
Coflex: Navigating the Fairness-Efficiency Tradeoff
for Coflow Scheduling
Wei Wang†, Shiyao Ma†, Bo Li†, Baochun Li‡

†Hong Kong University of Science and Technology, ‡University of Toronto
{weiwa, smaad, bli}@cse.ust.hk, bli@ece.toronto.edu

Abstract—Fair and efficient coflow scheduling improves
application-level networking performance in today’s datacenters.
Ideally, a coflow scheduler should provide isolation guarantees on
the minimum coflow progress to achieve predictable networking
performance. Network operators, on the other hand, strive to
decrease the average coflow completion time (CCT). Unfortu-
nately, optimal isolation guarantees and minimum average CCT
are conflicting objectives and cannot be achieved at the same time.
Existing coflow schedulers either optimize isolation guarantees
at the expense of long CCTs (e.g., HUG [1]), or decrease the
average CCT without performance isolation (e.g., Varys and
Aalo [2], [3]). The lack of a smooth tradeoff in between poses
a dilemma between low efficiency and no performance isolation.
To bridge this gap, we develop a new coflow scheduler, Coflex, to
navigate this tradeoff. Coflex allows network operators to specify
the desired level of isolation guarantee using a tunable fairness
knob, while at the same time decreasing the average CCT. Both
our real-world deployments and trace-driven simulations have
shown that Coflex offers a smooth tradeoff between fairness and
efficiency. At an appropriate tradeoff level, Coflex outperforms
fair schedulers by 2× in minimizing the average CCT.

I. INTRODUCTION

Communications in data-parallel applications typically in-
volve a collection of parallel flows between groups of ma-
chines (e.g., shuffle between map and reduce)—known as
coflows [4]. The coflow abstraction captures the all-or-nothing
communication requirement of data-parallel jobs: a coflow is
not considered complete until all its constituent flows have
completed. Reducing the coflow completion time (CCT) speeds
up the completion of the corresponding job.

Many coflow schedulers have been proposed recently to
minimize the average CCT, ranging from FIFO variants [5],
[6] to the shortest-first heuristics [2], [4]. These schedulers,
while achieving a salient CCT reduction in real systems,
do not provide performance isolation to individual jobs. For
example, with the shortest-first heuristics, a large coflow can
be preempted by a newly arrived small coflow, and may suffer
from a long completion time if small coflows keep arriving
over time.

Fair schedulers come as a solution to provide predictable
isolation guarantees. By allocating each coflow a fair share
of the datacenter network [1], [7]–[12], fair schedulers ensure
a guaranteed minimum progress of coflows, hence isolating
the completion of each coflow from another. Among all fair
schedulers, the recently proposed HUG [1] is the most efficient.
HUG achieves the optimal isolation guarantee with the highest
attainable network utilization. However, HUG does not perform

well in minimizing the average CCT. It has been shown in [1]
that HUG suffers from 1.45× longer average shuffle completion
time compared to Varys [2], a performance-optimal scheduler.

Therefore, a tradeoff generally exists between fairness and
efficiency for coflow scheduling, which has so far received
little attention in the literature. The result is a dilemma facing
network operators between little or no isolation guarantee with
performance-optimal schedulers (e.g., [2], [3], [5], [6]) and
inefficient performance with fair schedulers (e.g., [1], [10]).

In this paper, we aim to design a new coflow scheduler to
address this problem by navigating the tradeoff between fairness
and efficiency. As a starting point, we show that simply trading
off the optimal isolation guarantee of existing fair schedulers
does not necessarily improve their efficiency. Worse, it wastes
more bandwidth with even lower network utilization. We find
that the root cause of this inefficiency is the retaining of strategy-
proofness, in that a coflow cannot improve its progress by lying
about its bandwidth demands across links.

Unlike prior work [1], [10], we give up on strategy-proofness
to pursue higher efficiency. In particular, we develop a new
coflow scheduler, Coflex, which offers a smooth tradeoff
between fairness and efficiency. Coflex exposes a tunable
fairness knob that allows network operators to flexibly trade
off isolation guarantees for faster coflow completion. Coflex
employs a two-stage bandwidth allocation algorithm. In the
first stage, Coflex increases the progress of each coflow
to a level specified by the fairness knob. In the second
stage, Coflex decreases the average CCT using the smallest-
effective-bandwidth-first (SEBF) heuristic [2] that preferentially
schedules a coflow with the smallest bottleneck’s completion
time, using spare bandwidth unallocated in stage-1. Though
Coflex is not strategy-proof, it can still achieve provable
isolation guarantees in the presence of strategic manipulations.

We evaluated Coflex through real-world deployments on a
60-machine cluster, as well as in simulations over production
traces collected from a 3000-machine cluster at Facebook
[13]. Our evaluation results show that Coflex strikes a flexible
balance between isolation guarantees and high efficiency. In
particular, by trading off 50% of fairness, Coflex increases the
average coflow progress by 2.2× over HUG, which translates
to 50% higher network utilization. In the long run, Coflex
decreases the average CCT by over 50% as compared to HUG.
The price paid is reflected in fewer than 5% of coflows, as
they experience a 13% longer CCT on average. Compared
to Varys, Coflex provides predictable service isolation, even



1

2

m

m+1

m+2

2m

… …

Uplinks Downlinks

Fig. 1: An m×m datacenter fabric with m ingress/egress ports
connecting to m machines.

though Varys leads to a 24% shorter average CCT. Last but
not the least, Coflex is able to scale to large clusters. Even
with 10,000 machines, a scheduling decision can be made and
enforced in just one second.

II. MODEL AND MOTIVATION

In this section, we present our models and motivate the need
to offer a smooth tradeoff between fairness and efficiency for
coflow scheduling.

A. Model

Network model. Given the recent advances in datacenter
fabrics [14]–[16] and the full bisection bandwidth network in
production datacenters [17], we model the datacenter network
as one non-blocking fabric where the edges are the only sources
of contention [1], [4], [11]. Fig. 1 illustrates a non-blocking
datacenter fabric connecting m machines through full-duplex
links, where link-i and link-m+ i correspond to the uplink and
downlink of machine-i, respectively. Let C = 〈C1, . . . , C2m〉
be the capacity vector of the entire datacenter fabric, where
Ci is the capacity of link-i.

The Coflow abstraction. A coflow corresponds to the
communication stage of a data-parallel job, where a collection
of flows transfer data between groups of machines. In many
data-parallel jobs such as MapReduce, the amount of data each
flow needs to transfer can be known before the flow starts [2],
[5], [6]. In particular, let Si

k be the amount of data coflow-k
transfers on link-i. Vector Sk = 〈S1

k, . . . , S
2m
k 〉 captures the

size of coflow-k. In this paper, we assume Sk is reported by
coflow-k through the Coflow API [2]. Let Γk be the bottleneck’s
completion time of coflow-k, which is the minimum CCT if it
were running alone in the fabric, i.e.,

Γk = max
1≤i≤2m

Si
k/C

i. (1)

Unlike individual flows, coflows have correlated and elastic
bandwidth demands across multiple links. Specifically, we
characterize the demand of coflow-k by a correlation vector
dk = 〈d1

k, . . . , d
2m
k 〉, where dik =

Si
k

CiΓk
is the normalized

demand on link-i. We say link-b is the bottleneck link of
coflow-k if dbk = 1. Intuitively, for every bit coflow-k transfers
on the bottleneck, at least dik bits should be sent on link-i.

Given an allocation ak = 〈a1
k, . . . , a

2m
k 〉, where aik is the

bandwidth share allocated to coflow-k on link-i, its progress is

TABLE I: Summary of notations and definitions.

C = 〈C1, . . . , C2m〉 Link capacity of the datacenter fabric
Sk = 〈S1

k, . . . , S
2m
k 〉 Amount of data coflow-k transfers

dk = 〈d1k, . . . , d
2m
k 〉 Correlation vector of coflow-k

ak = 〈a1k, . . . , a
2m
k 〉 Bandwidth allocation of coflow-k

Γk = maxi S
i
k/C

i Bottleneck’s completion time (minimum
CCT) of coflow-k

Pk = mini a
i
k/d

i
k Progress of coflow-k

mink Pk Isolation guarantee

defined as the minimum demand-normalized allocation across
links, i.e.,

Pk = min
i:di

k>0
aik/d

i
k. (2)

Intuitively, progress Pk captures the attainable transmission
rate of coflow-k. In this paper, we assume a non-cooperative
environment where each coflow strives for the maximum
progress. For convenience, Table I summarizes our notations
and definitions.

B. Objectives

In this paper, we focus on optimizing two objectives, the
average CCT and isolation guarantee.

1) Average CCT: To speed up job completion, network
operators need to finish as many coflows as possible,
each in the fastest possible way. A performance-oriented
coflow scheduler should therefore strive to minimize the
average CCT.

2) Isolation guarantee: In a shared datacenter, coflows
expect guarantees on the minimum progress to achieve
predictable performance. Specifically, given an allocation,
the isolation guarantee is defined as the minimum
progress across all coflows, i.e., mink Pk, where Pk is
given by (2). A coflow scheduler optimizes the isolation
guarantee if the minimum progress is maximized.

Unfortunately, an optimal isolation guarantee and minimum
average CCT are conflicting objectives that cannot be achieved
at the same time. To see this, recall that coflow scheduling
captures traditional flow scheduling on a single link as a special
case, where the optimal isolation guarantee is given by max-
min fairness. However, max-min fairness is not optimal in
minimizing the average flow completion time.

Given the impossibility of achieving both objectives at the
same time, navigating their tradeoffs becomes particularly
important and relevant in practice. Ideally, network operators
should be allowed to specify the desired level of isolation
guarantee, denoted by P . The scheduler should then minimize
the average CCT subject to the constraint that the isolation
guarantee achieves at least a level higher than P , i.e.,

minimize Average CCT,
s.t. mink Pk ≥ P.

(3)

C. The Lack of Tradeoff in Existing Coflow Schedulers

Yet, none of the existing coflow schedulers (e.g., [1]–[3], [5],
[11]) consider this tradeoff. They either optimize the isolation



Link−1 Link−2
0

0.5

1

2/3 1/3

1/9 2/3

(a) Stage-1: DRF allocation.

Link−1 Link−2
0

0.5

1

2/3 1/3

1/3 2/3

(b) Stage-2: Spare b/w allocation.

Fig. 2: Illustration of HUG. Coflow-A (blue) demands dA =
〈1, 1

2 〉, and coflow-B (orange) demands dB = 〈 16 , 1〉. (a) Stage-
1: use DRF allocation [18] to achieve the optimal isolation
guarantee 2

3 . (b) Stage-2: allocate spare bandwidth under a cap
equal to the coflow’s progress.

guarantee or decrease the average CCT, without considering
the other objective. Among these schedulers, Varys [2] and
HUG [1] are the two representatives that respectively achieve
the best performance in efficiency and fairness.

Varys. Strictly minimizing the average CCT is strongly
NP-hard [2]. Given this hardness result, Varys employs an
efficient smallest-effective-bottleneck-first (SEBF) heuristic that
greedily schedules a coflow with the smallest bottleneck’s
completion time, i.e., Γk defined in (1). Varys significantly
reduces the average CCT in real systems, and serves as the de
facto benchmark for coflow scheduling [1], [3].

However, Varys does not provide isolation guarantees,
and may sacrifice large coflows for minimizing the average
CCT. Compared to HUG, Varys delays the maximum shuffle
completion time by 77% in production MapReduce traces [1].

HUG. Unlike Varys, HUG is not designed for CCT reduction,
but it optimizes the isolation guarantee with high network
utilization. HUG employs a two-stage allocation algorithm
[1]. In the first stage, HUG uses Dominant Resource Fairness
(DRF) [18] and increases the progress of each coflow to the
maximum level, computed as

P ∗ =
1

maxi

∑
k d

i
k

. (4)

In the second stage, HUG evenly allocates unused bandwidth
to each coflow under a cap equal to its progress. Specifically,
for each coflow-k, the amount of bandwidth it receives on a
link should not exceed its progress, i.e., aik ≤ P ∗ for all link-i.

Consider an example in Fig. 2. Two coflows compete for two
links, where coflow-A has a correlation vector dA = 〈1, 1

2 〉,
and coflow-B has dB = 〈 16 , 1〉. In the first stage, HUG applies
DRF and raises the progress of both coflows to the maximum
level P ∗ = 2

3 (Fig. 2a), at which link-1 still has unallocated
bandwidth, but link-2 is fully utilized. In the second stage,
spare bandwidth on link-1 is evenly distributed to the two
coflows. Because coflow-B has already reached the cap 2

3 , all
the spare bandwidth goes to coflow-A instead (Fig. 2b).

Enforcing an allocation cap equal to a coflow progress
is needed to retain strategy-proofness, a necessary condition

Link−1 Link−2
0

0.5

1

1/2 1/4

1/2 1/2

(a) Stage-1: DRF allocation.

Link−1 Link−2
0

0.5

1

1/2 1/4

1/2 3/4

(b) Stage-2: Spare b/w allocation.

Fig. 3: HUG without a cap. Coflow-A (blue) remains truthful,
but coflow-B (orange) lies with d′B = 〈1, 1〉. (a) Both coflows
receive lower progress 1

2 in stage-1. (b) Coflow-B is assigned
spare bandwidth in stage-2, increasing the progress to 3

4 .

to achieve the optimal isolation guarantee [1]. Without this
cap, a coflow may game its demands to increase its progress
at the expense of others. Referring back to the previous
example, suppose that coflow-A remains truthful, but coflow-B
misreports by d′B = 〈1, 1〉. Fig. 3 shows the allocation of the
two coflows after stage-1. Suppose that no cap is enforced,
and the spare bandwidth on link-2 is assigned to coflow-B
in stage-2. We see from Fig. 3b that by gaming its demand,
Coflow-B successfully increases its progress to 3

4 . The isolation
guarantee drops to 1

2 . Enforcing an allocation cap equal to
the progress eliminates the incentive of misreporting, retaining
strategy-proofness with the optimal isolation guarantee [1].

However, HUG is inefficient in minimizing the average CCT.
In production MapReduce traces, HUG delays the average
shuffle completion time by 45% compared to Varys [1].

To summarize, Varys and HUG represent the two extremes
on the spectrum of coflow scheduling. The lack of a smooth
tradeoff between these extremes forces a network operator to
face a dilemma between no isolation guarantee and long CCTs.

III. INEFFICIENCY OF NAIVE TRADEOFF ALGORITHM

In this section, we consider a naive tradeoff algorithm that
simply balances between HUG and Varys. We show that the
naive algorithm is highly inefficient and identify the root cause
as the retaining of strategy-proofness.

A. Naive Tradeoff Algorithm

In traditional flow scheduling [19], a common approach is
to use a fairness knob α to trade off fairness for efficiency.
The knob α takes values in the range of [0, 1] and intuitively
quantifies the extent to which the scheduler adheres to fair
allocations. In particular, the scheduler first allocates each flow-
k an α-fraction of the fair share fk, and then uses the remaining
bandwidth 1− α

∑
k fk for efficiency optimization.

Following this approach, we consider a naive two-stage
tradeoff algorithm shown in Algorithm 1. In the first stage,
the algorithm assigns each coflow an α-fraction of its DRF
allocation, thus ensuring an α-fraction of the optimal isolation
guarantee, i.e., Pk = αP ∗, where P ∗ is defined in (4) and
is achieved using HUG. In the second stage, the algorithm



Algorithm 1 NaiveTradeoff(α)
Stage 1: Increase the progress of each coflow to an α-fraction of the

optimal isolation guarantee, i.e., Pk = αP ∗ for all coflow-k:
for all coflow-k do

ak ← αāk . āk: DRF allocation of coflow-k
Stage 2: Allocate unused bandwidth using SEBF [2], subject to the

constraint that the amount of bandwidth each coflow-k receives on
a link does not exceed its progress, i.e., aik ≤ αP ∗, for all link-i.

switches to performance-optimal heuristics using SEBF. Similar
to Varys, it greedily offers unallocated bandwidth to a coflow
with the smallest bottleneck’s completion time. Recall that
in HUG, to retain strategy-proofness, bandwidth allocation is
capped by the corresponding coflow’s progress. Algorithm 1
enforces a similar cap, which is αP ∗, to restrict the allocation
of unused bandwidth. We show in the following theorem that
Algorithm 1 retains strategy-proofness, with a tunable isolation
guarantee that is an α-fraction of the optimum. The proof is
similar to the analysis of HUG (cf. [1, Theorem 3]) and is
thus omitted.

Theorem 1: Algorithm 1 is strategy-proof with an isolation
guarantee of αP ∗, where P ∗ is defined in (4).

B. Inefficiency of the Naive Tradeoff Algorithm

The naive tradeoff algorithm is however problematic. Recall
that bandwidth allocation is capped by αP ∗ to retain strategy-
proofness. The smaller the α, the lower the cap. Consequently,
trading off isolation guarantee with a small α puts a low cap
on allocation, resulting in poor network utilization! Such a
tradeoff, therefore, is neither desirable nor justifiable.

It turns out that the root cause of the inefficiency of
Algorithm 1 is that strategy-proofness needs to be retained,
for which the cap αP ∗ is needed. One might think that the
efficiency problem caused by strategy-proofness occurs only
when α is small. We show in the following theorem that even
with no isolation tradeoff (α = 1), the allocation cap required
by strategy-proofness may result in arbitrarily low network
utilization.

Theorem 2: The network utilization of Algorithm 1 can be
arbitrarily close to 0 even if α = 1.

Proof: Consider n + 1 coflows competing for n links.
Each coflow-k, where k < n, has demands on two links only,
i.e., d1

k = 1, dk+1
k = 1

2 . Coflow-n has demand on link-1 only,
i.e., dn = 〈1, 0, . . . , 0〉. Coflow-n+ 1 has equal demands on
all but link-1, i.e., dn+1 = 〈0, 1, . . . , 1〉. Algorithm 1 allocates
all coflows the same progress P ∗ = 1

n in the first stage. In the
second stage, the algorithm allocates spare bandwidth under
an allocation cap of 1

n . Specifically, each coflow-k, where
k < n, receives a1

k = ak+1
k = 1

n ; coflow-n receives an =
〈 1
n , 0, . . . , 0〉; and coflow-n+1 receives an+1 = 〈0, 1

n , . . . ,
1
n 〉.

To summarize, Algorithm 1 allocates the entire capacity of link-
1 but 2

n of that of the other links, and the network utilization
is 1

n + 2(n−1)
n2 , and is arbitrarily close to 0 when n→∞.

Prior work shows that enforcing an allocation cap no more
than the coflow progress is a necessary condition to retain
strategy-proofness [1, Lemma 1]. Given this result, we see

from Theorem 2 that to achieve high efficiency, we must give
up on strategy-proofness. This, in turn, opens the door to
strategic manipulations, which may result in a lower isolation
guarantee as seen in the example of Fig. 3. But to what extent
can the isolation guarantee be harmed? Are we opening up
a Pandora’s box by giving up strategy-proofness? We answer
this question in the next section.

IV. COFLEX

In this section, we analyze the strategic behaviors of coflows.
We show that capping the bandwidth allocation does not help
mitigate the loss of the isolation guarantee once strategy-
proofness is no longer retained. Based on this observation, we
present a new coflow scheduler, Coflex, to allocate bandwidth
without such a restriction. We show that despite untruthful,
strategic coflows, Coflex can still provide isolation guarantees
comparable to the state-of-the-art fair schedulers. Coflex allows
network operators to flexibly navigate the tradeoff between
fairness and efficiency.

A. Allocation Cap vs. Isolation Guarantee

We learn from previous discussions that completely eliminat-
ing strategic behaviors results in low efficiency; allowing them,
on the other hand, harms isolation guarantees. Is there a middle
ground in between? That is, can we limit the “damage” on
the isolation guarantee due to misreports within an acceptable
range, while at the same time improving the efficiency? Recall
that in Algorithm 1, we use an allocation cap of αP ∗ to
eliminate manipulations. This prompts us to use the cap as a
control knob to tune the loss of isolation guarantees.

In particular, we inflate the allocation cap of Algorithm 1 by
a factor of 1 + e, where e ≥ 0 is a tunable inflation factor. The
first stage remains the same, in which each coflow-k receives
an α-fraction of its DRF allocation, i.e., ak = αāk, where
āk is the DRF allocation of coflow-k. Unallocated bandwidth
is distributed in stage-2, under an inflated cap (1 + e)αP ∗.
Intuitively, with a small inflation factor e, we are conservative in
allocating more spare bandwidth as it may benefit misreporting;
with a larger e, we are more aggressive in pursuing high
efficiency. By tuning the inflation factor e, we expect to control
the loss of isolation guarantees due to manipulations.

To our surprise, the isolation guarantee is not smoothly
traded off as the cap increases. Instead, it suddenly declines to
a certain level when the cap does not retain strategy-proofness,
i.e., e > 0. To see this, we consider no tradeoff with α = 1
and an arbitrarily small inflation factor, i.e., e→ 0. Referring
back to the example in Fig. 2, we might expect the resulting
allocation arbitrarily close to that of HUG. Contrary to our
expectation, we next show that such a slight increase of cap
incurs a “race to the bottom,” where the two coflows game
their reports and finally reach an equilibrium at which both
claim d′A = d′B = 〈1, 1〉. The isolation guarantee drops to 1

2
as compared to the optimum, which is 2

3 .
Analysis of the example in Fig. 2. We start with an initial

state where both coflows are truthful. We analyze their game
theoretic behaviors in rounds. In each round, we fix the report



Algorithm 2 Coflex(α)
. Called upon the arrival or departure of a coflow

Stage 1: Assign each coflow an α-fraction of the its DRF allocation:
for all coflow-k do

ak ← αāk . āk: DRF allocation of coflow-k
Stage 2: Allocate unused bandwidth using SEBF [2].

of one coflow as its claim in the previous round, and let the
other make its best response. The two coflows alternate their
best responses in rounds, where coflow-B is the first mover in
round-1. We characterize the best responses of the two coflows
in the following theorem. The proof is deferred to the technical
report [20] due to the limit of space.

Theorem 3: There exists a threshold round T , such that
1) In each round-r, where r ≤ T , coflow-A makes best

response d
(r)
A = 〈1, 1

2 +re〉 if r is even; coflow-B makes
best response d

(r)
B = 〈 12 + re, 1〉 if r is odd.

2) When round-r runs beyond the threshold T , the best
response of each coflow is d∗A = d∗B = 〈1, 1〉.

Theorem 3 rules out the necessity of enforcing an allocation
cap higher than that required to retain strategy-proofness.
The cap does not help mitigate the damage caused by
manipulations—as long as e > 0, the race-to-the-bottom phe-
nomenon incurs. Worse, the cap restricts bandwidth allocation,
which inevitably results in low utilization. The cap should
therefore be removed if strategy-proofness is given up.

B. Coflex

Coflex is designed to trade off the isolation guarantee for
high efficiency. To this end, Coflex does not cap bandwidth
allocation, and is shown in Algorithm 2. Coflex uses a fairness
knob α to navigate the tradeoff. Similar to HUG, Coflex applies
a two-stage bandwidth allocation algorithm upon the arrival or
departure of a coflow. In the first stage, Coflex computes the
DRF allocation of each coflow based on the reported demands.
It then assigns each coflow an α-fraction of its DRF allocation.
In the second stage, Coflex decreases the average CCT using
the SEBF heuristic that preferentially schedules coflows in an
ascending order of their bottleneck’s completion time (i.e., Γk

defined in (1)).
Coflex is not strategy-proof. Nevertheless, we show that

coflows can still expect isolation guarantees even in the
presence of manipulations and untruthful reports.

Theorem 4 (Isolation Guarantee): Let ni be the number
of coflows having demands on link-i, i.e., those with dik > 0.
Coflex ensures that, at an equilibrium, the (true) progress of
each coflow-k is at least

Pk ≥
α

max1≤i≤2m ni
. (5)

Proof: Let dk and d′k respectively denote the true and
reported demands of coflow-k. We show that for any coflow-k,
irrespective of the other coflows’ claims, it achieves the stated
isolation guarantee by reporting

d′
i
k =

{
1, dik > 0;
0, dik = 0.

(6)

0.7 0.8 0.9 1.0 1.1
Average normalized progress

0.00

0.25

0.50

0.75

1.00

C
D
F

Fig. 4: CDF of average normalized progress by misreporting.

With this report, coflow-k receives

aik = αāik = αd′
i
k/maxl

∑
j d
′l
j (7)

on link-i in stage-1, where āik is the computed DRF allocation.
Therefore, in stage-1, coflow-k achieves progress

Pk = min
i:di

k>0
aik/d

i
k (by (2))

≥ min
i:di

k>0
aik (dik ≤ 1)

= α/maxl

∑
j d
′l
j (by (6) and (7))

≥ α/maxi ni. (d′
i
j ≤ 1)

Because coflow-k can only receive more bandwidth in stage-2,
its progress never decreases.

We note that an isolation guarantee of 1/maxi ni is achieved
by the state-of-the-art fair network sharing policies such as
PS-P in FairCloud [10] and EyeQ [11]. Theorem 4 states that
with Coflex, coflows can expect at least an α-fraction of the
isolation guarantees offered by the status quo.

C. Practical Impact of the Lack of Strategy-Proofness

So far, our analysis on isolation guarantees assumes an
idealized scenario, where each coflow has the full knowledge of
others, and reacts with its best response. Such a full-knowledge
game represents the worst case where strategic manipulations
harm isolation guarantees the most: as shown in Theorem 3,
alternating best responses incurs the race to the bottom. In this
sense, the isolation guarantee given by Theorem 4 is the most
pessimistic estimation.

However, in shared, multi-tenant environments like public
clouds, often a coflow has no knowledge (or imperfect
knowledge at most) of the other coflows belonging to another
tenant. Without the information of the others, how and to what
extent can a misreport improve a coflow’s progress?

To answer this question, we ran simple numerical experi-
ments using Coflex with α = 1 and measured the expected
gain a coflow can derive from misreporting. In particular, we
simulated 100 coflows and let them compete on two links.
The coflow demands on the two links are uniformly generated.
In each simulation run, we randomly selected a coflow-k and
enumerated all the possible reports coflow-k can claim (the step
size of enumeration on each link is set to 0.1). For each report
enumerated, we computed the normalized progress, which is
the progress coflow-k achieves with the report normalized



0.0 0.2 0.4 0.6 0.8 1.0
Fairness Knob α

0.1

0.2

0.3

0.4

P
ro
gr
es

s 
(G

bp
s)

Min.
Avg.

(a) Impact of tradeoff.

0.0 0.2 0.4 0.6 0.8 1.0
Progress (Gbps)

0.2

0.4

0.6

0.8

1.0

C
D
F

Per-flow
PS-P
HUG
Coflex-0.5
Varys

(b) Distribution of instantaneous progress.

Per-flow PS-P HUG Coflex-0.5 Varys
Schemes

150

200

250

300

350

To
ta
l A

llo
c.
 (G

bp
s)

267

175
196

292 292

(c) Total allocation out of 300 Gbps availability.

Fig. 5: Characteristics of instantaneous allocation with 100 concurrent coflows using different coflow schedulers.

by that with the true demand. After enumerating all possible
claims, we computed the average normalized progress. If the
average normalized progress is greater than 1, the coflow can
expect higher progress by misreporting; otherwise, the coflow is
better off truthful. We ran 100 experiments and break down the
average normalized progress in Fig. 4. It can be observed that
only by a very small chance, less than 3%, can misreporting
be beneficial in expectation—even so, the expected progress
gain is no more than 3%.

We emphasize that the simple scenario considered in our
numerical experiments consists of only two links, which
can be easily “hacked” by exhaustively searching over the
entire strategy space. However, datacenter fabrics typically
consist of tens of thousands of links, and a coflow of a data-
parallel job can easily span hundreds of machines. At such
a large scale, finding a strategy that is consistently beneficial
is computationally challenging, if not impossible. Given that
beneficial misreporting is rare, computationally difficult and of
marginal gains, we believe that the lack of strategy-proofness
hardly poses a disadvantage for Coflex in realistic datacenters.

V. EVALUATION

We have evaluated Coflex using both trace-driven simulations
and a real-world implementation across a 60-machine cluster.
Highlights of our evaluations are summarized as follows.

• Coflex offers a smooth tradeoff between fairness and
efficiency. With α = 0.5, Coflex outperforms HUG by
2.2× in terms of the average coflow progress, which
translates to 1.5× higher network utilization. Varys, on
the other hand, provides no isolation guarantee, starving
68% of coflows with zero progress (Sec. V-A1).

• Coflex dominates HUG in minimizing the average CCT.
With α = 0.5, Coflex is on average 2× faster than HUG
in terms of the normalized CCT, with fewer than 5% of
coflows suffering from longer CCT (Sec. V-A2).

• Coflex is able to scale to large clusters. Even with 10,000
machines, new bandwidth allocations can be computed
and enforced in around 1 second (Sec. V-B).

A. Trace-Driven Simulations

Workload. We use a suite of production traces in the Coflow-
Benchmark [13] as input in our simulations. These traces are
synthesized based on the one-hour workload collected from
a 3000-machine Hive/MapReduce cluster with 150 racks at
Facebook [2]. In total, the traces consist of 526 coflows scaled
down to a 150-port fabric, where mappers (reducers) in the
same rack are combined into one rack-level mapper (reducer).
For each coflow, the traces log its arrival time, placements of
mappers/reducers, and the amount of data shuffled.

Setup. We abstract out the datacenter fabric as a 150×150
non-blocking switch, where an ingress (egress) port corresponds
to a 1 Gbps uplink (downlink) of a rack. We compare Coflex
against four scheduling schemes: per-flow fairness (TCP),
FairCloud’s PS-P policy [10] that seeks per-link fairness, HUG
[1], and Varys [2]. We implemented these schemes along
with Coflex on top of CoflowSim [21] and compared their
instantaneous and long-term performance.

1) Instantaneous Performance: We start to evaluate the
instantaneous performance of Coflex. We randomly sampled
100 coflows and ran them concurrently. To eliminate sampling
bias, we repeated the simulations several times and observed
a consistent performance trend. We therefore report results in
one simulation run.

Impact of tradeoff. We ran Coflex at different fairness
levels, from none (α = 0) to the highest (α = 1). Fig. 5a shows
the minimum and average coflow progress with different α,
where the former quantifies achieved isolation guarantees, and
the latter captures the instantaneous efficiency. As expected,
the minimum progress linearly increases with increasing
α. Meanwhile, the average progress declines, also linearly.
Intuitively, the higher the isolation guarantee, the less the
spare bandwidth available. Recall that spare bandwidth is
preferentially offered to small coflows. Having less spare
bandwidth lowers their progresses. Given that the population of
small coflows dominates (72%), the decrease of their progress
drags down the average accordingly.

To summarize, Coflex offers a smooth tradeoff between
isolation guarantee and efficiency. Given that the tradeoff is



0.0 0.2 0.4 0.6 0.8 1.0
Fairness Knob α

1

2

3

4

5
S
lo
w
do

w
n

95th.
Avg.

(a) Impact of tradeoff.

100 101 102 103
Slowdown

0.2

0.4

0.6

0.8

1.0

C
D
F

Per-flow
PS-P
HUG
Coflex-0.5
Varys

(b) Distribution of slowdown.

SN LN SW LW All
Coflow Type

0

1

2

3

A
vg

.n
or
m
al
iz
ed

 C
C
T

2.02 1.93

2.36

1.75
2.02

0.71 0.77 0.81 0.77 0.76

HUG
Varys

(c) Average normalized CCT in coflow bins.

Fig. 6: Long-term characteristics of Coflex against alternative coflow scheduling schemes.

linear, unless otherwise specified, we settle on α = 0.5 to
balance fairness and efficiency in the following evaluations.

Coflow progress. We next compare the distribution of
coflow progress under different schemes in Fig. 5b. We see
that Varys’ SEBF heuristic runs into winner-take-all, where
68% of coflows end up with no progress, whereas the others are
serviced at the maximum progress. Varys therefore provides no
isolation guarantee and is not fair. HUG goes to another extreme
by enforcing a uniform progress of 93 Mbps across coflows.
Compared to these two schedulers, Coflex lands in an attractive
middle ground. Coflex offers the isolation guarantee of 46
Mbps with α = 0.5, and does not cap bandwidth allocation.
The results are 40% of coflows receiving a progress over 500
Mbps. Compared to HUG, Coflex is 2.2× better in terms of
the average progress. Coflex also outperforms per-flow fairness
and PS-P, by a significant margin.

Network utilization. Fig. 5c compares the total amount of
bandwidth allocated using different schedulers. We see that
Coflex and Varys are able to achieve the highest utilization,
taking 97% of the total 300 Gbps availability. Per-flow fairness
follows with 89% utilization. In comparison, HUG is inefficient:
the enforcement of allocation cap results in 96 Gbps less
bandwidth allocation than that under Coflex, which accounts for
31% of the total availability. PS-P is even worse, with less than
60% utilization. We attribute its low utilization to being agnostic
to the correlated demands of coflows. Because bandwidth is
assigned separately on each link, often, the allocated ingress
bandwidth does not match that on the egress ports.

2) Long-Term Performance: We next evaluate the long-
term performance of different schedulers in minimizing the
coflow completion time (CCT). In particular, we replayed 526
coflows in the trace [13] and used two metrics throughout our
evaluation: shuffle slowdown and normalized CCT.
• Shuffle slowdown is defined, for each coflow, as the CCT

under the compared scheduler normalized by the minimum
CCT, i.e., its bottleneck’s completion time defined in (1):

Slowdown =
Compared CCT
Minimum CCT

.

• Normalize CCT is defined, for each coflow, as the CCT
under the compared scheduler normalized by that under

TABLE II: Coflows binned by their lengths (Short or Long)
and widths (Narrow or Wide) in the Coflow-Benchmark [13].

Bin SN LN SW LW
% of Coflows 60% 16% 12% 12%

Coflex:

Normalized CCT =
Compared CCT

CCT under Coflex
.

If the normalized CCT is greater (smaller) than 1, the
coflow finishes faster (slower) using Coflex.

In addition, to better understand the performance impact on
different coflows, we categorize coflows into four bins based on
their shuffle types. Specifically, we say a coflow is small (long)
if its largest flow is less (greater) than 5 MB, and narrow (wide)
if it consists of less (more) than 50 flows [1]–[3]. Table II
summarizes the distribution of binned coflows.

Impact of tradeoff. We start by characterizing how Coflex
trades off the isolation guarantee for faster coflow completion.
Fig. 6a shows the shuffle slowdown on average and at the
95th percentile at different levels of the isolation guarantee.
We make two observations. First, at the 95th percentile, the
best tradeoff point is given by α = 0.8, beyond which the
slowdown sees a sharp increase. On the other hand, in terms
of the average performance, the best tradeoff is achieved at
α = 0.5 — a saddle point starting from which the increase of
slowdown becomes more salient. Because Coflex focuses on
improving the average performance, we settle on α = 0.5 in
the evaluation.

Slowdown. We compare in Fig. 6b the distribution of
shuffle slowdown under different schedulers. We see that
per-flow fairness and PS-P do not perform well for their
ignorance of coflow’s correlated demands. HUG addresses
this problem and uniformly outperforms these two schemes.
However, HUG is not designed to speed up coflow completion,
and its performance is dominated by Varys. Coflex comes as
a middle ground. While the tradeoff is taken at the midpoint
(α = 0.5), Coflex performs more closely to Varys than to
HUG. It is worth noticing that Coflex does not cross HUG,
and is less likely to delay the coflow completion beyond that
of HUG, even if the isolation guarantee has been traded off.



TABLE III: Statistical summary of slowdown.

Per-flow PS-P HUG Coflex Varys
Min 1.00 1.00 1.00 1.00 1.00

Mean 120.06 9.47 3.13 1.59 1.10
95th 757 20.73 5.00 2.73 1.85
Std. 248 6.75 1.38 0.66 0.35

Table III gives the minimum, average, and the 95th percentile
slowdown, as well as the standard deviation measured under
different schedulers. To summarize, in terms of the shuffle
slowdown, Coflex outperforms HUG by 2× on average, and
by 1.8× at the 95th percentile.

Normalized CCT. Fig. 6c shows the average normalized
CCT under HUG and Varys in all coflow bins. Here, we exclude
per-flow fairness and PS-P from comparison due to their poor
performance. We see that Coflex consistently outperforms HUG,
with normalized CCT greater than 1 in all the bins. In particular,
small coflows have higher normalized CCTs than large ones,
implying that they are favored by Coflex with a more significant
speedup. Such a bias towards small coflows is attributed to the
SEBF heuristic. On average, Coflex outperforms HUG by 2×
in terms of the normalized CCT, where only 25 coflows (< 5%)
suffer from on average a 13% longer CCT (not shown in the
figure). On the other hand, we note that, being performance-
optimal, Varys is 24% faster than Coflex, but at the expense
of providing no isolation guarantee at all.

B. Testbed Experiments

We next micro-benchmark the performance of Coflex using
our real-world implementation.

Implementation. We have implemented Coflex in Python,
with performance hotspots such as the scheduling algorithm
implemented in C for further optimization. Our implementation
of Coflex adopts a master-slave architecture. Upon arrival, a
coflow registers at the Coflex master and indicates the amount
of data its flows need to transfer, through a public Coflex API.
The master, after receiving this registration, runs Algorithm 2
and computes a new allocation. The master then sends the
allocation to its corresponding slaves on cluster machines for
local enforcement. In our implementation, each slave uses
Linux’s tc and htb qdisc to shape the flow rates, where
packets are filtered by the TCP quintuple and added to the
corresponding htb classes subject to specified rate limits. Each
slave also updates its status with the master periodically. This
allows the master to quickly respond to coflow completion
events and compute new allocations for running coflows.

Cluster deployment. We performed our experiments on a
60-machine Linode [22] cluster running Debian stable with
kernel version 4.5.5. Each machine has 12 GB RAM, 6 cores,
1 Gbps uplink, and 40 Gbps downlink.

Micro-benchmark. To micro-benchmark the behavior of
Coflex in a more controlled manner, we ran three coflows, each
having endpoints on all 60 machines. Coflows have different
communication patterns. For coflow-A, we evenly divide its
endpoints into 10 groups. Within a group, the communications
follow an all-to-all pattern with 36 flows. In total, coflow-A
consists of 360 flows. Coflow-B has 60 flows following a

Coflow-A Coflow-B Coflow-C0
2
4
6
8
10
12
14

C
C
T 
(s
)

10.8

7.0
5.2

11.7

4.0 4.6

11.7

2.8 3.3

HUG
Coflex-0.5
Varys

Fig. 7: CCT of three coflows in a 60-machine cluster.

0.0

0.5

1.0 HUG
A
B
C

0.0

0.5

1.0 Coflex-0.5
A
B
C

0 2 4 6 8 10 12
0.0

0.5

1.0 Varys
A
B
C

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

gr
es

s 
(G

bp
s)

Fig. 8: Coflow progress measured over time in a 60-machine
cluster.

pairwise one-to-one communication pattern between machine
i and i+ 30, where 1 ≤ i ≤ 30; coflow-C also has 60 flows,
with a one-to-one communication pattern between machine j
and j + 15, where 1 ≤ j ≤ 15 or 31 ≤ j ≤ 45. All flows
are of the same size. In this setting, coflow-A represents a
large job, whereas the other two coflows are considered small.
Coflow-A, B, and C arrive at 0 s, 3 s, and 4 s, respectively.

We compare in Fig. 7 the completion time of the three
coflows using three schemes: Coflex with α = 0.5, HUG,
and Varys. We see that Coflex outperforms HUG in speeding
up the two small coflows, B and C, while slightly delaying
the completion of coflow-A by 8%. Varys exhibits a similar
performance trend, with more salient speedups to small coflows.

Fig. 8 breaks down the progress of each coflow under
different schemes over time. We see that HUG enforces an
equal progress to each active coflow at all times, isolating the
performance of each coflow from that of another. In contrast,
Varys provides no progress guarantees: the arrivals of coflow-
B and C preempt the running coflow-A. Coflex avoids this
problem with guarantees on the coflow progress, but at a level
lower than HUG. Unlike HUG, with Coflex, small coflows are
favored and can achieve a much higher progress above the
minimum guarantee, which significantly decreases their CCTs.

Scalability. Coflex is able to scale to large clusters. In our
60-machine deployment, the computation of new bandwidth
allocations due to coflow arrivals and departures takes less than
30 microseconds on average. We stress tested the computation



time by emulating a fabric of 10,000 machines using the
same implementation code. Even at such a large scale, the
time to compute new allocations is about 26 milliseconds. We
also measured the communication time for Coflex master to
notify slaves about new bandwidth allocation results. In our
deployment, it takes less than 10 milliseconds on average to
communicate to 60 machines. To emulate a large cluster with
10,000 machines, we repeatedly sent the same notification 200
times to each machine. The measured communication time is
around 1 second.

VI. RELATED WORK

The coflow abstraction captures the multipoint-to-multipoint
communication patterns of data-parallel jobs. Many recently
proposed coflow schedulers strive for high efficiency with the
minimum average CCT. For example, Orchestra [6] and Baraat
[5] use FIFO-based scheduling to decrease the average CCT.
Varys [2] uses the Smallest-Effective-Bottleneck-First heuristic
to prioritize small coflows. Aalo [3] improves Varys as a non-
clairvoyant scheduler in that a priori knowledge about the
flow size is not needed. These schedulers, while efficient in
decreasing the average CCT, fall short in isolating coflows
and in providing predictable performance. Coflex addresses
this problem by offering a tunable isolation guarantee, without
losing much on efficiency even compared to Varys.

Isolating coflow performance by means of fair network
sharing among tenants has also received considerable attention.
Systems like SecondNet [9] and Oktopus [8] allow tenants to
express their network requirements and meet them using static,
reservation-based bandwidth allocation policies. However,
static bandwidth reservation can be inefficient: the reserved
bandwidth, even idle, cannot be used by coflows of anther
tenant. This problem is avoided by work conserving policies
such as FairCloud’s PS-P [10] and EyeQ [11], where bandwidth
are dynamically allocated based on the communication pattern
of underlying coflows. Unfortunately, these policies are agnostic
to the correlated demands of coflows, resulting in a low
coflow progress. The state-of-the-art is represented by the
recently proposed HUG [1] and its variant [12], under which
coflows expect the optimal isolation guarantee. The price paid
is, however, a significant efficiency loss, both in network
utilization and in the average CCT. Coflex trades off fairness
for much higher efficiency, at the expense of only a few coflows
experiencing a slight delay of completion.

VII. CONCLUSION

In this paper, we have studied the tradeoff between fairness
and efficiency for coflow scheduling. We have shown that
to achieve high efficiency, strategy-proofness—the common
requirement in shared, multi-tenant environments like cloud
network—must be given up. We have quantified the impact
of strategic manipulations on coflow scheduling, analytically
and experimentally, and highlighted two key observations: (1)
isolation guarantees can still be achieved even in the presence
of strategic manipulations; (2) misreporting is seldom beneficial
with marginal gains in practical settings. Based on these

results, we have developed a new coflow scheduler, Coflex,
that for the first time strikes a flexible and tunable balance
between isolation guarantee and high efficiency. Trace-driven
simulations and testbed implementation have demonstrated that
Coflex significantly decreases the average CCT at the specified
tradeoff level, and is able to scale to large clusters.

ACKNOWLEDGEMENT

This work was supported in part by grants from RGC under
the contracts 615613, 16211715 and C7036-15G (CRF), as well
as a grant from NSF (China) under the contract U1301253.

REFERENCES

[1] M. Chowdhury, Z. Liu, A. Ghodsi, and I. Stoica, “HUG: Multi-resource
fairness for correlated and elastic demands,” in USENIX NSDI, 2016.

[2] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow scheduling
with varys,” in ACM SIGCOMM, 2014.

[3] M. Chowdhury and I. Stoica, “Efficient coflow scheduling without prior
knowledge,” in ACM SIGCOMM, 2015.

[4] M. Chowdhury, “Coflow: A networking abstraction for distributed
data-parallel applications,” Ph.D. dissertation, University of California,
Berkeley, 2015.

[5] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron, “Decentralized
task-aware scheduling for data center networks,” in ACM SIGCOMM,
2014.

[6] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica, “Managing
data transfers in computer clusters with orchestra,” in ACM SIGCOMM,
2011.

[7] A. Shieh, S. Kandula, A. G. Greenberg, C. Kim, and B. Saha, “Sharing
the data center network,” in USENIX NSDI, 2011.

[8] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks,” in ACM SIGCOMM, 2011.

[9] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and
Y. Zhang, “Secondnet: a data center network virtualization architecture
with bandwidth guarantees,” in ACM CoNEXT, 2010.

[10] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy,
and I. Stoica, “Faircloud: sharing the network in cloud computing,” in
ACM SIGCOMM, 2012.

[11] V. Jeyakumar, M. Alizadeh, D. Mazières, B. Prabhakar, C. Kim, and
A. Greenberg, “EyeQ: Practical network performance isolation at the
edge,” in USENIX NSDI, 2013.

[12] W. Wang and A.-L. Jin, “Friends or foes: Revisiting strategy-proofness
in cloud network sharing,” in IEEE ICNP, 2016.

[13] M. Chowdhury, “Coflow-Benchmark,” https://goo.gl/szsBQE.
[14] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,

D. A. Maltz, P. Patel, and S. Sengupta, “VL2: a scalable and flexible
data center network,” in ACM SIGCOMM, 2009.

[15] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, V. Subramanya, and A. Vahdat, “Portland: a scalable
fault-tolerant layer 2 data center network fabric,” in ACM SIGCOMM,
2009.

[16] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, F. Matus, R. Pan, N. Yadav, G. Varghese et al., “CONGA:
Distributed congestion-aware load balancing for datacenters,” in ACM
SIGCOMM, 2014.

[17] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon,
S. Boving, G. Desai, B. Felderman, P. Germano et al., “Jupiter rising: A
decade of clos topologies and centralized control in google’s datacenter
network,” in ACM SIGCOMM, 2015.

[18] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, “Dominant resource fairness: Fair allocation of multiple resource
types,” in USENIX NSDI, 2011.

[19] E. Danna, S. Mandal, and A. Singh, “A practical algorithm for balancing
the max-min fairness and throughput objectives in traffic engineering,”
in IEEE INFOCOM, 2012.

[20] W. Wang, S. Ma, B. Li, and B. Li, “Coflex: Navigating the fairness-
efficiency tradeoff for coflow scheduling,” https://www.cse.ust.hk/~weiwa/
papers/coflex.pdf, HKUST, Tech. Rep., 2017.

[21] “Coflowsim,” https://github.com/coflow/coflowsim.
[22] “Linode,” https://www.linode.com.


