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Market-Based Self-Optimization for Autonomic
Service Overlay Networks

Weihong Wang, Baochun Li

Abstract— Rather than managing their heterogeneity and dy-
namic behavior through centralized intervention, overlay nodes
can be programmed to self-organize and self-manage the net-
work. To achieve the highest performance within a service
overlay, they are further expected toself-optimizethe network,
by cooperatively providing and allocating resources in an opti-
mal manner. However, since nodes are inherently selfish about
resources they contribute or consume, self-optimization could
not be achieved if they are not given the correctincentives. In
this paper, we investigate the effectiveness of a market-based
incentive mechanism in directing nodes’ behavior and enabling
self-optimizations.

We have designed anintelligent market model for a service
overlay network, based on which individual nodes, being service
producersand consumers, determine their own resource contri-
butions, consumptions, or service prices based on their own
utility maximization goals. We also propose optimal decision
making solutions for nodes to achieve their self-interests; in
particular, service providers are provided with a control-based
pricing solution based onsystem identificationtechniques.

With the multicast streaming application as an example, we
show through simulations that, even when selfish nodes all seek
their maximal utilities, the resulting network still achieves close-
to-optimal performance in both steady and dynamic states. The
results also indicate that, by encouraging nodes to behave selfishly
and intelligently in a designed market, self-optimization in other
autonomic systems may be facilitated in the presence of node
selfishness.

I. I NTRODUCTION

Participants in overlay networks reside in geographically
dispersed locations, access the Internet via heterogeneous
access technologies, and belong to different administrative
domains with different policies. They may join or leave the
network at any time, leaving the composition of an overlay
network highly dynamic. Due to these characters, it is nearly
impossible to manage an overlay network with centrally coor-
dinated intervention, especially as the network becomes large.
Therefore, overlay networks are a natural form of autonomic
systems. It has been a well-known design philosophy to
distribute to individual nodes the functionalities of organizing,
controlling and managing an overlay network.

At the topological level, there exist overlay structures (e.g.,
Chord [1] and Pastry [2],etc.), that provide the basic func-
tionalities for nodes toself-organizeinto an overlay network,
and to self-healat times of arbitrary node participation and
departures. At the service management level, it has been
further studied how nodes should self-optimize towards certain
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global optimal objectives. As an example, the overlay multicast
protocolNarada[3] aims to minimize end-to-end delays while
avoiding high link stress, with nodes choosing parent nodes1

on their own.
However, in overlay networks consisting of independent

and heterogeneous nodes, achieving self-optimization is non-
trivial, due to the critical but often overlooked observation:
Nodes are inherentlyselfish. The selfishness is caused by
the fact that overlay nodes belong to different administrative
domains and users, who enjoy the complete freedom to choose
the best courses of action that maximize their utilities. They
may not follow any externally dictated global optimization
algorithms, if their self-interests are not satisfied.

In this context, the critical question is the following: how
should we influence the inherent behavior of selfish nodes
using certainincentives, so that the collective outcome of
individual nodes behaving towards their own self-interests still
leads to the desirable system optimality?

Game theoretic models [4], [5], [6] have been employed
as incentive mechanisms to model selfish nodes, and the
steady-state properties of these mechanisms have been widely
studied in previous literature. Distributed pricing models [7],
[8] have also been proposed to regulate the behavior of service
providers and consumers, under the goal of social welfare
maximization. However, a common drawback of previous
work is that, they are mostly theoretical in nature, and are
usually subject to strict assumptions that do not hold in
realistic overlay networks.

In contrast, this paper seeks to propose a resource allocation
framework for realistic overlay networks composed of selfish
nodes. Similar to previous studies on resource allocation in
communication networks [9], [10], we take the viewpoint that
overlay nodes should be allowed to behave selfishly, and that
the optimality of a network should be evaluated from the
point of view of the entire system. We aim to achieve two
objectives. First, we seek to propose an incentive mechanism
that promotes resource contribution and prevents resource
overuse, not only at the steady state, but also at times of
network dynamics where the supply and demand relationship
changes. Second, we seek to design an appropriate software
agent that best delegates the selfish user under the proposed
incentive mechanism. With these two building blocks, the
network performance parameters resulted fromindividual de-
cisions may approach those determined byglobal optimization
methods.

1Henceforth in this paper, a parent of an overlay node is referred to as an
upstream node, whereas a child is referred to as adownstream node.
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Our proposed incentive mechanism builds upon anintelli-
gent marketmodel, which encourages both service providers
and consumers to pursue their highest possible utilities with
intelligence. In this paper, we choose an overlay media stream-
ing application as a running example, where upstream nodes
that forward media streams are treated as service providers,
and downstream nodes as consumers. Each service provider
maintains a dynamic price for the service it delivers, which
is periodically adjusted for its highest level of utility. Each
service consumer, out of multiple service provider candidates,
selects the ones that best balance its attainable QoS parameters
and economic costs.

Through extensive comparison studies with a well-known
approximately optimal overlay multicast protocol,Narada[3],
we have shown that our market-based incentive mechanism
improves the average throughput in the multicast tree topology,
and efficiently adapts the topology and bandwidth allocation to
network dynamics, while only incurring minor communication
and computation costs. We also believe that, with minor exten-
sions, the proposed market mechanism may serve as a general
framework for achieving self-optimization for other autonomic
systems that consist of selfish and intelligent components.

The remainder of the paper is organized as follows. Sec. II
describes the overlay streaming application, and defines our
market model. Sec. III form the models on node selfishness
and formulates the local optimization problems to be solved
by individual nodes. In particular, a novel decision making
solution for upstream nodes based on optimal control and
system identification is proposed in Sec. IV. Sec. V discusses
distributed protocols that facilitate the self-optimization pro-
cess, and Sec. VI presents our simulation-based evaluations.
Related work on autonomic overlay networks is discussed in
Sec. VII, and Sec. VIII concludes the paper.

II. I NTELLIGENT MARKET MODEL

Throughout this paper, we use an overlay media streaming
application as an example. As illustrated in Fig. 1, overlayme-
dia streaming is an application that multicasts streaming media
in an overlay network, from a source node to a set of receiver
nodes, that together form the multicast group. Rather than
relying on IP multicast, overlay nodes serve as application-
layer switches and forward received data to downstream nodes
via unicast connections. Overlay multicast topologies may
take the form of a single tree [3], multiple trees [11] or a
mesh [12]. In some of the designs, receivers in a multicast
group may receive media content at different rates compared
to their upstream nodes. This can be realized by the use of
multiple description coding. In this application, the design
objective is to achieveoptimal topology formation, which
includes the construction of the overlay topology, and the
subsequent bandwidth allocation on overlay links. A topology
is considered desirable, if it leads to high average end-to-end
throughput, low average end-to-end delay, and low average
packet loss rate for all overlay links.

In previous work, distributed protocols are proposed to
construct overlay multicast topologies [3], [11], [13], inwhich
nodes are only considered as agents to execute the prescribed

protocols. Given the topology, bandwidth shares allocatedfor
multicast traffic are determined by the source rate and the
available bandwidth along all relevant physical links.

In comparison, node selfishness is acknowledged in this pa-
per, where we evaluate the optimality of network performance
with the total satisfaction perceived by all the nodes. Individual
nodes are given complete freedom to determine their connec-
tions with other nodes, based on their own utility evaluations.
The original problem of optimal topology formulation and
resource allocation is therefore turned into a collection of
localized decision problems, within which nodes determine
how to make the best use of their bandwidth resources to
improve their utilities.

In the media streaming application, an overlay node may be
seen as providing themedia delivery serviceits downstream
nodes, if it is serving active media streams. When such a
service is treated as aproduct traded within the multicast
group, we propose the followingintelligent market model.
In the context of multicast bandwidth allocation, it associates
each multicast group with a market.

Within a multicast topology, an upstream node and its
immediate downstream node are identified as theseller and
the buyer, respectively. For example, in the simple multicast
example of Fig. 1, on the overlay link from node1 to node2,
node1 acts as the seller, and node2 as a buyer. A node is a
selleranda buyer if it both sends and receives in the multicast
group.

The media delivery service is quantified based on the
amount of bandwidththe upstream node contributes to the
downstream node, or the end-to-end throughput the upstream
node delivers. Products traded between different pairs of
sellers and buyers are further differentiated by other QoS
metrics, such as end-to-end delay and end-to-end packet loss
rate. Apparently, these metrics are specific to the pair of seller
and buyer: they change with the underlying physical path it
goes along, and are subject to relevant network dynamics.

Naturally, we require the service to be priced by the end-to-
end throughput it provides; the economic revenue or payment
regarding an overlay link is determined as the product of
throughput and price. We further assume that multiple prices
co-exist on the market — each seller determines its charge for
per-unit of throughput it delivers, and prices are dynamically
adjusted by the sellers.

On joining the multicast group, a potential buyer identifies
its seller candidates, and evaluates each of them by their
prices and deliverable Quality of Service (e.g., maximum
throughput). Once the buyer has selected a candidate as a
seller, a correspondinglink will be added to the multicast
topology. The share of bandwidth to be allocated to the
overlay link, henceforth referred to asreserved bandwidth, is
negotiated by the two nodes.

The reserved bandwidth differs from the actual end-to-end
throughput on an overlay link, in the sense that the former
is agreed upon by the two nodes before the transfer begins,
and the latter is supposed to approximate the former, although
its value is affected by flow control and congestion control
performed in the network under realistic traffic situations. Pay-
ments are to be calculated based on the reserved bandwidth.
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Fig. 1. (A) Overlay nodes (nodes0 ∼ 9, represented by hollow circles) interconnected by core nodes (represented by solid circles). (B) The match between
upstream and downstream nodes, node0 is the source. (C) The corresponding multicast topology and apossible bandwidth allocation.

Since the network may undergo unpredictable dynamics
at any time, we allow buyers in a multicast topology to
periodically re-examine their sellers and seller candidates, and
to either switch to other alternative sellers, or readjust its
reserved bandwidth to the optimal value if its current upstream
node remains to be the best seller. Therefore, bandwidth
allocation in the multicast topology is adaptively updatedas
overlay links are established, disconnected and adjusted with
respect to bandwidth.

Finally, it is worth noting that our intelligent market model
does not require any actual monetary flows between overlay
nodes, but may take the form of “virtual currency” that
circulates within the network.

III. M ODELING NODE SELFISHNESS

With economic factors as external incentives, there are a
number of ways of modeling the decisions of selfish over-
lay nodes, each corresponding to a different formulation of
optimization problems. For example, one may suggest that
we maximize the downstream node’s empirical benefit given
its economic budget, or to maximize the upstream node’s
economic profit while delivering services at a fixed quality
level. In this paper, we combine the empirical and economic
concerns, and assume that nodes always make decisions that
best balance the two aspects.

Mathematically, any selfish decision of a node is driven by
its utility function, which summarizes its inherent preference
over its experiences in the network. We further model the
selfish nodes asutility maximizers, making all their decisions
towards maximizing their utilities.

Since the concrete forms of utility functions are essentially
unknowna priori, we aim to “design” the formulation of such
utility functions, such that they represent the best interests
and selfishness of the overlay nodes. By designing the utility
functions, we may examine the effects of the proposed market
model and incentive mechanism by emulating the most likely
behavior of selfish nodes.

A. Utility functions

We consider the discrete time domain where time is divided
into slots, and introduce the following notations. For each time

slot t, a nodei keeps a pricepi(t) for each unit of bandwidth
it reserves for its immediate downstream nodes, which form
the setRi(t). At the same time, it receives streams from a set
Si(t) of upstream nodes. The stream from nodej to nodei

has a reserved bandwidth ofb
j
i (t), an end-to-end delaydj

i (t)
and a loss ratelji (t) as perceived by nodei. Bi(t) denotes
the local available network bandwidth of nodei, andmi(t) is
the economic budget maintained by nodei itself. In addition,
we denote the local bandwidth capacity of nodei as Ci, the
maximal tolerable delay asDi, and the maximal tolerable loss
rate asLi.

We assume that the utility function of nodei, either as a
downstream or an upstream node, takes aquasi-linear form:
the utility equals the sum of anempirical and aneconomic
component. The former accounts for the node’s empirical
benefit (or loss) for receiving (or providing) certain services,
which may be characterized by various quality metrics of the
services received,e.g., b

j
i (t), d

j
i (t), or l

j
i (t). The latter equals

the revenues (or costs) due to the delivery (or consumption)of
services. We choose the quasi-linear form of utility functions,
since any equilibrium solutions to utility maximization prob-
lems are independent of the initial economic funds of market
participants, if the economic funds constitute an additiveterm
in each market participant’s utility function [14].

The economic component can be simply expressed as the
product of the corresponding price and bandwidth value.
However, the formulation of the empirical component needs
to satisfy a few mathematical properties: In order to present
a reasonable preference relation, it has to bemonotonicand
concavewith respect to each variable it takes; and it usually
needs to be twice differentiable for an optimal point to exist
analytically [14].

As a possible formulation, we propose the utility functions,
ui,D(t) and ui,U (t), for node i, in the form of Eq.(1.1)
and Eq.(1.2), as it acts as downstream and upstream nodes,
respectively. In both expressions, the last term represents the
economic component, and the remaining terms represent the
empirical component. By Eq.(1.1), we assume that an end
user may simultaneously evaluate throughput, delay and loss
rate when receiving streams, though any of them can be
omitted by setting the corresponding coefficient to zero. By
considering different subsets of the upstream node setSi(t),
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
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+
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pi(t)b
i
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(1)

the equations can cover any topological cases for multicast,
e.g., single tree, multiple trees or mesh. In Eq.(1.2), we
assume that the network bandwidth is the main resource
constraint that each upstream node considers in our example
of a streaming application.

Coefficientsǫi,l (l = 1, 2, 3, 4) are positive weights that
indicate the relative importance of the three metrics — and the
relative importance of the empirical and economic components
— for the end user. All the parametersCi,D, Ci,U , Di, Li and
ǫi,l, l = 1, 2, 3, 4 are inherently node-specific and application-
specific, and may be configurable by a node for each multicast
group it joins. However, a correct setting of parameters should
guarantee that, a node would be willing to take an action,i.e.,
receiving a stream from a upstream node at certain QoS levels
and charges, or sending a stream to a downstream node at
certain throughput and earnings, only when the corresponding
utility is above zero.

B. Decision problems

Under the prescribed market model, the decision problem of
a downstream node is straightforward: It periodically updates
its best choices of upstream nodes for receiving the streams,
or equivalently, the best combinations ofb

j
i (t), d

j
i (t), l

j
i (t)

andpj(t), in the changing environment. As an upstream node,
however, it is presented with two decision-making problems.
First, upon being requested by any potential downstream node,
the upstream node should decide the best throughput that
maximizes its own utility. Second, it needs to periodically
update the optimal pricepi(t) that induces the highest future
utility for itself.

More specifically, to choose the best upstream node, a
downstream nodei evaluates each upstream candidatej by
first computing the optimal throughputbj∗

i,D(t + 1) from
Eq. (2). In this equation,∆ui,D(t) denotes the expected utility
improvement if nodei were to receive a flow from nodej,
assuming that the prices and transmissions from all its other
upstream nodes remain unchanged. If nodej is one of the
current upstream nodes of nodei, both d

j
i (t) and l

j
i (t) are

measurable from past transmissions; otherwise, sincel
j
i (t)

would be missing, the thirdlog(·) term needs to be removed
from the expression. If there is no solution to Eq. (2), node
j will be excluded from consideration for thetth time slot.
Once b

j∗
i,D(t) is determined for each eligible nodej, node i

then chooses the one, if it exists, with the highest non-negative
∆ui,D(t).

Condition (2.1) implies the utility constraint. Intuitively,
nodei would not choose to be served by nodej if, by doing
so, nodei’s utility decreases. Condition(2.2) is the budget
constraint: the sum of the anticipated payment should not
exceed the current economic budgetmi(t) of node i, and
mi(t) is dynamically updated as nodei pays charges or earns
revenues. Condition(2.3) represents thephysical constraint,
wherebi,min andbi,max are determined by the local available
bandwidthBi(t) of nodei, and the utility-restricted outgoing
throughput bounds of nodej, as will be discussed in Sec. V.

On the side of the upstream node, nodej evaluates its future
behavior of delivering a stream at throughputb

j
i (t+1) by the

corresponding utility increment∆uj,U (t+1). This is expressed
in Eq. (3), whereBj(t) is nodej’s local available bandwidth,
and b̄j(t) corresponds to the data generation rate ifj is the
original source, or the input rate ifj is a branch node in the
multicast topology. Nodej would not be sending the stream at
b
j
i (t+1) if the resulting∆uj,U (t+1) is negative. Clearly, for

a pair of nodes to establish a connection, some negotiation on
b
j
i (t) is necessary to reconcile the two selfish entities. A viable

way of conducting such negotiations is described in Sec. V.
From the economic perspective, the decision of nodei on

price pi(t) aims to maximize its revenues to be made in time
slot t:

p∗i (t) = arg max
pi(t)



pi(t)
∑

k∈Ri(t)

bi
k(t)



 (4)

We devote the next section to an in-depth discussion towards
an intelligent solution for such a pricing problem.

To summarize, we have proposed a mechanism that in-
centivizes selfish nodes with prices and in the context of
markets, and have modeled selfish nodes as utility maximizers.
The utility functions Eq.(1.1) and Eq. (1.2) are formula-
tions reflecting the preferences of selfish nodes over different
empirical and economic factors, and we believe that there
exist many other eligible forms. An alternative solution is
to give end users even more flexibility in determining their
own utility functions through online identification, as hasbeen
proposed by Courcoubetiset al. [15]. As nodes adjust their
behavior based on the utility maximization goal, the overlay
network is expected to beself-optimizing: multicast topology
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and bandwidth allocation are automatically adapted to network
dynamics, which include node joining and departures, as well
as variations in cross traffic. The performance metrics under
concern,e.g., total throughput, average delay, and average loss
rate, are maintained at acceptable levels in all situations.

IV. OPTIMAL CONTROL BASED PRICING DECISIONS

Since making decisions on downstream nodes based on
Eq. (2) is rather straightforward, in this section, we focuson
the decision problem from the point of view of an upstream
node, and propose a solution to make pricing decisions. Given
the operation of the intelligent market model, an upstream
node i’s utility is dependent on its own price, the remaining
bandwidth capacity, and the following factors: (1) the set
of nodes that compete withi as upstream nodes; (2) the
performance measurements on overlay links from these com-
petitors to any potential downstream nodek; (3) the utility
function of nodek; and (4) the prices of the competitors.
However, these factors are essentially unknown to nodei, since
the propagation of global information cannot be assumed in
autonomic systems, and is practically infeasible.

A. Optimal control formulation

Since service prices influence the topology formed and
bandwidth allocated, each node may be considered to be
applying acontrol input to a plant, which is the entire system
consisting of all the sellers and buyers. In system control
terms, we denoteqi(t) as the control input supplied at the
beginning of time slott, and

∑

k∈Ri(t)
bi
k(t) as the total

amount of bandwidth consumed byi’s buyers as thesystem
output obtained at the end of the slot. With an appropriate
system equation, we may mathematically represent the depen-
dence of output on control input, as well as thenoise input
ωi(t) representing dynamic factors that are usually stochastic
and hard to model, including the network topology, storage
access patterns, background traffic, and the effects of upstream

competitions. An illustration of such a dynamic system is
shown in Fig. 2.
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Fig. 2. A diagram of the optimal control system.Z−1 represents aone-
stepdelay in the time scale. Past valuespi(t − 1) and

∑

k∈Ri(t)
bi
k
(t), as

well as an estimatẽω(t − 1) of the past noise input, are used to identify the
mathematical model of the outside world, and to decide the new price pi(t)
for the optimization goal.

Since each node determines its price according to its utility
maximization goal, we may transform the original decision
problem Eq. (4) into an optimal control problem based on the
system view: nodei decidespi(t) as anoptimal control signal
to the system, so that thecontrol objective, i.e., nodei’s utility
∑

k∈Ri(t)
bi
k(t)pi(t) in the tth time slot, is maximized.

B. System identification

To determine the optimal control signal, nodei needs to
first identify the system equation, in order to predict the system
output based on any input. However, for this particular system,
we do not have any specific insights into the underlying
mechanism except its nonlinearity: when the external worldis
relatively stable,pi(t) is small, and the remaining bandwidth
of node i is sufficiently high,

∑

k∈Ri(t)
bi
k(t) may increase

even whenpi(t) increases; while afterpi(t) or the level of
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remaining bandwidth reaches some point,
∑

k∈Ri(t)
bi
k(t) may

decrease significantly aspi(t) increases.
We hence take thenonlinear black-boxparameterization

method [16], which is an established way of emulating any
system model about which littlea priori knowledge is known,
and we identify the involved system parameters by theleast
squares estimationmethod.

With the nonlinear black-box method, the system output is
expressed as a weighted sum ofbasis functions, which are
mathematical expressions of past and present system input,
past system output, related state variables, and noises. In
our problem, we express the system output

∑

k∈Ri(t)
bi
k(t),

hereafter denoted asg(t), as a function ofpi(t), ωi(t) and
g(t − 1) =

∑

k∈Ri(t−1) bi
k(t − 1). Taking the sigmoid basis

function:

κm(pi(t), ωi(t), g(t− 1)) =
1

1 + e−β[pi(t)−γm]

·
1

1 + e−β[ωi(t)−γm]

·
1

1 + e−β[g(t−1)−γm]
(5)

we may obtaiñg(t), an estimate ofg(t), from the following
system model:

g̃(t) =

n
∑

m=1

αm(t)κm(pi(t), ωi(t), g(t− 1)) = αT (t)φ(t)

(6)
In this equation,β andγ are positive constants determined

by the requirements imposed on the approximation accuracy
of g̃(t) and the upper bound of the derivative ofg(t). αm(t),
m = 1, . . . , n are parameters of the system model that
needs to be identified from historical datapi(t), ωi(t) and
g(t− 1). The constantn is dependent on the ranges ofpi(t),
ωi(t) and g(t − 1), and determines the modeling capacity
of the expression.αT (t) and φ(t) are two vectors that
consist of{αm(t),m = 1, . . . , n} and{κm(pi(t), ωi(t), g(t−
1)),m = 1, . . . , n}, respectively. Moreover, the variableωi(t)
is stochastic in nature and unobservable by nodei, thus, it
need to be estimated from the historical data of control input
and output.

At the end of time slott, an iteration round is carried out in
two steps. First, since the values ofg(t), g(t−1) andpi(t) are
known, the value ofωi(t) may be estimated as the minimizing
point of prediction error of the system model identified thus
far, and we denote the estimated value asω̃i(t):

ω̃i(t) = arg min{g(t)−αT (t− 1)φ(t)} (7)

To reduce the effect of randomness on system parameters,
we smooththe estimatẽωi(t) with a weighted sum:̃ωi(t) ←
(1 − λ)ω̃i(t) + λω̃i(t − 1), andλ is a constant within(0, 1).
This smoothedω̃i(t) will be used in the second step of
updating system parameters{αm(t),m = 1, . . . , n}. Since
the system model is stochastic and inherentlytime-varying,
we may update the parameters online by performing a round
of recursive least squares estimation at the end of each slott. In
our simulations, we have adopted a simplified algorithm called

stochastic approximationalgorithm [17], whose updating rule
can be expressed as:

α(t) =α(t− 1) + σ(t)φ(t)ν(t) (8)

whereν(t) = g(t)−φT (t)α(t − 1), andσ−1(t) = σ−1(t −
1)+φT (t)φ(t), with σ−1(0) being a very small positive
value.

As Eqs. (6), (7), (8) have shown, the system identification
procedure is computationally cheap, since, at each time slot
t, a node only needs to (1) locally keep a few values:pi(t),
g(t), g(t − 1) and α(t); (2) solve a minimization problem
7 through any efficient numerical method such as theone-
dimensional golden section search[18]; and (3) perform one
step of iteration of Eq. (8). In practice, the length of a time
slot may be chosen on the order of a minute.

C. Adjustment of prices

Given the mathematical model of the external world, the
new pricepi(t) of a nodei should satisfy:

p∗i (t) = arg max
pi(t)

pi(t)
n
∑

m=1

αm(t)κ(pi(t), ω̃i(t), g(t−1)) (9)

which is also efficiently solvable by the golden section
search method. For more stable behavior of the entire network,
we may update system parameters in every time slot, but adjust
prices once every few slots.

From the decision problem of the downstream nodes in
Eq. (2), one may notice that, the transmission pricepi(t)

should remain in the range

(

0,
ǫj,1

Cj,D+
∑

k∈Sj(t)
bk

j
(t)

)

at least

for some nodej. Consider the partial derivative of a down-
stream nodej’s utility function with respect tobi

j(t). If pi(t) ≥
ǫj,1

Cj,D+
∑

k∈Sj(t)
bk

j
(t)

, then

∂uj(t)

∂bi
j
(t)

=
ǫj,1

Cj,D+
∑

k∈Sj(t)\i
bk

j
(t)+bi

j
(t)
− pi(t) ≤ 0

∀bi
j(t) ∈ [0,∞)

Therefore, the optimal throughput for nodej has to be
bi∗
j (t) = 0. As upstream nodes in a multicast group, their

initial prices may be configured based on their own pa-

rameters as any values within

(

0,
ǫi,1

Ci,D+
∑

k∈Si(t)
bk

i
(t)

)

, and

then adjusted according to Eq. (9). In addition, to cope with
some unavoidable inaccuracy in the identified system model,
especially in the initial stage of iterations, we have applied a
simple rule to assist the adjustment of prices. We let each
node i memorize its estimated revenuep∗i (t)g̃(t) for time
slot t. By the time the real revenuep∗i (t)g(t) is available,
if p∗i (t)g(t) < 0.5p∗i (t)g̃(t), the new pricep∗i (t+1) is directly
set to be0.5p∗i (t), otherwise, the new price will be derived
from Eq. (9) and be smoothed based on its previous value:
p∗i (t + 1)← λp∗i (t + 1) + (1− λ)p∗i (t).
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V. D ISTRIBUTED PROTOCOLS

The previous two sections have formulated the per-upstream
dynamic-price market model based on which a multicast
topology is gradually evolved and the bandwidth resource
is dynamically allocated. We have also identified the local
optimization problems to be solved by individual nodes that
induce network-wide optimality. This section further addresses
the necessary protocols that facilitate the self-organization,
self-healing and self-optimization functionalities.

A. Upstream probing and valuation

In order to maintain the highest level of utility, any nodei is
allowed to periodically inspect each of its upstream candidates
in terms of prices and deliverable QoS levels, by probing and
observation. In doing probing, the downstream node sends a
price and bandwidth probing(PBP) packet to nodej, which
then responds with its pricepj(t) and relevant bandwidth
information within aprice and bandwidth reply(PBR) packet.

We follow the receiver-only packet pairmethod [19], [20],
which is widely adopted in Internet measurement studies.Four
identical PBR packets are sent back to back to nodei, so that
nodei not only receives the response from nodej, but also an
estimate on the available bandwidthBj

i (t) from j to i: each
pair of consecutively sent packets gives an estimate, and the
three pairs give an average.

For nodei, probes regarding the same nodej may be carried
out once every few minutes. For a current upstream node of
i, end-to-end delay and loss rate are observed between two
consecutive probes, and the latest values ofd

j
i (t) and l

j
i (t)

are obtained by smoothing new observations based on their
historical values.

1) Negotiations on bandwidth reservation:For any pair of
upstream and downstream nodes, given the service price of
the upstream node, both nodes would aim to enhance their
own utilities by making the optimal amount of bandwidth
reserved for the flow between them. Unless their optimal
choices happen to coincide, some negotiation procedures are
necessary for a stream transfer to be successfully established
between the two.

Considering the fact that downstream nodes have the priv-
ilege of evaluating and selecting upstream nodes on the
market, we continue to assume that upstream nodes are more
concerned with attracting downstream nodes for the purposeof
improving self-utilities. Hence, they behave less aggressively
in specifying the transfer of streams before a downstream node
is secured. We propose a negotiation procedure that proceeds
as follows.

As a starting point, a downstream nodei probes an upstream
candidatej by sending the PBP packet. Upon receiving the
probe, nodej sends back two values in the PBR packet,
b
j
min andbj

max, which form its acceptable range of bandwidth
reservations for any node that comes in at this moment. The
acceptable range can be derived from the decision problem
Eq. (3) with ∆ui,U ≥ 0.

Once obtaining the PBR, nodei knows the pricepj(t), the
available bandwidth on the overlay link from nodej to itself,
as well as the possible amount of bandwidth to be reserved

at nodej. The best amount of bandwidth reservation is then
computed from the utility maximization problem of Eq. (2),
with the physical constraints determined as:

{

bi,min = b
j
min(t)

bi,max = min(Bj
i (t), b

j
max)

Knowing the optimal throughput and the corresponding
utility increment, it is then up to nodei to decide whether to
have nodej as its upstream node, or to adjust the bandwidth
reserved at nodej. If the application requires a single multicast
tree, nodei may choose the upstream node with the highest
utility increment as its upstream node, if only the utility
increment is adequately high (by a factor of at least1.2 in our
simulation studies). Otherwise, nodei can maintain a number
of best upstream nodes as upstream nodes, which brings the
highest utility increments.

2) Resolution of concurrent requests:Since the same up-
stream nodei may be concurrently probed by multiple down-
stream nodes, by the time downstreamj decides to establish a
connection withi, other downstream nodes may have already
established theirs, thus the connection request from down-
streamj, which contains the bandwidth reservationbi∗

j,D(t),
may be turned down due to lack of bandwidth. To prevent such
conflicts between competing connections, we have devised the
following resolution scheme, as is illustrated by Fig. 3.

Suppose the upstream node receives the first probe from
a downstream nodeA, which may be either a potential
downstream node or an existing downstream node, at timet1.
It immediately responds and waits for a constant time period
TU , unlessA returns aconnection request(CR) packet or a
bandwidth adjustment(BA) packet at timet2 < (t1 + TU ).
Here, both the CR and BA packets contain the optimal
bandwidth reservationbi∗

j,D(t) computed by the downstream
node, and are used to establish a new connection and to update
the bandwidth reservation, respectively. Once the upstream
node performs the corresponding operation, the processingof
the first request is accomplished.

Meanwhile, probes that are received from other nodes
during(t1, t2) or (t1, t1+TU ] are queued at the upstream node,
and will be processed in a FIFO fashion. On the other hand,
a downstream node waits for the upstream node’s reply to its
probes for a limited timeTD. If the packets have remained in
the queue for longer thanTD, or the queue becomes full, the
upstream node removes its most out-of-date request from the
queue. In practice, we may assumeTD and TU to be on the
order of seconds.

Another type of request that an upstream needs to handle
is thedisconnection request(DR). We assume that the request
from a downstream node for tearing down a connection
directly indicates that it has stopped paying the upstream
node. Thus, an upstream node always responds to such a
request immediately, and its processing of probing packets
can be preempted by disconnection requests. For ease of
reference, the distributed algorithms an overlay node needs
to run periodically are summarized in Table I.
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TABLE I

ALGORITHMS FOR AN OVERLAY NODEi

Price adjustment as upstream Upstream selection and rate adjustment as downstream
if it is the beginning of slot(t + 1) if it is time to update connections

if p∗
i (t)g(t) < 0.5p∗

i (t)g̃(t) for each upstream candidate
p∗

i (t + 1)← 0.5p∗
i (t) probe with PBP

else and compute utility by Eq.(1.1)
derivep∗

i (t + 1) from Eq. (9) for each upstream candidate
p∗

i (t + 1)← λp∗
i (t + 1) + (1− λ)p∗

i (t) if its utility is higher than the worst current upstream
disconnect from the worst current upstream

Bandwidth reservation negotiation as upstream connect to the new upstream
if PBP packet received from nodej for each current upstream

derivebi,min andbi,max by Eq. (3) adjust bandwidth reservation if needed
send4 PBR packets
while timer Tu is not expired Resolving concurrency as upstream

if CR packet received from nodej while request queue is not empty
connect to nodej at bi∗

j,D(t) if feasible if the first one is PBP from nodej
if BA packet received from nodej Bandwidth reservation negotiation as upstream

adjust reservation for nodej to bi∗
j,D(t) if feasible if the head-of-queue request expires or the queue is full

if DR packet received from nodej remove the request at the head of queue
disconnect from nodel

x

Request 

arrival 

Request 

processing

t1 t2 t +T1 U

Probing

Disconnection

Connection

A B C D E A G F

Fig. 3. An example to resolve concurrent connection and disconnection
requests. Packets are labeled by their sources (the originating downstream
nodes). As the probe from downstream nodeA is being processed between
t1 and t2, probing packets from upstream nodesB and D are queued,
while disconnection requests from downstream nodesC andE are processed
immediately. By timet2, the probe from downstreamD may have been
discarded.

VI. EVALUATIONS

The proposed market-based resource allocation mechanism
is designed for self-optimization of autonomic service overlay
networks, where participants are subject to self-interests and
capable of determining their own behavior in the network.
Our modeling of node selfishness and the proposed decision
making algorithms are meant to emulate the most intelligent
and selfish behavior from overlay nodes. In this section,
we evaluate the performance of the designed mechanisms
via simulations, based on the overlay multicast streaming
application as an example. For simplicity of implementation,
we consider performance optimality in a network in terms of
average end-to-end throughputandaverage end-to-end delay
from the source to each receiver node, and do not consider
packet loss.

A. Simulation methodology

Our backbone connections were generated by the BRITE
universal topology generator [21], with512 routers and1024
backbone edges, whose capacities are distributed between10

Mbps and1024 Mbps, with a heavy-tailed distribution. Over-
lay nodes are randomly connected to backbone routers through
access links, whose capacities are exponentially distributed
with an average of10 Mbps. All experiments are executed
for 1000 time slots.

We emulate background traffic as random noise indepen-
dently deployed on each link, the magnitude of which is
uniformly distributed from0 to a small value,e.g., 5% of
the link capacity. Theshortest-widestrouting algorithm is
adopted to generate QoS-aware routes, and the transmission
delay along a path is approximated as the number of physical
links that the overlay path consists of.

All our simulation experiments were performed with a
simple example: forming a single multicast tree. Every node
maintains up to10 upstream candidates on the network,
with candidates randomly assigned initially. The simulation
program guarantees that candidates are properly maintained
by each node, so that no loop is caused no matter which
candidate a node connects to. Nodes probe for their neighbors’
most up-to-date information every10 time slots, and probes
are sent asynchronously at nodes’ own paces. Further, we
take a simplifying assumption that all the downstream nodes
configure their utility functions (Eq.(1.1) and Eq.(1.2)) in
the same way:

ǫi,1 = 2Ci ǫi,2 = 1
ǫi,3 = 0 ǫi,4 = 0.5Ci

Ci,D = Ci,U = Ci Di = 15

Recall thatCi is the local network bandwidth capacity of
nodei. Finally, each node is issued with an initial fund of500
at bootstrapping.



9

B. Mechanisms in our comparison

We compare the resource allocation outcomes of a few
self-optimization mechanisms that assume different behavior
of overlay nodes. The baseline mechanism is Narada [3], a
well-known multicast tree formation protocol. To ensure a fair
comparison, we simulate and compare two variations of the
Narada protocol.

• Augmented Narada, which is referred to asANarada in
our simulation results. In the original Narada protocol,
every receiver in the tree receives data at the same rate,
and the tree is formed using a minimum spanning tree al-
gorithm that optimizes towards delay. We deriveANarada
using an all-shortest-widest paths algorithm instead of
the minimum spanning tree algorithm; optimizing first
bandwidth (i.e., width) and then delay (i.e., distance).
Moreover,ANaradaallows nodes to receive flows as fast
as possible at heterogeneous rates, as long as a node does
not receive at a higher rate than its upstream node in the
tree.

• Selfish augmented Narada, which is a special case to
ANarada, in the sense that upstream nodes (except the
source) may deviate from the transmission rates dictated
by the ANaradaalgorithm with probabilityτ , and only
transmit at half of their dictated throughput. It is referred
to asSANaradain the simulation results.

Aside from our proposed mechanism (referred to asMarket
in the simulation results), we also consider its two variants
that form topology and allocate bandwidth based on individual
decisions:

• MarketNN, which is the same asMarket except no
bandwidth negotiation is involved. It emulates the situa-
tion that downstream nodes alone determine the optimal
throughput and upstream nodes always agree to reserve
such amounts. Thus, it represents the optimal deliverable
QoS levels subject to the economic constraints of down-
stream nodes.

• Market0, which is the same asMarketNNexcept that all
prices are kept as zero. In this case, downstream nodes
determine the optimal throughput solely based on their
empirical utilities, and upstream nodes always satisfy
their requests. This situation actually approximates the
optimal deliverable QoS levels without economic con-
straints, with optimality judged by the empirical utility
functions of downstream nodes.

C. Comparisons in the steady state

In the steady state, we study the topology formation and
bandwidth allocation capabilities of the five different mech-
anisms previously presented, by comparing the average end-
to-end throughput and the average end-to-end delay from the
source to each receiver. Overlay nodes sequentially join the
multicast group at randomly selected times during the first
half of the simulation time.

1) Average throughput:Fig. 4 shows the average through-
put for all the existent receivers over time, where32 nodes
eventually join the multicast group. All three individual de-
cision based mechanisms,Market, MarketNN and Market0,

outperform ANarada and SANarada, due to the following
reason. In the former three mechanisms, once nodes choose
their best upstream nodes, the corresponding bandwidth shares
are reserved, other nodes need to find other suitable upstream
nodes elsewhere in the network. However, withANaradaand
SANarada, nodes can more easily choose the same upstream
node. Whenever there is any change to its downstream nodes,
the upstream node reallocates its bandwidth resource based
on the maximum capacity on the underlying paths from itself
to each downstream node. Hence, their average throughput is
relatively lower.
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Fig. 4. End-to-end throughput averaged over all existent receivers: a 32-node
network.

Our Market mechanism achieves slightly lower throughput
than that ofMarketNNand Market0, due to the existence of
prices in nodes’ utility functions. Its performance appears more
stable thanMarketNN, because of bandwidth negotiation.

In all the experiments, we chose the selfishness probability
τ of SANaradato be0.5; for clarity, we have also compared
the performance difference betweenSANaradasettings with
different τ values. As Fig. 5 has shown, nodes with selfish
probability τ > 0.5 lead to quite unacceptable performance in
the multicast tree.
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Fig. 5. Average throughput under the SANarada mechanism.

With 64 overlay nodes joining the multicast group, Fig. 6
shows similar throughput comparison, and it is more evident
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that the average throughput achieved byMarket lies between
those ofMarketNNandMarket0and that ofANarada.
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Fig. 6. End-to-end throughput averaged over all existing receivers: a 64-node
network.

2) Average delay:Fig. 7 illustrates the average end-to-
end delays for the five mechanisms with32 overlay nodes
in the multicast group. All the mechanisms behave similarly
in the small network, except thatSANaradashows much
lower delay. The reason is that, with probabilityτ , upstream
nodes contribute only half of the transmission capacity to the
network, downstream nodes tend to directly connect to the
source node which contributes to its full capacity.
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Fig. 7. End-to-end delay averaged over all existent receivers: a 32 node
network.

Results from a larger multicast group containing64 nodes
(Fig. 8) show that the three individual decision based mech-
anisms actually lead to lower average delay thanANarada,
because every node tends to choose upstream nodes closer
to the source to reduce its end-to-end delay. Recall that the
ANaradamechanism optimizes throughput then delay through
cooperative algorithms, the utility-based mechanisms have
achieved higher average throughput and lower delay through
independent and non-cooperative adjustments.

Further, based on both Fig. 6 and Fig. 8, we may infer
that, in comparison toMarketNN and Market0, the Market
mechanism tends to form shorter multicast trees. When the

local network bandwidth is abundant, nodes closer to the root
tend to have lower prices to attract more downstream nodes.
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Fig. 8. End-to-end delay averaged over all overlay links: a64 node network.

D. Comparison in dynamics

In the following experiments,128 overlay nodes sequen-
tially join the multicast group during the first500 time slots
at randomly selected times, then start leaving the group at
randomly selected times from the750th time slot. We study
the reactions of these resource allocation mechanisms to such
node dynamics.

As shown in Fig. 9, during the node joining phase, more
bandwidth resource is being provided to the overlay network.
The three mechanisms,Market, MarketNNandMarket0, evi-
dently outperform the rest two cases, due to the same reason
we have explained for the steady-state difference between
them: under the three mechanisms, nodes asynchronously
choose their most preferable upstream nodes, and reserve their
bandwidth, while inANarada and SANarada, nodes might
choose the same upstream node and share the common link
among them.

The results also show a clear trend that, as nodes join in the
network, average throughput will be gradually reduced under
all five mechanisms, due to the decrease of the available band-
width. The trend is more obvious in theMarket, MarketNN,
andMarket0mechanisms. This is because that, as every node
tries to connect upstream nodes closer to the source, bandwidth
competition will progressively intensify in close proximity to
the root of the tree.

During the node departure phase (an enlarged figure is
shown in Fig. 10), all the mechanisms show a rising trend
in their average throughput, due to the increased availability
of bandwidth resource on the network. TheMarket, MarketNN
andMarket0mechanisms still outperform the remaining two,
even with nodes individually deciding on their incoming and
outgoing connections. With respect to the delay metric (shown
in Fig. 11), all the mechanisms show some decreasing trend,
since nodes tend to form shorter trees as other nodes are
leaving. The three individual decision based mechanisms still
lead to lower delays thanANarada.
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Fig. 9. End-to-end throughput during node dynamics: a 128-node network.
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Fig. 10. End-to-end throughput during node departures: a 128-node network.

E. Communication overhead

We measure the extra communication overhead brought by
the Market mechanism by counting the number of requests
sent between nodes, regarding probing, probing reply, con-
nection, disconnection and rate adjustment. Since every node
only looks at a limited number of upstream (candidate) nodes,
the number of messages caused by the mechanism increases
linearly with the network size (shown in Fig. 12), which is
quite acceptable even for a large network.

Finally, we have investigated the computational efficiency
of our system identification methods used in the pricing
procedure. In our simulation experiments, nodes recompute
their prices every50 time slots, at their own paces. Fig. 13
depicts the identified model ofg(t) with respect top(t) and
g(t− 1), for an arbitrary overlay node, in which̃ω(t) is kept
as a fixed small value. As we can see, the iterations converge
rapidly to the steady state after only5 iterations.

VII. R ELATED WORK

There already exists a significant body of research work
regarding self-organization, self-healing and self-optimization
in overlay networks. Two categories exist:structured(e.g. in
the CAN [22], Pastry [2], and Chord [1]) andunstructured
(e.g., Gnutella [23], Freenet [24]). They have been commonly
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Fig. 11. End-to-end delay during node arrivals and departures: a 128-node
network.
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adopted to define the basic self-organization and self-healing
behavior of overlay nodes. Many distributed algorithms and
protocols have been proposed for nodes to manage, maintain
and allocate shared resources, so as to self-optimize the
network towards global optimality.

Especially, quite a few proposals exist for forming mul-
ticast topologies, and for allocating transmission bandwidth
under certain optimization objectives. For example, Narada
[3] constructs the multicast tree by first building an efficient
mesh, and then constructs a minimum spanning tree out of
the mesh to minimize the end-to-end delay. SplitStream [11]
establishes a forest of multicast trees from a single source,
for the purpose of maximizing throughput; and Kosticet al.
[12] has proposed to construct an overlay mesh of concurrent
data dissemination connections, each sending a disjoint set
of data, to significantly improve throughput. None of the
aforementioned work, however, considers node selfishness,
which potentially exists and actually hinders the expectedself-
optimization mechanisms.

To address node selfishness in overlay networks, some
theoretical studies have employed game theory to model
overlay nodes as game players, with conflicting interests
regarding shared resources [4], [5], [6]. To manipulate their
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Fig. 13. The identified system modelg(t + 1). (A) After 1 iteration; (B) After2 iterations; (C) After5 iterations; (D) After10 iterations.

self-interests and lead the system into a desirable equilibrium
state,mechanism design[25], [26], [27], [28] has been intro-
duced into networking problems. However, due to the inherent
limitations of relevant theories, existing literature normally has
to unrealistically assume that some global knowledge aboutthe
network and other nodes is accessible by the overlay nodes.
This may include concrete forms of the utility functions of
other nodes, and their discussions have mostly focused on the
steady state propertiesof node interactions.

A few other work has also proposed to regulate the behavior
of selfish nodes within distributed pricing. Qiuet al. [7] (in
the context of mobile ad hoc networks) and Cuiet al. [8] (in
the context of overlay multicast) have discussed distributed
pricing models based on the classicalsocial welfare maxi-
mizationmodel, first proposed by Kellyet al. [10]. However,
the methodologies they have taken are more appropriate for
situations where nodes have direct control of the resources
to be allocated among selfish users, other than most of the
Internet-based service overlay applications, where end systems
do not even have any clear view of resources in the physical
network [29].

The original contributions of this paper, differing from
previous work, are two-fold. First, we present a market-based
framework for encouraging selfish and intelligent behavior
from overlay nodes, and for decentralizing the resource alloca-
tion problem into local decision problems. Second, we propose

mathematical models that emulate the selfishness of overlay
nodes, captured by the utility functions Eq.(1.1) and (1.2),
and a novel solution — based on optimal control and system
identification — to the local maximization problems. They
have collectively implemented self-optimization in service
overlay networks that consist of selfish and intelligent nodes.

VIII. C ONCLUSIONS

In this paper, we have studied the self-optimization problem
for autonomic service overlay networks consisting of selfish
and intelligent nodes. We have proposed anintelligent market
modelthat manages resource provisioning and allocation, with
a goal of maximizing the sum of node utility. Reasonable util-
ity functions have been designed to account for the selfishness
of nodes in the context of a multicast streaming application,
and appropriate solutions have been proposed for the local
optimization problems. In particular, we have adopted a system
control point of view, and provided an optimal pricing solution
based on system identification techniques.

Under the proposed market model, prices act as control
forces in a selfish overlay network: downstream nodes adjust
their demands according to changing prices and upstream
nodes adjust their prices based on their utilities receivedon the
market. Through extensive simulation studies, we have shown
that with the proposed market-based incentive mechanism,
even when all nodes behave selfishly towards their own utility
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maximization goals, the resulting multicast group can still
provide QoS metrics comparable to or better than well-known
approximations to optimal outcomes. The intelligent market
model, together with the decision making algorithms, may
serve as a general incentive-based self-optimization scheme,
for any autonomic systems that are built on selfish nodes and
provide more than one producer choices for each consumer.
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