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Abstract— Rather than managing their heterogeneity and dy- global optimal objectives. As an example, the overlay matt
namic behavior through centralized intervention, overlay nodes protocolNarada[3] aims to minimize end-to-end delays while

can be programmed fo self-organize and self-manage the net- 5\ iging high link stress, with nodes choosing parent nbdes
work. To achieve the highest performance within a service on their own

overlay, they are further expected toself-optimizethe network,
by cooperatively providing and allocating resources in an opti-  However, in overlay networks consisting of independent
mal manner. However, since nodes are inherently selfish about and heterogeneous nodes, achieving self-optimizatiormiis n
resources they contribute or consume, self-optimization could trivial, due to the critical but often overlooked obseruati
not be achieved if they are not given the correcincentives In  \j4eq are inherentlelfish The selfishness is caused by
this paper, we investigate the effectiveness of a market-based . o
incentive mechanism in directing nodes’ behavior and enabling the fact that overlay nodes belong to different administeat
self-optimizations. domains and users, who enjoy the complete freedom to choose
We have designed anintelligent market model for a service the best courses of action that maximize their utilitieseyrh

overlay network, based on which individual nodes, being service may not follow any externally dictated global optimization
producersand consumers determine their own resource contri- 40 rithms if their self-interests are not satisfied.

butions, consumptions, or service prices based on their own . . L .
utility maximization goals. We also propose optimal decision [N this context, the critical question is the following: how

making solutions for nodes to achieve their self-interests; in should we influence the inherent behavior of selfish nodes
particular, service providers are provided with a control-based using certainincentives so that the collective outcome of

pricm% sﬁ'”tionl based onsystem idelntificatiortechniques. | individual nodes behaving towards their own self-intesessill
With the multicast streaming application as an example, we . ] .
show through simulations that, even when selfish nodes all seekIeads to the desirable system optimality*

their maximal utilities, the resulting network still achieves close- Game theoretic models [4], [5], [6] have been employed
to-optimal performance in both steady and dynamic states. The as incentive mechanisms to model selfish nodes, and the

results also indicate that, by encouraging nodes to behave selfishlysteady-state properties of these mechanisms have beely wide
and intelligently in a designed market, self-optimization in other studied in previous literature. Distributed pricing mad§l]
autonomic systems may be facilitated in the presence of node . T
selfishness. [8] have also been proposed to regulate the behavior ofcgervi
providers and consumers, under the goal of social welfare
maximization. However, a common drawback of previous
. INTRODUCTION work is that, they are mostly theoretical in nature, and are

- . o . Hsually subject to strict assumptions that do not hold in
Participants in overlay networks reside in geographical Y Jlisti
alistic overlay networks.

dispersed locations, access the Internet via heterogeneou]n contrast. this paper seeks to propose a resource atacati

access technologies, and belong to different adminigérati o .

domains with different policies. They may join or leave thgramewor!( f.or realistic .overlay ngtworks composed of S'?"f's.

network at any time, leaving the composition of an overla odes. Similar to previous studies on resource allocation i
' ommunication networks [9], [10], we take the viewpointttha

network highly dynamic. Due to these characters, it is eal :
impossible to manage an overlay network with centrally €:c)c)?verlay nodes should be allowed to behave selfishly, and that

dinated intervention, especially as the network becomeggla the optimality of a network should be evaluated from the

Therefore, overlay networks are a natural form of autonomR !nt .Of view of the entire system. We aim to. achieve “’V.°
systems. It has been a well-known design philosophy jectives. First, we seek to propose an incentive mecimnis

distribute to individual nodes the functionalities of ongang, that promot(tas rIeSOl:rfﬁ cotntrldbutlint ang tprelventst tr.esourc?
controlling and managing an overlay network. overuse, not only at the steady state, but aiso al imes o

At the topological level, there exist overlay structuregy( network dynamics where the supply and demand _relationship
Chord [1] and Pastry [2]etc), that provide the basic func- changes. Second, we seek to des_|gn an appropriate software
tionalities for nodes taelf-organizeinto an overlay network agent .that best dglegate; the selfish user.ur_lder the proposed
and toself-healat times of arbitrary node participation andcentive mechanism. With these two bun_dln.g.blocks, the
departures. At the service management level, it has beré%twork performance parameters resulted fiadividual de-

further studied how nodes should self-optimize towardsager cisions may approach those determinedyigbal optimization
methods.

The authors are affiliated with the Department of Electricadl &om-
puter Engineering, University of Toronto. Their email addms are  Henceforth in this paper, a parent of an overlay node is medeto as an
{wwang,bl} @eecg.toronto.edu upstream nodewhereas a child is referred to aslawnstream node



Our proposed incentive mechanism builds uponirdalli- protocols. Given the topology, bandwidth shares alloc&bed
gent marketmodel, which encourages both service providersulticast traffic are determined by the source rate and the
and consumers to pursue their highest possible utilitigh wiavailable bandwidth along all relevant physical links.
intelligence. In this paper, we choose an overlay mediastre  In comparison, node selfishness is acknowledged in this pa-
ing application as a running example, where upstream noges, where we evaluate the optimality of network perfornganc
that forward media streams are treated as service proyidevith the total satisfaction perceived by all the nodes. \liatlial
and downstream nodes as consumers. Each service provitmtes are given complete freedom to determine their connec-
maintains a dynamic price for the service it delivers, whictions with other nodes, based on their own utility evaluagio
is periodically adjusted for its highest level of utilityaBh The original problem of optimal topology formulation and
service consumer, out of multiple service provider canmisla resource allocation is therefore turned into a collectidn o
selects the ones that best balance its attainable QoS paraméocalized decision problems, within which nodes determine

and economic costs. how to make the best use of their bandwidth resources to
Through extensive comparison studies with a well-knowimprove their utilities.
approximately optimal overlay multicast protochlarada[3], In the media streaming application, an overlay node may be

we have shown that our market-based incentive mechanisgen as providing thenedia delivery servicés downstream
improves the average throughput in the multicast tree tpol nodes, if it is serving active media streams. When such a
and efficiently adapts the topology and bandwidth allocetio service is treated as product traded within the multicast
network dynamics, while only incurring minor communicatio group, we propose the followingntelligent market model
and computation costs. We also believe that, with minorrexteln the context of multicast bandwidth allocation, it asstes
sions, the proposed market mechanism may serve as a geneggh multicast group with a market.
framework for achieving self-optimization for other autonic Within a multicast topology, an upstream node and its
systems that consist of selfish and intelligent components. immediate downstream node are identified as dbler and

The remainder of the paper is organized as follows. Sec.thie buyer, respectively. For example, in the simple multicast
describes the overlay streaming application, and defines @xample of Fig. 1, on the overlay link from nodeo node2,
market model. Sec. Ill form the models on node selfishnegedel acts as the seller, and nodeas a buyer. A node is a
and formulates the local optimization problems to be solvesglleranda buyer if it both sends and receives in the multicast
by individual nodes. In particular, a novel decision makingroup.
solution for upstream nodes based on optimal control andThe media delivery service is quantified based on the
system identification is proposed in Sec. IV. Sec. V discsissamount of bandwidtithe upstream node contributes to the
distributed protocols that facilitate the self-optimipat pro- downstream node, or the end-to-end throughput the upstream
cess, and Sec. VI presents our simulation-based evalsatiorode delivers. Products traded between different pairs of
Related work on autonomic overlay networks is discussed $ellers and buyers are further differentiated by other QoS
Sec. VII, and Sec. VIII concludes the paper. metrics, such as end-to-end delay and end-to-end paclst los
rate. Apparently, these metrics are specific to the pair lidrse
and buyer: they change with the underlying physical path it
goes along, and are subject to relevant network dynamics.

Throughout this paper, we use an overlay media streamingNaturally, we require the service to be priced by the end-to-
application as an example. As illustrated in Fig. 1, overfa+ end throughput it provides; the economic revenue or payment
dia streaming is an application that multicasts streamiedien regarding an overlay link is determined as the product of
in an overlay network, from a source node to a set of receivéiroughput and price. We further assume that multiple price
nodes, that together form the multicast group. Rather thao-exist on the market — each seller determines its chamge fo
relying on IP multicast, overlay nodes serve as applicatioper-unit of throughput it delivers, and prices are dynamically
layer switches and forward received data to downstreamaodeljusted by the sellers.
via unicast connections. Overlay multicast topologies may On joining the multicast group, a potential buyer identifies
take the form of a single tree [3], multiple trees [11] or d&s seller candidates, and evaluates each of them by their
mesh [12]. In some of the designs, receivers in a multicgstices and deliverable Quality of Servicee(g, maximum
group may receive media content at different rates comparndgoughput). Once the buyer has selected a candidate as a
to their upstream nodes. This can be realized by the useseller, a correspondingink will be added to the multicast
multiple description codingln this application, the designtopology. The share of bandwidth to be allocated to the
objective is to achieveoptimal topology formationwhich overlay link, henceforth referred to asserved bandwidthis
includes the construction of the overlay topology, and theegotiated by the two nodes.
subsequent bandwidth allocation on overlay links. A togglo  The reserved bandwidth differs from the actual end-to-end
is considered desirable, if it leads to high average enehtb- throughput on an overlay link, in the sense that the former
throughput, low average end-to-end delay, and low averageagreed upon by the two nodes before the transfer begins,
packet loss rate for all overlay links. and the latter is supposed to approximate the former, aifnou

In previous work, distributed protocols are proposed fits value is affected by flow control and congestion control
construct overlay multicast topologies [3], [11], [13],which performed in the network under realistic traffic situationay-
nodes are only considered as agents to execute the prekcribents are to be calculated based on the reserved bandwidth.

II. INTELLIGENT MARKET MODEL
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Fig. 1. (A) Overlay nodes (nodés~ 9, represented by hollow circles) interconnected by coreerddepresented by solid circles). (B) The match between
upstream and downstream nodes, node the source. (C) The corresponding multicast topology apdssible bandwidth allocation.

Since the network may undergo unpredictable dynamiskt ¢, a nodei keeps a price;(¢) for each unit of bandwidth
at any time, we allow buyers in a multicast topology tdt reserves for its immediate downstream nodes, which form
periodically re-examine their sellers and seller candisiaand the setR;(¢). At the same time, it receives streams from a set
to either switch to other alternative sellers, or readjuast iS;(t) of upstream nodes. The stream from ngd&® nodei
reserved bandwidth to the optimal value if its current ugestn  has a reserved bandwidth bf(t), an end-to-end delay! (¢)
node remains to be the best seller. Therefore, bandwidthd a loss raté’ (¢) as perceived by node B;(t) denotes
allocation in the multicast topology is adaptively updatesd the local available network bandwidth of notleandm;(¢) is
overlay links are established, disconnected and adjusitd wthe economic budget maintained by nadiself. In addition,
respect to bandwidth. we denote the local bandwidth capacity of nadas C;, the

Finally, it is worth noting that our intelligent market mdde maximal tolerable delay aB;, and the maximal tolerable loss
does not require any actual monetary flows between overlate asL;.

nodes, but may take the form of “virtual currency” that we assume that the utility function of nodeeither as a

circulates within the network. downstream or an upstream node, takeguasi-linearform:
the utility equals the sum of aampirical and aneconomic
1. M ODELING NODE SELFISHNESS component. The former accounts for the node’s empirical

benefit (or loss) for receiving (or providing) certain sees,

With economic factors as external incentives, there are . . : ) ;
number of ways of modeling the decisions of selfish ovelr ich may be characterized by various quality metrics of the
rvices received.g, b! (t), d:(t), or I (¢). The latter equals

> ) s

Iay_nqdeg, each corresponding to a different formulation ' revenues (or costs) due to the delivery (or consumptibn)
optimization problems. For example, one may suggest that . - - .
o ; . -~ . services. We choose the quasi-linear form of utility fuois,

we maximize the downstream node’s empirical benefit given L : . o

Since any equilibrium solutions to utility maximizationagtr

its economic budget, or to maximize the upstream nodgs : - .
. ) . R . . . lems are independent of the initial economic funds of market
economic profit while delivering services at a fixed qualit

. . . :T¥)articipants, if the economic funds constitute an additéren
level. In this paper, we combine the empirical and econom

. i efalch market participant’s utility function [14].
concerns, and assume that nodes always make decisions tha i )
best balance the two aspects. The economic component can be simply expressed as the
Mathematically, any selfish decision of a node is driven Hjfoduct of the corresponding price and bandwidth value.
its utility function, which summarizes its inherent preferencE!oWeVer, the formulation of the empirical component needs

over its experiences in the network. We further model tH@ Satisfy a few mathematical properties: In order to presen
selfish nodes astility maximizers making all their decisions & réasonable preference relation, it has tonmnotonicand
towards maximizing their utilities. concavewith respect to each variable it takes; and it usually

Since the concrete forms of utility functions are esselmialn%ds to be twice differentiable for an optimal point to exis

unknowna priori, we aim to “design” the formulation of such analytically [14].

utility functions, such that they represent the best irtire As a possible formulation, we propose the utility functions
and selfishness of the overlay nodes. By designing theyutili,0(t) and u; u(t), for node s, in the form of Eq(1.1)
functions, we may examine the effects of the proposed maristd Ed(1.2), as it acts as downstream and upstream nodes,

model and incentive mechanism by emulating the most likefgspectively. In both expressions, the last term represtet
behavior of selfish nodes. economic component, and the remaining terms represent the

empirical component. By Eq(1.1), we assume that an end
user may simultaneously evaluate throughput, delay arsl los
rate when receiving streams, though any of them can be

We consider the discrete time domain where time is dividemnitted by setting the corresponding coefficient to zero. By
into slots and introduce the following notations. For each timeonsidering different subsets of the upstream nodeSsed,

A. Utility functions
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the equations can cover any topological cases for multicaten chooses the one, if it exists, with the highest non-inega
e.g, single tree, multiple trees or mesh. In E@.2), we Au; p(t).
assume that the network bandwidth is the main resourceCondition (2.1) implies the utility constraint Intuitively,
constraint that each upstream node considers in our exampdele: would not choose to be served by nodd, by doing
of a streaming application. so, nodei’s utility decreases. Conditiof2.2) is the budget
Coefficientse;; (I = 1,2,3,4) are positive weights that constraint the sum of the anticipated payment should not
indicate the relative importance of the three metrics — &ed texceed the current economic budget(t) of node i, and
relative importance of the empirical and economic comptsenn;(t) is dynamically updated as nodeays charges or earns
— for the end user. All the parametef$ p, C; v, D;, L; and revenues. Conditiori2.3) represents th@hysical constraint
€1, = 1,2,3,4 are inherently node-specific and applicationwhereb; i, andb; . are determined by the local available
specific, and may be configurable by a node for each multicé#stndwidthB; () of nodes, and the utility-restricted outgoing
group it joins. However, a correct setting of parametersikho throughput bounds of nodg as will be discussed in Sec. V.
guarantee that, a node would be willing to take an actie, On the side of the upstream node, ngdevaluates its future
receiving a stream from a upstream node at certain QoS levie&havior of delivering a stream at throughp{itt + 1) by the
and charges, or sending a stream to a downstream nodeatesponding utility incrememku; ;7 (t+1). This is expressed
certain throughput and earnings, only when the correspgndin Eq. (3), whereB;(¢) is nodej’s local available bandwidth,
utility is above zero. and b, (t) corresponds to the data generation ratg i the
original source, or the input rate jfis a branch node in the
multicast topology. Nodg would not be sending the stream at
B. Decision problems b] (t+1) if the resultingAu; 7 (t+ 1) is negative. Clearly, for

Under the prescribed market model, the decision problem Q}ipair of nodes to establish.|a Cﬁnnectionl%.sEme negotiation Io
a downstream node is straightforward: It periodically upga U (*) iS necessary to reconcile the two selfish entities. A viable

its best choices of upstream nodes for receiving the strearffg Of conducting such negotiations is described in Sec. V.
or equivalently, the best combinations Bff(t), d’(t), I (t) _From the_economlc perspective, the decision of no_m]_
andp; (t), in the changing environment. As an upstream nod@f'cepi(t) aims to maximize its revenues to be made in time
however, it is presented with two decision-making problem§|°tt:

First, upon being requested by any potential downstreare,nod

the upstream node should decide the best throughput that i _ i

maximizes its own utility. Second, it needs to periodically Pi(t) *arggf?t})( pi(t) Z bk (t) “)
update the optimal pricg;(t) that induces the highest future ReRi(®)

utility for itself. We devote the next section to an in-depth discussion towards

More specifically, to choose the best upstream node,aa intelligent solution for such a pricing problem.
downstream nodé evaluates each upstream candidatby To summarize, we have proposed a mechanism that in-
first computing the optimal throughptﬂﬁfD(t + 1) from centivizes selfish nodes with prices and in the context of
Eq. (2). In this equationAu,; p(t) denotes the expected utility markets, and have modeled selfish nodes as utility maxisizer
improvement if nodei were to receive a flow from nodg The utility functions Eq.(1.1) and Eq.(1.2) are formula-
assuming that the prices and transmissions from all itsrothions reflecting the preferences of selfish nodes over diffier
upstream nodes remain unchanged. If ngdis one of the empirical and economic factors, and we believe that there
current upstream nodes of nodgboth d/(t) and(t) are exist many other eligible forms. An alternative solution is
measurable from past transmissions; otherwise, sii¢g to give end users even more flexibility in determining their
would be missing, the thirtbg(-) term needs to be removedown utility functions through online identification, as Haeen
from the expression. If there is no solution to Eq. (2), noderoposed by Courcoubetist al. [15]. As nodes adjust their
J will be excluded from consideration for thgh time slot. behavior based on the utility maximization goal, the overla
Once bg)*D(t) is determined for each eligible node nodei network is expected to bgelf-optimizing multicast topology
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and bandwidth allocation are automatically adapted to ad¢w competitions. An illustration of such a dynamic system is
dynamics, which include node joining and departures, as wehown in Fig. 2.

as variations in cross traffic. The performance metrics unde

concerng.g, total throughput, average delay, and average loss n(t) N\
rate, are maintained at acceptable levels in all situations ! Controller <~— @ (t-1)

IV. OPTIMAL CONTROL BASED PRICING DECISIONS
LF

Since making decisions on downstream nodes based on
Eq. (2) is rather straightforward, in this section, we fooms T r(t)
the decision problem from the point of view of an upstream Outside World K >
node, and propose a solution to make pricing decisions.rGive
the operation of the intelligent market model, an upstream .
nodei’s utility is dependent on its own price, the remaining T&}(t) Erk'(t)p.(t)
bandwidth capacity, and the following factors: (1) the set >X
of nodes that compete with as upstream nodes; (2) theF' 2. A diagram of the optimal control systerd."! represents @ne-
performance measurements on overlay links from these coft 51, e < cale. Paat valugs 31’) andy" F; bi (6) a5
petitors to any potential downstream node (3) the utility well as an estimat&(t — 1) of the past noise input, are ueseld(tt)o identify the
function of nodek; and (4) the prices of the competitorsmathematical model of the outside world, and to decide the néve pg(t)

However, these factors are essentially unknown to ripsiace for the optimization goal.

the propagation of global information cannot be assumed in ] . ) . . N
autonomic systems, and is practically infeasible. Since each node determines its price according to itsyutilit
maximization goal, we may transform the original decision

A. Optimal control formulation problem Eqg. (4) into an optimal control problem based on the
| stem view: node decidesp;(t) as anoptimal control signal

. . . . S
Since service prices influence the topology formed arig the system, so that thntrol objectivei.e., nodei’s utility
bandwidth allocated, each node may be considered to zekeRi(t) bi.(t)p:(t) in the tth time slot, is maximized.
applying acontrol inputto a plant, which is the entire system '

consisting of all the sellers and buyers. In system control , o

terms, we denotey;(¢) as the control input supplied at theB: System identification

beginning of time slott, and -, . ) bi (t) as the total  To determine the optimal control signal, nodeeeds to
amount of bandwidth consumed big &Juyers as thesystem first identify the system equation, in order to predict thstegn
output obtained at the end of the slot. With an appropriateutput based on any input. However, for this particularesyst
system equation, we may mathematically represent the depae do not have any specific insights into the underlying
dence of output on control input, as well as theise input mechanism except its nonlinearity: when the external wisrld
w; (t) representing dynamic factors that are usually stochastélatively stablep;(t) is small, and the remaining bandwidth
and hard to model, including the network topology, storagd nodei is sufficiently high,ZkeRi(t) bi (t) may increase
access patterns, background traffic, and the effects ofegrat even whenp;(t) increases; while aftep;(t) or the level of

Y




remaining bandwidth reaches some po@keRi(t) bt (t) may stochastic approximatioalgorithm [17], whose updating rule

decrease significantly gs(t) increases. can be expressed as:
We hence take thaonlinear black-boxparameterization
method [16], which is an established way of emulating any a(t) =a(t — 1) +o(t)p(t)v(t) (8)

system model about which littie priori knowledge is known,

and we identify the involved system parameters by ltest Wherewv(t) = g(t)—¢T (t)a(t — 1), ando™'(t) = o~ (t -

squares estimatiomethod. )+¢T (t)p(t), with o=1(0) being a very small positive
With the nonlinear black-box method, the system output ¥&lue.

expressed as a weighted sum hfsis functionswhich are  As Egs. (6), (7), (8) have shown, the system identification

mathematical expressions of past and present system infiecedure is computationally cheap, since, at each time slo

past system output, related state variables, and noises.t,i& node only needs to (1) locally keep a few valuest),

our problem, we express the system outddf_p , bi(t), 9(t), g(t — 1) and (t); (2) solve a minimization problem

hereafter denoted ag(t), as a function ofp;(t), w;(t) and 7 through any efficient numerical method such as tne-

glt —1) = Zkem(tq) bi(t — 1). Taking the sigmoid basis dimensional golden section searftB]; and (3) perform one

function: step of iteration of Eq. (8). In practice, the length of a time
1 slot may be chosen on the order of a minute.
Km(pl(t)7wz(t)7g(t - 1)) = 1+ e—Bpi(t)—ym]
1
1+ e Blwi(t)—m] C. Adjustment of prices
1

Given the mathematical model of the external world, the
new pricep;(t) of a nodei should satisfy:

1 + e—Blg(t—1)—ym]

we may obtain;(t), an estimate of(¢), from the following
system model: N
p; (1) = argmaxp;(t) Y am(t)r(pi(t), 2(t), g(t—1)) (9)

pi(t) m=1

G(t) =D am(t)rm(pi(t),wi(t), g(t — 1)) = T (t)g(t) o - ,
m=1 which is also efficiently solvable by the golden section
(6)  search method. For more stable behavior of the entire nkfwor

In this equation3 and~y are positive constants determinedye may update system parameters in every time slot, buttadjus
by the requirements imposed on the approximation accuragces once every few slots,

of g(t) and the upper bound of the derivative ¢ift). a..(t),  From the decision problem of the downstream nodes in

m = 1,...,n are parameters of the system model th@y (2) one may notice that, the transmission pricé)

needs to be identified from historical dage(t), w;(t) and

g(t —1). The constant: is dependent on the rangesjaft), should remain in the rangg0, — D+ZEM ) at least
J» j

kES;(t) J
¥or some nodej. Consider the partial derivative’ of a down-
stream nodg'’s utility function with respect ta’ (). If p;(t) >

w;(t) and g(t — 1), and determines the modeling capacit
of the expressiona®(t) and ¢(t) are two vectors that
consist of{c,, (t),m = 1,...,n} and{k, (p:(t), wi(t), g(t —

1)),m =1,...,n}, respectively. Moreover, the variahle(t) cj,D+Z:;,_(t) bE(t)’ then

is stochastic in nature and unobservable by négdthus, it !

need to be estimated from the historical data of controltinpu ouy(t) _ €1 (6 <0

and output. b3 (t) CJ)DJFZ%SJ,(,,N bh(e)bi(r) TN =
At the end of time slot, an iteration round is carried out in Ybi(t) € [0, 00)

two steps. First, since the valuesgf), g(t—1) andp;(¢t) are
known, the value ofv;(t) may be estimated as the minimizing Therefore, the optimal throughput for nodehas to be
point of prediction error of the system model identified thus"(t) = 0. As upstream nodes in a multicast group, their

far, and we denote the estimated valueiag): initial prices may be configured based on their own pa-
rameters as any values withino, il : , and
@;(t) = argmin{g(t) — T (t — 1)p(t)} @) Ci’D+Zk€Si(t) by ()

then adjusted according to Eqg. (9). In addition, to cope with

To reduce the effect of randomness on system paramets@ne unavoidable inaccuracy in the identified system model,
we smooththe estimatey, (¢) with a weighted sum&;(t) «— especially in the initial stage of iterations, we have ampla
(I = XNa;(t) + Aw;(t — 1), and X is a constant within0,1). simple rule to assist the adjustment of prices. We let each
This smoothed;(¢) will be used in the second step ofnode i memorize its estimated revenug (t)g(t) for time
updating system parametefs,,,(t),m = 1,...,n}. Since slot ¢t. By the time the real revenug!(t)g(t) is available,
the system model is stochastic and inheretittye-varying if pi(¢)g(t) < 0.5p;(t)g(t), the new pricep; (t+1) is directly
we may update the parameters online by performing a rouselt to be0.5p}(¢), otherwise, the new price will be derived
of recursive least squares estimation at the end of each &fot from Eq. (9) and be smoothed based on its previous value:
our simulations, we have adopted a simplified algorithmechll p; (¢ + 1) «— Apf(t + 1) + (1 — X\)p;(¢).



V. DISTRIBUTED PROTOCOLS at nodej. The best amount of bandwidth reservation is then

The previous two sections have formulated the per-upstre&gmPuted from the utility maximization proplem of Eq. (2),
dynamic-price market model based on which a multica®th the physical constraints determined as:
topology is gradually evolved and the bandwidth resource
is dynamically allocated. We have also identified the local RPN ¥
- . . . b%IIlUl b1n1n(t>
optimization problems to be solved by individual nodes that b _ min(B?(t) b )
induce network-wide optimality. This section further aglsses e G Tmax
the necessary protocols that facilitate the self-orgaioiza

self-healing and self-optimization functionalities. Knowing the optimal throughput and the corresponding
utility increment, it is then up to nodeto decide whether to

have nodej as its upstream node, or to adjust the bandwidth
reserved at nodg If the application requires a single multicast
In order to maintain the highest level of utility, any nade  tree, nodei may choose the upstream node with the highest
allowed to periodically inspect each of its upstream caaidisl ytility increment as its upstream node, if only the utility
in terms of prices and deliverable QoS levels, by probing afgcrement is adequately high (by a factor of at legtin our
observation. In doing probing, the downstream node sendsjsmulation studies). Otherwise, nodean maintain a number

price and bandwidth probingPBP) packet to nodg, which of best upstream nodes as upstream nodes, which brings the
then responds with its price;(¢t) and relevant bandwidth highest utility increments.

information within aprice and bandwidth repl{PBR) packet.
We follow thereceiver-only packet paimethod [19], [20],
which is widely adopted in Internet measurement studiesr
identical PBR packets are sent back to back to npde that
nodei not only receives the response from ngdéut also an
estimate on the available bandwidiy (¢) from j to i: each
pair of consecutively sent packets gives an estimate, amd

A. Upstream probing and valuation

2) Resolution of concurrent requestSince the same up-
stream node may be concurrently probed by multiple down-
stream nodes, by the time downstreamecides to establish a
connection withi, other downstream nodes may have already
established theirs, thus the connection request from down-
ﬁ%ream(j, which contains the bandwidth reservatiofiy (i),
may be turned down due to lack of bandwidth. To prevent such

thrlfsr ?}i‘é;gwﬁ)sgse:\éeggﬁ; the same nod@ay be carried conflicts between competing connections, we have deviged th
P 9 9 gamay fopowing resolution scheme, as is illustrated by Fig. 3.

out once every few minutes. For a current upstream node o ) g
i, end-to-end delay and loss rate are observed between tw@UPPOSe the upstream node receives the first probe from

consecutive probes, and the latest valuestt) and /i (t) @ downstream noded, which may be either a potential

are obtained by smoothing new observations based on tHig¥nstream node or an existing downstream node, attime
historical values. It immediately responds and waits for a constant time period

1) Negotiations on bandwidth reservatioffor any pair of L UnlessA returns aconnection requesCR) packet or a

upstream and downstream nodes, given the service pricePgPdwidth adjustmentBA) packet at timet, < (t1 + Tv).

the upstream node, both nodes would aim to enhance tHaff'® Poth the CR "’;fd BA packets contain the optimal
own utilities by making the optimal amount of bandwidttP@ndwidth reservationy, () computed by the downstream
reserved for the flow between them. Unless their optim3Pde. and are used to establish a new connection and to update
choices happen to coincide, some negotiation proceduees e Pandwidth reservation, respectively. Once the upsirea

necessary for a stream transfer to be successfully estatlis"°de performs the corresponding operation, the processing
between the two. the first request is accomplished.

Considering the fact that downstream nodes have the priv-Meanwhile, probes that are received from other nodes
lege of evaluating and selecting upstream nodes on tAdring(t1,t2) or (¢1,t1+7y] are queued at the upstream node,
market, we continue to assume that upstream nodes are n®jte Will be processed in a FIFO fashion. On the other hand,
concerned with attracting downstream nodes for the purpbse2 downstream node waits for the upstream node’s reply to its
improving self-utilities. Hence, they behave less aggvels Probes for a limited timé'p. If the packets have remained in
in specifying the transfer of streams before a downstreasie nghe queue for longer thafip, or the queue becomes full, the
is secured. We propose a negotiation procedure that preceéBstream node removes its most out-of-date request from the
as follows. gueue. In practice, we may assurfig and 7y to be on the

As a starting point, a downstream naderobes an upstream order of seconds.
candidate; by sending the PBP packet. Upon receiving the Another type of request that an upstream needs to handle
probe, node;j sends back two values in the PBR packets thedisconnection requeg¢DR). We assume that the request
v’ . andbl ., which form its acceptable range of bandwidtiirom a downstream node for tearing down a connection
reservations for any node that comes in at this moment. Thigectly indicates that it has stopped paying the upstream
acceptable range can be derived from the decision problawde. Thus, an upstream node always responds to such a
Eq. (3) with Au,; v > 0. request immediately, and its processing of probing packets

Once obtaining the PBR, nodeknows the pricep;(t), the can be preempted by disconnection requests. For ease of
available bandwidth on the overlay link from nogldo itself, reference, the distributed algorithms an overlay node seed
as well as the possible amount of bandwidth to be reserviedrun periodically are summarized in Table I.



TABLE |
ALGORITHMS FOR AN OVERLAY NODE?

Price adjustment as upstream Upstream selection and rate adjustmemnassiieam
if it is the beginning of sloft + 1) if it is time to update connections
if p;(t)g(t) < 0.5p; (t)g(t) for each upstream candidate
pi(t+1) < 0.5p;(t) probe with PBP
else and compute utility by Eq1.1)
derive pj (t + 1) from Eq. (9) for each upstream candidate
pi(t+1) —Ap; (t+ 1)+ (1 — N)pj(t) if its utility is higher than the worst current upstream
disconnect from the worst current upstream
Bandwidth reservation negotiation as upstream connect to the new upstream
if PBP packet received from noge for each current upstream
derive b; min andb; max by EQ. (3) adjust bandwidth reservation if needed
send4 PBR packets
while timer T, is not expired Resolving concurrency as upstream
if CR packet received from node while request queue is not empty
connect to nodg at b}, () if feasible if the first one is PBP from nodg
if BA packet received from nodg Bandwidth reservation negotiation as upstream
adjust reservation for nodgto be (t) if feasible if the head-of-queue request expires or the queue is full
if DR packet received from nodg remove the request at the head of queue

disconnect from nodé

:rer’i"'\‘/l;fﬁ Mbps and1024 Mbps, with a heavy-tailed distribution. Over-

> (O Probing lay nodes are randomly connected to backbone routers throug
access links, whose capacities are exponentially diséibu
with an average ofi0 Mbps. All experiments are executed
for 1000 time slots.

O Disconnection
Request

; @ Connection
processing

t 2 b+l . . .
We emulate background traffic as random noise indepen-

Fig. 3. An example to resolve concurrent connection and disecion dently deployed on each link, the magnitude of which is
requests. Packets are labeled by their sources (the difgindownstream yniformly distributed from0 to a small valuee.g, 5% of
nodes). As the probe from downstream nodlés being processed between : : e - . .

t1 and tz, probing packets from upstream nod# and D are queued, the link capacity. Theshortest-widestrouting algorithm |s. _
while disconnection requests from downstream nadend E are processed adopted to generate QoS-aware routes, and the transmission
immediately. By timetz, the probe from downstream may have been delay along a path is approximated as the number of physical

discarded. links that the overlay path consists of.

All our simulation experiments were performed with a
VI. EVALUATIONS simple example: forming a single multicast tree. Every node

The proposed market-based resource allocation mechan[&@ntains up to10 upstream candidates on the network,

is designed for self-optimization of autonomic servicertae with candidates randomly assigned initially. The simla_allati_
networks, where participants are subject to self-interesd Program guarantees that candidates are properly maidtaine

capable of determining their own behavior in the networY €ach node, so that no loop is caused no matter which
Our modeling of node selfishness and the proposed decisﬁ?rpd'date a nodel connec'Fs to. Nodeg probe for their neighbor
making algorithms are meant to emulate the most intelligefi0St UP-to-date information ever0 time slots, and probes
and selfish behavior from overlay nodes. In this sectiof® Sent asynchronously at nodes’ own paces. Further, we
we evaluate the performance of the designed mechanisiie @ simplifying assumption that all the downstream nodes
via simulations, based on the overlay multicast streamin?lgnf'gure their utility functions (Eq(1.1) and Eq.(1.2)) in

application as an example. For simplicity of implementatio € same way-
we consider performance optimality in a network in terms of
average end-to-end throughpahd average end-to-end delay

: g €1 = 2C; €,2=1
from the source to each receiver node, and do not consider P 1= 050,
packet loss. Cip=Civ=0C; D;=15

A. Simulation methodology

Our backbone connections were generated by the BRITERecall thatC; is the local network bandwidth capacity of
universal topology generator [21], witiil2 routers andl024 node:. Finally, each node is issued with an initial fund5f0
backbone edges, whose capacities are distributed betWeerat bootstrapping.



B. Mechanisms in our comparison outperform ANarada and SANarada due to the following

We compare the resource allocation outcomes of a fé®@son. In the former three mechanisms, once nodes choose
self-optimization mechanisms that assume different hienaytheir best upstream nodes, the corresponding bandwidtesha
of overlay nodes. The baseline mechanism is Narada [3]k reserved, other nodes need to find other suitable upstrea
well-known multicast tree formation protocol. To ensureaia f N0odes elsewhere in the network. However, wAiNaradaand
comparison, we simulate and compare two variations of tif\Naradanodes can more easily choose the same upstream
Narada protocol. node. Whenever there is any change to its downstream nodes,
« Augmented Naradawhich is referred to agNaradain the upstream node reallocates its bandwidth resource based
our simulation results. In the original Narada protocoP™ the maximum capacity on the underlying paths from itself
every receiver in the tree receives data at the same rafe€ach downstream node. Hence, their average throughput is
and the tree is formed using a minimum spanning tree 4E'atively lower.
gorithm that optimizes towards delay. We derMdarada
using an all-shortest-widest paths algorithm instead of 7

T T
= MarketNN
—— Market0

the minimum spanning tree algorithm; optimizing first = Market

6L = ANarada
! ASNarada 0.5

bandwidth {.e., width) and then delayi.g., distance).
Moreover,ANaradaallows nodes to receive flows as fast

as possible at heterogeneous rates, as long as a node does
not receive at a higher rate than its upstream node in the
tree.

« Selfish augmented Naradavhich is a special case to
ANaradg in the sense that upstream nodes (except the
source) may deviate from the transmission rates dictated
by the ANaradaalgorithm with probabilityr, and only 1
transmit at half of their dictated throughput. It is refeire
to asSANaradain the simulation results. im0 30 40 00 w0 700 800 00 1000

Aside from our proposed mechanism (referred td/asket ime (e

in the simulation results), we also consider its two vasanktig. 4. End-to-end throughput averaged over all existergivers: a 32-node
that form topology and allocate bandwidth based on indiidunetwork.
decisions:

w ~ @
T T

Average throughput

~

o Our Market mechanism achieves slightly lower throughput
« MarketNN which is the same adMarket except N0 han that ofMarketNNand MarketQ due to the existence of
bandwidth negotiation is involved. It emulates the situgyces in nodes’ utility functions. Its performance appeapre
tion that downstream nodes alone determine the optimigl e tharMarketNN because of bandwidth negotiation.
throughput and upstream nodes always agree 10 reservg, 4| the experiments, we chose the selfishness probability
such amounts. Thus, it represents the optimal deliveralléyr saNaradato be 0.5; for clarity, we have also compared
QoS levels subject to the economic constraints of doWfKe performance difference betweSANaradasettings with
stream nodes. different = values. As Fig. 5 has shown, nodes with selfish

« Marketq which is the same aslarketNNexcept that all ropapility - > 0.5 lead to quite unacceptable performance in
prices are kept as zero. In this case, downstream nO({iﬁé multicast tree.

determine the optimal throughput solely based on their
empirical utilities, and upstream nodes always satisfy

their requests. This situation actually approximates the - ;52*'“*"““"“"‘““
optimal deliverable QoS levels without economic con- —os I
straints, with optimality judged by the empirical utility osepf: 2

functions of downstream nodes.

°
o
s

C. Comparisons in the steady state

In the steady state, we study the topology formation and
bandwidth allocation capabilities of the five different rhec
anisms previously presented, by comparing the average end-
to-end throughput and the average end-to-end delay from the
source to each receiver. Overlay nodes sequentially jan th o N
multicast group at randomly selected times during the first R R zgoTim;sgslm)eéo ®o w0 50
half of the simulation time.

1) Average throughputfig. 4 shows the average throughFig. 5. Average throughput under the SANarada mechanism.
put for all the existent receivers over time, whe&¥® nodes
eventually join the multicast group. All three individuaé-d  With 64 overlay nodes joining the multicast group, Fig. 6
cision based mechanismbarket MarketNN and MarketQ shows similar throughput comparison, and it is more evident

Average throughput
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that the average throughput achievedMgirket lies between local network bandwidth is abundant, nodes closer to thé roo
those ofMarketNNand MarketOand that ofANarada tend to have lower prices to attract more downstream nodes.

T T
— MarketNN 15
— Market0
! — - Market i
— ANarada »

ASNarada 0.5

T T
— MarketNN
— Market0

— - Market

(! ~- ANarada
Vi ASNarada 0.5

=3
w

Average throughput
°

Average delay

0.1f

I I L f i
0 100 200 300 400 500 600 700 800 900 1000 0

I I I I I I I I I
Time (SlDI) 0 100 200 300 400 500 600 700 800 900 1000

Time (slot)

Fig. 6. End-to-end throughput averaged over all existingirers: a 64-node .
Fig. 8.
network.

End-to-end delay averaged over all overlay link§2aode network.
2) Average delay:Fig. 7 illustrates the average end-to-
end delays for the five mechanisms wit8 overlay nodes
in the multicast group. All the mechanisms behave similar
in the small network, except tha&BANaradashows much In the following experiments]28 overlay nodes sequen-
lower delay. The reason is that, with probability upstream tially join the multicast group during the fir$io0 time slots
nodes contribute only half of the transmission capacityhto tat randomly selected times, then start leaving the group at
network, downstream nodes tend to directly connect to th@ndomly selected times from ti&0th time slot. We study
source node which contributes to its full capacity. the reactions of these resource allocation mechanismscto su

node dynamics.

As shown in Fig. 9, during the node joining phase, more
bandwidth resource is being provided to the overlay network
The three mechanismbjarket MarketNNand MarketQ evi-

B. Comparison in dynamics

15

" dently outperform the rest two cases, due to the same reason
; W R ] we have explained for the steady-state difference between
/ RN R them: under the three mechanisms, nodes asynchronously
‘ AT Y ) choose their most preferable upstream nodes, and reseive th
O ' : bandwidth, while inANarada and SANarada nodes might

,_.
)
T

Average delay

| = vy ] choose the same upstream node and share the common link
- ada among them.
ASNarada 0.5

The results also show a clear trend that, as nodes join in the
network, average throughput will be gradually reduced unde
| S S SRS S all five mechanisms, due to the decrease of the available-band
Time (slot) width. The trend is more obvious in tHdarket MarketNN
and MarketOmechanisms. This is because that, as every node
tries to connect upstream nodes closer to the source, bdtidwi
competition will progressively intensify in close proxiyito
Results from a larger multicast group containifynodes the root of the tree.
(Fig. 8) show that the three individual decision based mech-During the node departure phase (an enlarged figure is
anisms actually lead to lower average delay tiddarada shown in Fig. 10), all the mechanisms show a rising trend
because every node tends to choose upstream nodes closéheir average throughput, due to the increased availabil
to the source to reduce its end-to-end delay. Recall that thigbandwidth resource on the network. THMarket, MarketNN
ANaradamechanism optimizes throughput then delay througind MarketO mechanisms still outperform the remaining two,
cooperative algorithms, the utility-based mechanismsehagven with nodes individually deciding on their incoming and
achieved higher average throughput and lower delay throughtgoing connections. With respect to the delay metricygho
independent and non-cooperative adjustments. in Fig. 11), all the mechanisms show some decreasing trend,
Further, based on both Fig. 6 and Fig. 8, we may infaince nodes tend to form shorter trees as other nodes are
that, in comparison taVlarketNN and MarketQ the Market leaving. The three individual decision based mechanisitis st
mechanism tends to form shorter multicast trees. When tlead to lower delays thaANarada

Fig. 7. End-to-end delay averaged over all existent recgive@ 32 node
network.
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Fig. 9. End-to-end throughput during node dynamics: a 128eneetwork. g 11, End-to-end delay during node arrivals and depestua 128-node
network.
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Fig. 10. End-to-end throughput during node departures@ariitle network. Network size

Fig. 12. Communication overhead.

E. Communication overhead

We measure the extra communication overhead brought fy,ted to define the basic self-organization and selfigal
the Market mechanism by counting the number of requesisuhayior of overlay nodes. Many distributed algorithms and

sent between nodes, regarding probing, probing reply, CQfintacols have been proposed for nodes to manage, maintain
nection, disconnection and rate adjustment. Since evetg NQyng allocate shared resources, so as to self-optimize the
only looks at a limited number of upstream (candidate) npd&sstwork towards global optimality.

the number of messages caused by the mechanism increas%§pecia”y, quite a few proposals exist for forming mul-

Ilngarly with tgle netwofrk S|z|e (shown |nkF|g. 12), which Sicast topologies, and for allocating transmission baiithwvi
qwtg acceptable even lor a large network. . _ . under certain optimization objectives. For example, Narad
Finally, we haye mygsﬂgated the computatlpnal efhugp ] constructs the multicast tree by first building an effitie
of our system identification methods used in the pricin esh, and then constructs a minimum spanning tree out of

procedure. In our simulation experiments, nodes recompyfg, nesh to minimize the end-to-end delay. SplitStream [11]
the'F prices .ever}5.() time slots, at thelr own paces. Fig. 13establishes a forest of multicast trees from a single source
depicts the identified model qf(t) with respect top(t)

X i ) 3 and for the purpose of maximizing throughput; and Kostical.
g(t — ,1)’ for an arbitrary overlay node, in whmb(t_) is kept 12] has proposed to construct an overlay mesh of concurrent
as a fixed small value. As we can see, th_e iterations convefge. jissemination connections, each sending a disjoint se
rapidly to the steady state after orfiyiterations. of data, to significantly improve throughput. None of the
aforementioned work, however, considers node selfishness,
VIl. RELATED WORK which potentially exists and actually hinders the expesttt
There already exists a significant body of research wogptimization mechanisms.
regarding self-organization, self-healing and selfimation To address node selfishness in overlay networks, some
in overlay networks. Two categories existructured(e.g.in theoretical studies have employed game theory to model
the CAN [22], Pastry [2], and Chord [1]) andnstructured overlay nodes as game players, with conflicting interests
(e.g, Gnutella [23], Freenet [24]). They have been commonhggarding shared resources [4], [5], [6]. To manipulatarthe
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Fig. 13. The identified system mode(t + 1). (A) After 1 iteration; (B) After2 iterations; (C) After5 iterations; (D) After10 iterations.

self-interests and lead the system into a desirable equilib mathematical models that emulate the selfishness of overlay
state,mechanism desig[25], [26], [27], [28] has been intro- nodes, captured by the utility functions E@..1) and (1.2),
duced into networking problems. However, due to the inhtereand a novel solution — based on optimal control and system
limitations of relevant theories, existing literature madly has identification — to the local maximization problems. They
to unrealistically assume that some global knowledge ath@ut have collectively implemented self-optimization in sewvi
network and other nodes is accessible by the overlay nodegerlay networks that consist of selfish and intelligentesd
This may include concrete forms of the utility functions of

other nodes, and their discussions have mostly focusedeon th VIIl. CONCLUSIONS

steady state propertiesf node interactions. In this paper, we have studied the self-optimization pnsble
A few other work has also proposed to regulate the behavi@gi autonomic service overlay networks consisting of selfis
of selfish nodes within distributed pricing. Q&t al. [7] (in  and intelligent nodes. We have proposedrelligent market
the context of mobile ad hoc networks) and @tial. [8] (in  modelthat manages resource provisioning and allocation, with
the context of overlay multicast) have discussed disteitduta goal of maximizing the sum of node utility. Reasonable- util
pricing models based on the classisaicial welfare maxi- ity functions have been designed to account for the selfishne
mizationmodel, first proposed by Kellgt al. [10]. However, of nodes in the context of a multicast streaming application
the methodologies they have taken are more appropriate #@id appropriate solutions have been proposed for the local
situations where nodes have direct control of the resouragstimization problems. In particular, we have adopted #esys
to be allocated among selfish users, other than most of @ntrol point of view, and provided an optimal pricing sabut
Internet-based service overlay applications, where est&BYs based on system identification techniques.
do not even have any clear view of resources in the physicalunder the proposed market model, prices act as control
network [29]. forces in a selfish overlay network: downstream nodes adjust
The original contributions of this paper, differing fromtheir demands according to changing prices and upstream
previous work, are two-fold. First, we present a marketlbasnodes adjust their prices based on their utilities recedrethe
framework for encouraging selfish and intelligent behavionarket. Through extensive simulation studies, we have show
from overlay nodes, and for decentralizing the resouraxall that with the proposed market-based incentive mechanism,
tion problem into local decision problems. Second, we psepoeven when all nodes behave selfishly towards their ownyutilit



maximization goals, the resulting multicast group canl stib4]
provide QoS metrics comparable to or better than well-known
approximations to optimal outcomes. The intelligent marke
model, together with the decision making algorithms, magygs]
serve as a general incentive-based self-optimizationnsehe

. : : 424
for any autonomic systems that are built on selfish nodes
provide more than one producer choices for each consumer.

[27]
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