
Multi-Client Searchable Encryption over Distributed
Key-Value Stores

Wanyu Lin, Xu Yuan, Baochun Li
Department of Electrical and Computer Engineering

University of Toronto
{wylin, xuyuan, bli}@ece.utoronto.ca

Cong Wang
Department of Computer Science

City University of Hong Kong
congwang@cityu.edu.hk

Abstract—Distributed key-value stores are rapidly evolving to
serve the needs of high-performance web services and large-scale
cloud computing applications. It is desirable to search directly
over an encrypted key-value (KV) store, as data is increasingly
stored in the cloud. Encrypted, distributed and searchable key-
value stores have been the focus of research, where a data owner
outsources his key-value store to a remote server in the cloud
in the encrypted form, yet still keeping it searchable. In this
paper, we explore the encrypted KV store with the secure multi-
client query support. In particular, the data owner can authorize
multiple trustable clients (third parties) and allow them to search
its encrypted database over KV store. The design goal is to
ensure the data confidentiality and query privacy. From the data
owner’s perspective, the authorized query should not leak too
much information thus causing threats to its private database.
From clients’ perspective, they have the explicit requirement that
the query values should not be exposed to the data owner. We
design two encryption schemes and token generation methods to
satisfy different requirements. To validate the efficiency of our
protocols, we implement the system prototype to evaluate their
performance.

I. INTRODUCTION

In the age of big data, distributed key-value (KV) store be-
comes a promising paradigm to serve the needs of large-scale
data applications (e.g., medical services, high-performance
services, and online gaming, etc.), due to its incremental
scalability, exceptional availability, and fault tolerance. Cloud
computing technology has been a significant trend in both
industry and academia [1]. Its great flexibility and economic
savings are motivating the users to outsource their local
database management system and intensive computation into
the cloud.

However, from the users’ perspective, the cloud is intrin-
sically non-secure. In other words, data outsourcing raises
confidentiality and privacy concern. To protect data confi-
dentiality and combat unsolicited accesses in the cloud and
beyond, encryption-before-outsourcing technology has been
regarded as a fundamental solution [2] [3]. Considering a large
amount of data, efficient data utilization after encryption is an
especially challenging task in the cloud.

Searchable symmetric encryption (SSE) [4]–[8] is a crypto-
graphic primitive addressing secure and efficient search for
outsourcing data. One category of the related research on
SSE focuses on practical keyword search (single keyword or
boolean keyword). The other group of the related works on
SSE focus on supporting secure multi-client search (with client

authorization, revocation mechanisms). However, they are not
explicit for distributed data stores. Considering the features
and requirements in modern KV stores, designing an efficient
searchable encrypted key-value store, that supports the multi-
client search without privacy breach, remains a challenging
open problem.

Very recently, a secure, searchable distributed key-value
store (BlindDB) was proposed by Yuan et al. [9]. They
built an encrypted local index framework for efficient, simple
queries via secondary attributes, while still preserving the
functionalities of modern key-value stores. To enable efficient
search, they proposed a secure data partition algorithm that
can store the encrypted data distributedly across a cluster of
nodes. The secure query process can be performed in parallel.
Regarding data confidentiality, the leakage to the server is
formally specified and proven in [9]. However, the encrypted
key-value store only allows data owner itself to perform the
secure search via interaction with the remote server.

In this paper, we investigate secure multi-client search over
encrypted distributed key-value store. In particular, the data
owner can authorize multiple trustable clients (third parties)
and allow them to search its encrypted database efficiently via
interaction with the server. In our design, we aim to ensure
both the data confidentiality and query privacy. Specifically,
from the data owner’s perspective, the authorized query should
not leak too much information so that causing any threats to
its private database. From the clients’ perspective, the query
values should not be exposed to the data owner.

For example, a university outsources an encrypted key-
value database which contains students and staffs’ personal
information (name, sex, address, academic performance, etc.)
to the cloud. The client (students, administrators, professors,
etc.) can search the store but only via queries authorized by
the university according to its policies. Due to the universities’
policies, the professor can only search students’ scores on his
course rather than all of the detailed information about each
student. The cloud should also learn as little as possible about
the encrypted database and queries submitted by clients. In
some cases, the student may not be willing to expose the actual
query to the university itself.

For enabling multi-client search over encrypted distributed
key-value store in the cloud, we start from the design of
BlindDB [9]. Our first contribution lies in extending the
BlindDB secure search protocol to support the multi-client

 978-1-5090-6517-2/17/$31.00 ©2017 IEEE

Authorized licensed use limited to: The University of Toronto. Downloaded on January 15,2023 at 00:46:08 UTC from IEEE Xplore. Restrictions apply.

setting while preserving its basic query capabilities and per-
formance in [9]. In this extension, the data owner provides
the authorized client with a pair of query tokens. Specifically,
the server would verify that the data owner has authorized
the search tokens submitted by the clients before performing
the search protocol. To achieve our objective, we initially
use a homomorphic signature mechanism where the search
tokens are signed by the data owner and can be verified by
the server via a per-query blinding factor. Our primary design
preserves the same level of privacy and the same remarkable
performance of BlindDB.

Next, to protect clients’ privacy, we augment the multi-
client setting with blind query support. In this extension, the
client queries can be hidden from the data owner rather than
being exposed of the query plaintext in our initial design. In
this setting, we utilize a particular pseudo-random function
(PRF) “oblivious PRF” (OPRF) to generate the search tokens.
In other words, by using OPRF, our search tokens can be
generated by implementing a two-party computation protocol.
In this protocol, the data owner inputs a private key, the client
inputs a query, the client can learn the tokens’ value, yet
the data owner would learn nothing about the query. Thus,
the client’s query would not be exposed during the query
procedure.

The remainder of this paper is organized as follows. In
Sec. II, we address our system architecture and threat assump-
tion. In Sec. III, we first recall the basic encrypted distributed
key-value store [9] and we explain how to extend support
for secure multi-client search. In Sec. IV, we present our
real-world implementation on a Redis cluster and evaluate its
validity and performance in the geo-distributed servers. We
discuss related work and conclude the paper in Sec. V and
Sec. VI, respectively.

II. PROBLEM FORMULATION

A. System Architecture

Dispatcher

Server

Data owner

Clients

To
k
e
n

 Q
u
e
ry

To
ke

n

En
cr

yp
te

d
Va

lu
e

EDB

Fig. 1. System architecture of distributed, encrypted key-value store

In this paper, we upgrade the system architecture of dis-
tributed, encrypted key-value store proposed in [9] to adapt

to a multi-client model as shown in Fig. 1. In this architec-
ture, four entities are included: 1) Data owner D with data
application, 2) A dispatcher; 3) Some clustered storage nodes,
and 4) Multiple clients. Both dispatcher and storage nodes are
deployed in the public cloud or on-premise data centers. The
data owner D owns the database. In this system, the data owner
performs data encryption, encrypted index construction and
then sends its encrypted database EDB to the dispatcher. After
receiving the encrypted data, the dispatcher can perform the
consistent hashing to route them to the target nodes. Finally,
the encrypted database would be stored distributedly in the
cluster of nodes.

Once there are clients’ requests, our multi-client system
requires the clients first to obtain search tokens with a sig-
nature from the data owner. Subsequently, the client would
send its per-query search tokens to the dispatcher. Then the
dispatcher in the server module handles search tokens. It first
verifies the query tokens with the authentication mechanism.
Once the requests are confirmed, the dispatcher would process
the authenticated requests over the encrypted indexes and use
the APIs of the underlying key-value stores to retrieve the
encrypted data records.

Our system aims to ensure efficient and secure query service
to the clients via the remote server S. The multi-client setting
integrates the secure data partition algorithm so that each
storage node can index its local encrypted data and process
a given secure query in parallel.

B. Threat Assumption

As shown in Fig. 1, the dispatcher and storage nodes are
deployed in the public cloud. For simplicity, we consider them
as an entire server component in our threat model.

The server with EDB is considered as ‘honest-but-curious’.
This assumption is consistent with the most related works
on searchable encryption [8], [10]. Specifically, it acts in an
‘honest’ fashion that correctly follows the designated protocol
specification. In other words, the server maintains the storage
nodes and executes the operations as required. However, it
is ‘curious’ to infer and analyze the encrypted database in
its storage. Besides, the server can also monitor the query
protocols. It may learn additional information about the data,
clients queries and encrypted result records after a number
of query protocol executions for an adaptively generated
sequential queries.

In our multi-client scenario, we assume that the clients are
not in the trusted domain and may collude with each other.
Nevertheless, the clients do not collude with the server. It will
not expose the data encryption keys to the server. Meanwhile,
the server will not respond to the unauthorized requests. The
clients may act maliciously, trying to query the information
beyond what they are authorized. As the data owner generates
the per-query search tokens, he/she may learn additional
information about the clients by their requests. Thus, from the
perspective of the clients, the data owner may also be a threat.
Besides, we also assume that the communication channels are
authenticated and encrypted against eavesdropping.

Authorized licensed use limited to: The University of Toronto. Downloaded on January 15,2023 at 00:46:08 UTC from IEEE Xplore. Restrictions apply.

In brief, our goal are threefold in terms of security: 1) leak
as little information as possible to S about the database and
clients’ query value; 2) prevent clients from running any other
queries than those for which D issued them tokens; 3) prevent
the data owner learning about the clients’ query value.

C. Cryptographic Primitives

A symmetric encryption scheme SE(KeyGen, Enc, Dec)
consists of three algorithms: the key generation algorithm
KeyGen takes a security parameter k as an input to return
a secret key Kv for data value encryption; The encryption
algorithm Enc takes a key Kv and a value v ∈ {0, 1}∗ as input
to return a ciphertext v∗ ∈ {0, 1}∗; The decryption algorithm
Dec takes Kv and v∗ as inputs to return v if Kv is exactly
the key to encrypt v.

A family of pseudo-random functions (PRF) is defined as:
F : K × X → R, if for all probabilistic polynomial time,
distinguishers Y , |Pr[Y F (k,) = 1|k ← K]− Pr[Y g = 1|g ←
{Func : X → R}]| < negl(k), where negl(k) is a negligible
function in k. “Oblivious PRF” [11] is a special case of PRF.
A PRF F(K,C) is called oblivious if there is a two party
computation protocol in which the data owner inputs K,
the client inputs C, the client learns the value of F but the
data owner learns nothing. The high-level description of the
two-party computation protocol with oblivious PRF is shown
as Fig. 2.

ClientsData owner

OPRF & K C
Two-party

computation
protocol

OPRF(K,C)null

Fig. 2. Two-party computation with oblivious PRF

III. MULTI-CLIENT SEARCHABLE ENCRYPTION

This section presents the designs of the multi-client search-
able encryption in details underlying the encrypted key-value
store proposed in [9].

A. The basic setting of encrypted KV store

We first recall the basic design of the encrypted KV store [9]
that forms the basis for our solution to searchable encryption
in a more advanced multi-client model. The high-level descrip-
tion of its contribution is that it constructed an encrypted local
index framework for efficient queries via secondary attributes,
yet still preserving the functionality of the modern key-value
stores.

In this system, they first proposed a secure data partition
algorithm that dispatches encrypted data records across a
cluster of nodes, while preserving horizontal scalability and
fault tolerance. Second, they implemented two basic APIs
put and get to support retrieval and update on a single
encrypted data record. And then they built an encrypted
local index framework towards efficient secure queries via

secondary attributes of data in distributed key-value stores.
Once the dispatcher receives search tokens, it can perform the
consistent hashing to route them to the nodes. Thus, the search
protocol can be executed in each node in parallel.

The encrypted local index construction protocol in BlindDB
[9] is presented in Fig. 1 ; see [9] for full design rationale and
analysis. Here we provide a high-level description as needed
for the extension to this protocol we introduce in the following
subsections.

Algorithm 1 Build encrypted local indexes
Require: Private key: K; Row name set: R; Column attribute

set: C; Data values: V
Ensure: Encrypted indexes: I.

1: I : {I1, · · · , In} ← init();
2: for i = 1 to n do
3: KC ← PRF(K, i);
4: end for
5: for all C ∈ C do
6: init counters c for C: {c1 ←, · · · , cn ← 1};
7: for ∀v ∈ V associated with C do
8: l∗ ← PRF(Ka, R||C), where R ∈ R;
9: i← route(l∗);

10: choose Ii ∈ I, ci ∈ c for node i;
11: t1 ← PRF1(KC , 1||C), t2 ← PRF2(KC , 2||C);
12: α← G1(t1, ci);
13: β ← G2(t2, ci)⊕ l∗;
14: insert(α, β);
15: ci++;
16: end for
17: end for

The basics of BlindDB secure data partition algorithm
is to map key-value pair/record into encrypted one. Specif-
ically, in column-oriented data model, < l∗, v∗ >=<
PRF(Ka, R||C),Enc(Kv, v) >, where Ka, Kv are private
keys generated by the data owner, R is a row name, C is
an attribute name. [9] uses PRF(Ka, R||C) as the label for
partition. The database encryption and encrypted local index
construction procedures are executed by the data owner.

Different from [9] which token is generated via PRF on the
inputs of the private key and column attribute C, our multi-
client setting utilizes an “oblivious PRF” (OPRF) computation
between the client ς and the data owner D to blind the client’s
query. Besides, to avoid unauthorized query from the malicious
clients, we employ a homomorphic signature mechanism in
which the per-query tokens can be signed by the data owner
and verified by the server before each search process.

Most changes on BlindDB are in the GenToken protocol.
The encrypted local indexes construction protocol remains
mostly unchanged except for the implementation of the PRF,
and Search in server side is substantially unmodified except
for the additional request’s authentication.

Authorized licensed use limited to: The University of Toronto. Downloaded on January 15,2023 at 00:46:08 UTC from IEEE Xplore. Restrictions apply.

B. Multi-Client Setting with Client Authorization

In this subsection, we present an extension of the BlindDB
protocol for the multi-client setting in more detail below. Our
extension preserves the functionality and performance of the
original BlindDB [9], while securely serving multiple clients,
all of which can behave maliciously.

Formally, the multi-client setting changes the syntax of the
original query scheme in BlindDB. It includes an additional
algorithm GenToken which on the inputs of the secret key K
generated by the data owner D and a query for searching a
secondary attribute C’s value submitted by the client ς . The
GenToken protocol is to generate a pair of search-enabling
tokens (t1, t2). Then the Search procedure is executed by the
server S on the inputs of the search token (t1, t2) and the
encrypted database EDB = {I, < L∗,V∗ >}, where I is the
encrypted indexes, < L∗,V∗ > is the encrypted key-value
records.

For enabling multi-client search over the outsourced
key-value stores, an intuitive solution is that the data
owner generates the search tokens and then responds to the
corresponding client. Then the client with search tokens can
perform the search. However, as mentioned in our threat
model in Sec. II-B, the clients may collude with each other.
In other words, the authorized client may send his/her search
tokens to the unauthorized clients. To eliminate this threat,
we employ a one-time blinding factor for each query. We
describe the changes to the original BlindDB secure query
scheme in Fig. 2 needed to support the multi-client setting.

EDBSetup: This pre-processing phase is almost identical to
the one in BlindDB. The only difference is that our design re-
quires an additional element KM to be outsourced in the server
for clients authorization. The output from this phase is the
private key K kept by D and EDB = {KM , I, < L∗,V∗ >}
to be outsourced at the cluster of the storage nodes at the
remote side, where KM is a private key generated by D for
clients authorization, I is the encrypted local indexes generated
by executing Algorithm 1, < L∗,V∗ > are encrypted key-
value pairs/records which can be decrypted by K.

GenToken (line 1 − 10 in Algorithm 2): This is the new
multi-client specific phase in which the data owner D, using
its private key KM , authorizes the client ς for a secondary
attribute query and provides ς with the necessary tokens to
enable search at the server S. As long as the data owner D
receives the secondary attribute name submitted by ς , it will
perform the following operations. The data owner would gen-
erate a one-time blinding factor ξ ← Z∗

p at the beginning and
then set t∗1 ← PRF(KC , 1||C)ξ, t∗2 ← PRF(KC , 2||C)ξ,
instead of t1 ← PRF1(KC , 1||C), t2 ← PRF2(KC , 2||C).
Afterwards, the data owner leverages symmetric encryption to
encrypt ξ. Thus ξ∗ = AuthEnc(KM , ξ). Finally, the data
owner will send the tokens with the authentication factor to
the client. Kv is the private key for search records decryption.

Search (line 11 − 28 in Algorithm 2): To see how this
enables search as in BlindDB, first note that with tokens

(t1, t2) = {PRF1(KC , 1||C),PRF2(KC , 2||C)}, the dis-
tributed nodes in the server side can access to the encrypted
data value in parallel. Before the received tokens are dis-
patched, the dispatcher would verify the authenticity of the
client by decrypting the blinding factor ξ∗ and raise the tokens’
value to the power of 1/ξ to obtain the search tokens. Security
relies on the fact that if the client ς provides the server
with a value other than the one given by the data owner,
then the final tokens will not correspond to the value of the
encrypted indices. The remaining Search protocol based on
tokens (t1, t2) on the server side is mostly unmodified except
for the additional requests authentication procedure.

Algorithm 2 MC-Secure Query on a given attribute
Require: Queried column attribute: C ∈ C from Client; Data

owner’s private key: K.
Ensure: Given attribute’s values: Vr.

1: Data owner:
2: ξ ← Z∗

p ;
3: for i = 1 to n do
4: KC ← PRF(K, i);
5: t∗1 ← PRF(KC , 1||C)ξ, t∗2 ← PRF(KC , 2||C)ξ;
6: end for
7: ξ∗ = AuthEnc(KM , ξ);
8: Send {Kv, (t1, t2)n, ξ

∗} to the client.

9: Client:
10: Send {(t1, t2)n, ξ∗} to the server S.

11: Search executed in server:
12: Dispatcher:
13: ξ = AuthDec(KM , ξ∗);
14: t1 ← t

∗1/ξ
1 , t2 ← t

∗1/ξ
2 ;

15: Node1−n:
16: for i = 1 to n do
17: ci ← 1;
18: α← G1(t1, ci);
19: while find(α) ̸=⊥ do
20: β ← find(α);
21: l∗ ← β ⊕G2(t2, c1);
22: v∗ ← get(l∗);
23: Add v∗ to Vr;
24: ci++;
25: α← G1(t1, ci);
26: end while
27: end for
28: Send V∗

r to client ς .

29: Client:
30: Vr ← Dec(Kv,V

∗
r);

C. Augmented Multi-Client Setting
In Algorithm 2, the client sends the query to the data

owner for token generation. The data owner may learn clients’

Authorized licensed use limited to: The University of Toronto. Downloaded on January 15,2023 at 00:46:08 UTC from IEEE Xplore. Restrictions apply.

information by analyzing the queries from the clients. In this
subsection, we augment the multi-client setting with blind
query support. In this design, the data owner should learn as
little as possible about the client queries, while still being able
to authorize the client to perform the secure search over the
outsourced distributed key-value stores.

Most changes with respect to the multi-client setting are
in the GenToken protocol from line 1 to 10 in Algorithm
2. EDBSetup remains mostly unchanged except for the im-
plementation of the PRFs. The implementation of PRFs in
Algorithm 1 is also replaced by the oblivious PRF. Search
protocol is unmodified in this augmented protocol.

To blind client query, we use an “oblivious PRF” (OPRF)
two-party computation protocol between the client and the
data owner, instead of using a regular PRF in line 11 of
Algorithm 1 and line 3 of Algorithm 2, respectively. OPRF
is a particular case of PRF in which the data owner inputs
K and the client inputs C. By applying the two computation
protocol with OPRF, the client learns the value of OPRF and
the data owner learns nothing. We use the OPRF protocol [7]
in which OPRF(r, x) = H(C)r, where H is a hash function
onto G {1} where G is a group of prime order p, and r is a
random number ∈ Zp∗, x is a value wish to blind.

As in Fig. 3 shown, the client generates a blinding factor r
and applies OPRF(r, 1||C) = H(1||C)r in line 3, and then
sends the blinded query to the data owner. The data owner
generates the search token by raising the value to the power
of KC × ξ, where KC is the private key, and ξ is the blinding
factor for authorization. After receiving the search token, the
client would raise the tokens’ value to the power of 1/r as
the line 16 shown. The security relies on the fact that the hash
function H is a one-way function, the data owner would not
know the value of 1||C without knowing the random number
r.

To decrypt the encrypted value receiving from the server,
the data owner also requires sharing the data encryption key
Kv to the client. The data owner masks Kv via XORing a1 as
shown in line 12 and sends it along with the generated tokens
to the client. Once the client receives the encrypted attribute
value from the server, it will unmask Kv via XORing a1 and
execute the decryption procedure to obtain the final results.

IV. EXPERIMENTAL EVALUATION

In this section, we present experimental evaluations of our
schemes on a large scale dataset with 100, 000 data values in
total (10 bytes for each). The results confirm that our extension
of the BlindDB protocol can preserve the functionality of [9]
and serve multiple clients securely.

A. Prototype Summary

As the prototype implemented in [9], the consistent hash
ring was cached at the client for request routing. Thus,
there are three components in the system prototype: the data
owner, the cluster of storage nodes/server and the client. The
data owner generates the encrypted database EDB containing
encrypted data records, authentication key, and encrypted

Algorithm 3 Augmented MC-Secure Query on a given at-
tribute
Require: A column attribute: C ∈ C from Client; Data

owner’s private key: K.
Ensure: Given attribute’s values: Vr.

1: Client:
2: random r ∈ Z∗

p ;
3: a1 ← OPRF(r, 1||C), a2 ← OPRF(r, 2||C);
4: Send (a1, a2) to data owner D.

5: Data owner:
6: ξ ← Z∗

p ;
7: for i = 1 to n do
8: KC ← PRF(K, i);
9: b1 ← aKC×ξ

1 , b2 ← aKC×ξ
2 ;

10: end for
11: ξ∗ = AuthEnc(KM , ξ);
12: a∗1 ← a1 ⊕Kv;
13: Send {(b1, b2)n, ξ∗, a∗1} to the client.

14: Client:
15: for i = 1 to n do
16: t∗1 ← b

1/r
1 ,, t∗2 ← b

1/r
2 ;

17: end for
18: Send token {(t∗1, t∗2), ξ∗}n to the server S.

19: Search executed in server:
20: Dispatcher:
21: ξ = AuthDec(KM , ξ∗);
22: t1 ← t

∗1/ξ
1 , t2 ← t

∗1/ξ
2 ;

23: Node1−n:
24: for i = 1 to n do
25: ci ← 1;
26: α← G1(t1, ci);
27: while find(α) ̸=⊥ do
28: β ← find(α);
29: l∗ ← β ⊕G2(t2, c1);
30: v∗ ← get(l∗);
31: Add v∗ to Vr;
32: ci++;
33: α← G1(t1, ci);
34: end while
35: Send V∗

r to client ς .
36: end for

37: Client:
38: Kv ← a∗1 ⊕ a1;
39: Vr ← Dec(Kv,V

∗
r);

indices. Meanwhile, the data owner encrypts the clients’
request and sends a pair of per-query tokens to the client.
The client decrypts the server’s responses. The server uses the
authentication key to verify and provides search services to

Authorized licensed use limited to: The University of Toronto. Downloaded on January 15,2023 at 00:46:08 UTC from IEEE Xplore. Restrictions apply.

TABLE I
UPLOAD LATENCY WITH DIFFERENT NUMBER OF DATA RECORDS

No. of data records 10,000 50,000 100,000
MC-secure upload latency/s 24.4779 125.4439 215 .8879

Augmented MC-Secure upload latency/s 22.4706 112.2168 218.9765

TABLE II
QUERY LATENCY WITH DIFFERENT NUMBER OF DATA RECORDS

No. of data records 10,000 50,000 100,000
MC-secure query latency/s 1.9908 1.8406 1.8200
Augmented query latency/s 2.0094 1.8260 1.8187

the clients.
The experiments described in the remainder of this subsec-

tion were run on the system prototype implemented in [9]. We
deployed the system prototype in geo-distributed servers. We
create 6 instances as the Redis cluster to store the encrypted
indices and records, each of them equipped with 1 vCores,
2GB RAM and 20GB Disk. We build one instance for the
data owner and one for the client, respectively. Each one of
them equipped with 2 vCores, 4GB RAM, and 40GB Disk.
Ubuntu Server 16.04 was installed in each instance.

Likewise, the remote procedure call is implemented via
Apache Thrift. The operations on the nodes are implemented
via C++. We implemented the cryptographic building blocks
using OpenSSL. Besides, we implemented the secure PRF via
HMAC-SHA2 and the symmetric encryption via AES/CBC-
256. Our multi-client searchable schemes are integrated into
the implementation of the distributed encrypted index frame-
work 1 [9].

B. Performance Evaluation

The evaluation on multi-client searchable encryption over
distributed key-value stores mainly focuses on the query
performance and upload performance.

To show the performance of our multi-client designs, we
evaluate the upload latency with different scales of datasets
and the query latency for a given attribute for our designs
in Sec. III-B and Sec. III-C, respectively. We evaluate the
upload latency and the query latency with up to 100, 000
data records. The results are shown in Table I and Table II.
The experiments are conducted in the Redis cluster with 6
instances. We conduct the experiments with 50 rounds. From
Table I and Table II , we can clearly see that our augmented
design can obtain comparable performance while providing
query blinding support.

To show that our designs can benefit from the encrypted
local index framework, we conduct our experiments using
different scales of clusters with 1, 2, 3, 4, 5, 6 storage nodes,
respectively. Our experiments use 100, 000 data values and run
50 rounds. Fig .3 and Fig .4 show that both upload and query
latency decrease as the number of nodes increases. The reason
is that the encrypted local index framework can effectively

1An encrypted, distributed, and searchable key-value store: online at
https://github.com/CongGroup/BlindDB

Number of servers
1 2 3 4 5 6

U
pl

oa
d

La
te

nc
y

(s
)

0

50

100

150

200

250

Data Size = 10,000
Data Size = 50,000
Data Size = 100,000

Fig. 3. Augmented MC-secure upload latency with different number of nodes

Number of servers
1 2 3 4 5 6

Q
ue

ry
 L

at
en

cy
 (

s)

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

Data Size = 10,000
Data Size = 50,000
Data Size = 100,000

Fig. 4. Augmented MC-secure query latency with different number of nodes

handle the data uploads and the queries in parallel. Noted
that the query latency decreases drastically. With more storage
nodes, the queries are performed more effectively. Thus, we
can confirm that our extension preserves the functionality and
the performance of original distributed key-value stores, while
securely serving multiple clients.

V. RELATED WORK

Searchable Encryption The first searchable encryption
scheme is proposed by Song et al. [4]. Goh [5] proposed
the first notion of security for searchable encryption. Subse-
quently, The strong security notion of IND-CKA2 was pro-
posed by Curtmola et al. [6]. In [6], Curtmola et al. proposed
a general construction which uses broadcast encryption on
top of a single-client scheme to support multi-client secure
search. Jarecki et al. proposed another multi-client system
called OSPOR-OXT [7] which extended the OXT protocol
of Cash et al. [12] to support multi-client setting, while
withstanding adversarial non-colluding servers and arbitrarily
malicious clients.

Authorized licensed use limited to: The University of Toronto. Downloaded on January 15,2023 at 00:46:08 UTC from IEEE Xplore. Restrictions apply.

Secure Database Systems Security in database systems has
been studied in [7], [13]–[16]. These systems can be divided
into two categories based on their approaches: software-based
systems [7], [13], [14] and hardware-based systems [15],
[16]. Among these, CryptDB [13] is a popular software-based
system that can execute a wide range of SQL queries on
encrypted data. It employs SQL-aware adjustable encryptions
with multiple onions to provide strong security strength.
Meanwhile, CryptDB requires no changes to the internals of
the database management systems. BlindSeer [14] is another
practical private database system that can support arbitrary
boolean queries, while achieving certain security on a con-
trolled amount of information leakage (e.g., search patterns
across multiple queries) [14]. Its scalability is limited by the
crucial reliance on bloom filters that requires database sizes
whose resultant bloom filters can fit in RAM.

Both Cipherbase [15] and Trusted DB [16] utilize hardware
approach to provide data security. In these two systems, cloud
server is required to install secure co-processors (SCPUs)
where the decryption key is stored on its machine. Attackers
could not inspect data stored in an SCPUs memory since
SCPUs are tamper-resistant. To answer queries, the server
provider sends the encrypted data to the SCPUs for processing
and receives encrypted results.

However, above systems are not explicit for distributed
data stores. Very recently, an encrypted distributed key-value
store is designed and implemented with secure multi-data
model support and secure distributed query enabled [9]. In
this system, they built an encrypted local index framework to
provide secure queries via secondary attributes of data. We
make an extension of this system to enable multi-client secure
search while preserving functionality and performance of the
original system.

VI. CONCLUDING REMARKS

In this paper, we focus on the privacy of data owner in
multi-client searchable encryption settings over the distributed
key-value stores. In some scenarios, the clients may have the
explicit requirement that they don’t want the data owner to
learn any information about the queries. To achieve these
objectives, we first employ a homomorphic signature mech-
anism to authorize the clients, where the search tokens can
be signed by the data owner and verified by the server via
a per-query blinding factor. Through the one-time blinding
factor, we can eliminate the threat result from the replay of
the query by different clients. To blind the clients’ query, we
utilize a two-part computation protocol with obvious PRF to
augment our multi-client setting. Last but not the least, for
practical usage, we integrate our schemes into an encrypted
local index framework so that each node can process the
queries in parallel. Our evaluation on the geo-distributed
servers demonstrates its efficiency.

REFERENCES

[1] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A Break
in the Clouds: Towards a Cloud Definition,” ACM SIGCOMM Computer
Communication Review, vol. 39, no. 1, pp. 50–55, 2008.

[2] S. Kamara and K. Lauter, “Cryptographic Cloud Storage,” in Financial
Cryptography and Data Security, 2010.

[3] C. Wang, K. Ren, and J. Wang, “Secure and Practical Outsourcing of
Linear Programming in Cloud Computing,” in Proc. IEEE INFOCOM,
2011.

[4] D. X. Song, D. Wagner, and A. Perrig, “Practical Techniques for
Searches on Encrypted Data,” in Proc. IEEE Security and Privacy
(S&P), 2000, pp. 44–55.

[5] E.-J. Goh et al., “Secure Indexes.” IACR Cryptology ePrint Archive, vol.
2003, p. 216, 2003.

[6] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable Sym-
metric Encryption: Improved Definitions and Efficient Constructions,”
Journal of Computer Security, vol. 19, no. 5, pp. 895–934, 2011.

[7] S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner, “Outsourced
Symmetric Private Information Retrieval,” in Proc. ACM SIGSAC con-
ference on Computer & Communications Security, 2013, pp. 875–888.

[8] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving Multi-
keyword Ranked Search over Encrypted Cloud Data,” IEEE Transactions
on Parallel and Distributed Systems (TPDS), vol. 25, no. 1, pp. 222–233,
2014.

[9] X. Yuan, X. Wang, J. Lin, C. Wang, and C. Qian, “BlindDB: an
Encrypted, Distributed, and Searchable Key-value Store.”

[10] N. Cao, Z. Yang, C. Wang, K. Ren, and W. Lou, “Privacy-preserving
Query over Encrypted Graph-structured Data in Cloud Computing,” in
Proc. IEEE International Conference on Distributed Computing Systems
(ICDCS), 2011, pp. 393–402.

[11] M. Naor and O. Reingold, “Number-theoretic Constructions of Efficient
Pseudo-random Functions,” Journal of the ACM (JACM), vol. 51, no. 2,
pp. 231–262, 2004.

[12] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu, and M. Steiner,
“Highly-scalable Searchable Symmetric Encryption with Support for
Boolean Queries,” in Advances in Cryptology–CRYPTO 2013. Springer,
2013, pp. 353–373.

[13] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan, “CryptDB:
Processing Queries on an Encrypted Database,” Communications of the
ACM, vol. 55, no. 9, pp. 103–111, 2012.

[14] V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin, S. G. Choi,
W. George, A. Keromytis, and S. Bellovin, “Blind seer: A Scalable
Private Dbms,” in Proc. IEEE Security and Privacy (S&P), 2014, pp.
359–374.

[15] A. Arasu, S. Blanas, K. Eguro, M. Joglekar, R. Kaushik, D. Kossmann,
R. Ramamurthy, P. Upadhyaya, and R. Venkatesan, “Secure Database-
as-a-service with Cipherbase,” in Proc. ACM SIGMOD International
Conference on Management of Data, 2013, pp. 1033–1036.

[16] S. Bajaj and R. Sion, “Trusteddb: A Trusted Hardware-based Database
with Privacy and Data Confidentiality,” IEEE Transactions on Knowl-
edge and Data Engineering, vol. 26, no. 3, pp. 752–765, 2014.

Authorized licensed use limited to: The University of Toronto. Downloaded on January 15,2023 at 00:46:08 UTC from IEEE Xplore. Restrictions apply.

