [4, 19, 26, 28, 29]. Traditionally, a wide range
of advanced technologies are adopted in liquid identification, such as Raman spectroscopy, mass-
spectrometer-based technologies, and NMR spectroscopy [5]. Those liquid identification systems
rely on expensive equipment in specialized labs, which do not meet the demand for identifying
liquids in mobile environments.

Many applications, however, would benefit from identifying liquids by mobile and portable de-
vices, especially for lay users. For example, in a convenience store, one would want to ensure that
the juice sold is fresh and without food additives. Similarly, for some patients with chronic dis-
eases, such as chronic kidney diseases, patients can perform urine tests at home instead of paying
regular visits to the hospital. Naturally, it is most convenient to utilize a smartphone to achieve
liquid identification. In this article, we take the initial step toward this vision by developing a re-
liable liquid identifier of acoustic signals using only smartphones, and consider the feasibility of
delivering such services to lay users without dedicated hardware and specialized setup.

Typically, liquid identification needs to measure a particular property of liquids, such as electric
permittivity or acoustic absorption, which can be analyzed to identify the type and characteris-
tics of the liquid. Materials’ absorption coefficient measurement method in sound measurement
inspired us. We explore whether liquid acoustic impedance could be used to identify liquids, since
different liquids have different acoustic impedance [13]. Acoustic impedance, an inherent property
of liquids, describes the ratio of the sound pressure to the speed of molecule movement caused by
the sound pressure of the medium. Since different liquids have different molecular structures, the
velocity of molecular motion of different liquids induced by the same acoustic pressure is also
different, which leads to different acoustic impedance of different liquids.

The liquid acoustic impedance, however, is very difficult to measure directly by using the speaker
and microphone on smartphones. Fortunately, the acoustic impedance of liquids will affect the
liquid’s reflected signals. By analyzing the reflected signals, we find that the energy distribution
in the frequency domain differs between the reflected signals of different liquids. Therefore, we
investigate whether it is feasible to extract liquid features from the reflected signal to build our
liquid identification system.

In this article, we present Akte-Liquid, a noninvasive and lightweight smartphone application
that uses acoustic signals to identify liquids by leveraging the built-in speaker and microphone on
off-the-shelf smartphones.

Akte-Liquid, which meets the needs for daily personal use, offers several advantages:

(1) The convenience of operation. The system could utilize common devices available to lay
users, rather than depending on any extra hardware or external infrastructure support, and
without requiring a specialized setup. Unlike RF signals (such as Wi-Fi and Bluetooth sig-
nals) that need a pre-deployed infrastructure and additional hardware, acoustic signals have
the advantage of being easily transmitted by the speaker and received by the microphone
available on off-the-shelf smartphones.
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Fig. 1. Visualization of Akte-Liquid: an acoustic-based liquid identification system utilizing smartphones.

(2) Detection efficiency. The system could simplify the identification process and shorten its
duration, promptly obtaining results without any noticeable latency.

(3) High resolution. The system not only can distinguish different liquid types but also has
sufficient resolution to detect small differences in solution concentrations.

As shown in Figure 1, Akte-Liquid generates acoustic signals through the front speaker and col-
lects the reflected signals from the liquid using the front microphone. When the sound waves travel
from the air into the liquid, the energy distribution of the acoustic reflection signals at frequency
is induced by the acoustic signal reflectivity, which is determined by the acoustic impedance in
the air and liquid together.

In this article, we first investigate the feasibility of utilizing acoustic signals to obtain the liquid
features from the reflected signals for liquid identification. We discover that the different liquids
have different energy distributions at specific frequencies. Motivated by this observation, we first
extract the amplitude-frequency features from reflected signals, and then we propose a differen-

tial amplitude frequency (DASD) method and ratio transfer function (TF) method to repre-
sent liquid features. To address the issue of interference from the liquid volumes, we set a series
of weights for each volume to calibrate the difference in amplitude-frequency values caused by
the volume. Finally, as extracted features from the reflected signals contain both liquid features
and container features, we propose a Siamese network [1] model with a specific training sample
selection strategy to reconstruct the extracted features to container-irrelevant features, and fur-
ther develop a transfer learning method to harness the power of a well-trained model on a large
number of measurements, and to achieve high accuracy on new liquid samples without having to
train the whole model.

Highlights of original contributions in this article are as follows:

(1) We present a low-cost solution for a liquid identification system that exploits acoustic signals
generated by smartphones and reflected by liquids as a fingerprint of liquids. As a result, our
design delivers convenience using only a smartphone discriminating the liquid types, detect-
ing food additives in beverages, tracking protein content in artificial urine, and identifying
different water sources without any specialized hardware or any limitation on the container.

(2) We employ a Siamese-network-based structure to reconstruct the features extracted from
reflected signals to container-irrelevant features, which deliver significant performance im-
provements when our system is used on new containers.

(3) Our results indicate that on 20 different types of liquids, Akte-Liquid can achieve at least an
identification accuracy of 98%. Moreover, we can measure the protein in artificial urine with
a low concentration of 1 mg/100 mL and also have the capability of detecting water sources
and food additives in beverages at a low concentration of 1%.
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The remainder of the article is organized as follows. Section 2 introduces related work. Section 3
presents the background and preliminaries. Section 4 illustrates our system design and overview.
In Sections 5–7, we present the detailed design and algorithms used in Akte-Liquid. Our evaluation
results are shown in Section 8. Section 9 adds additional insights into the limitations of our system.

2 RELATED WORK

In this section, we review the related literature in liquid identification, the acoustic sensing method,
and using Convolutional Neural Networks (CNNs) for classification.

Liquid Identification Systems. Currently, there have been some existing works on liquid iden-
tification [4, 6, 8, 9, 11, 26, 28]. For example, LiquID [4] calculates the phase, amplitude, and propa-
gation delay of the UWB signals penetrating the liquid to estimate the liquid’s permittivity, which
in turn identifies the liquid. RF-EATS [8] utilizes the RF coupling effect between the RFID antenna
and the liquid container’s tag, which manifests that the frequency response of reflected signals
varies with the liquids, so that the liquid can be identified. However, they use special signals (i.e.,
RFID, UWB), which are unavailable to the general public. Compared with our work, two closely
related works are Capcam [29] and Vi-Liquid [11]. They all focus on liquid identification using
smartphones. Capcam measures liquid surface tension based on a camera and a Vibro-motor of
the smartphone to identify liquids. Vi-Liquid estimates the liquid viscosity by leveraging the Vibro-
motor and accelerometer of smartphones. However, they have some restrictions on the contain-
ers (specific containers) and smartphones’ hardware (cameras’ resolution).

Acoustic-based Sensing Techniques. Acoustic signals have been widely employed for large
applications, such as user identification [7], eye blink detection [17], fine-grained motion track-
ing [18], and respiration and heartbeat monitoring [31]. For example, EarEcho [7] utilizes the fact
that different people’s ear canals have different acoustic impedance to achieve ear-canal-based
authentication. BlinkListener [17] also utilizes the different acoustic impedance between the eye-
lid and eyeball to achieve eye blink detection. Akte-Liquid also implements liquid identification
depending on the differences in the acoustic impedance of liquids.

Using CNN for Classification. CNN was first proposed by LeCun in 1998 [15]. CNN-based
deep learning has been used for a wide variety of tasks such as image classification [10, 14, 20] and
audio signal classification [2, 16, 32] to extract the audio feature as well as the speaker informa-
tion to recognize speech and identify speakers. CNN has advantages of modeling spatial context
information in the 2-D space and has achieved great success in the field of image classification. In
Akte-Liquid, we construct a Siamese-network-based model with a specific training sample selec-
tion strategy to reconstruct the extracted features to container-irrelevant features.

3 BACKGROUND AND PRINCIPLE

Before delving into the technical details of Akte-Liquid, we first provide the principle of liquid
detection exploiting the acoustic impedance.

The liquid acoustic impedance describes the product of liquid density ρ0 and its acoustic speed
c0 [13]. When an acoustic wave is vertically incident from the air into liquid, the incident acoustic
pressure Pi can be represented as

Pi = P0 cos(ωt − kx + φ), (1)

where P0 is the initial sound pressure,ω is the angular frequency, k is the wave number associated
with wave lengths, and φ is the initial phase. The reflected acoustic pressure Pr can be represented
as

Pr = R ∗ Pi , (2)
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Fig. 2. Multi-path propagation of received signals.

in which R is the Liquid Reflectance, and R can be calculated as

R =
zl iquid − zair

zl iquid + zair
, (3)

where zair is the acoustic impedance of air, and zl iquid is the acoustic impedance of liquid.
In our work, we utilize the acoustic sensing approach to capture the liquid-induced signal vari-

ation. Specifically, as shown in Figure 2, for a single-frequency signal S (t ) = cos(2π f t + ϕ0), with
the frequency f and the initial phase ϕ0. The acoustic signal is transmitted continuously through
the speaker of the smartphone. Then it propagates with different paths in the container, reflected
by the container and liquid, and finally received by the smartphone’s microphone. The received
signals at time t can be written as

R (t ) =
∑
i ∈M

Ai cos (2π f t + ϕi ) , (4)

where M denotes the set of all paths of acoustic signals, and Ai is the amplitude reduction of the
ith path. We then utilize the amplitude spectrum to profile the received signals’ information. The
amplitude spectrum of the received signals can be represented as

A( f ) =
FFT (R (t ))

N
=
∑
i ∈M

Ai =
∑
j ∈L

Aj +
∑
j ∈L

Aj

∑
k ∈C

Ak +
∑
q∈B

Aq . (5)

It can be seen from Equation (5) that the amplitude
∑

i ∈M Ai of signals is mainly composed of
three parts,

∑
j ∈L Aj ,

∑
k ∈C Ak ,

∑
q∈B Aq , where L is the set of paths reflected by the liquid, C is

the set of paths reflected by the container and liquid, and B is the set of other possible paths not
related to the liquid. The amplitude variation of received signals is not only affected by liquids but
also affected by the container and the length of the propagation path, such that changes in the
liquid volume changes the smartphone position. As such, we cannot directly utilize the original
amplitude-frequency pattern as the liquid features.

Fortunately, we discover that when the container and the signal propagation path are un-
changed, the amplitude variation of the reflected signals is mainly affected by liquids. Meanwhile,
we discover that the differential amplitude value corresponding with frequency can eliminate the
irrelevant factors when the propagation path is identical. Specifically, for two liquids a and b with
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Fig. 3. Architecture of Akte-Liquid.

the same volume, the differential spectral points can be expressed as

DA (a,b) ( f ) = A( fa ) −A( fb )

=
∑
j ∈L

(Aaj
−Abj

) +
∑
j ∈L

∑
k ∈C

(Aaj
Aak
−Abj

Abk
). (6)

From Equation (6), we find that the first part of the equation mainly reflects the amplitude
difference between liquids, and the remaining part reflects the amplitude difference caused by
containers and liquids, which illustrates the DASD feature affected by the containers.

We discover that the differential amplitude-frequency features are inadequate in distinguish-
ing similar liquids, such as the same solution with slightly different concentrations. It cannot be
employed as the unique feature for liquid identification.

Meanwhile, we are inspired by the absorption coefficient of materials measured in sound mea-
surement methods [3, 12]. In sound measurement, the traditional method is to put the test material
on one end of the impedance tube, while the sound source is put on the other end of the impedance
tube, and the dual microphones are placed in different positions to receive the reflected signals by
the test material in the impedance tube. Then, the ratio of the dual-channel receive signals is the
transfer functionH , which can represent the material’s absorption properties. It can be represented
as

H =
P2

P1
=
exp (jkx1) + R ∗ exp (−jkx1)

exp (jkx2) + R ∗ exp (−jkx2)
, (7)

where x1 and x2 are the propagation path of the two microphones. The transfer function H can
reflect the liquid reflectance R. Although the propagation path (x1, x2) is difficult to obtain, the
transfer function features can be extracted from the ratio of received signals.

Therefore, according to acoustic propagation characteristics, we design the liquid features based
on the differential amplitude-frequency features and the transfer function features to reflect the
changes of liquid to achieve the liquid identification.

4 SYSTEM DESIGN

In order to design a mobile, portable, noninvasive liquid identification system, we propose Akte-
Liquid, which only utilizes a built-in speaker and microphone of the smartphone to achieve liquid
identification. We design and implement Akte-Liquid, which consists of a smartphone end and a
cloud end, as illustrated in Figure 3.
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Data Collection. It is a terminal interface to collect the liquid data, which utilizes the front
built-in speaker of the smartphone to transmit the acoustic signals and the front microphone to
capture the reflected acoustic signals.

Data Processing. In this module, we first synchronize the received signals using cross-
correlation between the received signals and the transmitted signals. We then remove the DC
component to eliminate the hardware current impact. Due to the transmitted signals used in our
system (10 kHz to 16 kHz), we utilize a band-pass filter to remove the low-frequency (<10 kHz)
and the high-frequency (>16 kHz) noises. Finally, we segment the received signals based on the
period of a chirp signal for the next step, liquid feature extraction.

Liquid Feature Extraction. The liquid feature extraction module is mainly to extract both the
amplitude frequency feature and transfer function feature from the liquid reflected signals. We
then propose a series of methods to deal with the impact from the hardware heterogeneity, the
smartphone positions, and the liquid volumes.

Liquid Classification and Identification. In this module, we develop a Siamese-network-
based approach to reconstruct the extracted features to container-irrelevant features, and further
utilize the transfer learning method to adapt the network for new liquids.

5 PROCESSING SENSING SIGNALS

In this section, we first introduce the preliminary of choosing the chirp signals as the transmitted
signals in our system, and we then propose the detailed parameters of chirp signals.

5.1 Background of Transmitted Signal Design

First, we take the multi-frequency continuous wave of
∑n

i Acos (2π fit ) as the transmitted signals,
whereA is the amplitude, f is the frequency of the acoustic signals, and we set n as seven. We con-
duct experiments on two liquids (i.e., Coca-Cola, Pepsi) to evaluate the discrimination of utilizing
the multi-frequency continuous signals. We extract the amplitude information from the reflected
signals of the two liquids. Figure 4 plots the amplitude values of the two liquids; we discover that
the amplitude of the two liquids has a slight difference only at the fourth frequency point. We
utilize the dynamic time warping (DTW) [25] algorithm to calculate the difference between the
amplitude frequency profiles of the two liquids’ reflected signals. The DTW distance of the above
two curves is Ddtw = 13.5. We wonder if it is feasible to obtain a collection of amplitude informa-
tion and use such a profile as the liquid feature, and whether the liquid feature will be more distin-
guishable as the number of spectral points increases. We increase the number of frequency points
in transmitted signals from 7 to 300. The DTW distance of the below two curves is Ddtw = 337.26.
It indicates that the difference between feature points of the two liquids is more obvious.

5.2 Transmitted Signal Design

In order to obtain richer frequency-domain characteristics for liquid identification, we generated
a chirp signal with frequency sweeping from 10 kHz to 16 kHz. The duration of the chirp is 0.05 s,
corresponding to 2,400 samples. A pseudo-noise (PN) preamble is added at the beginning of
the transmitted signals for synchronization. Figure 5 illustrates the transmitted signal in the time
domain and frequency domain.

The reason for such a design is twofold: On one hand, the sampling frequency of smartphones
usually is 48 kHz, so the transmitted frequency can reach 24 kHz. However, our preliminary exper-
iments indicated that the frequency response in the high-frequency range is very weak to sustain
liquid distinction. As shown in Figure 6, the amplitude value of the two liquids is almost identical
above 16 kHz, as the speaker and microphone of the commercial devices suppress acoustic signals
above 16 kHz. The acoustic signals below 10 kHz are easily polluted by environmental noise. So
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Fig. 4. DTW distance of the amplitude frequency

profile between two liquids.

Fig. 5. Example of the transmitted signals be-

tween 10 kHz and 16 kHz.

Fig. 6. Transmitted signals frequ-

ency and bandwidth selection.

Fig. 7. Frequency response compensation.

we choose the frequency from 10 kHz to 16 kHz. This frequency range not only is much higher
than the frequency range of the ambient noise but also has a relatively flat frequency response for
the speaker on the smartphone. On the other hand, although a longer signal has a higher signal-

to-noise ratio (SNR), it also leads to more severe multi-path propagation effects. To balance this,
we set the chirp period as 50 ms.

6 LIQUID FEATURE EXTRACTION

In this section, our goal is to extract a unique and stable liquid feature for liquid identification. We
then extract the differential amplitude frequency and transfer function features to represent the
liquids.

6.1 Differential Amplitude Frequency Feature Extraction

According to Section 3, we can calculate the differential amplitude-frequency feature to represent
the liquid. However, it is still challenging to directly utilize this feature due to some key issues for
liquid identification. Concretely, there are three types of interference: (1) hardware heterogeneity,
(2) smartphone position, and (3) liquid volumes.

6.1.1 Hardware Heterogeneity. Hardware heterogeneity is mainly caused by the speaker of
smartphones. Smartphones’ speakers will strengthen or attenuate the signals at certain frequen-
cies, which leads to a non-flat frequency response. Meanwhile, the speakers of different smart-
phones have different frequency responses. This will result in different smartphones acquiring
inconsistent liquid features.

To solve the problem, we utilize the frequency response compensation method to eliminate the
difference on different smartphones. Specifically, we first measured the frequency response of the
speaker when the smartphone was placed in a multi-path-free environment, and we designed a
digital filter whose frequency response is the reciprocal of the frequency response of the speaker.
Then the transmitted signals that we designed passed through this filter before being emitted by
the speaker. The result is shown in Figure 7(a); we discover that the smartphone (iPhone 6s) has
a relatively flat frequency response after the frequency response compensation method. Then we
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Fig. 8. Impact of the smartphone rotation angle on

the feature profile.
Fig. 9. Impact of smartphone position on feature

profile.

measure the frequency response of the different smartphones; we discover that the different smart-
phones have different frequency responses, and two smartphones can have a similar frequency
response through the frequency response compensation.

6.1.2 Smartphone Position Selection. Random changes in the smartphone position will cause
variations in the amplitude-frequency feature. Fortunately, we discover that there is also a stable
relationship between smartphone position and liquid feature. Specifically, we set the initial posi-
tion of the smartphone with the top speaker and microphone facing the center of the container. We
rotated the smartphone’s angle with respect to the central point of the container from 0◦ to 360◦ in
steps of 45◦. We then calculated the correlation coefficients of the liquid feature from the different
angles of the smartphone with 0◦. The result is shown in Figure 8; the correlation coefficients were
all close to 99%. It illustrates that the liquid feature exhibited highly consistent patterns when we
kept the speaker in this position and rotated the smartphone randomly. Then, we shifted the smart-
phone forward from the initial position to 10 mm (in a step of 1 mm) to detect the feature changes
caused by the smartphone position. Figure 9 plots the correlation coefficients of the different posi-
tion features with the initial position feature. The result illustrates that when the position is offset
from the initial position, it leads to a gradual decrease in the correlation coefficient of features.
But we discover that when the physical offset is within 5 mm, the correlation coefficient is within
0.95. Therefore, the position of the smartphone does not need to be fixed or tightly controlled; it
is tolerable to deviate from the center position by 5 mm forward and backward.

In summary, we set the measure position as the front speaker and microphone of the smart-
phone facing the center of the container. Meanwhile, when the speaker and microphone of the
smartphone are vertical to the center of the container and relative to the shift within 5 mm of the
center position, the amplitude-frequency profile changes caused by the position can be ignored.

6.1.3 Different Liquid Volumes. We discover that the changes in liquid volume lead to the varia-
tion in the reflected signal. Specifically, different volumes of liquid in the container cause changes
in the signal propagation path, resulting in the same liquid having different amplitude-frequency
features.

In order to tackle the problem, we discover that when the propagation path does not change,
the amplitude attenuation of signals caused by the path is fixed. The difference in amplitude of the
reflected signals is mainly caused by the difference in the liquids. Therefore, in order to obtain the
amplitude change caused by the liquid, we first utilize the DASD method to eliminate the path-
induced attenuation. We conduct a benchmark experiment to verify the feasibility of this method.
We experiment with different volumes of sugar solutions (i.e., 100 mL, 150 mL, . . . , and 500 mL).
We take the 400 mL as the reference volume. We first calculate the correlation coefficient of the
ASD and DASD profiles of different volumes with the 400 mL. The results are shown in Figure 10.
The similarity of the ASD feature between different volumes is very low. The similarity of the
DASD feature is improved relative to the ASD feature, but the similarity of the different volumes
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Fig. 10. Correlation coefficient of ASD and DASD

between different volumes.

Fig. 11. Correlation coefficient of weighted DASD

between different volumes.

is still less than 0.5. This illustrates that the liquid volumes can cause inconsistencies in the DASD
feature.

To overcome the above issue, we introduce a weight-based method to help unify the amplitude
difference between liquid volumes. The volume weightWdasd is computed by

Wdasd =

⎡
⎢
⎢
⎢
⎢
⎣

davol
1

da
r ef
1

, . . . ,
davol

i

da
r ef
i

, . . . ,
davol

n

da
r ef
n

⎤
⎥
⎥
⎥
⎥
⎦

, (8)

where davol
i is the amplitude at frequency bin i in the magnitude spectrum of a certain volume of

liquids, and n is the number of frequency points.
Before applying the corresponding volume weight vectorW , we first need to acquire the volume

of liquid. To solve the problem, we discover that calculating the liquid volume can be converted
into calculating the height of the liquid. This value is relatively easy to calculate; it can be simpli-
fied to FMCW-based acoustic localization [18] such that the reflected signals are mixed with the
transmitted signals and then passed through a low-pass filter. The mixed signals can be derived as

m(t ) = αcos
(
2π
(B
T
τit + f0τi −

B

2T
τ 2

i

))
, (9)

where fp =
B
T
τi , and fp is determined by the first peak in the spectrum of the mixed signals. Thus,

the height hs of the smartphone to the liquid’s surface can be derived as

h =
fp ∗ c ∗T

B
, (10)

where c is the propagation speed of sound, T is the sweep time, and B is the signal’s bandwidth.
Therefore, based on the method, we also can get the height of the container, which is denoted as
hc . So the liquid’s height hl =hc -hs . As the liquid volume Vl increases, the hl increases. Therefore,
we can get the liquid volume Vl by mapping the hl .

Therefore, by combining the method mentioned above (Wdasd , hl ), we eliminate the interfer-
ence caused by different volumes. As shown in Figure 11, the weighted DASD profiles of different
volumes are very similar, and the residuals of the curve fit are only 0.019.

6.2 Transfer Function-based Feature Extraction

Although the DASD feature can reflect the difference between different types of liquids, we dis-
cover that the feature is not enough in distinguishing the similar liquids, such as the same solution
with slightly different concentrations (low-concentration salt solution). We take the three low con-
centration solutions (1%, 2%, and 3%) as an example; we then plot the DASD feature extracted from
the three liquids in Figure 12. We can discover that it is difficult to distinguish the three liquids
only utilizing the DASD feature.
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Fig. 12. DASD feature for differ-

ent concentrations of the same

solution.

Fig. 13. TF feature for different

concentrations of the same

solution.

Fig. 14. Weighted TF feature across

different volumes of the same

solution.

In order to improve the usability of Akte-Liquid, we discover that the TF method to measure
the material’s absorption coefficient has high accuracy in sound measurement [3]. According to
Equation (7), the transfer function is related to the reflection coefficient of the material. Specifically,
there is a single-input (one speaker) and single-output (one microphone) system in Akte-Liquid. It
is different from the sound measurement, where the two microphones are placed on different re-
flection positions. In Akte-Liquid, we calculate the transfer function ratio between the two liquids.

The transfer function can be calculated as

H ( f ) =
Pyx ( f )

Pxx ( f )
, (11)

where Pyx is the cross-power spectral density between the recorded and transmitted signals. Pxx

is the self-power spectral density of the transmitted signal. We observe that when the information
from the same volumes of two liquids is exploited, a high identification accuracy can be obtained
compared to only one liquid’s information utilized. We therefore define the ratio-liquid transfer
function as

Hr atio ( f ) =
Htest ( f )

Hr ef ( f )
, (12)

withHtest ( f ) andHr ef ( f ) representing the transfer function of the test liquid and reference liquid,
respectively.

Then, we obtain the feature set H = [H ( f1),H ( f2), . . . ,H ( fk )], where H ( fk ) represents the
transfer function of the kth frequency bin. In order to illustrate the discriminative power of the TF
feature, we calculate the mean value and standard deviation of the extracted TF feature for each
liquid. The result is illustrated in Figure 13. This shows that the points from the same concentration
exhibit a cluster and are obviously different from each other.

Then we evaluate the robustness of the TF feature of the different volumes. We take the different
volumes of salt solutions (i.e., 100 mL, 150 mL, . . . , and 500 mL) as an example and calculate the
correlation coefficients of the TF between different volumes and the reference volume (400 mL).
The result is shown in Figure 14; we discover that the similarity of the different volumes is still poor,
all below 0.6. This illustrates that the liquid volume changes lead to feature inconsistency. In order
to solve the problem, we weight the TF feature from different volumes and unify the amplitude
to eliminate the volume difference. We utilize 400 mL as the reference liquid. The volume weight
vector Vt f is defined as

Vt f =

⎡
⎢
⎢
⎢
⎢
⎣

t f vol
1

t f
r ef

1

, . . . ,
t f vol

i

t f
r ef

i

, . . . ,
t f vol

n

t f
r ef

n

⎤
⎥
⎥
⎥
⎥
⎦

, (13)

where t f vol
i is the amplitude at frequency bin i in the magnitude spectrum of a certain volume

liquid, and n is the number of frequency points. As shown in Figure 14, the weighted TF profiles
of different volumes are very similar.
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Finally, due to the temporal stability of the TF being not as good as the DASD feature, the
variance of the transfer function value of the same liquid over the different time periods varies
greatly. In order to keep the discrimination among different liquids as well as maintain feature
consistency in each liquid, Akte-Liquid utilizes the DASD-based feature and TF-based feature to
represent liquids.

6.3 The Speaker Volume Control on Smartphones

The volume of transmitted acoustic signals plays a critical role in extracting valid liquid features
for liquid identification. However, the signals are more easily distorted when the volume of the
transmitted acoustic signals is set to the maximum (i.e., 100%), due to hardware imperfections in the
speaker. Moreover, the transmitted acoustic at the maximum volume will make the sensing process
more uncomfortable to users, since our system utilizes audible frequency ranges. In contrast, if the
acoustic is transmitted at 1% of the maximum volume, the reflections are too weak to be picked up
by the smartphone microphones. Based on our preliminary experiments, setting the phone volume
at 60% is optimal for liquid sensing. Even though this setting varies from one smartphone model
to another, only a one-time calibration is required to determine the optimal setting.

7 BUILDING THE LIQUID TESTING MODEL

In this section, we first introduce how to reconstruct extracted features to container-irrelevant
features, and we then build a liquid identification model utilizing the reconstructed features.

7.1 Liquid Feature Reconstruction

Because the received signals are mainly from the liquid and container reflections, due to different
materials having different reflection coefficients, the containers of different materials will also lead
to the reflected signals’ variation. So the extracted liquid features from reflected signals contain
both liquid feature and container feature.

7.1.1 Container-irrelevant Feature Reconstruction. To build a convenient liquid identification
system, we need to eliminate the influence of containers, i.e., reconstruct features to container-
irrelevant features. In order to solve the problem, we utilize the CNN [30] to extract the features.
CNN has the advantage of modeling spatial context information in the 2-D space, and has achieved
great success in the field of image classification. Thus, we utilize the CNN to extract the fre-
quency domain features from the inputs. In Akte-Liquid, we employ a Siamese-network-based
model with a specific training sample selection strategy to reconstruct the extracted features to
container-irrelevant features. The Siamese network is a novel approach to recognize activities or
object tracking [24]. The basic principle of this network is using a pair of neural networks with the
same architecture and weights to compute a distance metric for two input samples. The particular
structure enables customized feature extraction by the selection of sample pairs during training.

Concretely, we apply a training sample selection scheme, as shown in Figure 15. If the liquid
labels are the same, we select the sample pairs from different containers as the training samples,
so the model can learn to ignore the container differences for samples from the same liquid. If
the liquid labels are different, we choose the sample pairs from the same container, and thus the
model can learn to distinguish samples from different liquids not based on the container difference.
Therefore, by selecting the proper training samples as the input to the Siamese network, we can
reconstruct container-irrelevant features.

As shown in Figure 16, we illustrate the architecture of the Siamese network. Considering a
pair of features as the input, we reconstruct the container-irrelevant feature representation from
the extracted reflected signal features through two identical sub-networks. Then, we calculate the
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Fig. 15. Sample selection. Fig. 16. Illustration of Siamese network.

Fig. 17. Sub-network design in Akte-Liquid.

distance Dw of the reconstructed features Fw (S1) and Fw (S2). We denoted as Dw

Dw (s1, S2) = | |Fw (S1) − Fw (S2) | |. (14)

So if the two input samples are the same liquid but from different containers, we make the
extracted features have the minimal DW . Otherwise, we maximize the distance Dw if extracted
features are from the different liquids.

The structure of the sub-network is designed with four residual blocks, and each residual block
contains two convolutional layers, and the shortcut connection and pooling are adopted between
the residual blocks, as shown in Figure 17. We denote the parameters of the sub-network as W ;
the loss function of sub-network we denoted as L(W ):

L(W ) =
N∑

i=1

Y (Di
W )2 + (1 − Y )max

(
M − Di

W , 0
)2
, (15)

where Y indicates whether two input samples are related to the same liquid; i.e., for the same
liquid Y = 1, and otherwise, Y = 0. Di

W
is the Euclidean distance of the ith input samples, M is the

margin that represents the decreased interval. From Equation (15), we minimize the loss function
L(w ) of the designed Siamese network by minimizing the distance between samples of the same
liquid and maximizing the distance between samples of different liquids.

7.1.2 The Input of Model. The model input is the jointing of the DASD and the transfer function
features for each sub-network. The extracted two-dimensional features matrixes are transformed
into an image as the input of the model, because CNN is known to work well in image identification.
The size of the DASD featureWdasd is 1*300; the size of the transfer function featureWt f is 1*300.
We perform feature fusion by concatenating them asW =Wdasd ⊕Wt f .

7.1.3 The Extracted Liquid Feature by Model. Finally, in order to verify the effectiveness of the
extracted feature, we output the intermediate process of the training model.

The results are shown in Figure 18. We can find that the features extracted by CNN can maximize
the distance between classes and minimize the distance within classes. Moreover, the extracted
liquid features can eliminate the influence of the container and only focus on the features of the
liquids.
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Fig. 18. Visualization of the mid-process output features of the model.

We take two solutions (sodium cyclamate, sugar solution) as an example. Specifically, Fig-
ure 18(a) presents the extracted DASD feature and transfer function feature of liquids, which are
the input of the model. The first and second diagrams are the liquid features of two different liquids
obtained in the same container; the third diagram is the liquid features of the same sugar solution
in another container. From Figure 18(a), we can find that due to the influence of the container, the
different liquids in the same container have higher similar liquid features than the same liquids in
different containers. It easily leads to recognition errors. Figure 18(b) is the output liquid features
by the model’s middle layer; its size is compressed to 39*39 by the model. We can find that the
difference between the second and third diagrams is narrowing. Figure 18(c) is the output liquid
features by the last feature extraction layer; its size is compressed to 10*10 by the model. The first
and second pictures show that the features of two liquids in the same container are completely dif-
ferent. The second and third pictures show that the features of the same liquid are highly similar
even in the different containers.

In order to verify the validity of the proposed model, we visualize the reconstructed features
from four containers and nine types of liquids with t-SNE in Figure 19. We can discover that the
same liquid from different containers has a coherent feature distribution, while different liquids
have more distinct feature distributions. The result demonstrates that the designed Siamese net-
work model can effectively reconstruct container-irrelevant features.

7.2 Transfer Learning to New Liquids

To reduce the cost of re-training for new liquid samples while keeping the generation capability,
we refer to the idea of transfer learning. Some common layers of a well-trained container can be
directly frozen and transferred to new liquid samples. This design significantly reduces the number
of parameters that need to be learned for new tasks and reduces the size of the dataset and training
time required to achieve high accuracy. Figure 20 shows the structure of transfer learning.

Specifically, the training for new liquids is twofold process. In the first training stage, the out-
putted features of the source domain, denoted as Fsource , are utilized as the training goal of the
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Fig. 19. t-SNE visualization of container-irrelevant features for nine types of liquids.

Fig. 20. Transfer learning model structure of our CNN model.

target domain’s output, denoted as Ftarдet . The loss function of the source domain and target
domain L1 is calculated as the cross-entropy of Fsource and Ftarдet :

L1 = HFsour ce
(Ftarдet ) = −

∑
i

Fsource × log(Ftarдet ). (16)

Then, the target domain refines the parameters of the network with its own training data from
new liquid samples, and the loss function is calculated as Equation (15). Based on the above steps,
we are able to extract the container-irrelevant features of new samples and also reduce the training
effect for new liquids and keep a good performance.

8 EVALUATION

In this section, we evaluate the overall performance of Akte-Liquid in liquid identification. We
first introduce the implementation of Akte-Liquid. We then evaluate the ability of our system
from four aspect applications. Finally, we verify the effectiveness and robustness of Akte-Liquid
from each sub-component’s contribution to the system, and the impact of different parameters
(e.g., environmental changes, container changes, the different devices).

ACM Transactions on Sensor Networks, Vol. 19, No. 1, Article 18. Publication date: February 2023.



18:16 X. Sun et al.

8.1 Implementation

Experiment Implementation. We implement our system on an iPhone 6s based on the open-
source acoustic sensing framework LibAS [21]. In the test environment, the user just holds onto
the smartphone in their hands, as shown in Figure 21. The smartphone is placed on top of a glass
container with the speaker and microphone facing the liquid surface vertically.

Software. The algorithms in Akte-Liquid are implemented in MATLAB and Tensorflow. We im-
plement MATLAB to control the generated acoustic signals and receive the reflected signals and
then design a series of algorithms to extract the liquid features.

Data Collection. We recruit 15 volunteers (7 females, 8 males) to conduct experiments for eval-
uating the performance of Akte-Liquid. We collect the liquid samples from 8 containers and 10
different environments. In the training phase, we first collect different volumes of reference liquid
data and different kinds of test liquids for each new container. For each measurement, Akte-Liquid
collects for 2 minutes and is repeated five times in one container and environment. The data is
stored in the database in advance. Meanwhile, the liquid dataset can be expanded as users need. In
the real-time testing phase, we only send 1-second signals for the test liquid.

In dataset split, we randomly split our dataset into 10 parts. We select five of them as training,
three of them as testing, and two as verifying.

Evaluation Metrics. We evaluate Akte-Liquid along with five metrics:

(1) Correlation Coefficient: Describing the liquid feature similarity between different liquids,

it can be represented as corrxy =
Cov (X ,Y )√
D (X )
√

D (Y )
=

σxy

σx σy
, where Cov (.) and σ (.) calculate the

covariance and standard deviation, respectively. The scope is [0, 1]; the closer the correlation
coefficient is to 1, the greater the correction between the two liquids.

(2) Accuracy: Accuracy = T P+T N
T P+T N+F P+F N

, which represents the fraction of samples that are
correctly predicted. TP represents the number of true positives (i.e., the number of items
correctly labeled as belonging to the positive class), TN is the true negative, FP represents
the number of items incorrectly labeled as belonging to the positive class, and FN is the false
negative.

(3) Precision: Precision = T P
T P+F P

, which is the fraction of relevant instances among the retrieved
instances.

(4) Recall: Recall = T P
T P+F N

, which is the fraction of relevant instances that were retrieved.

(5) F1 Score: F1 = 2 ∗ p∗r
p+r

, which is the harmonic average of the precision and recall.

8.2 Different Applications

In this section, we describe the possible applications of Akte-Liquid in liquid identification from
daily life, water sources, health, and food safety.

8.2.1 Liquid Identification Performance. First, we verify the effectiveness of Akte-Liquid to iden-
tify different types of liquids. We prepare 20 different kinds of liquids, which are Coca-Cola, Pepsi,
Diet Pepsi, two kinds of juice, whole milk, skim milk, three concentrations (1%, 5%, 10% of alco-
hol, salt, sucrose solution), and three kinds of coffee. For data collection, we use the standard glass
graduate whose volume is 500 mL as a testing container, placing the phone on top of the container.

Figure 22 shows the result as a confusion matrix. The different rows represent the actual liquids,
and the different columns represent predicted results. From Figure 22, we observe that Akte-Liquid
can classify across the different liquids to reach an accuracy of more than 97.9%. The detailed
performances are listed in Table 1. We can find the precision is more than 98.1%, and the recall and
the F1 score are more than 97%.
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Fig. 21. Experimental im-

plementation.

Fig. 22. Liquid classification results.

Table 1. Overall Performance of Identifying Different

Types of Liquids

Mean Median Standard Deviation

Accuracy 0.9796 0.9801 0.0024

Recall 0.9796 0.9801 0.0024

Precision 0.9815 0.9811 0.0011

F1 Score 0.9805 0.9801 0.0014

8.2.2 Detection of Different Water Sources. In this application, we are interested in evaluating
the ability of our system in detecting different water sources. We compare four different water
sources: (1) Mineral water (which is water from a mineral spring that contains various minerals,
such as salts and sulfur compounds); (2) Spring water (which is self-purified natural drinking water
from unpolluted mountainous areas); (3) Purified water (which has been mechanically filtered or
processed to remove impurities and make it suitable for use); and (4) Tap water (distinguishes
it from other main types of freshwater that may be available). In this experiment, we prepare
three containers and each liquid with five volumes to evaluate the performance of our system.
Figure 23 plots the result of detecting different water. We discover that our system can successfully
distinguish between water from different containers and with different volumes.

8.2.3 Detection Protein Concentration in Artificial Urine. We hope Akte-Liquid can provide an
easy and convenient way to help patients detect urine protein at home. Because it is hard to control
urine substances, we utilize artificial urine, which simulates the components and pH of urine to
replace real urine. Artificial urine is also the mixture solution, which is mainly composed of a
series of substances such as calcium chloride, sodium chloride, magnesium chloride, sodium sulfate,
potassium chloride, and so forth.

In this experiment, we utilize human serum albumin instead of urine protein; they both belong
to albumin and share similar physical properties. In order to evaluate the predictability of solu-
tion protein concentrations, we run 10 independent experiments with each protein solution. In
Figure 24, the results show that our system can detect different concentrations of protein even if
there is a small difference between them. From Figure 24, it can be seen that as the protein concen-
tration increases, the identification accuracy increases gradually. Although we only achieve about
70.76% accuracy under 0.5 mg/100 mL, we can achieve more than 92.3% accuracy under 1 mg/
100 mL. Note that when the protein concentration in the uric is higher than 3 mg/100 mL, it indi-
cates the patient has the complication of microalbuminuria [27]. Therefore, these results indicate
the probability of utilizing a smartphone to detect kidney disease.
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Fig. 23. Detection of different water sources. Fig. 24. Detection protein concentration in artifi-

cial urine.

Table 2. Recipes of Food Additive Experimentation

Food Additive Recipe

Water 400 mL Water (no additive)

Citric Acid 0.2 g, 0.5 g, 1 g with 400 mL water, respectively

Citric Acid and Sugar 0.2 g, 0.5 g, 1 g with 400 mL water and 3 g sugar, respectively

Potassium Sorbate 0.2 g, 0.5 g, 1 g with 400 mL water, respectively

Potassium Sorbate and
Sugar

0.2 g, 0.5 g, 1 g with 400 mL water and 3 g sugar, respectively

Aspartame 0.2 g, 0.5 g, 1 g with 400 mL water, respectively

Aspartame and Sugar 0.2 g, 0.5 g, 1 g with 400 mL water and 3 g sugar, respectively

Sodium Cyclamate 0.2 g, 0.5 g,1 g with 400 mL water, respectively

Sodium Cyclamate and
Sugar

0.2 g, 0.5 g, 1 g with 400 mL water and 3 g sugar, respectively

8.2.4 Characterization of the Food Additives in Beverages. Food additives are also a food safety
problem that people often face [22]. Therefore, we would like to employ our system to detect the
content of food additives in beverages. In reality, food additives are used in mixed liquids, or with
other interfering agents in liquids. Therefore, in order to simulate the real scene, we use sucrose as
an interfering agent in liquid. We measure the above four food additives separately in the different
solutions. Specifically, as shown in Table 2, we prepared two kinds of experiments; one trial is 400
mL water with, respectively, 0.2, 0.5, 1, 2, and 3 grams of citric acid or potassium sorbate without
interfering agents; we take distilled water as a baseline class. Another trial is the above recipe but
with 3 g sugar in each solution. Now we test the capability of identifying low-concentration food
additives in the beverage.

Figures 25 and 26 demonstrate the scatter graphs of liquid features for food additive classifica-
tion. Figures 27 and 28 show the results of the other two food additives.

From the figure, we can discover that with or without sugar, the extracted liquid feature shows
obvious differences. Furthermore, we notice that all the classes are well separated, and the same
food additive concentration with or without interfering agents also has distinct classes.

Finally, we evaluate the accuracy of our system to detect the four food additives in the water.
The result is shown in Table 3; we can see that the average precision is close to 95%. The results
illustrate the capacity of Akte-Liquid to identify the food additive, and it is possible to employ
Akte-Liquid to learn the food additive content of a mixed solution.
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Fig. 25. Food additive in sorbate solution. Fig. 26. Food additive in citric solution.

Fig. 27. Food additive in aspartame solution. Fig. 28. Food additive in sodium cyclamate

solution.

Table 3. Precision and Recall of Detecting a Particular Food Additive

Sorbate Citric Aspartame Cyclamate Average

Precision 85.37% 98.92% 94.60% 97.70% 94.14%

Recall 92.32% 95.00% 96.82% 88.46% 93.28%

8.3 Robustness and Generalization Evaluation

We provide several micro-benchmarks of Akte-Liquid, including the method validation and the
running time of each component in Akte-Liquid. Then, we evaluate several factors that impact
the performance of our system, such as the containers, the training set size, environment noise,
the smartphones, and so on.

8.3.1 Method Validation. We would like to quantify the accuracy gains arising from each of
Akte-Liquid’s sub-components. We utilize the data samples from the different environments and
containers, which include the different types of liquids, different concentrations, and volumes of
the same liquid. Then, we compared Akte-Liquid with the other ensemble learning methods (Ran-
dom Forest and Adaboost) in four different inputs: (1) original received signals, (2) transfer-
function-based feature, (3) DASD-based feature, and (4) DASD combined with transfer function
feature. We set the depth of the tree as 7 for the RF method, and we set the number of the estima-
tor as 100 for thr Adaboost method.

Figure 29 plots the accuracy and F1 score of the above approaches. The result shows that when
we apply a common ensemble learning to classify liquids based on raw data, the accuracy is be-
low 70%. Additionally, only using the TF feature or DASD feature, the identification accuracies
based on the RF method and Adaboost are both lower than our method. Meanwhile, Akte-Liquid
has the highest performance over 90%. Finally, the results also indicate that the DASD-based
feature, transfer-function-based feature, and liquid identification model contributes to all system
performance.
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Fig. 29. Accuracy and F1 measure under different

features and methods.
Fig. 30. Performance across different volumes.

Table 4. Running Time of Akte-Liquid

Device ASD DASD Transfer Function CNN Total

Galaxy S5 0.005 s 0.009 s 0.418 s 1.781 s 2.215 s

Galaxy S6 0.005 s 0.01 s 0.5 s 1.813 s 2.328 s

8.3.2 Running Time Evaluation of Each Component. For evaluating the running time perfor-
mance of Akte-Liquid, we test the running time for each component in Akte-Liquid on two types
of smartphones, i.e., Samsung Galaxy S5 and Samsung Galaxy S6. Table 4 shows the results of de-
tection efficiency evaluation. The total running time is less than 3 s, which shows that Akte-Liquid
can promptly obtain results without any noticeable latency.

8.3.3 Impact of Liquid Volume. In this experiment, we discuss the impact of liquid volume on
the accuracy of liquid identification. We measured the different volumes of salt solutions and sugar
solutions (i.e., 100 mL, 150 mL, . . . , 500 mL). Figure 30 shows the results after eliminating the vol-
ume variation. We can find that the different volumes of the same liquid are grouped together.

8.3.4 Impact of the Smartphone Position Relative to Container. In this experiment, we study the
impact of smartphone position relative to the container for Akte-Liquid by placing the smartphone
on eight different positions (start 1 cm from the edge of the container and move to 8 cm). We
experimented with two different liquids.

Figure 31 shows the confusion matrix of identification results. (a) is the without the DASD
method, directly utilizing the ASD feature to classify the two different liquids with different smart-
phone positions. We can find that the results of clustering are very poor, with only 50% accuracy.
(b) is with the DASD method, directly utilizing the DASD feature to classify the two different liq-
uids with different smartphone positions. We can see that the clustering result increased to 75%,
which illustrated that the DASD method can reduce the impact of the smartphone positions. This
may be due to the fact that when the phone is close to the container wall, the received signals
are more reflected by the container wall. So we set the measure position at the front speaker and
microphone of the smartphone in the center of the container.

8.3.5 Impact of Different New Containers. We evaluate the accuracy of our system for liquid
identification on new containers. We train the model on six different materials and size containers,
which have different shapes, heights, and opening diameters, as shown in Table 5. Then we test the
accuracy on the two new different containers, where one is a glass container and the other is a steel
container. We experiment with sugar solution, salt solution, and sugar-like solution on each con-
tainer. We prepare three different concentrations for each solution. So there are nine liquid samples
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Table 5. Different Containers

Fig. 31. Performance across different positions. Fig. 32. Performance across different

containers.

in total. Figure 32 shows the identification accuracy of each container. Compared to our previous
model, the network trained all the samples, and the reconstructed features contain both container
features and liquid features. The accuracy is low when testing on a new container. It can be seen
that there is no obvious difference in identification accuracy on different containers utilizing the
improved model. The result indicates that by extracting container-irrelevant features, our system
is not sensitive to the changes of containers and can reach a good performance on new containers.

8.3.6 Impact of Different Environments. We trained our liquid identification model in four en-
vironments and tested the performance in six new environments. The different environments had
different sound pressure levels. In each new environment, we collect three similar liquids, sugar
solution, salt solution, and sugar-like solution. For each solution, we prepare three different concen-
trations. So there are nine types of liquids in total. We collect each liquid sample in three different
containers. The result is shown in Figure 33. We can discover that Akte-Liquid is robust to different
environments. We can obtain a good identification performance in unseen environments.

8.3.7 Impact of Number of Containers Used for Training. Due to the training sample selection
scheme, the number of containers used for training is important for our system to extract
container-independent features. A larger number of samples of different containers will improve
the performance of our system, but also will lead to tedious work. Hence, we evaluate our system
performance under different numbers of containers.
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Fig. 33. Performance with different environ-

ments (A: supermarket, B: cafe, C: bar, D: restau-

rant, E: office, F: library).

Fig. 34. Impact of number of containers used for

training.

Table 6. Accuracy of Different Smartphones

Device iPhone 8 Samsung Galaxy S6

Accuracy 92.28% 93.35%

Recall 92.44% 93.37%

In this experiment, we utilize the 15 kinds of liquids (nine types of salt, sugar, and sugar-like
solutions; four types of water samples; and two similar beverages, Coke and Pepsi). The result is
shown in Figure 34; we can discover that as the number of containers increases from 0 to 6, the
accuracy first increases and then remains stable when the number reached about 4.

8.3.8 Impact of Different Smartphones. We utilize the trained model from three different smart-
phones (iPhone 6s, iPhone 11, and Samsung Galaxy S5) to test the performance on two untrained
smartphones (iPhone 8 and Samsung Galaxy S6). We utilize the liquid dataset from the above exper-
iment. The result is shown in Table 6; we can discover that our system also has high performance
on different devices.

9 DISCUSSIONS

Limitations on the Containers. Akte-Liquid has certain requirements on the container type.
First of all, the opening of the container needs to be relatively large. If the opening of the container
is too small (e.g., less than 30 mm), it will be difficult for the smartphone to receive the liquid-
surface-reflected signals. This is due to the observation that a smaller container will cause the
multi-path propagation effects in the container to be more significant, and liquid-surface-reflected
signals will be flooded by the multi-path signals.

Limitations on the Position of the Smartphone. The position of the smartphone will cause
identification errors. We should place the speaker and microphone of the smartphone parallel to
the liquid surface for each measurement. Moreover, we should keep the smartphone in the center
of the container as much as possible. Placing the smartphone’s speaker and microphone too close
to the container wall can have an impact on identification accuracy.

Requirements of Smartphones. In our experiments, we implement our system using the front
speaker and microphone of the smartphone. Hence, it is important to choose a smartphone that
has its speaker and microphone on the same side or facing the same direction.

Unseen Liquid Identification. Akte-Liquid evaluates some partial applications in liquid identi-
fication. Moreover, Akte-Liquid is based on the deep learning architecture that enables high preci-
sion in materials that have already been learned. It is challenging to extend our system to identify
unseen liquid without training. It is an interesting research direction in our future work.
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10 CONCLUSION

In this article, we propose Akte-Liquid, which utilizes the speaker and microphone of the smart-
phone to transmit the acoustic signals and receive the liquid’s reflected signals to identify liquids.
Our experimental results have demonstrated that Akte-Liquid is able to distinguish different kinds
of liquids, as well as robustness across different containers and different environments.
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