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Abstract

Wireless ad-hoc networks consist of mobile nodes interconnected by multi-hop wireless paths. Unlike conventional wireless

networks, ad-hoc networks have no fixed network infrastructure or administrative support. Because of the dynamic nature of the

network topology and limited bandwidth of wireless channels, Quality-of-Service (QoS) provisioning is an inherently complex

and difficult issue. In this paper, we propose a fully distributed and adaptive algorithm to provide statistical QoS guarantees with

respect to accessibility of services in an ad-hoc network. In this algorithm, we focus on the optimization of a new QoS parameter

of interest, service efficiency, while keeping protocol overheads to the minimum. To achieve this goal, we theoretically derive the

lower and upper bounds of service efficiency based on a novel model for group mobility, followed by extensive simulation results

to verify the effectiveness of our algorithm.
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I. INTRODUCTION

Wireless ad-hoc networks are self-created and self-organized by a collection of mobile nodes, interconnected by

multi-hop wireless paths in a strictly peer-to-peer fashion. Each node may serve as a packet-level router for its peers

in the same network. Such networks have recently drawn significant research attention since they offer unique ben-

efits and versatility with respect to spatial bandwidth re-use, intrinsic fault tolerance, and low-cost rapid deployment.

Furthermore, near-term commercial availability of Bluetooth-ready wireless interfaces [1] may lead to the actual usage

of such networks in reality. However, the topology of ad-hoc networks may be highly dynamic due to unpredictable
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node mobility, which makes Quality of Service (QoS) provisioning to applications running in such networks inherently

hard. The limited bandwidth of wireless channels between nodes further exacerbates the situation, as message exchange

overheads of any QoS-provisioning algorithms must be kept at the minimum level. This requires that the algorithms

need to be fully distributed to all nodes, rather than centralized to a small subset of nodes.

Previous work on ad-hoc networks has mainly focused on three aspects: general packet routing [2], [3], power-

conserving routing and topology control, (e.g. [4], [5]), and QoS routing [6]. With respect to QoS guarantees, due to

the lack of sufficiently accurate knowledge, both instantaneous and predictive, of the network states, even statistical

QoS guarantees may be impossible if the nodes are highly mobile. In addition, scalability with respect to network size

becomes an issue, because of the increased computational load and difficulties in propagating network updates within

given time bounds.

On the other hand, the users of an ad-hoc network may not be satisfied with pure best-effort services, and may

demand at least statistical QoS guarantees. With the following example, we demonstrate one of many scenarios where

a certain degree of QoS support beyond best-effort services is necessary. Consider an wireless ad-hoc network where

a source only has the domain name of a particular destination that it needs to send packets to. Such names need to be

converted to the actual addresses based on a particular addressing scheme for the ad-hoc networks, for example vanilla

IP addresses. It follows that such conversions need to be performed on a server running similar services as the Domain

Name Service. However, since wireless nodes are mobile, it may be impossible to locate a centralized server if it resides

on a different network partition that is not reachable from the source. In such a scenario, QoS-aware mechanisms can

assist to increase the service availability (i.e., the probability that a service is accessible when called upon) to mobile

nodes. Since it is inherently hard to design scalable solutions to address such a problem in an environment where all

nodes are on the move and no network states are precise, we need to present models to assume that a subset of the

network states is sufficiently accurate.

The objective of this work is to provide statistical QoS guarantees with respect to a new QoS parameter in ad-hoc

networks, service efficiency, used to quantitatively evaluate the ability of providing the best service coverage with

the minimum cost of resources. Our focus is on the generic notion of a service, which is defined as a collection of

identical service instances, each may be a web server or a shared whiteboard. Each instance of service runs in a single
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mobile node, and is assumed to be critical to applications. Since service instances may be created (by replication) and

terminated at run-time, we refer to such a service as an adaptive service.

Since nodes are highly mobile, the ad-hoc network may become partitioned temporarily and subsequently recon-

nected. In this paper, the subset of nodes is referred to as groups. Based on similar observations, Karumanchi et al.

[7] has proposed an update protocol to maximize the availability of the service while incurring reasonable update over-

heads. However, the groups that it utilized were fixed, pre-determined, and overlapping subsets of nodes. Such a group

definition may fail to capture the mobility pattern of nodes. Instead, we consider disjoint sets of nodes as groups, which

are discovered at run-time based on observed mobility patterns. This is preferred in a highly dynamic ad-hoc network.

With such group definitions, two critical questions are still not addressed:

• Group division. How to divide nodes into groups, so that when the network becomes partitioned, the probability of

partitioning along group boundaries is high?

• Service adaptation. Assuming the first issue is solved, how can we dynamically create and terminate service in-

stances in each of the groups, so that the service efficiency converges to its upper bound with a high probability?

In short, we need an optimal algorithm that maximizes service efficiency, i.e., covering the maximum number of

nodes with the least possible service instances, especially when the network is partitioned. Obviously, if we assume that

node mobility is completely unpredictable, it is impossible to address the issue of group division and service adaptation.

We need to have a more constrained and predictable model for node mobility. For this purpose, Hong et al. [8] has

proposed a Reference Point Group Mobility model, which assumes that nodes are likely to move within groups, and that

the motion of the reference point of each group defines the entire group’s motion behavior, including location, speed,

direction and acceleration. Since in ad-hoc networks, communications are often within smaller teams which tend to

coordinate their movements, the group mobility model is a reasonable assumption in many application scenarios, e.g.,

emergency rescue teams in a disaster scene or groups of co-workers in a convention. Such a group mobility model

was subsequently utilized to derive the Landmark Routing protocol [9], which showed its effectiveness to increase

scalability and reduce overheads. Based on the following observations, we believe that these group mobility models

were well justified based on real-world scenarios. First, prior research work in the study of the behavioral pattern of wild

life [10] has shown extensive grouping behavior in nature, which may be useful as far as ad-hoc sensor networks are
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concerned. Second, grouping behavior is extensively observed in military and emergency situations, where a group of

soldiers or rescue workers move in a team to accomplish tasks. Finally, it is also applicable in educational and business

scenarios, in the example of a group of students attending the same lectures has similar movement patterns, or a group

of visitors move together in an art gallery.

However, a major drawback of the previously proposed group mobility model was its assumptions that all nodes

have prior knowledge of group membership, i.e., they know which group they are in, and that the group membership

is static. These assumptions have provided an answer to the first unaddressed question, but they are too restrictive and

unrealistic. In this work, we relax these assumptions and focus on dynamic and time-varying group memberships1 to be

detected at run-time by running a distributed algorithm on the nodes, based on only local states of each node. With such

relaxed assumptions, groups are practically formed and adjusted on-the-fly at run-time, without any prior knowledge

about static memberships.

In this paper, our original contributions are the following. First, we provide a mathematical model to rigorously

characterize the group mobility model using normal probability distributions, based on the intuition proposed in previous

work [8]. Second, we define our new QoS parameter of focus, service efficiency. Third, based on our definition of group

mobility, we theoretically derive lower and upper bounds of the service efficiency, which measures the effectiveness of

provisioning adaptive services in ad-hoc networks. Fourth, we propose a fully distributed algorithm, referred to as the

adaptive service provisioning algorithm, to be executed in each of the mobile nodes, so that (1) the group membership of

nodes are identified; (2) service instances are created and terminated dynamically; and (3) message exchange overheads

incurred by the algorithm are minimized. Finally, we present our simulation testbed and an extensive collection of

simulation results to verify the effectiveness of our distributed algorithm for QoS provisioning.

The remainder of the paper is organized as follows. The mathematical formulation of the group mobility model is

given in Section II. Section III shows a theoretical analysis of service efficiency, based on the group mobility model.

Section IV presents the adaptive service provisioning algorithm, in order to identify group membership and manage the

adaptive service. Section V shows extensive simulation results. Section VI concludes the paper and discusses future

1Strictly speaking, we need to impose some restrictions on the degree of dynamics with respect to group membership changes. It may not
exceed the frequency of running the adaptive service provisioning algorithm.



5

work.

II. GROUP MOBILITY MODEL

The definition of group mobility model given in [8] was intuitive and descriptive, but lacked a theoretical model to

rigorously characterize its properties. Furthermore, the model was based on the existence and knowledge of a centralized

reference point for each group, which characterized group movements. However, assuming that per-group information

such as reference points are known a priori to all mobile nodes is unrealistic. For example, when a new node is first

introduced to an ad-hoc network, it does not have prior knowledge about the reference points, or even which group it is

in.

In this work, we assume that the nodes only have access to its local states, which include its distance to all its

neighboring nodes (defined next), derived from the physical layer. With this assumption, the group mobility model

needs to be redefined so that it is characterized based on fully distributed states, e.g., distances between nodes, rather

than the availability of a reference point. Intuitively, nodes within the same group tend to have a high probability of

keeping stable distances from each other.

In this paper, we assume that all nodes have identical and fixed transmission range r in the ad-hoc network, and

that if the distance between two nodes ‖AB‖ ≤ r, they are in-range nodes (or neighboring nodes) that are able to

communicate directly with a single-hop wireless link, denoted by AB = 1, otherwise they are out-of-range nodes with

AB = 0. If there exists a multi-hop wireless communication path between A and B interconnected by in-range wireless

links, we claim that A and B are mutually reachable.

We first define the term Adjacently Grouped Pair (AGP) of nodes.

Definition 1 Nodes A and B form an Adjacently Grouped Pair (AGP), denoted by A
0∼ B, if ‖AB‖ obeys normal

distribution with a mean µ < r, and a standard deviation σ < σmax, where ‖AB‖ denotes the distance between A and

B.

In practice, rather than the absolute value of σmax, one is often interested in the ratio of the standard deviation

to the mean of a distribution, commonly referred to as coefficient of variation CVmax, (0 < CVmax < 1), where

σmax = r ∗ CVmax.
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Fig. 1. Using Adjacently Grouped Pairs to form a group

Figure 1(a) shows such a pair of nodes. Intuitively, this definition captures the fact that if two adjacent nodes are in

the same group over a period of time, the distance between them stabilizes around a mean value µ with small variations,

while µ < r so that they can communicate wirelessly. Although it is possible that they may be out of range from each

other (‖AB‖ > r) intermittently, the probability is low based on the density function of normal distribution. In addition,

σ represents the degree of variations. The mobility patterns of nodes are more similar to each other with a smaller σ.

We now define the term k-related with Adjacently Grouped Pairs.

Definition 2 Nodes A and B are k-related, denoted by A
k∼ B (k ≥ 1), if there exist intermediate nodes C1, C2, . . . , Ck,

such that A
0∼ C1, C1

0∼ C2, . . . , Ci
0∼ Ci+1, . . . , Ck

0∼ B.

Figure 1(b) illustrates such definition. We further define the nodes A and B as related, denoted by A ∼ B, if either

A
0∼ B or there exists k ≥ 1, such that A

k∼ B. Note that even if A ∼ B, ‖AB‖ does not necessarily obey normal

distribution. In addition, it may be straightforwardly derived that the relation A ∼ B is both commutative (in that if

A ∼ B, then B ∼ A), and transitive (in that if A ∼ B and B ∼ C, then A ∼ C).

We now formally define the term group in our group mobility model.

Definition 3 Nodes A1, A2, . . . , An are in one group G, denoted by A ∈ G, if ∀i, j, 1 ≤ i, j ≤ n, Ai ∼ Aj .

It may be proved2 that for nodes A and B and groups G, G1, G2,

• if A ∈ G and A ∼ B, then B ∈ G.

• if A ∈ G and ¬(A ∼ B), then B /∈ G.

• if A ∈ G1, B ∈ G2 and A ∼ B, then G1 = G2.

• if A ∈ G1, B ∈ G2 and ¬(A ∼ B), then G1 �= G2.

• if A ∈ G1 and A ∈ G2, then G1 = G2.

2Proof omitted for space limitations.
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Fig. 2. Grouping Nodes

These properties ensure that groups defined by Definition 3 are disjoint sets of nodes in an ad-hoc network. Note that

Definition 3 is novel in that group memberships are determined by similarity of mobility patterns (or relative stability

of distances) discovered over time, not geographic proximity at any given time. This rules out the misconception that

as long as A and B are neighboring nodes, they belong to the same group. Figure 2 gives an example. Figure 2(a)

shows that A
0∼ B and B

0∼ C, hence A ∼ B ∼ C, which forms one group {A, B, C}. In comparison, Figure 2(b)

shows only A
0∼ B. In this case, although A and C (or B and C) are neighboring nodes, A ∼ C (or B ∼ C) does not

hold. We thus have two disjoint groups {A, B} and {C}. This scenario may arise when two groups are briefly merged

geographically but separated again, due to different directions of travel.

III. THEORETICAL ANALYSIS

The motivation of proposing the group mobility model is to accurately identify groups of nodes that show similar

mobility pattern and maintain a stable structure over time. Therefore, it is with high probability that nodes within the

same group tend to be mutually reachable. For an adaptive service that includes multiple identical service instances

running on individual nodes, this is particularly beneficial to the goal of improving service accessibility with minimum

resources. Intuitively, the ideal case is that, should we have an algorithm to capture grouping information with perfect

accuracy at any given time, we would have placed one service instance in each of the groups, and trivially achieved the

best service accessibility with minimum resource overheads.

However, in reality there are two difficulties that prevent us to achieve the ideal scenario. First, groups are detected on

the fly with a distributed algorithm based on local states, and thus may not be able to be identified with perfect accuracy.

Second, with dynamic group membership, service instances may need to be created and terminated even with a perfect

grouping algorithm. To address these problems, a realistic approach is to first quantitatively define a QoS parameter as
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the optimization goal with regards to the adaptive service, then theoretically derive the upper and lower bounds of such

a QoS parameter, and finally design a best possible algorithm in realistic scenarios.

A. Service Efficiency

We first define two parameters to quantitatively analyze different aspects of QoS in service provisioning. At any

given time t, let N be the total number of nodes in the network, Ns(t) be the number of service instances, and Na(t)

be the number of nodes that are reachable from at least one node that runs a service instance, thus having access to the

adaptive service. We then define service coverage Scover and service cost Scost as

Scover(t) =
Na(t)

N
, and Scost(t) =

Ns(t)
N

(1)

The objective is obviously to have the maximum service coverage while incurring the lowest possible service cost.

This objective is characterized by the definition of a new QoS parameter, service efficiency S, defined as

S(t) =
Scover(t)
Scost(t)

=
Na(t)
Ns(t)

(2)

There is one additional detail related to the definition S(t). Our primary goal for the adaptive service is to reach as

many nodes as possible, while reducing the service cost is only secondary. However, Equation (2) treats Scover(t) and

Scost(t) with equal weights, which may not yield desired results. For example, assume that we have N nodes and two

groups with a split of 2N/3 and N/3, all nodes in each of the groups are reachable from each other. To maximize S(t)

in Equation (2), we only need to place one service instance in the larger group and enjoy a service efficiency of 2N/3,

rather than placing two service instances in both groups, having a service efficiency of only N/2. Therefore, assuming

we have K(t) groups at time t, we need to rectify the definition of S(t) as:

S(t) =
Scover(t)
Scost(t)

=
Na(t)
Ns(t)

, while satisfying Ns(t) ≥ K(t) (3)

We may then proceed with the optimization objective of maximizing the service efficiency S(t).
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σ | µ 2 5 8
2 0.00003 0.00621 0.15866
4 0.02275 0.10565 0.30854

TABLE I
TYPICAL VALUES OF Pr(AB = 0)

B. Theoretical Analysis

In this section, we derive the lower and upper bounds for S(t). Ideally, in an ad-hoc network with N nodes and K(t)

groups at time t, if there exists a perfect grouping algorithm to accurately group all nodes, we may trivially select one

representative node in each group to host an instance of the adaptive service. We thus have

Scost(t) = K(t), and S(t) =
Na(t)
K(t)

(4)

If it happens that for all groups, at time t0, all nodes in each of the group are able to access the representative node,

we have Na(t0) = N , and S(t0) = N/K(t0), which is its optimal value. However, this may not be the case since

there exists a low probability that a small subset of nodes in the same group is not reachable from the service instance.

For the purpose of deriving the global lower and upper bounds for S(t), we start from examining a group consisting of

m nodes. In such a group, the service efficiency is equivalent to the number of nodes that have access to the service

instance. We show upper and lower bounds of the average service efficiency in such a group, and then extend our results

to the ad-hoc network.

Lemma 1 If A
0∼ B, i.e., ‖AB‖ obeys N(µ, σ2) based on Definition 1, then Pr(AB = 0) = 1 − Φ( r−µ

σ ), where

Φ(x) is defined as 1√
2π

∫ x
−∞ e−y2/2dy.

Proof. The probability that A and B are out-of-range nodes is Pr(‖AB‖ > r). Hence, Pr(AB = 0) =

Pr(‖AB‖) > r) = 1 − Pr(‖AB‖ ≤ r) = 1 − Φ( r−µ
σ ). 	


When the transmission range r is definite, Pr(AB = 0) increases monotonically as µ increases to approach r and as

σ increases. For example, assuming r = 10, Table I gives some typical values of Pr(AB = 0), depending on µ and σ.

Lemma 2 Assume that (1) A
0∼ B, i.e., ‖AB‖ obeys N(µ, σ2) based on Definition 1; (2) µ obeys uniform distribution

in the interval [0, r]; and (3) σ also obeys uniform distribution in [0, σmax]. The average probability p = Pr(‖AB‖ >
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Fig. 3. Star-Grouped Nodes

r) = 1 −
∫ r
0

∫ σmax
0 Φ( r−µ

σ
)dµdσ

r∗σmax
.

Proof.

p =

∫ r
0

∫ σmax

0 1 − Φ( r−µ
σ )dµdσ∫ r

0

∫ σmax

0 1dµdσ

=

∫ r
0

∫ σmax

0 1dµdσ − ∫ r
0

∫ σmaxΦ( r−µ
σ

)dµdσ

0∫ r
0

∫ σmax

0 1dµdσ

= 1 −
∫ r
0

∫ σmax

0 Φ( r−µ
σ )dµdσ

r ∗ σmax
	


We may then derive the upper and lower bounds for the average number of nodes that are reachable from the service

instance, in a group G with m nodes (m > 0).

Lemma 3 If node A1 hosts the only service instance in G and A1
0∼ Ai, i = 2, . . . , m (Figure 3), then the average

number of nodes that are reachable from A1 is m − (m − 1)p.

Proof. Consider X , the number of nodes that are not reachable from the service instance A1 in group G. Its

distribution is a binomial distribution B(m − 1, p), i.e.,

Pr(X = k) =
(

m − 1
k

)
pk(1 − p)m−1−k

X has a mean of (m − 1)p, and the average number of nodes that are reachable from A1 is m − (m − 1)p. 	


Theorem 1 The upper bound of S(t) in G is m − (m − 1)p.

Proof. We claim that the average number of nodes that are reachable from A1 is maximized when group G is formed

as a star structure as in Figure 3. This may be proved as follows. Assume that a node Ai is only reachable from A1 via



11

A

N(µ , σ  )23
3

N(µ , σ
  )2
2

2

N(µ  , σ  )
2  m

m

1

A2

Ai
A3

Am

Am-1

. . . . . .
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an intermediate node Aj . The average probability of this reachability is Pr(‖AiAj‖ ≤ r)Pr(‖AjA1‖ ≤ r) = (1−p)2,

obviously it is smaller than 1 − p, which is the average probability of reachability via only a single-hop link. The star

structure in a group ensures that all nodes Ai, i = 2, . . . , m enjoy single-hop reachability to A1 without depending on

intermediate nodes. 	


Theorem 2 Given an ad-hoc network with average group size m, the upper bound of S(t) is m − (m − 1)p.

Proof. Assume that there are K groups G1, G2, . . . , GK , with sizes m1, m2, . . . , mK . The total number of nodes

in this network is N =
∑K

i=1 mi, and the average group size m = N/K = (
∑K

i=1 mi)/K. To achieve the global

upper bound of S(t) in the network, upper bounds of Si(t) should be achieved locally within each of the groups.

According to Theorem 1, each group should be formed as a star structure, which achieves an upper bound of Si(t) =

mi − (mi − 1)p, 1 ≤ i ≤ K. Therefore, the upper bound of S(t) is:

∑K
i=1[mi − (mi − 1)p]

K
=

∑K
i=1 mi + Kp − ∑K

i=1 mip

K
=

N + Kp − Np

K
= m − (m − 1)p 	


Lemma 4 In group G with m nodes (m > 0), if node A1 hosts the only service instance and Ai
0∼ Ai+1, i =

1, 2, . . . , m − 1 (Figure 4), then the average number of nodes that are reachable from A1 is 1−(1−p)m

p .

Proof. Consider X , the number of nodes that are not reachable from the service instance A1 in group G. The

reachability of Ai from A1 depends on all the links AjAj+1, j = 1, 2, . . . , i− 1, i.e., if Ai−1 is not reachable, Aj , j ≥ i

are not reachable as a result. This leads to

Pr(X = k) = Pr(nodes Ai, i = m, m− 1, . . . , m−k +1 are not reachable, all other nodes Aj , j = 1, 2, . . . , m−k

are reachable) =Pr(Am−kAm−k+1 = 0, AjAj+1 = 1, j = 1, 2, . . . , m − k − 1) =p(1 − p)m−k−1

Here, if Ai−1Ai = 0, nodes Aj are not reachable for all j ≥ i, independent from AjAj+1 = 0 or AjAj+1 = 1.
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Observing this, the average number of nodes that are not reachable is p
∑m−1

k=1 k(1 − p)m−k−1, denoted by Am−1.

Let Bm−1 =
∑m−1

k=1 k(1 − p)m−k−1, multiply by 1 − p on both sides, we have

(1 − p)Bm−1 = (1 − p)
m−1∑
k=1

k(1 − p)m−k−1 =
m−1∑
k=1

k(1 − p)m−k =
m−1∑
k=1

(k − 1)(1 − p)m−k +
m−1∑
k=1

(1 − p)m−k

=
m−2∑
j=0

j(1 − p)m−j−1 +
(1 − p) − (1 − p)m

p
=

m−2∑
j=1

j(1 − p)m−j−1 +
(1 − p) − (1 − p)m

p

=
m−1∑
j=1

j(1 − p)m−j−1 − (m − 1)(1 − p)m−(m−1)−1 +
(1 − p) − (1 − p)m

p

= Bm−1 − (m − 1) +
(1 − p) − (1 − p)m

p

Substract Bm−1 on both sides, we have

pBm−1 = (m − 1) − (1 − p) − (1 − p)m

p
(5)

Therefore, the average number of nodes that are not reachable from A1 is Am−1 = pBm−1 = m − 1−(1−p)m

p , and the

average number of nodes that are reachable from A1 is m − Am−1 = 1−(1−p)m

p . 	


Theorem 3 The lower bound of S(t) in G is 1−(1−p)m

p .

Proof. Based on the proof of Theorem 1, for any node Ai, the more intermediate nodes required from the service

instance A1, the less probable that it is reachable from A1 at time t. Obviously, the worst case is reached when all nodes

in the group form a chain structure as in Figure 4. 	


Theorem 4 Given an ad-hoc network with minimum group size mmin, the lower bound of S(t) is 1−(1−p)mmin

p .

Proof. Assume there are K groups G1, G2, . . . , Gk, with sizes m1, m2, . . . , mK . The smallest group size is mmin =

min{m1, m2, . . . , mK}. To achieve the global lower bound of S(t) in the network, lower bounds of Si(t) should be

achieved locally within each of the groups. According to Theorem 3, each group should be formed as a chain structure,

achieving a lower bound of Si(t) = 1−(1−p)mi

p , 1 ≤ i ≤ K. Hence, for the entire network, we have

S(t) =
∑K

i=1[1 − (1 − p)mi ]/p

K
=

K − ∑K
i=1(1 − p)mi

Kp
≥ K − ∑K

i=1(1 − p)mmin

Kp
=

1 − (1 − p)mmin

p
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Therefore, the lower bound of S(t) is 1−(1−p)mmin

p . 	


IV. ADAPTIVE SERVICE PROVISIONING ALGORITHM

Taking the definition of group mobility model (Section II) and its analytical properties, we propose a fully distributed

algorithm, referred to as the adaptive service provisioning algorithm, that enables dynamic service instance creation

and termination in each of the nodes. For this purpose, the algorithm first identifies group memberships of nodes

by leveraging the definition of the group mobility model, then selects representative nodes that require creating and

terminating service instances. The objective is to maximize service efficiency in the network, so that it converges to

the upper bound derived in our theoretical analysis. From the proofs of previous theorems, we believe that the upper

bound is achieved by having exactly one service instance for each group, if the group mobility model can be utilized to

accurately identify the groups at any given time.

In order to address the group division problem in the network, we start by determining if, at time t0, two neighboring

nodes form an Adjacently Grouped Pair (AGP). For this purpose, the distance between two neighboring nodes is mea-

sured and recorded for a fixed number of rounds l, where l is a pre-determined size of the sampling buffer. The average

distance d̄ and the standard deviation s may thus be derived from these l samples, which are used to approximate the

mean value µ and standard deviation σ in the normal distribution. If the approximated µ and σ complies with Defini-

tion 1 in Section II, the two nodes are identified as an AGP. The advantage of this measurement-based approach is that

Adjacently Grouped Pairs can be identified at run-time by only relying on local states of each node, e.g., its distances

to all neighboring nodes. This conforms with our design objective of minimizing local states and message exchange

overheads.

In this algorithm, we assume that each node Ai(i = 1, . . . , N) has an unique physical ID id(Ai), and at the initial

time t0, there are Ks nodes (1 ≤ Ks << N ) in the network that host service instances of the adaptive service. Our goal

is to converge to the upper bound of service efficiency by dynamically initiating new service instances or terminating

existing ones, based on identification of groups. On each node, the following local states are maintained:

• Service Instance ID [sid(Ai)]: the physical ID of the node that hosts the service instance that is currently reachable

from Ai.
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At time t:

out-list := ∅;
for each node Ci in Gn(A), 1 ≤ i ≤ |Gn(A)| do

if A and Ci are out-of-range nodes then out-list := out-list + {Ci};
Current list of neighboring nodes of A is {B1, B2, . . . , Bk};

At time t + (i − 1) ∗ ∆t, 1 ≤ i ≤ l:

for each neighboring node Bj , 1 ≤ j ≤ k do

Record the distance d
(i)
j between A and Bj ;

if A and Bj are out-of-range then d
(i)
j := +∞;

At time t + (l − 1) ∗ ∆t:

if d
(2)
j == +∞ then d

(2)
j := r;

for i = 3, . . . , l do if d
(i)
j == +∞ then d

(i)
j := max(r, d(i−1)

j + |d(i−1)
j − d

(i−2)
j |);

for each neighboring node Bj , 1 ≤ j ≤ k do

calculate the average distance d̄j :=
∑l

i=1 d
(i)
j /l;

calculate the sample estimate of a standard deviation sj :=

√∑l
i=1(d

(i)
j −d̄j)

l−1 ;

if d̄j < r and sj < σmax then
Gn(A) := Gn(A) + {Bj};
if A /∈ Gn(Bj) then Gn(Bj) := Gn(Bj) + {A};

else if Bj ∈ Gn(A) then Gn(A) := Gn(A) − {Bj};

for each node Ci in out-list, 1 ≤ i ≤ |out-list| do
if A and Ci are out-of-range then Gn(A) := Gn(A) − {Ci};

if A hosts a service instance then
sid(A) := max{id(A), sid(A), sid(Aj) while Aj ∈ Gn(A)};
if sid(A) �= id(A) then terminate the service instance on A;

else
sid(A) := max{sid(A), sid(Aj) while Aj ∈ Gn(A)};

if sid(A) == −1 then
if there exists a neighboring node Bj /∈ Gn(A), sid(Bj) �= −1
and sid(Bj) is reachable from A then

A sends a service replication request to Gn(Bj);
A starts to execute a new service instance; sid(A) = id(A);

Fig. 5. The Adaptive Service Provisioning Algorithm

• Profile of Measurements [P (Ai)]: a two-dimensional profile in which each row represents one of the neighboring

nodes, and each column represents distances to all neighboring nodes obtained from one round of measurements. After

l measurements, l samples of distances to Ai are obtained for each neighboring node, denoted by d
(k)
i , k = 1, . . . , l.

• Neighboring nodes in the same group as Ai [Gn(Ai)]: the subset of neighboring nodes that has been identified as

in the same group as Ai itself. Note that rather than maintaining all nodes in the same group as Ai, this set only contains
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Fig. 6. Adaptive Service Provisioning Algorithm: An Example

neighboring nodes that are in the same group.

The algorithm to be executed on a specific node A is given in Figure 5. Its highlights are illustrated in an example,

shown in Figure 6. Initially, at time t0 when the algorithm starts, all nodes are assigned initial states Gn(Ai) = ∅, i =

1, . . . , N , and sid(Ai) = i if Ai hosts a service instance, otherwise sid(Ai) = −1. The algorithm then starts to be

executed periodically in each of the nodes, updating local states sid(Ai), P (Ai) and Gn(Ai). Figure 6(a) shows a

snapshot of the node states at a given time t1, immediately before the algorithm is scheduled to be executed for the next

time. In this example, the size of sampling buffer l = 10, and σmax = 2.

At snapshot time t1, nodes A1, A3 and A5 are each hosting a service instance, illustrated as A∗
i . In addition, we

assume that transmission range r = 10, and if Ai and Aj are neighboring nodes, we connect them with an edge in the

topology graph. If they also form an AGP, i.e., Ai
0∼ Aj , we annotate the edge with the notation AGP. At time t1,

Table II(a) shows the current local states in each of the nodes Ai, with respect to sid(Ai) and Gn(Ai). We now start to

execute the algorithm on A3.
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i sid(Ai) Gn(Ai)
1 1 {2}
2 1 {1, 4}
3 3 {6}
4 1 {2}
5 5 {}
6 3 {3,7}
7 3 {6}
8 -1 {}
9 -1 {}
10 -1 {11}
11 -1 {10, 12}
12 -1 {11}

(a) Before Algorithm

i sid(Ai) Gn(Ai)
1 1 {2}
2 1 {1, 4}
3 5 {5, 6}
4 1 {2}
5 5 {3, 6}
6 5 {3, 5, 7}
7 5 {6}
8 8 {9}
9 8 {8}
10 -1 {11}
11 -1 {10, 12}
12 -1 {11}

(b) After Algorithm

TABLE II
LOCAL STATES IN THE EXAMPLE

i d
(1)
i d

(2)
i d

(3)
i d

(4)
i d

(5)
i d

(6)
i d

(7)
i d

(8)
i d

(9)
i d

(10)
i d̄ s

1 7.0 7.9 8.5 9.4 10.0 10.6 11.2 12.8 13.4 14.0 10.5 2.38
4 9.0 9.4 9.9 10.4 10.9 11.4 11.9 12.4 12.9 13.4 11.2 1.5
5 7.3 7.6 7.3 7.2 7.0 7.5 7.2 7.0 6.9 7.0 7.2 0.231
6 4.0 4.3 4.5 4.2 3.9 3.6 3.8 4.1 4.2 4.3 4.09 0.269

TABLE III
P (A3): DISTANCES BETWEEN A3 AND ITS NEIGHBORING NODES

• Preparation Phase. As A3 starts to run the algorithm, it first examines if any nodes in Gn(A3) is currently out

of range. If so, this node may be previously added to Gn(A3) by mistake3, we thus temporarily add it into a locally

maintained out-list. For our given example, since Gn(A3) = {A6} and A6 is still in range, out-list remains empty.

• Measurement Phase. For each neighboring node at t1, A3 measures the distance for l times between itself and its

neighboring node4. The results of the measurements are collected in the profile P (A3), as shown in Table III for its

neighboring nodes, A1, A4, A5, A6.

• Gn(Ai) Calculation Phase. According to the profile, if A3 finds that a neighboring node, e.g., A5, is in its group, A3

and A5 will add each other in their respective Gn(Ai). On the other hand, existing nodes in Gn(A3) may be removed if

measurements does not show AGP properties. In our example, since d̄ > r for A1 and A4, neither belongs to Gn(A3).

3For example, the two nodes may happen to be close to each other when the algorithm was executed in a previous round.
4If the samples can not be obtained momentarily because of node mobility, the distance is estimated assuming constant velocity.
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For nodes A5 and A6, we have d̄ < r and s < σmax, A5 is thus added to Gn(A3), and A6 remains in Gn(A3).

Furthermore, A3 is added to Gn(A5) and Gn(A6).

• sid(Ai) Update Phase. Since A3 is hosting a service instance, the service instance ID of A3 is updated as:

sid(A3) = max{id(A3), sid(A3), sid(Aj) while Aj ∈ Gn(A3)} = 5 (6)

The updated service instance ID is not id(A3), which means another node in the same group is currently hosting a

service instance, A3 will then terminate its own instance. On the other hand, if another node Ai does not host any

service instances, and it can not find any service instances in its Gn(Ai), it will probe its non-AGP neighboring nodes

and examine if they have access to any service instances. If so, it creates an identical replication of the service instance.

Otherwise, the group that Ai is in will continue to be out of reach from any service instances, and they will regularly

poll their new non-AGP neighboring nodes to examine if a service instance may be replicated. Once it is replicated,

the changes of service instance IDs will be propagated to the entire group. In this particular example, A8 and A9

form a group, though there are no service instances hosted in this group. As they move, they regularly poll their new

neighboring nodes. When they move by the group {A1, A2, A4}, node A7 found that its new neighboring node A4 has

access to service, so the service is replicated to be hosted on A8.

After all nodes have executed the algorithm, the local states on each node are shown in table II(b), and the net-

work states are shown in Figure 6(b) with four groups: G1 = {1, 2, 4}, G2 = {3, 5, 6, 7}, G3 = {8, 9} and G4 =

{10, 11, 12}. The first three groups have service running on node A1, A5 and A8 respectively.

V. PERFORMANCE OF ADAPTIVE SERVICE PROVISIONING ALGORITHM

We conduct simulation experiments to evaluate the performance of the adaptive service provisioning algorithm. The

performance metrics that are measured include (1) number of identified groups with different CVmax values; (2) ser-

vice coverage and service cost; (3) service efficiency; (4) service turnovers, i.e., migration of service instances due to

creations and terminations. This gauges the probability of having stable service instances remain on the same nodes.

The simulated mobile ad-hoc network consists of 100 mobile hosts roaming in a square region of 800 ∗ 800 meters,

with all boundaries connected, i.e., nodes reaching one edge of the region will emerge on the opposite edge and continue
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Fig. 7. Simulation Window for a 100-node Ad-Hoc Network

to move on in its previous direction. The transmission range r is set to be 60m.

We also assume that there exists group mobility behavior in the network. When approximating such group move-

ments, we divide the nodes into 10 disjoint sets, each set has a randomly generated size and has independent group-wise

mobility pattern. The movement of a particular node consists of a motion vector following group mobility, and another

motion vector showing its own random movement. Please note that nodes in the same set are not necessarily identified

as in one group based on our adaptive service provisioning algorithm, since the algorithm is designed to detect groups

strictly based on local states in the nodes themselves.

Initially each node Ai is assigned a unique ID id(Ai) and it is in a group of its own. Other parameters in the simulation

include (1) CVmax = 0.25 (except for Figure 8, where we investigate the impact of CVmax on the number of groups);

(2) The initial number of service instances is 5; (3) Distance sampling size l is 20; (4) Each node runs the algorithm

every 100 time units. The simulation runs for 1000 time units. Figure 7 shows the simulation window.

In the simulation window, a small square represents a node. If a node hosts a service instance, it is illustrated with a
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larger solid circle. Two nodes are connected by a line if they form a AGP5. In the simulation window, changes in the

structure of the ad-hoc network are visualized, as groups are formed and service instances are created and terminated.

We may observe that nodes hosting service instances change frequently when simulation first starts, and stabilizes

thereafter. This is subsequently illustrated with our results shown in Figure 11.

Figure 8 shows that the algorithm is effective and efficient in classifying nodes into groups. The number of groups

converges rapidly to a stable value with a small degree of fluctuations. In addition, we have observed that the parameter

CVmax may affect both the convergence rate and stable values. Such observations are as expected, since larger CVmax

represents more relaxed criteria for identifying groups. However, we have observed that the effects of CVmax on the

stable number of groups are insignificant.

Figure 9 shows the service coverage Scover(t) and service cost Scost(t). We have observed that after the initial stage

of convergence, Scover(t) is generally stable. There are some brief time periods that Scover(t) decreases, due to the fact

that a subset of nodes roam away from a larger group and are thus temporarily out of service. However, the adaptive

service resumes after this subset of nodes creates a new service instance by replicating from another passing-by group.

With respect to the service cost Scost(t), Figure 9 has shown that it remains near a constant and low level.

Figure 10 compares the service coverage achieved with and without executing the adaptive service provisioning

algorithm. Since the average number of service instances is approximately 8 to 12 when the algorithm is executed on

all nodes, we assign 10 service instances in the simulation in which the algorithm is not used. Since the initial number

5In fact, we may also use lines of a different color to link neighboring nodes, so that we can clearly observe that neighboring nodes are not
necessarily in the same group. We omit these additional lines for the legibility of the simulation window.
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of service instances is only 5 for the case with the algorithm, it is normal that initially the service coverage with the

algorithm is less, compared to that without the algorithm executing. However, after a stabilizing period, the service

coverage with the algorithm is shown to be better and much more stable than that without the algorithm.

During the simulation, we record the list of service nodes every 10 time units, which is compared to its counterpart

in previous time instants. Service turnovers are characterized as follows. When a particular node begins to host a

new service instance, or when an existing node terminates its service instance, we increment the measurement by 1.

Shown in Figure 11, the measured values essentially indicates the frequency of service migration from one node to

another. It is only during the starting stage of the simulation that service turnovers are as large as 3, due to initial service

replication. Afterwards, service turnovers remain around 0, except for very few time periods when the service instances

are rearranged to adapt to behavioral changes in the network.
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Figure 12 shows the service efficiency S(t) with its upper and lower bounds, theoretically derived in Section III.

Recall that the upper and lower bounds depend on the m and mmin, which is the average and smallest group size,

respectively. Since m and mmin varies over time, the upper and lower bounds are not constants and vary accordingly.

After the initial stabilizing period, S(t) generally remains between the derived upper and lower bounds, except for very

rare cases where the observed S(t) is slightly over the upper bound. The reason is as follows. When the upper bound is

derived and proved, a node is considered to be out of service if it is not able to access the service in its group; however,

in our simulations, there are rare cases in which a particular node can not access any service instances in its own group,

but is able to occasionally eavesdrop within its neighboring group. Finally, we may also observe from Figure 12 that our

fully distributed algorithm is able to achieve a service efficiency that effectively converges to long-term stable values of

its derived upper bound.
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VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a novel group mobility model that depends only on distances between pairs of nodes

to identify groups in an ad-hoc network. Based on such a model, we show a fully distributed and adaptive algorithm

that dynamically rearranges the placement of service instances, with an objective of achieving the maximum possible

service efficiency. We have illustrated through simulations that our algorithm is effective to achieve such an objective.

As part of the future work, we are investigating two problems. First, the prediction of network partitioning. From Figure

9, there is a period of service interruptions when a set of nodes have partitioned from its original group. Should such

partitioning be predicted and service instances be replicated, the adaptive service could have been guaranteed without

interruptions. Second, we are designing a triggering mechanism so that the adaptive service provisioning algorithm is

activated when necessary, rather than at fixed time intervals. For example, one of the triggers may be changes in the

number of neighboring nodes.
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